JP4506423B2 - Antistatic biaxially stretched polyester film - Google Patents

Antistatic biaxially stretched polyester film Download PDF

Info

Publication number
JP4506423B2
JP4506423B2 JP2004332732A JP2004332732A JP4506423B2 JP 4506423 B2 JP4506423 B2 JP 4506423B2 JP 2004332732 A JP2004332732 A JP 2004332732A JP 2004332732 A JP2004332732 A JP 2004332732A JP 4506423 B2 JP4506423 B2 JP 4506423B2
Authority
JP
Japan
Prior art keywords
antistatic
biaxially stretched
polyester film
antistatic layer
stretched polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004332732A
Other languages
Japanese (ja)
Other versions
JP2006142544A (en
Inventor
直 横田
正幸 山岸
隆司 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004332732A priority Critical patent/JP4506423B2/en
Publication of JP2006142544A publication Critical patent/JP2006142544A/en
Application granted granted Critical
Publication of JP4506423B2 publication Critical patent/JP4506423B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

本発明は、帯電防止性二軸延伸ポリエステルに関し、さらに詳しくは、光学フィルム用基材や工程紙として満足しうる帯電防止性、光学特性、平滑性、耐熱性等を有する光学用帯電防止性二軸延伸ポリエステルに関する。   The present invention relates to an antistatic biaxially stretched polyester. More specifically, the present invention relates to an antistatic property for optical use having antistatic properties, optical properties, smoothness, heat resistance and the like that can be satisfied as a substrate for optical films and process paper. It relates to axially stretched polyester.

ポリエステル(PET、PENなど)、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、トリアセチルセルロース(TAC)、非晶性ポリオレフィン(非晶PO)などの透明プラスティックフィルムは、ガラスと比べて、軽量・割れにくい・曲げられるといった好適な性質を持つため、液晶ディスプレイ(LCD)やプラズマディスプレイ(PDP)、電子ペーパー(EP)などのフラットパネルディスプレイ(FPD)用部材(光学用フィルム)の基材や工程紙として用いられている。中でも、二軸延伸ポリエステルフィルムは、機械的性質、電気的性質、寸法安定性、耐熱性、透明性、耐薬品性などに優れた性質を有する上に、他の透明プラスティックフィルムに比べて、汎用性が高く、コストメリットに大きな優位性があるため、かかる用途に好適に用いられている。   Transparent plastic films such as polyester (PET, PEN, etc.), polycarbonate (PC), polymethyl methacrylate (PMMA), triacetyl cellulose (TAC), and amorphous polyolefin (amorphous PO) are lighter in weight than glass. Base material and process for flat panel display (FPD) members (optical film) such as liquid crystal display (LCD), plasma display (PDP), electronic paper (EP), etc. Used as paper. Among them, the biaxially stretched polyester film has excellent properties such as mechanical properties, electrical properties, dimensional stability, heat resistance, transparency and chemical resistance, and is more versatile than other transparent plastic films. Therefore, it is suitable for such applications.

しかし、二軸延伸ポリエステルフィルムは一般に静電気が発生しやすく、製膜工程、加工工程、製品の使用時などに塵埃が付着するという問題を有している。かかる欠点を解決するために、従来からポリエステルフィルム表面に帯電防止性を付与する検討がなされている。たとえば、特許文献1は、二軸延伸ポリエステルフィルムの表面に、アクリル系重合体とポリスチレンスルホン酸および/またはその塩を塗布することで耐電防止性を付与する手法を示しており、特許文献2は塗布層を均一に分散させ、外観、接着性耐スクラッチ性などに優れた積層ポリエステルフィルムを提供する手法を示している。
特開昭64−9242号公報 特開2003−71995号公報
However, the biaxially stretched polyester film generally tends to generate static electricity, and has a problem that dust adheres to the film forming process, the processing process, and the use of the product. In order to solve such drawbacks, studies have been conventionally made to impart antistatic properties to the polyester film surface. For example, Patent Document 1 shows a method for imparting anti-static properties by applying an acrylic polymer and polystyrene sulfonic acid and / or a salt thereof to the surface of a biaxially stretched polyester film. This shows a technique for providing a laminated polyester film having a coating layer uniformly dispersed and having an excellent appearance, adhesion and scratch resistance.
JP-A 64-9242 JP 2003-71995 A

しかし、前述した従来の技術には次のような問題点がある。すなわち、光学用フィルムなどの基材や工程紙として用いられる二軸延伸ポリエステルフィルムには、高度な透明性とクリア感、優れた色調(低いb値)といった光学特性や、加工時にかかる熱に耐えうる耐熱性、加工品に凹凸を目立たせないための平滑性などが高度に両立して求められるが、かかる特性を達成するための具体的な手段については開示がない。   However, the above-described conventional technique has the following problems. In other words, biaxially stretched polyester films used as substrates for optical films and process papers are resistant to optical properties such as high transparency and clearness, excellent color tone (low b value), and heat applied during processing. High heat resistance and smoothness for making the processed product not conspicuous are required at a high level, but there is no disclosure of specific means for achieving such characteristics.

本発明は、上記した従来技術の問題点に鑑み、光学フィルム用基材や工程紙として満足しうる帯電防止性、光学特性、耐熱性、平滑性等を有する光学用帯電防止性二軸延伸ポリエステルフィルムを提供することにある。   In view of the above-described problems of the prior art, the present invention is an antistatic biaxially stretched polyester for optical use that has satisfactory antistatic properties, optical properties, heat resistance, smoothness, etc. as a substrate for optical films and process paper. To provide a film.

本発明は、帯電防止層を構成する物質と組成比、帯電防止層の膜厚を好適に限定することで、特に光学フィルム用基材や工程紙として満足しうる帯電防止性、光学特性、耐熱性等を有する光学用帯電防止性二軸延伸ポリエステルフィルムを提供することができる。     The present invention suitably limits the materials and composition ratios constituting the antistatic layer and the film thickness of the antistatic layer, so that the antistatic properties, optical characteristics, heat resistance, which are particularly satisfactory as a substrate for optical films and process papers, are achieved. It is possible to provide an antistatic biaxially stretched polyester film having optical properties and the like.

上記課題を達成するために、本発明は、実質的に外部粒子を含まない二軸延伸ポリエステルフィルムの少なくとも片面に、
(A)アクリル系樹脂 60〜90質量部
(B)帯電防止剤 10〜40質量部
(C)架橋剤 1〜30質量部
(D)一次粒径が40〜100nmの粒子 1〜5質量部
から構成される帯電防止層を、インラインコート法により30〜60nmの厚さで積層したことを特徴とする帯電防止性二軸延伸ポリエステルフィルムである。
To achieve the above object, the present invention provides at least one surface of a biaxially stretched polyester film substantially free of external particles.
(A) Acrylic resin 60-90 parts by mass (B) Antistatic agent 10-40 parts by mass (C) Cross-linking agent 1-30 parts by mass (D) Particles having a primary particle size of 40-100 nm From 1-5 parts by mass The antistatic biaxially stretched polyester film is characterized in that the antistatic layer is laminated with a thickness of 30 to 60 nm by an in-line coating method.

以下、更に詳しく本発明帯電防止性二軸延伸ポリエステルフィルムについて説明する。   Hereinafter, the antistatic biaxially stretched polyester film of the present invention will be described in more detail.

本発明の帯電防止性二軸延伸ポリエステルフィルムは、主に、光学用に関する。光学用とは、液晶ディスプレイやプラズマディスプレイ、ブラウン管などの部材、例えば拡散シートや電磁波遮蔽フィルム、近赤外線カットフィルムといったフィルムや、反射防止フィルム、タッチパネル用透明電極フィルムといった物品の最表面に貼付されるフィルムであり、その基材や工程紙として用いられることを言う。   The antistatic biaxially stretched polyester film of the present invention mainly relates to optical use. For optical use, it is affixed to the outermost surface of articles such as liquid crystal displays, plasma displays, cathode ray tubes, films such as diffusion sheets, electromagnetic shielding films, near infrared cut films, antireflection films, and transparent electrode films for touch panels. It is a film and is used as its base material or process paper.

かかる用途に好適に用いられる二軸延伸ポリエステルフィルムには優れた光学特性を要求される。すなわち、ヘイズ値は2%以下が好ましく、1%以下がより好ましい。ヘイズは後述のとおり、ポリエステルフィルム原料や帯電防止層に混入される添加剤の量や、帯電防止層の組成配合比を本発明の範囲とすることで達成させることができる。また、全光線透過率は、帯電防止層が片面のみに積層する場合は好ましくは90%以上、帯電防止層が両面に積層する場合は好ましくは92%以上である。   A biaxially stretched polyester film suitably used for such applications is required to have excellent optical properties. That is, the haze value is preferably 2% or less, and more preferably 1% or less. As described later, haze can be achieved by setting the amount of additive mixed in the polyester film raw material and the antistatic layer and the composition ratio of the antistatic layer within the scope of the present invention. The total light transmittance is preferably 90% or more when the antistatic layer is laminated on only one side, and preferably 92% or more when the antistatic layer is laminated on both sides.

また、青味−黄味を示す透過b値は0.5以下が好ましい。全光線透過率や透過b値は後述のとおり、ポリエステルフィルム原料の色調、帯電防止層の処理面数、組成配合比率、膜厚などを本発明の範囲とすることで好適な値を得ることができる。   Moreover, 0.5 or less is preferable for the permeation | transmission b value which shows bluish-yellowness. As described later, the total light transmittance and the transmission b value can be obtained by adjusting the color tone of the polyester film raw material, the number of treated surfaces of the antistatic layer, the composition blending ratio, the film thickness, and the like within the scope of the present invention. it can.

かかる用途に用いられる場合、二軸延伸ポリエステルフィルム自体やそれを用いた各種加工時に塵埃が付着することは好ましくなく、本発明の二軸延伸ポリエステルフィルムの少なくとも片面には帯電防止層を設置する必要がある。帯電防止層の表面比抵抗は、10の13乗台Ω/□以下が好ましく、より好ましくは10の11乗台Ω/□、更に好ましくは10の9乗台Ω/□以下である。表面比抵抗は後述のとおり、帯電防止剤の種類、帯電防止層の膜厚、組成配合比などを本発明の範囲とすることで達成することができる。   When used in such applications, it is not preferred that dust adhere to the biaxially stretched polyester film itself or during various processing using it, and it is necessary to provide an antistatic layer on at least one side of the biaxially stretched polyester film of the present invention. There is. The surface specific resistance of the antistatic layer is preferably 10 13 Ω / □ or less, more preferably 10 11 Ω / □, and still more preferably 10 9 Ω / □ or less. As described later, the surface specific resistance can be achieved by setting the type of the antistatic agent, the film thickness of the antistatic layer, the composition blending ratio, and the like within the scope of the present invention.

塗布、乾燥、蒸着など、光学用フィルムの加工時に二軸延伸ポリエステルフィルムに熱をかける工程があるため、更にはロール状態での長期保管に耐え得るため、帯電防止層は耐熱性を有する方が好ましい。本発明において、帯電防止層同士のブロッキングが開始する温度は、100℃以上であることが好ましい。耐熱性は後述のとおり、帯電防止層の組成配合比、造膜性、帯電防止層に添加する粒子の量と径、架橋剤の量などを本発明の範囲とすることで向上させることができる。   Since there is a process to heat the biaxially stretched polyester film during processing of the optical film such as coating, drying, vapor deposition, etc., and it can withstand long-term storage in the roll state, the antistatic layer should have heat resistance preferable. In the present invention, the temperature at which blocking between the antistatic layers starts is preferably 100 ° C. or higher. As described later, the heat resistance can be improved by setting the composition ratio of the antistatic layer, the film forming property, the amount and diameter of the particles added to the antistatic layer, the amount of the crosslinking agent, and the like within the scope of the present invention. .

上述の好ましいヘイズを達成するためには、原料であるポリエステルに実質的に外部粒子を含まない必要がある。なお外部粒子とは、二軸延伸ポリエステルフィルムの原料であるポリエステルに意図的に添加する粒子のことを言う。また、上述の透過b値を達成するために、原料であるポリエステルチップのb値は、好ましくは5.0以下、より好ましくは4.5以下、更に好ましくは4.0以下である。かかる二軸延伸ポリエステルフィルムの原料は、上記好ましいb値を有していれば特に限定される物ではないが、ジカルボン酸類としては、テレフタル酸、2,6−ナフタレンジカルボン酸を、グリコール類としては、エチレングリコールを選択したポリエチレンテレフタレートかポリエチレン2,6−ナフタレートが機械的強度、耐候性や耐化学薬品性、透明性などを考慮すると好ましい。ポリエステルを重合する際の触媒として、上記好ましいb値を有していれば特に限定されるものではないが、アルカリ土類金属化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、ゲルマニウム化合物などを使用することが好ましい。また、フィルムの耐候性、耐熱性などの機能を持たせるため、前記ポリエステル樹脂を主体としたフィルム原料に添加剤を混入してもよい。添加剤としては特に限定されず、添加剤、例えば、着色剤、耐熱安定剤、耐酸化安定剤、耐候安定剤、紫外線吸収剤などが使用できるが、本発明の必要特性である透明性やヘイズ、色調に影響を与えないように添加量を考慮することが好ましく、実質的に添加剤も含まないことがより好ましい。   In order to achieve the above-mentioned preferable haze, it is necessary that the raw material polyester is substantially free of external particles. The external particles refer to particles intentionally added to the polyester that is a raw material for the biaxially stretched polyester film. In order to achieve the above-mentioned transmission b value, the b value of the polyester chip as the raw material is preferably 5.0 or less, more preferably 4.5 or less, and still more preferably 4.0 or less. The raw material of such a biaxially stretched polyester film is not particularly limited as long as it has the above-mentioned preferable b value. As dicarboxylic acids, terephthalic acid and 2,6-naphthalenedicarboxylic acid are used as glycols. Polyethylene terephthalate selected from ethylene glycol or polyethylene 2,6-naphthalate is preferable in view of mechanical strength, weather resistance, chemical resistance, transparency, and the like. The catalyst for polymerizing the polyester is not particularly limited as long as it has the above preferred b value, but it is not limited to alkaline earth metal compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, germanium. It is preferable to use a compound or the like. Moreover, in order to give functions such as weather resistance and heat resistance of the film, an additive may be mixed in the film raw material mainly composed of the polyester resin. The additive is not particularly limited, and additives such as a colorant, a heat stabilizer, an oxidation stabilizer, a weather stabilizer, an ultraviolet absorber, etc. can be used, but transparency and haze which are necessary characteristics of the present invention. The addition amount is preferably considered so as not to affect the color tone, and it is more preferable that the additive is not substantially contained.

かかる二軸延伸ポリエステルフィルムの製膜方法は、例えば、溶融押出した結晶配向前のポリエステルフィルムを長手方向に2.5倍〜4倍程度延伸し、続いて幅方向に2.5倍〜4倍程度延伸する。さらに連続的に150℃〜250℃の加熱ゾーンに導き結晶配向を完了させ、30℃〜200℃で長手方向や幅方向に1%〜5%に弛緩させ熱寸法安定性を付与する方法である。二軸延伸ポリエステルフィルムの厚みは、25μm〜300μmが好ましく、より好ましくは50μm〜250μmである。25μmを下回ると、基材としての腰強さが得られず、帯電防止性二軸延伸ポリエステルフィルムのカール、シワ・折れが発生し取り扱い性が大幅に悪化するため好ましくなく、300μmを越えると、腰が強すぎて作業性が悪化し、ロール状態での巻き長さも短くなるためコストが増大するため好ましくない。   Such a biaxially stretched polyester film can be produced, for example, by subjecting the melt-extruded polyester film before crystal orientation to stretching about 2.5 to 4 times in the longitudinal direction and then 2.5 to 4 times in the width direction. Stretch to the extent. Further, it is a method of continuously giving a thermal orientation to a heating zone of 150 ° C. to 250 ° C., completing crystal orientation, and relaxing to 1% to 5% in the longitudinal direction and width direction at 30 ° C. to 200 ° C. . The thickness of the biaxially stretched polyester film is preferably 25 μm to 300 μm, more preferably 50 μm to 250 μm. If it is less than 25 μm, it is not preferable because the stiffness as a base material cannot be obtained, and curling, wrinkles and creases of the antistatic biaxially stretched polyester film occur and the handling property is greatly deteriorated, and if it exceeds 300 μm, Since the waist is too strong, the workability is deteriorated, and the winding length in the roll state is shortened.

本発明における帯電防止層の設置方法としては、結晶配向が完了する前のポリエステルフィルムに樹脂塗液を塗布し、延伸、熱処理により結晶配向を完了させるインラインコート法である必要がある。これは、塗布・乾燥を同一工程内で実施できるコストメリットに加え、塗布後に延伸するため、本発明におけるような30〜60nmの薄膜を好適に得ることができるためである。塗布の方法は、例えばリバースコート法、スプレーコート法、バーコート法、グラビアコート法、ロッドコート法、ダイコート法などを用いることができる。形成される帯電防止層の膜厚は、塗液の濃度や塗布量等に比例する。本発明においては、後述のとおり帯電防止層の膜厚を30〜60nmの範囲に限定して制御する必要があるため、得られた帯電防止層の膜厚を後述の方法でチェックして濃度、塗布量等を微調整することが好ましい。   As a method for installing the antistatic layer in the present invention, it is necessary to use an in-line coating method in which a resin coating solution is applied to a polyester film before crystal orientation is completed, and crystal orientation is completed by stretching and heat treatment. This is because, in addition to the cost merit in which coating and drying can be performed in the same process, the film is stretched after coating, so that a 30 to 60 nm thin film as in the present invention can be suitably obtained. As a coating method, for example, a reverse coating method, a spray coating method, a bar coating method, a gravure coating method, a rod coating method, a die coating method, or the like can be used. The film thickness of the antistatic layer formed is proportional to the concentration of the coating liquid, the coating amount, and the like. In the present invention, since it is necessary to control the film thickness of the antistatic layer to be limited to the range of 30 to 60 nm as described later, the film thickness of the obtained antistatic layer is checked by the method described later to obtain a concentration, It is preferable to finely adjust the coating amount and the like.

上述の全光線透過率、透過b値を達成するために、帯電防止層の主成分はアクリル系樹脂である必要がある。すなわち、アクリル系樹脂の屈折率は約1.5であり二軸延伸ポリエステルフィルムの面方向平均屈折率約1.66と比べて低いため、帯電防止層が、所謂、反射防止層の役目を果たし、高透過率、低透過b値を達成しやすくなる。また、後述の帯電防止成分との造膜安定性、易接着性維持のためにもアクリル系樹脂を主成分とする必要があり、添加量は60質量部から90質量部が好ましい。アクリル系樹脂を構成するモノマー成分として、上記屈折率(約1.5)を満たすものであれば特に限定はなく、例えば、アルキルアクリレート、アルキルメタクリレート(アルキル基としてはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、ラウリル基、ステアリル基、シクロヘキシル基、フェニル基、ベンジル基、フェニルエチル基等)、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルアクリレート、2−ヒドロキシプロピルメタクリレート等のヒドロキシ基含有モノマ、アクリルアミド、メタクリルアミド、N−メチルアクリルアミド、N−メチルメタクリルアミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、N,N−ジメチロールアクリルアミド、N−メトキシメチルアクリルアミド、N−メトキシメチルメタクリルアミド、N−フェニルアクリルアミド等のアミド基含有モノマ、N,N−ジエチルアミノエチルアクリレート、N,N−ジエチルアミノエチルメタクリレート等のアミノ基含有モノマ、グリシジルアクリレート、グリシジルメタクリレート等のエポキシ基含有モノマ、アクリル酸、メタクリル酸およびそれらの塩(リチウム塩、ナトリウム塩、カリウム塩等)等のカルボキシル基またはその塩を含有するモノマーなどを用いることができ、これらは1種もしくは2種以上を用いて共重合される。   In order to achieve the above-described total light transmittance and transmission b value, the main component of the antistatic layer needs to be an acrylic resin. That is, since the refractive index of the acrylic resin is about 1.5, which is lower than the average refractive index in the plane direction of the biaxially stretched polyester film of about 1.66, the antistatic layer serves as a so-called antireflection layer. It becomes easy to achieve high transmittance and low transmission b value. Moreover, it is necessary to make an acrylic resin a main component also in order to maintain film-forming stability and easy adhesion with the antistatic component described later, and the addition amount is preferably 60 to 90 parts by mass. The monomer component constituting the acrylic resin is not particularly limited as long as it satisfies the above refractive index (about 1.5). For example, alkyl acrylate, alkyl methacrylate (alkyl groups include methyl, ethyl, n- Propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, lauryl group, stearyl group, cyclohexyl group, phenyl group, benzyl group, phenylethyl group, etc.), 2-hydroxyethyl acrylate , 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate-containing monomers, acrylamide, methacrylamide, N-methylacrylamide, N-methylmethacrylamide, N-methylolacrylamide Amide group-containing monomers such as N-methylolmethacrylamide, N, N-dimethylolacrylamide, N-methoxymethylacrylamide, N-methoxymethylmethacrylamide, N-phenylacrylamide, N, N-diethylaminoethyl acrylate, N, N- Carboxyl groups such as amino group-containing monomers such as diethylaminoethyl methacrylate, epoxy group-containing monomers such as glycidyl acrylate and glycidyl methacrylate, acrylic acid, methacrylic acid and salts thereof (lithium salt, sodium salt, potassium salt, etc.) or salts thereof The monomer to contain can be used and these are copolymerized using 1 type, or 2 or more types.

本発明において帯電防止性を発現させるために帯電防止層に添加する帯電防止剤として、金属粉、酸化スズ−アンチモン系導電剤、耐電防止性を有する界面活性剤などが挙げられるが、特許文献1にある理由からポリスチレンスルホン酸および/またはその塩が好ましい。ポリスチレンスルホンの分子量は1万から30万が好ましく、より好ましくは1万から10万である。塩のアニオン成分としては、アンモニウムイオン、カリウムイオン、ナトリウムイオン、リチウムイオンなどが挙げられるが、帯電防止性や造膜性の点で、アンモニウムイオン、リチウムイオンを用いることが好ましい。帯電防止剤の添加量は、10質量部から40質量部である必要があり、より好ましくは20〜30質量部である。上記下限値より少ないと耐電防止性が低くなり、上記上限値より多いと帯電防止層の造膜性が不安定化し、凝集、亀裂等が発生しフィルムが白濁・帯電防止性が低下、耐熱性が低下しやすくなる。   Examples of the antistatic agent added to the antistatic layer in order to develop antistatic properties in the present invention include metal powders, tin oxide-antimony conductive agents, and surfactants having antistatic properties. Therefore, polystyrene sulfonic acid and / or a salt thereof is preferable. The molecular weight of polystyrene sulfone is preferably 10,000 to 300,000, more preferably 10,000 to 100,000. Examples of the anion component of the salt include ammonium ion, potassium ion, sodium ion, and lithium ion. From the viewpoint of antistatic properties and film-forming properties, it is preferable to use ammonium ions and lithium ions. The addition amount of the antistatic agent needs to be 10 to 40 parts by mass, and more preferably 20 to 30 parts by mass. If it is less than the above lower limit, the antistatic property is lowered, and if it is more than the above upper limit, the film forming property of the antistatic layer becomes unstable, causing aggregation, cracks, etc., causing the film to become cloudy / antistatic, and heat resistant. Tends to decrease.

本発明において、帯電防止層を固くし、帯電防止層の耐熱性、耐擦過性などを向上させるために帯電防止層に添加する架橋剤としては、メラミン系架橋剤、オキサゾリン系架橋剤、エポキシ系架橋剤、イソシアネート系架橋剤などが挙げられるが、上述のアクリル系樹脂との架橋性、保存性や水溶性といった取り扱い性等からメラミン系樹脂が好ましく、架橋性、水溶性、可撓性等を制御できるメチロール化メラミン樹脂がより好ましい。架橋剤の添加量は、1質量部から30質量部である必要があり、好ましくは3質量部から10質量部である。1質量部より少ないと、架橋剤による帯電防止層の硬化効果が発現せず、30質量部より大きいと、逆に造膜性が不安定化し、凝集、亀裂等が発生しフィルムが白濁・帯電防止性が低下しやすくなる。   In the present invention, the crosslinking agent added to the antistatic layer in order to harden the antistatic layer and improve the heat resistance, scratch resistance, etc. of the antistatic layer includes a melamine-based crosslinking agent, an oxazoline-based crosslinking agent, and an epoxy-based crosslinking agent. Crosslinking agents, isocyanate-based crosslinking agents, and the like can be mentioned. Melamine-based resins are preferred from the viewpoint of crosslinkability with the above-described acrylic resins, handling properties such as storage stability and water solubility, etc., and crosslinkability, water solubility, flexibility, etc. A controllable methylolated melamine resin is more preferred. The addition amount of the crosslinking agent needs to be 1 to 30 parts by mass, and preferably 3 to 10 parts by mass. If the amount is less than 1 part by mass, the curing effect of the antistatic layer by the crosslinking agent will not be exhibited. If the amount is more than 30 parts by mass, the film-forming property will be unstable, causing aggregation, cracks, etc. Preventive properties are likely to decrease.

本発明において、フィルムに滑り性を持たせ、帯電防止層同士のブロッキングを防止するために帯電防止層に添加する粒子としては、代表的には、シリカ、コロイダルシリカ、アルミナ、アルミナゾル、カオリン、タルク、マイカ、炭酸カルシウム等を用いることができる。平均一次粒径としては、40nmから100nmである必要がある。40nmより小さい場合は、帯電防止層中の粒子が表面に突出せず易滑性・耐熱性・耐擦過性が悪化したり、帯電防止層中の粒子同士が凝集してフィルム表面が粗化・白濁しやすくなるので好ましくない。また、100nmより大きい場合は、帯電防止層中の粒子が帯電防止層から滑落したり、表面が粗化するため好ましくない。帯電防止層中の粒子の添加量は、1〜5質量部である必要がある。1質量部より少ないと易滑性が発現せず、ブロッキング等が発生しやすくなり、耐熱性も低下する。5質量部より多いと、帯電防止層中の粒子同士が凝集したりしてヘイズが上昇しやすくなる。   In the present invention, the particles added to the antistatic layer in order to give the film slipperiness and prevent blocking between the antistatic layers typically include silica, colloidal silica, alumina, alumina sol, kaolin, talc. Mica, calcium carbonate, etc. can be used. The average primary particle size needs to be 40 nm to 100 nm. If it is smaller than 40 nm, the particles in the antistatic layer do not protrude on the surface and the slipperiness, heat resistance, and scratch resistance deteriorate, or the particles in the antistatic layer aggregate to roughen the film surface. Since it becomes easy to become cloudy, it is not preferable. Moreover, when larger than 100 nm, since the particle | grains in an antistatic layer slide off from an antistatic layer or the surface roughens, it is unpreferable. The addition amount of the particles in the antistatic layer needs to be 1 to 5 parts by mass. If it is less than 1 part by mass, slipperiness will not be exhibited, blocking and the like will easily occur, and heat resistance will also be reduced. When the amount is more than 5 parts by mass, the particles in the antistatic layer aggregate and the haze tends to increase.

本発明において、帯電防止層の膜厚は、30〜60nmである必要があり、好ましくは40〜60nmである。膜厚が30nmより小さいと可視光領域の反射率が全体に高くなり透過率が下がり、さらには、好ましい接着性や耐電防止性が得られない。膜厚が60nmより大きいと、可視光領域における青色領域を強く反射してしまう(図1)ため、透過b値が大きくなりフィルムが黄色く着色して見え、更には、ブロッキングしやすくなる。   In this invention, the film thickness of an antistatic layer needs to be 30-60 nm, Preferably it is 40-60 nm. When the film thickness is smaller than 30 nm, the reflectance in the visible light region is increased as a whole, the transmittance is lowered, and preferable adhesiveness and antistatic properties cannot be obtained. When the film thickness is larger than 60 nm, the blue region in the visible light region is strongly reflected (FIG. 1), so that the transmission b value becomes large and the film appears to be colored yellow, and further, it becomes easy to block.

帯電防止層を設ける面数としては特に限定はない。片面だとヘイズ値が低く、ロール状態でのブロッキングは発生しにくいという好適な点もあるが、未処理面には帯電防止性が発現せず、また、全光線透過率が下がり、透過b値も上昇するという好ましくない点もある。両面だと、全光線透過率が高く、透過b値も低くなるが、ヘイズ値が片面の約2倍になるという好ましくない点もある。いずれにせよ、各種光学フィルムの加工上、帯電防止層が必要な面に設ければよい。   The number of surfaces on which the antistatic layer is provided is not particularly limited. Although there is a favorable point that the haze value is low on one side and blocking in the roll state is difficult to occur, the anti-treatment property does not appear on the untreated side, the total light transmittance is lowered, and the transmission b value is reduced. There is also an unfavorable point of increasing. On both sides, the total light transmittance is high and the transmission b value is low, but there is also an undesirable point that the haze value is about twice that of one side. In any case, an antistatic layer may be provided on a surface where various optical films are processed.

(特性の測定方法および効果の評価方法)
本発明における特性の測定方法および評価方法を以下に示す。
(Characteristic measurement method and effect evaluation method)
The characteristic measuring method and evaluation method in the present invention will be described below.

(1)ポリエステル原料の色調
ポリエステルチップを約10gサンプリングし、スガ試験機(株)製カラーマシン「SM−C」にて測定した。
(1) Color tone of polyester raw material About 10 g of polyester chips were sampled and measured with a color machine “SM-C” manufactured by Suga Test Instruments Co., Ltd.

(2)帯電防止性二軸延伸ポリエステルフィルムの厚み
ソニー社製、デジタルマイクロメーターを使用し、JIS−C−2151(1990)に従って測定した。
(2) Thickness of antistatic biaxially stretched polyester film The thickness was measured according to JIS-C-2151 (1990) using a digital micrometer manufactured by Sony Corporation.

(3)帯電防止層の厚み
帯電防止性二軸延伸ポリエステルフィルムの断面を凍結超薄切片法にて切り出し、RuO4染色による染色超薄切片法により、日立製作所製透過型電子顕微鏡H−7100FA型を用い、加速電圧100kVにて帯電防止層部の観察、写真撮影を行った。その断面写真から帯電防止層の厚みを測定した。
(3) Thickness of the antistatic layer A cross section of the antistatic biaxially stretched polyester film was cut out by a freezing ultrathin section method, and a transmission electron microscope H-7100FA type manufactured by Hitachi, Ltd. by a stained ultrathin section method by RuO 4 staining. The antistatic layer was observed and photographed at an acceleration voltage of 100 kV. The thickness of the antistatic layer was measured from the cross-sectional photograph.

(4)帯電防止層中の粒子の一次粒径
帯電防止層表面にPt−Pdをイオンスパッタしてサンプルを調整し、日立製作所製社製走査電子顕微鏡S−800を用い、帯電防止層表面の観察し、粒子の凝集有無を確認した。さらに、写真撮影を行い、その写真から粒子の一次粒径を測定した。
(4) Primary particle diameter of particles in antistatic layer A sample was prepared by ion-sputtering Pt—Pd on the surface of the antistatic layer, and the surface of the antistatic layer was scanned using a scanning electron microscope S-800 manufactured by Hitachi, Ltd. Observation was made to confirm the presence or absence of particle aggregation. Furthermore, a photograph was taken and the primary particle size of the particles was measured from the photograph.

(5)ヘイズと全光線透過率
スガ試験機(株)製全自動直読ヘイズコンピューター「HGM−2DP」を用いて、JIS−K−7105(1981)。
(5) Haze and total light transmittance JIS-K-7105 (1981) using a fully automatic direct reading haze computer “HGM-2DP” manufactured by Suga Test Instruments Co., Ltd.

(6)透過b値
JIS−Z−8722(2000)に従って、島津製作所製分光光度計「UV−2450PC」(受光部に積分球を使用)を用いて帯電防止性二軸延伸ポリエステルフィルムの入射角0度の分光透過率を測定し、三刺激値X、Y、Zを求め、透過b値を計算した。このとき、光源はC、視野角は2度にて計算した。
(6) Transmission b value In accordance with JIS-Z-8722 (2000), the incident angle of the antistatic biaxially stretched polyester film using a spectrophotometer “UV-2450PC” (using an integrating sphere for the light receiving part) manufactured by Shimadzu Corporation The spectral transmittance at 0 degree was measured, tristimulus values X, Y, and Z were obtained, and the transmission b value was calculated. At this time, the light source was C and the viewing angle was 2 degrees.

(7)表面比抵抗
JIS−C−2151(1990)に従って、アドバンテスト社製デジタル超高抵抗/微小電流計「R8340/8340A」を用いて測定した。
(7) Surface Specific Resistance Measured according to JIS-C-2151 (1990) using a digital ultrahigh resistance / microammeter “R8340 / 8340A” manufactured by Advantest Corporation.

(8)耐熱性(ブロッキング開始温度)
テスター産業社製ヒートシールテスター「TP−701−B」を用い、各温度にて0.4MPa下、1分間帯電防止層同士を圧着させ、ブロッキングした最低温度をブロッキング開始温度とした。
(8) Heat resistance (blocking start temperature)
Using a heat seal tester “TP-701-B” manufactured by Tester Sangyo Co., Ltd., the antistatic layers were pressure-bonded for 1 minute at 0.4 MPa under each temperature, and the blocked minimum temperature was defined as the blocking start temperature.

(9)帯電防止層の密着力
帯電防止層上に、ジペンタエリスリトールヘキサアクリレート42質量部、トリシクロデカンジメタノールジアクリレート30質量部、テトラヒドロフルフリルアクリレート28質量部、1−ヒドロキシシクロヘキシルフェニルケトン5質量部、シリコーン系レベリング剤(東レシリコーン社製SH−190)0.5質量部、トルエン90質量部、酢酸ブチル70質量部、イソプロピルアルコール70質量部を混合溶解したハードコート成分を、硬化後に7μmになるようにダイコーターを用いて塗布し、80℃で18秒間乾燥させ、空気中化で塗布面から12cmの高さにセットした80W/cmの強度を有する高圧水銀灯の下を10m/分の速度で通過させ硬化させたハードコート層に1mm2のクロスカットを100個入れ、ニチバン社製セロハンテープをその上に貼り付け、指で強く押し付けた後、90度方向に急速に剥離し、残存した個数により評価を行った。(◎)、(○)を密着性良好、△を使用限度とした。
◎:100/100(残存個数/測定個数)
○:80/100以上、100/100未満
△:50/100以上、80/100未満
×:50/100未満。
(9) Adhesive strength of antistatic layer On the antistatic layer, 42 parts by mass of dipentaerythritol hexaacrylate, 30 parts by mass of tricyclodecane dimethanol diacrylate, 28 parts by mass of tetrahydrofurfuryl acrylate, 1-hydroxycyclohexyl phenyl ketone 5 A hard coat component in which 0.5 parts by mass, 0.5 part by mass of a silicone-based leveling agent (SH-190 manufactured by Toray Silicone Co., Ltd.), 90 parts by mass of toluene, 70 parts by mass of butyl acetate, and 70 parts by mass of isopropyl alcohol are mixed and 7 μm after curing. It was applied using a die coater, dried at 80 ° C. for 18 seconds, and set to a height of 12 cm from the coating surface by air evaporation, under a high pressure mercury lamp having an intensity of 80 W / cm, 10 m / min. crosscut 1 mm 2 to the hard coat layer cured by passing at a rate 100 placed, paste Nichiban Co. cellophane tape thereon, after strongly pressed with a finger, then quickly peeled off at 90-degree direction, and evaluated by the remaining number. (◎) and (◯) were good adhesion, and Δ was the use limit.
A: 100/100 (remaining number / measured number)
○: 80/100 or more, less than 100/100 Δ: 50/100 or more, less than 80/100 ×: less than 50/100

(10)外観
帯電防止性二軸延伸ポリエステルフィルムを透過光および反射光で観察し、クリア感・ムラ感を次の基準で評価した。(◎)、(○)を外観が良好、△が使用限度とした。
◎: 全く白濁感・ムラ感がなく、鮮明に透明感がある
○: 透明に見える
△: 白いモヤやムラが少しわかるもの
×: 全体に白濁感があるもの。
(10) Appearance The antistatic biaxially stretched polyester film was observed with transmitted light and reflected light, and the clearness and unevenness were evaluated according to the following criteria. (◎) and (◯) are good appearance, and Δ is the use limit.
A: There is no cloudiness or unevenness at all, and there is a clear transparency. ○: It appears transparent. △: A white fog or a slight unevenness is observed.

(11)取り扱い性
サンプルカット、サンプル搬送時の取り扱い性を次の基準で評価した。(◎)、(○)を取り扱い性が良好、△が使用限度と判断した。
◎: 取り扱い上、全く問題なし
○: 取り扱い時、クリーン度などやや注意が必要
△: 除電装置などの補助装置がないと取り扱えない
×: 強力な除電装置やナールなど特別な装置がないと全く取り扱えない
(11) Handling property Handling property at the time of sample cutting and sample conveyance was evaluated according to the following criteria. (◎) and (○) were judged to be easy to handle and △ was judged to be the use limit.
◎: No problem in handling ○: Some care is required when handling, etc. △: Cannot be handled without an auxiliary device such as a static eliminator ×: Can be handled without a special device such as a powerful static eliminator or knurl Absent

以下、本発明を実施例を用いて説明する。
(実施例1)
実質的に添加外部粒子を含有しないb値が4.0のPETペレット(極限粘度0.63dl/g)を充分に真空乾燥した後、押し出し機に供給し285℃で溶融し、T字型口金よりシート状に押し出し、静電印加キャスト法を用いて表面温度25℃の鏡面キャスティングドラムに巻き付けて冷却固化した。この未延伸フィルムを85℃に加熱して長手方向に3.2倍延伸し、一軸延伸フィルムとした。このフィルムの両面に空気中でコロナ放電処理を施し、両面に後述の塗液A1/帯電防止剤B1/架橋剤C1/粒子D1=75/25/5/2.5(固形質量部)で構成される帯電防止層形成用水分散液を塗布した。塗布された1軸延伸フィルムをクリップで把持して予熱ゾーンに導き、100℃で乾燥、引き続き連続的に120℃の加熱ゾーンで幅方向に3.4倍延伸し、続いて230℃の加熱ゾーンで20秒間熱処理を施し、160℃〜60℃で幅方向に4%弛緩処理して結晶配向の完了した表1に示す帯電防止性二軸延伸PETフィルム(ベースの厚み100μm、帯電防止層の厚み50nm)を作成した。得られた帯電防止性二軸延伸PETフィルムの特性、外観、取り扱い性を表1に示すが、光学用帯電防止性二軸延伸ポリエステルフィルムとして好適であった。
Hereinafter, the present invention will be described using examples.
Example 1
PET pellets having a b value of 4.0 (extreme viscosity 0.63 dl / g) substantially free from added external particles are sufficiently dried in a vacuum and then fed to an extruder and melted at 285 ° C. The sheet was further extruded into a sheet shape, wound around a mirror casting drum having a surface temperature of 25 ° C. using an electrostatic application casting method, and solidified by cooling. This unstretched film was heated to 85 ° C. and stretched 3.2 times in the longitudinal direction to obtain a uniaxially stretched film. Both surfaces of this film are subjected to corona discharge treatment in the air, and both surfaces are composed of coating liquid A1 / antistatic agent B1 / crosslinking agent C1 / particle D1 = 75/25/5 / 2.5 (solid mass part) described later. An aqueous dispersion for forming an antistatic layer was applied. The coated uniaxially stretched film is gripped with a clip and guided to a preheating zone, dried at 100 ° C., continuously stretched 3.4 times in the width direction in a heating zone of 120 ° C., and then heated in a heating zone of 230 ° C. The antistatic biaxially stretched PET film shown in Table 1 (base thickness 100 μm, antistatic layer thickness) was subjected to heat treatment for 20 seconds and relaxed by 4% in the width direction at 160 ° C. to 60 ° C. to complete crystal orientation. 50 nm). The properties, appearance, and handleability of the obtained antistatic biaxially stretched PET film are shown in Table 1, and it was suitable as an antistatic biaxially stretched polyester film for optics.

(実施例2)
帯電防止層形成用水分散液を塗液A1/帯電防止剤B2/架橋剤C1/粒子D2=80/20/5/4(固形質量部)、帯電防止層の厚みを60nmとした以外は実施例1と同様にした。得られた帯電防止性二軸延伸PETフィルムの特性、性能等を表1に示すが、光学用帯電防止性二軸延伸ポリエステルフィルムとして好適であった。
(Example 2)
Example 1 except that the aqueous dispersion for forming the antistatic layer is coating liquid A1 / antistatic agent B2 / crosslinking agent C1 / particle D2 = 80/20/5/4 (solid mass part), and the thickness of the antistatic layer is 60 nm. Same as 1. The properties, performance, etc. of the obtained antistatic biaxially stretched PET film are shown in Table 1, and it was suitable as an antistatic biaxially stretched polyester film for optical use.

(実施例3)
帯電防止層形成用水分散液を塗液A1/塗液E1/帯電防止剤B1/架橋剤C1/粒子D3=65/25/10/5/2.5(固形質量部)、帯電防止層の厚みを30nmとした以外は実施例1と同様にした。得られた帯電防止性二軸延伸PETフィルムの特性、性能等を表1に示すが、若干接着性と帯電防止性が低く、薄いムラ感、薄い黄味感があったものの、光学用帯電防止性二軸延伸ポリエステルフィルムとして適していた。
(Example 3)
Water dispersion for forming antistatic layer is applied as coating liquid A1 / coating liquid E1 / antistatic agent B1 / crosslinking agent C1 / particle D3 = 65/25/10/5 / 2.5 (solid mass part), thickness of antistatic layer Was the same as Example 1 except that the thickness was changed to 30 nm. The properties and performances of the obtained antistatic biaxially stretched PET film are shown in Table 1. Although the adhesiveness and antistatic property are slightly low and there is a thin unevenness and a light yellowish feeling, the antistatic for optical use Suitable as a biaxially oriented polyester film.

(実施例4)
帯電防止層形成用水分散液を塗液A1/帯電防止剤B1/架橋剤C1/粒子D1=60/40/1/2.5(固形質量部)とした以外は実施例1と同様にした。得られた帯電防止性二軸延伸PETフィルムの特性、性能等を表1に示すが、ブロッキング開始温度が若干低く、薄いムラ感があったものの、光学用帯電防止性二軸延伸ポリエステルフィルムとして適していた。
Example 4
The aqueous dispersion for forming the antistatic layer was the same as Example 1 except that the coating liquid A1 / antistatic agent B1 / crosslinking agent C1 / particle D1 = 60/40/1 / 2.5 (solid mass part). Properties and performance of the obtained antistatic biaxially stretched PET film are shown in Table 1. Although the blocking start temperature is slightly low and there is a thin unevenness, it is suitable as an antistatic biaxially stretched polyester film for optical use. It was.

(実施例5)
帯電防止層形成用水分散液を塗液A1/帯電防止剤B1/架橋剤C1/粒子D1=75/25/30/2.5(固形質量部)とし、片面のみの設置とした以外は実施例1と同様にした。得られた帯電防止性二軸延伸PETフィルムの特性、性能等を表1に示すが、若干密着力が低く、非帯電防止層面に埃がつきやすく、薄いムラ感があったものの、光学用帯電防止性二軸延伸ポリエステルフィルムとして適していた。
(Example 5)
Example except that the aqueous dispersion for forming the antistatic layer was coating liquid A1 / antistatic agent B1 / crosslinking agent C1 / particle D1 = 75/25/30 / 2.5 (solid mass part) and only one side was installed. Same as 1. The properties and performances of the obtained antistatic biaxially stretched PET film are shown in Table 1. Although the adhesion force is slightly low, the non-antistatic layer surface tends to be dusty, and there is a feeling of thin unevenness. Suitable as a preventive biaxially stretched polyester film.

(実施例6)
帯電防止層形成用水分散液を塗液A1/帯電防止剤B1/架橋剤C1/粒子D1=75/25/5/1(固形質量部)とし、片面のみの設置とした以外は実施例1と同様にした。得られた帯電防止性二軸延伸PETフィルムの特性、性能等を表1に示すが、ブロッキング開始温度が若干低く、非帯電防止層面に埃がつきやすく、若干滑りが悪いものの、光学用帯電防止性二軸延伸ポリエステルフィルムとして適していた。
(Example 6)
The aqueous dispersion for forming the antistatic layer was set as coating liquid A1 / antistatic agent B1 / crosslinking agent C1 / particle D1 = 75/25/5/1 (solid mass part), and Example 1 except that only one side was installed. The same was done. The properties and performances of the obtained antistatic biaxially stretched PET film are shown in Table 1. Although the blocking start temperature is slightly low, dust is easily attached to the non-antistatic layer surface, and slipping is slightly poor, the optical antistatic Suitable as a biaxially oriented polyester film.

(比較例1)
平均粒径0.4μmのコロイダルシリカを0.015質量%および平均粒径1.5μmのコロイダルシリカを0.005質量%含有するPETペレット(極限粘度0.63dl/g)を用いた以外は実施例1と同様にした。得られた帯電防止性二軸延伸PETフィルムの特性、性能等を表1に示すが、光学用帯電防止性二軸延伸ポリエステルフィルムとしては表面が粗い上に、ヘイズが高く、曇って見える外観のため不適合であった。
(Comparative Example 1)
Implemented except that PET pellets (ultimate viscosity 0.63 dl / g) containing 0.015% by mass of colloidal silica having an average particle size of 0.4 μm and 0.005% by mass of colloidal silica having an average particle size of 1.5 μm were used. Same as Example 1. The properties and performances of the obtained antistatic biaxially stretched PET film are shown in Table 1. As an antistatic biaxially stretched polyester film for optical use, the surface is rough and the haze is high and the appearance looks cloudy. Therefore, it was incompatible.

(比較例2)
帯電防止層形成用水分散液を塗液A1/帯電防止剤B1/架橋剤C1/粒子D1=95/5/5/2.5(固形質量部)とした以外は実施例1と同様にした。得られた帯電防止性二軸延伸PETフィルムの特性、性能等を表1に示すが、帯電防止剤B1の添加量が少ないため、帯電防止性が低かった。
(Comparative Example 2)
An aqueous dispersion for forming an antistatic layer was the same as Example 1 except that the coating liquid A1 / antistatic agent B1 / crosslinking agent C1 / particle D1 = 95/5/5 / 2.5 (solid mass part). The properties and performances of the obtained antistatic biaxially stretched PET film are shown in Table 1. However, the antistatic property was low due to the small amount of the antistatic agent B1 added.

(比較例3)
帯電防止層形成用水分散液を塗液A1/帯電防止剤B1/架橋剤C1/粒子D1=50/50/5/2.5(固形質量部)とした以外は実施例1と同様にした。得られた帯電防止性二軸延伸PETフィルムの特性、性能等を表2に示すが、帯電防止剤塩B1の添加量が多すぎて帯電防止層に微小な亀裂が入り(表面粗化・白化)、耐熱性および帯電防止性が低下した。さらに、光学用帯電防止性二軸延伸ポリエステルフィルムとしてはヘイズが高く、曇って見える外観のため不適合であった。
(Comparative Example 3)
An aqueous dispersion for forming an antistatic layer was the same as Example 1 except that the coating liquid A1 / antistatic agent B1 / crosslinking agent C1 / particles D1 = 50/50/5 / 2.5 (solid mass part). The properties and performances of the obtained antistatic biaxially stretched PET film are shown in Table 2. However, the amount of antistatic agent salt B1 added is too large and microcracks are formed in the antistatic layer (surface roughening / whitening). ), Heat resistance and antistatic properties decreased. Furthermore, the antistatic biaxially stretched polyester film for optical use was unsuitable because of its high haze and appearance of being cloudy.

(比較例4)
帯電防止層形成用水分散液を塗液A1/塗液E1/帯電防止剤B1/架橋剤C1/粒子D1=20/55/25/5/2.5(固形質量部)とした以外は実施例1と同様にした。得られた帯電防止性二軸延伸PETフィルムの特性、性能等を表2に示すが、塗液E1の添加量が多すぎて帯電防止層に微小な亀裂が入り(表面粗化・白化)、耐熱性および帯電防止性が低下した。更に、塗液E1の屈折率が高く透過b値が低減せず、また、光学用帯電防止性二軸延伸ポリエステルフィルムとしてはヘイズが高く、曇って見える外観のため不適合であった。
(Comparative Example 4)
Example except that the aqueous dispersion for forming the antistatic layer was coating liquid A1 / coating liquid E1 / antistatic agent B1 / crosslinking agent C1 / particle D1 = 20/55/25/5 / 2.5 (solid mass part) Same as 1. The properties and performances of the obtained antistatic biaxially stretched PET film are shown in Table 2, but the addition amount of the coating liquid E1 is too large, and the antistatic layer has minute cracks (surface roughening / whitening), Heat resistance and antistatic properties decreased. Furthermore, the refractive index of the coating liquid E1 was high and the transmission b value was not reduced, and the antistatic biaxially stretched polyester film for optical use had a high haze and was unsuitable because it looked cloudy.

(比較例5)
帯電防止層形成用水分散液を塗液A1/帯電防止剤B1/粒子D1=75/25/2.5(固形質量部)とした以外は実施例1と同様にした。得られた帯電防止性二軸延伸PETフィルムの特性、性能等を表2に示すが、架橋剤の添加がないため帯電防止層が柔らかく、耐熱性および耐擦過性に劣った。
(Comparative Example 5)
The same procedure as in Example 1 was conducted except that the aqueous dispersion for forming an antistatic layer was changed to coating solution A1 / antistatic agent B1 / particle D1 = 75/25 / 2.5 (solid mass part). The properties, performance, and the like of the obtained antistatic biaxially stretched PET film are shown in Table 2. However, since no crosslinking agent was added, the antistatic layer was soft and inferior in heat resistance and scratch resistance.

(比較例6)
帯電防止層形成用水分散液を塗液A1/帯電防止剤B1/架橋剤C1/粒子D1=75/25/40/2.5(固形質量部)とした以外は実施例1と同様にした。得られた帯電防止性二軸延伸PETフィルムの特性、性能等を表2に示すが、架橋剤C1の添加量が多すぎて帯電防止層に微小な亀裂が入り(表面粗化・白化)、帯電防止性が低下した。さらに、光学用帯電防止性二軸延伸ポリエステルフィルムとしてはヘイズが高く、曇って見える外観のため不適合であった。
(Comparative Example 6)
The aqueous dispersion for forming the antistatic layer was the same as Example 1 except that the coating liquid A1 / antistatic agent B1 / crosslinking agent C1 / particle D1 = 75/25/40 / 2.5 (solid mass part). The properties and performances of the obtained antistatic biaxially stretched PET film are shown in Table 2, but the addition amount of the cross-linking agent C1 is too large, and the antistatic layer has minute cracks (surface roughening / whitening), The antistatic property decreased. Furthermore, the antistatic biaxially stretched polyester film for optical use was unsuitable because of its high haze and appearance of being cloudy.

(比較例7)
帯電防止層形成用水分散液を塗液A1/帯電防止剤B1/架橋剤C1/粒子D4=75/25/5/20(固形質量部)とした以外は実施例1と同様にした。得られた帯電防止性二軸延伸PETフィルムの特性、性能等を表2に示すが、粒子D4の径が帯電防止層の膜厚に比べて小さい上に添加量が多すぎて帯電防止層中の粒子が凝集し(表面粗化・白化)、耐熱性が低下した。さらに、光学用帯電防止性二軸延伸ポリエステルフィルムとしてはヘイズが高く、曇って見える外観のため不適合であった。
(Comparative Example 7)
An aqueous dispersion for forming an antistatic layer was the same as Example 1 except that the coating liquid A1 / antistatic agent B1 / crosslinking agent C1 / particle D4 = 75/25/5/20 (solid mass part). The properties and performances of the obtained antistatic biaxially stretched PET film are shown in Table 2. The particle D4 has a smaller diameter than the film thickness of the antistatic layer, and the added amount is too large. Particles aggregated (surface roughening / whitening), and heat resistance decreased. Furthermore, the antistatic biaxially stretched polyester film for optical use was unsuitable because of its high haze and appearance of being cloudy.

(比較例8)
帯電防止層形成用水分散液を塗液A1/帯電防止剤B1/粒子D5=80/20/0.3(固形質量部)、帯電防止層の厚みを70nmとした以外は実施例1と同様にした。得られた帯電防止性二軸延伸PETフィルムの特性、性能等を表2に示すが、粒子D5の径が大きいため表面が粗化した。帯電防止層中の粒子添加量が少なく架橋剤も添加していないため、耐熱性および耐擦過性が劣った。また、帯電防止層の膜厚が若干厚いため青味サイドの光を反射し、光学用帯電防止性二軸延伸ポリエステルフィルムとしては透過b値が高く、黄色っぽく見える外観のため不適合であった。
(Comparative Example 8)
As in Example 1, except that the aqueous dispersion for forming the antistatic layer was coating solution A1 / antistatic agent B1 / particle D5 = 80/20 / 0.3 (solid mass part) and the thickness of the antistatic layer was 70 nm. did. The properties, performance, and the like of the obtained antistatic biaxially stretched PET film are shown in Table 2, but the surface was roughened because the particle D5 had a large diameter. Since the amount of particles added in the antistatic layer was small and no crosslinking agent was added, the heat resistance and scratch resistance were poor. Further, since the antistatic layer was slightly thick, the bluish side light was reflected, and as an antistatic biaxially stretched polyester film for optics, the transmission b value was high, and it was unsuitable because it looked yellowish.

(比較例9)
帯電防止層の厚みを20nmとした以外は実施例1と同様にした。得られた帯電防止性二軸延伸PETフィルムの特性、性能等を表2に示すが、帯電防止層の膜厚が薄いため、帯電防止性があまり発現せず、さらに、接着性不良を起こした。
(Comparative Example 9)
The same procedure as in Example 1 was performed except that the thickness of the antistatic layer was 20 nm. The properties and performances of the obtained antistatic biaxially stretched PET film are shown in Table 2. However, since the antistatic layer is thin, the antistatic property does not appear so much, and further, adhesion failure occurs. .

(比較例10)
平均粒径0.4μmのコロイダルシリカを0.015質量%および平均粒径1.5μmのコロイダルシリカを0.005質量%含有するPETペレット(極限粘度0.63dl/g)を用い、二軸延伸ポリエステルフィルムの膜厚を50μm、帯電防止層形成用水分散液を塗液A1/帯電防止剤B1=70/30(固形質量部)、帯電防止層の厚みを150nmとした以外は実施例1と同様にした。得られた帯電防止性二軸延伸PETフィルムの特性、性能等を表2に示すが、帯電防止層に架橋剤と粒子が添加されていないため耐熱性および耐擦過性が劣った上に、帯電防止層の膜厚が厚いため青味サイドの光を強く反射し、光学用帯電防止性二軸延伸ポリエステルフィルムとしては透過b値が高く、黄色っぽく見える外観のため不適合であった。
(Comparative Example 10)
Biaxial stretching using PET pellets (intrinsic viscosity 0.63 dl / g) containing 0.015% by mass of colloidal silica having an average particle size of 0.4 μm and 0.005% by mass of colloidal silica having an average particle size of 1.5 μm Example 1 except that the thickness of the polyester film was 50 μm, the aqueous dispersion for forming the antistatic layer was coating solution A1 / antistatic agent B1 = 70/30 (solid mass part), and the thickness of the antistatic layer was 150 nm. I made it. The properties and performances of the obtained antistatic biaxially stretched PET film are shown in Table 2. However, since no cross-linking agent and particles are added to the antistatic layer, the heat resistance and scratch resistance are inferior. Since the thickness of the prevention layer was thick, the bluish side light was strongly reflected, and as an antistatic biaxially stretched polyester film for optical use, the transmission b value was high, and it was unsuitable because it looked yellowish.

実施例および比較例で用いた塗液、架橋剤、添加剤、粒子は下記の通りである。
塗液A1:メタクリル酸メチル(52モル%)、アクリル酸エチル(20モル%)、アクリル酸(2モル%)、N−メチロールアクリルアミド(1モル%)、エチレンオキシドの繰り返し単位が16のポリエチレングリコールモノメタクリレート(3モル%)、2−スルホエチルアクリレート(2モル%)からなるアクリル系樹脂(エマルジョン径50nm)のエマルジョン溶液
帯電防止剤B1:ポリスチレンスルホン酸アンモニウム塩(重量平均分子量7万)の水溶液
帯電防止剤B2:ポリスチレンスルホン酸アンモニウム塩(重量平均分子量1万)の水溶液
架橋剤C1:メチロール基型メラミン架橋剤(三和ケミカル社製“ニカラック”MW12LF)
粒子D1:粒子径80nmのコロイダルシリカ粒子の水分散体。
粒子D2:粒子径100nmのコロイダルシリカ粒子の水分散体。
粒子D3:粒子径40nmのコロイダルシリカ粒子の水分散体。
粒子D4:粒子径20nmのコロイダルシリカ粒子の水分散体。
粒子D5:粒子径120nmのコロイダルシリカ粒子の水分散体。
塗液E1:テレフタル酸(28モル%)、イソフタル酸(9モル%)、トリメリット酸(10モル%)、セバシン酸(3モル%)、エチレングリコール(15モル%)、ネオペンチルグリコール(18モル%)、1,4−ブタンジオール(17モル%)
The coating solutions, crosslinking agents, additives, and particles used in the examples and comparative examples are as follows.
Coating liquid A1: Polyethylene glycol monomethyl methacrylate (52 mol%), ethyl acrylate (20 mol%), acrylic acid (2 mol%), N-methylol acrylamide (1 mol%), ethylene oxide repeating unit 16 Emulsion solution antistatic agent B1: Acrylic resin (emulsion diameter 50 nm) composed of methacrylate (3 mol%) and 2-sulfoethyl acrylate (2 mol%) B1: aqueous solution charging of polystyrene sulfonate ammonium salt (weight average molecular weight 70,000) Inhibitor B2: Aqueous solution cross-linking agent of polystyrene sulfonate ammonium salt (weight average molecular weight 10,000) C1: Methylol group type melamine cross-linking agent ("Nicarac" MW12LF manufactured by Sanwa Chemical Co., Ltd.)
Particle D1: An aqueous dispersion of colloidal silica particles having a particle diameter of 80 nm.
Particle D2: An aqueous dispersion of colloidal silica particles having a particle diameter of 100 nm.
Particle D3: An aqueous dispersion of colloidal silica particles having a particle diameter of 40 nm.
Particle D4: An aqueous dispersion of colloidal silica particles having a particle diameter of 20 nm.
Particle D5: An aqueous dispersion of colloidal silica particles having a particle diameter of 120 nm.
Coating liquid E1: terephthalic acid (28 mol%), isophthalic acid (9 mol%), trimellitic acid (10 mol%), sebacic acid (3 mol%), ethylene glycol (15 mol%), neopentyl glycol (18 Mol%), 1,4-butanediol (17 mol%)

Figure 0004506423
Figure 0004506423

Figure 0004506423
Figure 0004506423

本発明は、帯電防止性、光学特性、耐熱性、平滑性等が要求される光学フィルム用基材や工程紙として好適に用いられる。   The present invention is suitably used as an optical film substrate or process paper that requires antistatic properties, optical properties, heat resistance, smoothness, and the like.

帯電防止層を積層した二軸延伸ポリエステルフィルムの380nmから580nmにおける分光反射率の一例。An example of the spectral reflectance in 380 nm to 580 nm of the biaxially stretched polyester film which laminated | stacked the antistatic layer.

符号の説明Explanation of symbols

1 帯電防止層の厚みが20nmである帯電防止性二軸延伸ポリエステルフィルムの分光反射率
2 帯電防止層の厚みが50nmである帯電防止性二軸延伸ポリエステルフィルムの分光反射率
3 帯電防止層の厚みが150nmである帯電防止性二軸延伸ポリエステルフィルムの分光反射率
1 Spectral Reflectance of Antistatic Biaxially Stretched Polyester Film with Antistatic Layer Thickness of 20 nm 2 Spectral Reflectance of Antistatic Biaxially Stretched Polyester Film with Antistatic Layer Thickness of 50 nm 3 Thickness of Antistatic Layer Spectral Reflectance of Antistatic Biaxially Stretched Polyester Film with 150 nm

Claims (3)

実質的に外部粒子を含まない二軸延伸ポリエステルフィルムの少なくとも片面に、
(A)アクリル系樹脂 60〜90質量部
(B)帯電防止剤 10〜40質量部
(C)架橋剤 1〜30質量部
(D)一次粒径が40〜100nmの粒子 1〜5質量部
から構成される帯電防止層を、インラインコート法により30〜60nmの厚さで積層したことを特徴とする帯電防止性二軸延伸ポリエステルフィルム。
On at least one side of the biaxially stretched polyester film substantially free of external particles,
(A) Acrylic resin 60-90 parts by mass (B) Antistatic agent 10-40 parts by mass (C) Cross-linking agent 1-30 parts by mass (D) Particles having a primary particle size of 40-100 nm From 1-5 parts by mass An antistatic biaxially stretched polyester film, wherein the antistatic layer is laminated with a thickness of 30 to 60 nm by an in-line coating method.
帯電防止剤がポリスチレンスルホン酸および/またはその塩であることを特徴とする請求項1に記載の帯電防止性二軸延伸ポリエステルフィルム。 The antistatic biaxially stretched polyester film according to claim 1, wherein the antistatic agent is polystyrene sulfonic acid and / or a salt thereof. 架橋剤がメラミン系樹脂からなることを特徴とする請求項1または2に記載の帯電防止性二軸延伸ポリエステルフィルム。 The antistatic biaxially stretched polyester film according to claim 1 or 2, wherein the crosslinking agent comprises a melamine-based resin.
JP2004332732A 2004-11-17 2004-11-17 Antistatic biaxially stretched polyester film Active JP4506423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004332732A JP4506423B2 (en) 2004-11-17 2004-11-17 Antistatic biaxially stretched polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004332732A JP4506423B2 (en) 2004-11-17 2004-11-17 Antistatic biaxially stretched polyester film

Publications (2)

Publication Number Publication Date
JP2006142544A JP2006142544A (en) 2006-06-08
JP4506423B2 true JP4506423B2 (en) 2010-07-21

Family

ID=36622787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004332732A Active JP4506423B2 (en) 2004-11-17 2004-11-17 Antistatic biaxially stretched polyester film

Country Status (1)

Country Link
JP (1) JP4506423B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064882A (en) * 2006-09-05 2008-03-21 Mitsubishi Polyester Film Copp Laminated polyester film for antireflection film
JP5506133B2 (en) * 2006-11-17 2014-05-28 三菱樹脂株式会社 Laminated polyester film for antireflection film
US8449970B2 (en) 2007-07-23 2013-05-28 3M Innovative Properties Company Antistatic article, method of making the same, and display device having the same
JP2009218375A (en) * 2008-03-11 2009-09-24 Mitsubishi Plastics Inc Laminate polyester film
JP6593109B2 (en) * 2015-11-02 2019-10-23 三菱ケミカル株式会社 Laminated polyester film and method for producing the same
JP6648490B2 (en) * 2015-11-02 2020-02-14 三菱ケミカル株式会社 Laminated polyester film and method for producing the same
EP3339024A4 (en) * 2015-11-02 2019-03-13 Mitsubishi Chemical Corporation Coated film
JP7459461B2 (en) * 2019-08-02 2024-04-02 東洋紡株式会社 Release film for ceramic green sheet production
TWI745060B (en) * 2020-08-31 2021-11-01 南亞塑膠工業股份有限公司 Antistatic polyester film
CN115091875A (en) * 2022-07-25 2022-09-23 南阳九鼎材料科技股份有限公司 Laser medical film and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0976443A (en) * 1995-09-20 1997-03-25 Teijin Ltd Antistatic polyester film
JPH11271503A (en) * 1998-03-25 1999-10-08 Toray Ind Inc Film for lens sheet
JP2001026089A (en) * 1999-05-12 2001-01-30 Mitsubishi Polyester Film Copp Polyester film containing fine bubble
JP2003292654A (en) * 2002-04-04 2003-10-15 Teijin Dupont Films Japan Ltd Antistatic laminated polyester film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0976443A (en) * 1995-09-20 1997-03-25 Teijin Ltd Antistatic polyester film
JPH11271503A (en) * 1998-03-25 1999-10-08 Toray Ind Inc Film for lens sheet
JP2001026089A (en) * 1999-05-12 2001-01-30 Mitsubishi Polyester Film Copp Polyester film containing fine bubble
JP2003292654A (en) * 2002-04-04 2003-10-15 Teijin Dupont Films Japan Ltd Antistatic laminated polyester film

Also Published As

Publication number Publication date
JP2006142544A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP4576808B2 (en) Optical laminated film, antireflection laminated film, touch panel laminated film and display member laminated film manufacturing method
JP5664728B2 (en) Laminated polyester film and antireflection film
WO2010143551A1 (en) Laminated polyester film
JP2007253512A (en) Optical laminated biaxially stretched polyester film and hard coat film using it
JP2008169277A (en) Easily adhesive polyester film for optical use
JP5520138B2 (en) Laminated polyester film
JP5853949B2 (en) Laminated polyester film and optical laminated film using the same
JP2008246780A (en) Optical laminated polyester film
JP4506423B2 (en) Antistatic biaxially stretched polyester film
JP2009214360A (en) Optical laminated polyester film
JP2004299101A (en) Transparent laminated film for surface protection
JP2008213403A (en) Easily bondable film for optical use
JP5963489B2 (en) Laminated polyester film
JP4774720B2 (en) Laminated biaxially stretched polyester film for lens sheets
JP6515445B2 (en) Polyester film roll for surface protection film and conductive film laminate
JP2005313450A (en) Reflection preventing film
JP5593627B2 (en) Laminated polyester film and method for producing the same
JP2009234167A (en) Laminated polyester film
JP5231050B2 (en) Coating film
JP2008221598A (en) Laminated polyester film
JP2015016677A (en) Release polyester film
JP2004300379A (en) Readily adhering polyester film for optical use
WO2012098935A1 (en) Layered polyester film
JP5952044B2 (en) Laminated polyester film
JP2012126810A (en) Layered polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4506423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3