JP4507376B2 - Zeolite-based photocatalyst and photocatalytic reaction method - Google Patents

Zeolite-based photocatalyst and photocatalytic reaction method Download PDF

Info

Publication number
JP4507376B2
JP4507376B2 JP2000285243A JP2000285243A JP4507376B2 JP 4507376 B2 JP4507376 B2 JP 4507376B2 JP 2000285243 A JP2000285243 A JP 2000285243A JP 2000285243 A JP2000285243 A JP 2000285243A JP 4507376 B2 JP4507376 B2 JP 4507376B2
Authority
JP
Japan
Prior art keywords
light
zeolite
photocatalyst
visible region
photocatalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000285243A
Other languages
Japanese (ja)
Other versions
JP2002085979A (en
Inventor
正一 安保
弘巳 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2000285243A priority Critical patent/JP4507376B2/en
Publication of JP2002085979A publication Critical patent/JP2002085979A/en
Application granted granted Critical
Publication of JP4507376B2 publication Critical patent/JP4507376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、可視領域の光の照射によっても光触媒活性が発現するTiと特定の元素が導入されたゼオライト系光触媒およびそれを用いた光触媒反応方法に関する。
【0002】
【従来の技術】
酸化チタン光触媒は、光エネルギーを化学エネルギーに変換し、常温でも光触媒活性が発現するため、環境負荷が少ないことが注目されている。酸化チタンの光触媒活性向上のために、超微粒子化、金属の添加、可視領域(約400nm〜800nm)の光を活用する研究が盛んに行われている。
【0003】
しかしながら、酸化チタンは、紫外領域の光で光触媒活性が発現するが、可視領域の光では、光吸収がなく、定常的な光触媒活性が発現できないとされてきた。太陽光は約5%の紫外領域の光を含むが、酸化チタンの光触媒としての活性化には十分ではなく、別途、紫外領域の光が照射可能な光源との組み合わせが必須とされている。
【0004】
また、特開平9−262482公報には、酸化チタンに特定の元素をイオン注入で導入することにより、これまで不可能とされてきた可視領域の光を吸収し、可視領域の光でも光触媒活性を示すことが報告されている。しかしながら、酸化チタンに特定の元素をイオン注入で導入した光触媒を用いた一酸化窒素の光触媒分解反応では、可視領域の光で光分解反応は進行するが、一酸化窒素の直接分解によるN2とO2の生成への選択性が乏しく、N2Oの生成量が多いことが問題とされている。N2Oは人体に対する影響は少ないが、難分解性であり、地球温暖化の原因とされている二酸化炭素よりも多くの赤外線を吸収するため、N2O発生量の低減が求められている。
【0005】
特開平9−262482公報には、金属成分としてTiと担体成分としてゼオライトを含有する光触媒の存在下、光照射により窒素酸化物をN2とO2に分解する方法が報告されている。ゼオライト系光触媒では、希薄な反応物をゼオライト特有の構造で濃縮し効率良く反応できること、あるいはゼオライトの持つ細孔構造に由来する反応の立体選択能を持たせることができることなどの特徴を持つが、上記の光触媒で、光触媒反応を進行させるためには、波長が300nm以下の紫外領域の光を使用する必要がある。つまり、太陽光などの紫外から可視領域を含む光では、可視領域の光が活用できず、光触媒活性化が十分ではなかった。
【0006】
【発明が解決しようとする課題】
光吸収帯を可視領域の光までシフトさせ、可視領域の光でも安定的に光触媒活性が発現できるゼオライト系光触媒、およびゼオライト系光触媒を用いた可視領域の光でも安定的に光触媒活性を発現でき、特に可視領域の光照射下での窒素酸化物の光分解反応において、N2O生成を抑制しながら、N2とO2に高選択的に窒素酸化物を分解する光触媒反応方法が望まれていたが、いまだその技術は存在していない。
【0007】
本発明の目的は、かかる従来技術の課題を解決し、Tiと特定の元素を導入することで可視領域の光でも安定的に光触媒活性が発現できるゼオライト系光触媒、およびこのようなゼオライト系光触媒を用いた可視領域の光でも安定的に光触媒活性が発現でき、特に可視領域の光照射下での窒素酸化物の光触媒分解反応において、N2O生成を抑制しながら、N2とO2へと高選択的に窒素酸化物を分解することができる光触媒反応方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するため鋭意検討した結果、Tiと特定の元素を導入して得られるゼオライト系光触媒が、驚くべきことに、紫外領域の光はもちろんのこと、これまで不可能とされてきた可視領域の光の吸収を起こし、可視領域の光照射下で窒素酸化物の光分解反応などの種々の光触媒反応に常温で活性を示すことを見い出し、これらの知見に基づいて本発明を完成するに至った。
【0009】
すなわち本発明は、酸化物モル比で表して、aM23・bTiO2・cAl23・ySiO2(式中、MはV、Cr、Fe、Co、Ni、Cu、ZnおよびRhからなる群から選択される1種または2種以上の元素であり、a,b,c,yはa+(b/2)+c=1、a>0、b>0、c≧0、y≧2を満たす実数を表わす。)の化学組成を有し、MおよびTiの一部あるいは全部がゼオライト骨格に置換されているゼオライト系光触媒に関するものである。さらに本発明は、上記のゼオライト系光触媒の存在下で、紫外領域及び/又は可視領域の光を照射し、光触媒反応を行う光触媒反応方法、殊に窒素酸化物を光触媒反応によって分解する光触媒反応方法に関するものである。
【0010】
以下、本発明を詳細に説明する。
【0011】
本発明のゼオライト系光触媒は、ゼオライトを基材とし、これにTiと特定の元素が含有されているものであり、酸化物モル比で表して、aM23・bTiO2・cAl23・ySiO2(式中、MはV、Cr、Fe、Co、Ni、Cu、ZnおよびRhからなる群から選択される1種または2種以上の元素であり、a,b,c,yはa+(b/2)+c=1、a>0、b>0、c≧0、y≧2を満たす実数を表わす。)の化学組成を有し、MおよびTiの一部あるいは全部がゼオライト骨格に置換されている
【0012】
本発明のゼオライト系光触媒において、導入される特定の元素とは、V、Cr、Fe、Co、Ni、Cu、ZnおよびRhからなる群から選択される1種類以上の元素であり、これらの内でも好ましくはV、Crである。また、Tiと上記の導入される元素の電荷は特に制限はないが、ゼオライト骨格に導入され、四配位で存在することが好ましい。また、これらの元素をゼオライトに導入することでゼオライトを構成するAl分がすべて置換されていても構わない。これら特定の元素は1種単独でもよいし、2種以上を組み合わせてもよい。
【0013】
基材であるゼオライトの構造型としては、特に限定されず、BEA、CHA、EMT、ERI、FAU、FER、GIS、HEU、LTA、LTL、MAZ、MEI、MEL、MFI、MOR、MTW、OFF、あるいはMCM41、MCM48などの種々の構造型のものを用いることができ、これらは天然型、合成型のいずれも用いることができる。また、本発明のゼオライト系光触媒は、他の光触媒と併用してもよいし、他の基材を含有してもよい。
【0014】
本発明のゼオライト系光触媒の組成において、主に製造時に用いられる原料に由来するR2/nO(式中、Rは1種または2種以上の1価または2価イオン、nはRの原子価を表わす。)として本発明のゼオライト系光触媒に含有されていてもよい。これらをさらに具体的に例示すれば、RはLi、Na、K等のアルカリ金属やMg、Ca等のアルカリ土類金属の1価あるいは2価のイオンが挙げられる。また、これらは洗浄等の操作により除去したものを用いても差し支えない。さらにその含有量としては触媒としての機能をより高く発現させるためになるべく少ない方が好ましいが、通常上記した組成式において、2.0モル以下とすることが好ましい。
【0015】
さらに、本発明のゼオライト系光触媒には、その製造方法にもよるが、水分が含まれていても含まれていなくともよい。
【0016】
本発明の光触媒の形状は、種々の形態であってよく、例えば、粉末、粒子、ペレット、ハニカム、膜などが挙げられるが、その反応性を考慮すれば粉末が好ましい。光触媒の粉末の平均粒径は、特に制限はないが、通常1〜1000nmの範囲のものであればよく、好ましくは5〜50nmの範囲である。また、本発明の光触媒は、そのまま用いてもよいが、光触媒とバインダーとの混合物を塗布して膜状にして用いてもよいし、また紙などの支持体に担持させてもよい。
【0017】
本発明のゼオライト系光触媒の製造方法は特に制限されないが、Tiと導入する特定の元素の一部あるいは全部が骨格に置換されている製造方法である
【0018】
例えば、シリカ、チタニア、アルカリ金属などからなる水性原料混合物を水熱合成条件に保持することで結晶化させた骨格にTiの一部あるいは全部が置換されているゼオライトに、V、Cr、Fe、Co、Ni、Cu、Zn、Rhなどの元素の1種又は2種以上の元素が30KeV以上の高エネルギーに加速され照射される。元素のエネルギーを30KeV以上とすれば、元素の注入をより均一に分散させることができると共に、元素による構造破壊を防ぎ易くなる。さらに、元素のエネルギーを、50〜400KeV、特に100〜200KeVの範囲とすれば、前記効果をより一層高めることができる。
【0019】
また、シリカ、チタニア、アルカリ金属などからなる水性原料混合物にV、Cr、Fe、Co、Ni、Cu、Zn、Rhなどの元素の1種又は2種以上の元素を添加し、水熱合成条件に保持することで結晶化させることでも、Tiと特定の元素の一部あるいは全部が骨格に置換されているゼオライト系光触媒を得ることができる。
【0020】
本発明のゼオライト系光触媒は、紫外領域の光はもちろんのこと、これまで不可能とされてきた可視領域の光をも吸収でき、可視領域の光の照射下で窒素酸化物の分解反応などの種々の光触媒反応に常温で活性を発現させることができる。
【0021】
本発明の光触媒反応方法において使用される光は、紫外から可視領域の光であるが、紫外領域の光だけ、あるいは可視領域の光だけを用いることもできる。なお、紫外から可視領域の光が照射されていれば、この範囲外の光、例えば、遠赤外領域の光、赤外領域の光が含まれていても差し支えない。さらにこの範囲の内でも用いられる光の波長としては、250〜500nmの範囲の光が好ましく用いられる。
【0022】
本発明の光触媒反応方法において使用される光の照射強度は特に制限はなく、光触媒反応の種類に応じて適宜選定すればよく、場合によっては、太陽光を用いてもよい。
【0023】
本発明の光触媒反応方法は各種分野において有用となる。
【0024】
例えば、窒素酸化物存在下で、紫外光から可視光の光を本発明のゼオライト系光触媒に照射して、窒素酸化物を分解する反応方法が挙げられる。窒素酸化物は内燃機関から排出されており、酸性雨や光化学スモッグの主な原因として除去が望まれている。本発明のゼオライト系光触媒を用いることで、従来技術である酸化チタンによる一酸化窒素の分解反応では十分とはいえなかったN2とO2への選択性が改善され、N2O生成量を抑制しながら、効果的に除去できる。また、建物の外装塗装、道路防音壁や自動車の塗装などに用いることで、太陽光や電灯などの可視領域の光を含む光源下でも、窒素酸化物がN2、O2に高選択的に分解され無害化できる。
【0025】
本発明の光触媒反応のその他の例としては、以下の式(1)に示されるような光水性ガスシフト・水逆水性ガスシフト反応などの光触媒反応が挙げられる。また、太陽光を利用して、水を水素と酸素へ分解する光分解反応は、環境問題が伴わない理想的な水素エネルギー供給方法して有望である。さらに、太陽光や電灯などの可視領域の光を含む光源下でも、水中の有害物質であるトリハロメタンなどの分解無害化も可能である。
【0026】
【数1】

Figure 0004507376
【0027】
本発明のゼオライト系光触媒の光触媒反応機構は、現在のところ明らかではないが、含浸法、共沈法、アルコキシド法などの方法では、Tiと特定の元素をゼオライトへ導入しても、可視光領域の光を吸収できず、本発明の効果は実質的に発現しない。これに対し、本発明では、ゼオライトの骨格に存在するTiの近傍に、特定の元素が均質かつ高分散に骨格置換して導入されていることに起因すると考えられる。つまり、上記の状態では、ゼオライト骨格に置換されている、四配位のTiの電子状態に摂動が生じ、可視光を吸収することで、電子と正孔が生じ、生じた電子により還元反応が、正孔で酸化反応がそれぞれ効率よく進み、その結果光触媒反応が高効率に進行するものと考えられる。しかしながら、このような推定は本発明を何ら拘束するものではない。
【0028】
【実施例】
以下、本発明を実施例を用いてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
【0029】
比較例1
原料として、テトラエチルオルソシリケート、テトラプロピルオルソチタネート、N,N’−ジベンジル−4,4’−トリメチレンビス(N−メチルピペリジン)2水酸化物、水を用い、これらをそれぞれ、1:1/60:0.2:30のモル割合になるように混合した水性原料混合物を、オートクレイブに移し、撹拌させながら、140℃まで加熱後、5日間保持した。オートクレイブを冷却後、結晶化物を取り出し、十分水洗した後、乾燥した。
【0030】
得られた結晶化物は、粉末X線回折分析によりBEA型構造を持つTi含有メタロシリケートであった。また、上記のようにして調製したBEA型構造を持つTi含有メタロシリケートの紫外から可視領域の光吸収スペクトルを測定した。得られた吸収スペクトルを図1および図2に示す。
【0031】
<触媒の調製及びその物性評価>
実施例1
半導体への不純物のドーピングに用いる200KeVイオン注入装置を用い、Vイオンを加速して150KeVのエネルギーにして、比較例1で調製したBEA型構造を持つTi含有メタロシリケートに、Vイオンを注入した。
【0032】
得られたVイオンが導入されたBEA型構造を持つTi含有メタロシリケートを、三次元SIMS(二次電子イオン質量分析法)およびXPS(光電子分光法)により測定した結果、Vイオン導入量は0.66μmol/g−cat.(触媒1gあたり0.66マイクロモル)であることが確認された。また、このVイオンを導入したBEA型構造を持つTi含有メタロシリケートの紫外から可視領域の光吸収スペクトルを測定し、その結果を図1に示す。
【0033】
実施例2
Vのイオン注入条件として、加速エネルギー:150KeV、Vイオン注入量:1.33μmol/g−cat.とする以外は実施例1と同様にして、Vイオンを導入したBEA型構造を持つTi含有メタロシリケートを調製した。
【0034】
得られたVイオンを導入したBEA型構造を持つTi含有メタロシリケートの紫外から可視領域の光吸収スペクトルを測定し、その結果を図1に示す。
【0035】
図1より、比較例1のVイオンが導入されていないBEA型構造を持つTi含有メタロシリケート単独では約330nmで紫外領域の光の吸収のみが起こり、可視領域の光の吸収は全く起こらなかった。これに対し、実施例1のVイオンを注入したBEA型構造を持つTi含有メタロシリケートでは、400nm以上の可視領域の光の吸収が起こっており、さらに、Vイオン導入量が多い実施例2の光吸収域が長波長側にシフトしていることが分かる。
【0036】
実施例3
半導体への不純物のドーピングに用いる200KeVイオン注入装置を用い、Crイオンを加速して150KeVのエネルギーにして、比較例1で調製したBEA型構造を持つTi含有メタロシリケートに、Crイオンを注入した。
【0037】
得られたCrイオンが導入されたBEA型構造を持つTi含有メタロシリケートを、三次元SIMSおよびXPSにより測定した結果、Crイオン導入量は0.66μmol/g−cat.であることが確認された。また、このCrイオンを導入したBEA型構造を持つTi含有メタロシリケートの紫外から可視領域の光吸収スペクトルを測定し、その結果を図2に示す。
【0038】
実施例4
Crのイオン注入条件として、加速エネルギー:150KeV、Crイオン注入量:1.3μmol/g−cat.とする以外は実施例1と同様にして、Crイオンを導入したBEA型構造を持つTi含有メタロシリケートを調製した。
【0039】
得られたCrイオンを導入したBEA型構造を持つTi含有メタロシリケートの紫外から可視領域の光の吸収スペクトルを測定し、その結果を図2に示す。
【0040】
図2より、比較例1のCrイオンが導入されていないBEA型構造を持つTi含有メタロシリケート単独では約330nmで紫外領域の光の吸収のみが起こり、可視領域の光の吸収は全く起こらなかった。これに対し、実施例3のCrイオンを注入したBEA型構造を持つTi含有メタロシリケートでは、400nm以上の可視領域の光吸収が起こっており、さらに、Crイオン注入量が多い実施例4の光吸収域がより長波長側にシフトしている。
【0041】
以上の比較例1及び実施例1〜4の結果から、本発明のTiと特定の元素を導入したゼオライト系光触媒は、可視領域の光を吸収するという、従来では考えられなかった光学特性を発現することが明らかになった。
【0042】
<一酸化窒素の光触媒分解反応>
実施例5
実施例4で調製したCrイオンを導入したBEA型構造を持つTi含有メタロシリケート250mgを50mlのパイレックスガラス製定容容器に密封した。真空排気後、20Torrの一酸化窒素を導入し、100W高圧水銀ランプを光源に用い、UVカットフィルターで340nm以下の波長を遮断した光を照射し、275Kで一酸化窒素の分解反応を行った。反応生成物をサンプリングチューブで一定時間毎に採取し、ガスクロマトグラフィーにて、N2、O2、N2Oの生成量を確認した。また、分解生成物量に応じて、一酸化窒素が減少していることも確認した。この結果を図3に示した。
【0043】
比較例2
比較例1で調製したBEA型構造を持つTi含有メタロシリケートを用いる以外は実施例5と同様にして、一酸化窒素の光触媒分解反応を行った。この結果を図3に示す。
【0044】
図3から明らかのように、340nm以上の可視領域の光照射下では、BEA型構造を持つTi含有メタロシリケート単独では、光触媒分解活性がないのに対して、Crイオンを導入したBEA型構造を持つTi含有メタロシリケートでは、275Kにおいて一酸化窒素のN2とO2選択的な光触媒分解反応が、N2O生成を抑制しながら、効率よく進行することが分かる。
【0045】
【本発明の効果】
本発明のゼオライト系光触媒は、紫外領域の光はもちろんのこと、これまで不可能とされてきた可視領域の光の吸収が起こるため、紫外から可視領域の光を照射して種々の光触媒反応を進行させることができる。また、紫外から可視領域の光を照射下での窒素酸化物の光触媒分解反応は、これまでの光触媒と比べて、N2O生成を抑制させならが、N2とO2に光触媒的分解反応として進行できる。本発明のゼオライト系光触媒および光触媒反応方法は、画期的なものである。
【図面の簡単な説明】
【図1】比較例1、実施例1及び実施例2の結果である、ゼオライト系光触媒の紫外から可視領域の光吸収スペクトルを示す図である。X軸(横軸)は波長(単位はnm)を示し、Y軸(縦軸)は吸光度(単位は任意)を示す。
【図2】比較例1、実施例3及び実施例4の結果である、ゼオライト系光触媒の紫外から可視領域の光吸収スペクトルを示す図である。X軸(横軸)は波長(単位はnm)を示し、Y軸(縦軸)は吸光度(単位は任意)を示す。
【図3】実施例5及び比較例2の結果であり、ゼオライト系光触媒を使用した一酸化窒素の光触媒反応による分解にて生成する、N2とN2Oの量の変化を示す図である。X軸(横軸)は照射前後の時間(単位は時間)を示し、Y軸(縦軸)は照射により生成したN2とN2Oの収率(単位はμmol/g−TiO2)を示し、黒丸(●)は実施例5によるN2量、黒四角(■)は実施例5によるN2O量を、白丸(○)は比較例2によるN2量、白四角(□)は比較例2によるN2O量を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a zeolite-based photocatalyst into which Ti and a specific element exhibiting photocatalytic activity even when irradiated with light in the visible region, and a photocatalytic reaction method using the same.
[0002]
[Prior art]
Titanium oxide photocatalysts convert light energy into chemical energy and exhibit photocatalytic activity even at room temperature, and thus are attracting attention as having low environmental impact. In order to improve the photocatalytic activity of titanium oxide, researches on ultrafine particles, addition of metals, and utilization of light in the visible region (about 400 nm to 800 nm) are actively conducted.
[0003]
However, although titanium oxide exhibits photocatalytic activity with light in the ultraviolet region, it has been considered that steady-state photocatalytic activity cannot be exhibited with light in the visible region without light absorption. Sunlight contains about 5% of light in the ultraviolet region, but it is not sufficient for activation of titanium oxide as a photocatalyst, and a combination with a light source capable of irradiating light in the ultraviolet region is essential.
[0004]
JP-A-9-262482 also absorbs light in the visible region, which has been impossible until now, by introducing a specific element into titanium oxide by ion implantation, and exhibits photocatalytic activity even in light in the visible region. It has been reported to show. However, in the photocatalytic decomposition reaction of nitric oxide using a photocatalyst in which a specific element is introduced into titanium oxide by ion implantation, the photodecomposition reaction proceeds with light in the visible region, but N 2 due to direct decomposition of nitric oxide The problem is that the selectivity to O 2 production is poor and the amount of N 2 O produced is large. Although N 2 O effect on the human body is small, a persistent, to absorb more infrared than carbon dioxide, which is a cause of global warming, the reduction of N 2 O emissions are required .
[0005]
JP-A-9-262482 reports a method for decomposing nitrogen oxides into N 2 and O 2 by light irradiation in the presence of a photocatalyst containing Ti as a metal component and zeolite as a support component. Zeolite-based photocatalysts have features such as the ability to concentrate dilute reactants with a zeolite-specific structure and efficiently react, or to have stereoselectivity of reactions derived from the pore structure of zeolite, In order to advance the photocatalytic reaction with the above-described photocatalyst, it is necessary to use ultraviolet light having a wavelength of 300 nm or less. That is, in the light including ultraviolet to visible region such as sunlight, the light in the visible region cannot be utilized, and the photocatalytic activation is not sufficient.
[0006]
[Problems to be solved by the invention]
Zeolite-based photocatalyst that can shift the light absorption band to light in the visible region, and can stably develop photocatalytic activity even in the visible region, and can also stably exhibit photocatalytic activity in the visible region using zeolite-based photocatalyst, In particular, there is a demand for a photocatalytic reaction method in which nitrogen oxide is highly selectively decomposed into N 2 and O 2 while suppressing N 2 O formation in the photodecomposition reaction of nitrogen oxide under light irradiation in the visible region. However, the technology still does not exist.
[0007]
An object of the present invention is to solve the problems of the prior art and to introduce a zeolite-based photocatalyst capable of stably expressing photocatalytic activity even in the visible region by introducing Ti and a specific element, and such a zeolite-based photocatalyst. The photocatalytic activity can be stably expressed even in the light in the visible region used, and in particular, in the photocatalytic decomposition reaction of nitrogen oxides under light irradiation in the visible region, N 2 O formation is suppressed, and N 2 and O 2 are reduced. The object is to provide a photocatalytic reaction method capable of decomposing nitrogen oxides with high selectivity.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have surprisingly found that a zeolite-based photocatalyst obtained by introducing Ti and a specific element is not only in the ultraviolet region, but also in the past. Based on these findings, it has been found that absorption of light in the visible region, which has been considered impossible, is active at room temperature in various photocatalytic reactions such as photodecomposition of nitrogen oxides under irradiation in the visible region. The present invention has been completed.
[0009]
In other words, the present invention is expressed in terms of oxide molar ratio, aM 2 O 3 .bTiO 2 .cAl 2 O 3 .ySiO 2 (wherein M is from V, Cr, Fe, Co, Ni, Cu, Zn and Rh). A, b, c, y are a + (b / 2) + c = 1, a> 0, b> 0, c ≧ 0, y ≧ 2 represents a real number satisfying. the chemical composition possess a), relates to zeolitic photocatalyst part or all of M and Ti are substituted into the zeolite framework. Furthermore, the present invention provides a photocatalytic reaction method in which light in the ultraviolet region and / or visible region is irradiated in the presence of the above-mentioned zeolite-based photocatalyst to perform a photocatalytic reaction, particularly a photocatalytic reaction method in which nitrogen oxides are decomposed by a photocatalytic reaction. It is about.
[0010]
Hereinafter, the present invention will be described in detail.
[0011]
The zeolitic photocatalyst of the present invention comprises a zeolite as a base material and contains Ti and a specific element, and is expressed as an oxide molar ratio as aM 2 O 3 .bTiO 2 .cAl 2 O 3. YSiO 2 (wherein M is one or more elements selected from the group consisting of V, Cr, Fe, Co, Ni, Cu, Zn and Rh, and a, b, c and y are a + (b / 2) + c = 1, a> 0, b> 0, c ≧ 0, represents a real number satisfying y ≧ 2.) have a chemical composition of, some or all of the zeolite framework of the M and Ti Has been replaced .
[0012]
In the zeolitic photocatalyst of the present invention, the specific element to be introduced is one or more elements selected from the group consisting of V, Cr, Fe, Co, Ni, Cu, Zn and Rh. However, V and Cr are preferable. The charge of Ti and the element to be introduced is not particularly limited, but it is preferably introduced into the zeolite skeleton and present in a four-coordinate configuration. Further, by introducing these elements into the zeolite, all of the Al content constituting the zeolite may be substituted. These specific elements may be used alone or in combination of two or more.
[0013]
The structure type of the base zeolite is not particularly limited, but BEA, CHA, EMT, ERI, FAU, FER, GIS, HEU, LTA, LTL, MAZ, MEI, MEL, MFI, MOR, MTW, OFF, Alternatively, various structural types such as MCM41 and MCM48 can be used, and any of a natural type and a synthetic type can be used. Moreover, the zeolitic photocatalyst of the present invention may be used in combination with other photocatalysts or may contain other base materials.
[0014]
In the composition of the zeolitic photocatalyst of the present invention, R 2 / n O derived mainly from raw materials used during production (wherein R is one or more monovalent or divalent ions, and n is an R atom) May be contained in the zeolite photocatalyst of the present invention. More specifically, R may be a monovalent or divalent ion of an alkali metal such as Li, Na, or K, or an alkaline earth metal such as Mg or Ca. Further, those removed by an operation such as washing may be used. Further, the content is preferably as small as possible in order to express the function as a catalyst higher, but it is usually preferably 2.0 mol or less in the above-described composition formula.
[0015]
Furthermore, the zeolitic photocatalyst of the present invention may or may not contain moisture, depending on the production method.
[0016]
The shape of the photocatalyst of the present invention may be various forms, and examples thereof include powder, particles, pellets, honeycombs, films, etc. In consideration of the reactivity, powder is preferable. The average particle size of the photocatalyst powder is not particularly limited, but is usually in the range of 1 to 1000 nm, and preferably in the range of 5 to 50 nm. The photocatalyst of the present invention may be used as it is, but may be used as a film by applying a mixture of a photocatalyst and a binder, or may be supported on a support such as paper.
[0017]
The production method of the zeolitic photocatalyst of the present invention is not particularly limited, but is a production method in which a part or all of a specific element to be introduced with Ti is replaced with a skeleton.
[0018]
For example, zeolite in which a part or all of Ti is substituted on a skeleton obtained by maintaining an aqueous raw material mixture made of silica, titania, alkali metal, etc. under hydrothermal synthesis conditions, is substituted with V, Cr, Fe, One or more elements such as Co, Ni, Cu, Zn, and Rh are accelerated to high energy of 30 KeV and irradiated. If the energy of the element is 30 KeV or more, the implantation of the element can be more uniformly dispersed, and the structural breakdown due to the element can be easily prevented. Furthermore, if the energy of the element is in the range of 50 to 400 KeV, particularly 100 to 200 KeV, the effect can be further enhanced.
[0019]
In addition, one or more elements such as V, Cr, Fe, Co, Ni, Cu, Zn, and Rh are added to an aqueous raw material mixture made of silica, titania, alkali metal, etc., and hydrothermal synthesis conditions It is possible to obtain a zeolitic photocatalyst in which a part or all of Ti and a specific element is substituted with a skeleton by crystallizing by keeping the crystallization.
[0020]
The zeolite-based photocatalyst of the present invention can absorb not only ultraviolet light but also visible light, which has been impossible until now, such as decomposition reaction of nitrogen oxides under irradiation of visible light. Activity can be expressed at various temperatures in various photocatalytic reactions.
[0021]
The light used in the photocatalytic reaction method of the present invention is light in the ultraviolet to visible region, but only light in the ultraviolet region or only light in the visible region can be used. If light in the ultraviolet to visible region is irradiated, light outside this range, for example, light in the far infrared region or light in the infrared region may be included. Furthermore, as the wavelength of light used within this range, light in the range of 250 to 500 nm is preferably used.
[0022]
There is no restriction | limiting in particular in the irradiation intensity | strength of the light used in the photocatalytic reaction method of this invention, What is necessary is just to select suitably according to the kind of photocatalytic reaction, and you may use sunlight depending on the case.
[0023]
The photocatalytic reaction method of the present invention is useful in various fields.
[0024]
For example, the reaction method of decomposing nitrogen oxides by irradiating the zeolite-based photocatalyst of the present invention with ultraviolet to visible light in the presence of nitrogen oxides. Nitrogen oxides are exhausted from internal combustion engines, and removal is desired as the main cause of acid rain and photochemical smog. By using the zeolitic photocatalyst of the present invention, the selectivity to N 2 and O 2 , which was not sufficient in the prior art decomposition reaction of nitric oxide with titanium oxide, was improved, and the amount of N 2 O produced was reduced. It can be effectively removed while suppressing. In addition, by using it for exterior coating of buildings, painting of road noise barriers and automobiles, nitrogen oxides are highly selective to N 2 and O 2 even under light sources that include visible light such as sunlight and electric lights. It can be decomposed and detoxified.
[0025]
Other examples of the photocatalytic reaction of the present invention include a photocatalytic reaction such as a photowater gas shift / water reverse water gas shift reaction represented by the following formula (1). In addition, the photolysis reaction that decomposes water into hydrogen and oxygen using sunlight is promising as an ideal hydrogen energy supply method without environmental problems. Furthermore, it is possible to decompose and detoxify trihalomethane, which is a harmful substance in water, even under a light source including visible light such as sunlight and electric light.
[0026]
[Expression 1]
Figure 0004507376
[0027]
The photocatalytic reaction mechanism of the zeolite-based photocatalyst of the present invention is not clear at present, but in the impregnation method, coprecipitation method, alkoxide method and the like, even if Ti and a specific element are introduced into the zeolite, the visible light region The effect of the present invention is not substantially exhibited. On the other hand, in this invention, it is thought that it originates in the specific element being introduce | transduced by frame | skeleton substitution in the vicinity of Ti which exists in the frame | skeleton of a zeolite by homogeneous and highly dispersed. In other words, in the above state, perturbation occurs in the electronic state of tetracoordinate Ti substituted for the zeolite skeleton, and by absorbing visible light, electrons and holes are generated, and the reduction reaction is caused by the generated electrons. It is considered that the oxidation reaction proceeds efficiently with holes, and as a result, the photocatalytic reaction proceeds with high efficiency. However, such estimation does not restrict the present invention.
[0028]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, this invention is not limited to these.
[0029]
Comparative Example 1
Tetraethyl orthosilicate, tetrapropyl orthotitanate, N, N′-dibenzyl-4,4′-trimethylenebis (N-methylpiperidine) 2 hydroxide and water were used as raw materials. The aqueous raw material mixture mixed so as to have a molar ratio of 60: 0.2: 30 was transferred to an autoclave, heated to 140 ° C. with stirring, and held for 5 days. After cooling the autoclave, the crystallized product was taken out, sufficiently washed with water, and dried.
[0030]
The obtained crystallized product was a Ti-containing metallosilicate having a BEA type structure by powder X-ray diffraction analysis. Moreover, the light absorption spectrum in the ultraviolet to visible region of the Ti-containing metallosilicate having the BEA type structure prepared as described above was measured. The obtained absorption spectrum is shown in FIG. 1 and FIG.
[0031]
<Preparation of catalyst and evaluation of its physical properties>
Example 1
V ions were implanted into the Ti-containing metallosilicate having a BEA type structure prepared in Comparative Example 1 by using a 200 KeV ion implantation apparatus used for doping impurities into the semiconductor and accelerating the V ions to an energy of 150 KeV.
[0032]
As a result of measuring the Ti-containing metallosilicate having a BEA type structure into which the obtained V ions were introduced by three-dimensional SIMS (secondary electron ion mass spectrometry) and XPS (photoelectron spectroscopy), the amount of V ions introduced was 0. .66 μmol / g-cat. (0.66 micromol per gram of catalyst) was confirmed. Further, a light absorption spectrum of the Ti-containing metallosilicate having a BEA structure into which V ions are introduced was measured from the ultraviolet region to the visible region, and the result is shown in FIG.
[0033]
Example 2
V ion implantation conditions include acceleration energy: 150 KeV, V ion implantation amount: 1.33 μmol / g-cat. A Ti-containing metallosilicate having a BEA type structure into which V ions were introduced was prepared in the same manner as in Example 1 except that.
[0034]
The light absorption spectrum from the ultraviolet region to the visible region of the Ti-containing metallosilicate having a BEA structure into which the obtained V ion was introduced was measured, and the result is shown in FIG.
[0035]
From FIG. 1, the Ti-containing metallosilicate having a BEA type structure in which no V ions were introduced in Comparative Example 1 alone absorbed only light in the ultraviolet region at about 330 nm, and did not absorb light in the visible region at all. . On the other hand, in the Ti-containing metallosilicate having the BEA type structure into which V ions of Example 1 are implanted, absorption of light in the visible region of 400 nm or more occurs, and further, the amount of V ions introduced is large. It can be seen that the light absorption region is shifted to the long wavelength side.
[0036]
Example 3
Cr ions were implanted into the Ti-containing metallosilicate having the BEA type structure prepared in Comparative Example 1 by using a 200 KeV ion implantation apparatus used for doping impurities into the semiconductor and accelerating the Cr ions to an energy of 150 KeV.
[0037]
The obtained Ti-containing metallosilicate having a BEA structure into which Cr ions were introduced was measured by three-dimensional SIMS and XPS. As a result, the amount of introduced Cr ions was 0.66 μmol / g-cat. It was confirmed that. Further, the light absorption spectrum of the Ti-containing metallosilicate having a BEA structure into which Cr ions were introduced was measured from the ultraviolet region to the visible region, and the result is shown in FIG.
[0038]
Example 4
Cr ion implantation conditions include acceleration energy: 150 KeV, Cr ion implantation amount: 1.3 μmol / g-cat. A Ti-containing metallosilicate having a BEA type structure into which Cr ions were introduced was prepared in the same manner as in Example 1 except that.
[0039]
The absorption spectrum of light in the ultraviolet to visible region of the Ti-containing metallosilicate having a BEA structure into which the Cr ions were introduced was measured, and the results are shown in FIG.
[0040]
From FIG. 2, the Ti-containing metallosilicate having a BEA type structure in which no Cr ion was introduced in Comparative Example 1 alone absorbed only light in the ultraviolet region at about 330 nm, and did not absorb light in the visible region at all. . On the other hand, in the Ti-containing metallosilicate having a BEA type structure into which Cr ions of Example 3 were implanted, light absorption in the visible region of 400 nm or more occurred, and the light of Example 4 having a large amount of Cr ions implanted. The absorption region is shifted to the longer wavelength side.
[0041]
From the results of Comparative Example 1 and Examples 1 to 4 above, the zeolite-based photocatalyst introduced with Ti and specific elements of the present invention expresses optical characteristics that were not considered in the past, such as absorbing light in the visible region. It became clear to do.
[0042]
<Photocatalytic decomposition reaction of nitric oxide>
Example 5
250 mg of a Ti-containing metallosilicate having a BEA type structure into which Cr ions prepared in Example 4 were introduced was sealed in a 50 ml Pyrex glass constant volume container. After evacuation, 20 Torr of nitric oxide was introduced, a 100 W high-pressure mercury lamp was used as a light source, and a UV cut filter was used to irradiate light with a wavelength of 340 nm or less, and nitric oxide was decomposed at 275K. The reaction products were collected at regular intervals with a sampling tube, and the amounts of N 2 , O 2 , and N 2 O produced were confirmed by gas chromatography. It was also confirmed that nitric oxide decreased according to the amount of decomposition products. The results are shown in FIG.
[0043]
Comparative Example 2
A photocatalytic decomposition reaction of nitric oxide was performed in the same manner as in Example 5 except that the Ti-containing metallosilicate having the BEA type structure prepared in Comparative Example 1 was used. The result is shown in FIG.
[0044]
As is clear from FIG. 3, under irradiation with light in the visible region of 340 nm or more, Ti-containing metallosilicate having a BEA structure has no photocatalytic decomposition activity, whereas a BEA structure having Cr ions introduced is It can be seen that the Ti-containing metallosilicate possesses a photocatalytic decomposition reaction of nitric oxide N 2 and O 2 selectively at 275 K while efficiently suppressing N 2 O production.
[0045]
[Effect of the present invention]
The zeolite photocatalyst of the present invention absorbs light in the visible region, which has been impossible until now, as well as light in the ultraviolet region. Can be advanced. In addition, the photocatalytic decomposition reaction of nitrogen oxides under irradiation of light in the ultraviolet to visible region can suppress N 2 O production compared to conventional photocatalysts, but photocatalytic decomposition reaction into N 2 and O 2. Can proceed as. The zeolitic photocatalyst and the photocatalytic reaction method of the present invention are epoch-making.
[Brief description of the drawings]
FIG. 1 is a diagram showing light absorption spectra in the ultraviolet to visible region of zeolite-based photocatalysts, which are the results of Comparative Example 1, Example 1 and Example 2. FIG. The X axis (horizontal axis) indicates the wavelength (unit is nm), and the Y axis (vertical axis) indicates the absorbance (unit is arbitrary).
FIG. 2 is a diagram showing light absorption spectra in the ultraviolet to visible region of zeolite-based photocatalysts, which are the results of Comparative Example 1, Example 3 and Example 4. The X axis (horizontal axis) indicates the wavelength (unit is nm), and the Y axis (vertical axis) indicates the absorbance (unit is arbitrary).
FIG. 3 shows the results of Example 5 and Comparative Example 2, and shows changes in the amounts of N 2 and N 2 O produced by the decomposition of nitric oxide using a zeolite-based photocatalyst by a photocatalytic reaction. . The X axis (horizontal axis) represents the time before and after irradiation (unit is time), and the Y axis (vertical axis) is the yield of N 2 and N 2 O produced by irradiation (unit is μmol / g-TiO 2 ). The black circle (●) represents the N 2 amount according to Example 5, the black square (■) represents the N 2 O amount according to Example 5, the white circle (◯) represents the N 2 amount according to Comparative Example 2, and the white square (□) represents It shows the N 2 O content according to the Comparative example 2.

Claims (3)

酸化物モル比で表して、aM・bTiO・cAl・ySiO(式中、MはV、Cr、Fe、Co、Ni、Cu、ZnおよびRhからなる群から選択される1種または2種以上の元素であり、a,b,c,yはa+(b/2)+c=1、a>0、b>0、c≧0、y≧2を満たす実数を表わす。)の化学組成を有し、MおよびTiの一部あるいは全部がゼオライト骨格に置換されているゼオライト系光触媒。Expressed in terms of oxide molar ratio, aM 2 O 3 .bTiO 2 .cAl 2 O 3 .ySiO 2 (wherein M is selected from the group consisting of V, Cr, Fe, Co, Ni, Cu, Zn and Rh) A, b, c, and y are real numbers that satisfy a + (b / 2) + c = 1, a> 0, b> 0, c ≧ 0, and y ≧ 2. .) have a chemical composition of a zeolite-based photocatalyst part or all of M and Ti are substituted into the zeolite framework. 請求項1に記載のゼオライト系光触媒の存在下、紫外領域及び/又は可視領域の光を照射し、光触媒反応を行うことを特徴とする光触媒反応方法。 A photocatalytic reaction method comprising irradiating light in an ultraviolet region and / or a visible region in the presence of the zeolitic photocatalyst according to claim 1 . 窒素酸化物を分解することを特徴とする請求項に記載の光触媒反応方法。The photocatalytic reaction method according to claim 2 , wherein nitrogen oxides are decomposed.
JP2000285243A 2000-09-14 2000-09-14 Zeolite-based photocatalyst and photocatalytic reaction method Expired - Fee Related JP4507376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000285243A JP4507376B2 (en) 2000-09-14 2000-09-14 Zeolite-based photocatalyst and photocatalytic reaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000285243A JP4507376B2 (en) 2000-09-14 2000-09-14 Zeolite-based photocatalyst and photocatalytic reaction method

Publications (2)

Publication Number Publication Date
JP2002085979A JP2002085979A (en) 2002-03-26
JP4507376B2 true JP4507376B2 (en) 2010-07-21

Family

ID=18769345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000285243A Expired - Fee Related JP4507376B2 (en) 2000-09-14 2000-09-14 Zeolite-based photocatalyst and photocatalytic reaction method

Country Status (1)

Country Link
JP (1) JP4507376B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107081153A (en) * 2017-06-15 2017-08-22 青岛理工大学 The method that one kind is based on catalyst photo catalytic reduction Cr (VI)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11342344A (en) * 1998-06-01 1999-12-14 Nippon Mitsubishi Oil Corp Photocatalyst containing titanium oxide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE182859T1 (en) * 1995-03-02 1999-08-15 Univ Technologies Int PHOTOCATALYST AND METHOD FOR PRODUCTION

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11342344A (en) * 1998-06-01 1999-12-14 Nippon Mitsubishi Oil Corp Photocatalyst containing titanium oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107081153A (en) * 2017-06-15 2017-08-22 青岛理工大学 The method that one kind is based on catalyst photo catalytic reduction Cr (VI)
CN107081153B (en) * 2017-06-15 2020-02-18 青岛理工大学 Method for reducing Cr (VI) based on catalyst photocatalysis

Also Published As

Publication number Publication date
JP2002085979A (en) 2002-03-26

Similar Documents

Publication Publication Date Title
JP3844823B2 (en) Photocatalyst, photocatalyst production method and photocatalytic reaction method
Huang et al. Catalytic oxidation of benzene over Mn modified TiO2/ZSM-5 under vacuum UV irradiation
US8603936B2 (en) Visible light-responsive photocatalyst composition containing tungsten-based oxides and method of producing the same
US9242873B2 (en) Co-doped titanium oxide foam and water disinfection device
CN110653004A (en) Catalyst for trapping and catalyzing VOCs degradation and preparation method and application thereof
CN110536750A (en) Use the photocatalysis carbon dioxide reduction method of the photochemical catalyst of porous monolith form
US8992738B2 (en) Method for conversion of carbon dioxide to methane using visible and near infra-red light
US8404616B2 (en) Photocatalyst and method for producing same
KR20180021859A (en) Synthesis of Aluminosilicate Zeolite SSZ-98
KR102074872B1 (en) Visible-light photocatalyst comprising zinc iron oxide and tungsten oxide and method of preparing thereof
US4619821A (en) Ozone decomposition
KR100722429B1 (en) Preparation method of nano size copper-manganese complex oxide catalyst and the catalyst prepared by the method
JPH11197512A (en) Thin photocatalyst film, photocatalytic reaction method and production of thin photocatalyst film
JP4507376B2 (en) Zeolite-based photocatalyst and photocatalytic reaction method
JP3612552B2 (en) Photoreaction catalyst
JP3138738B1 (en) Photocatalyst and method for producing the same
CN115999619B (en) Low-temperature photo-deposition preparation method of ozone adsorption catalyst
JP3789026B2 (en) Photocatalyst, photocatalyst production method and photocatalytic reaction method
WO2020096935A1 (en) Method of making aei-type zeolites having a high silica to alumina molar ratio (sar)
JPH11342344A (en) Photocatalyst containing titanium oxide
JP2006187677A (en) Visible light responsible photocatalyst and its manufacturing method
JP2006187676A (en) Photocatalyst and its manufacturing method
JPH057776A (en) Catalyst and its manufacture
JP2000189806A (en) Photocatalyst
JP6789566B2 (en) Manufacturing method of photocatalytic glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees