JP4505843B2 - Copper dry refining method - Google Patents

Copper dry refining method Download PDF

Info

Publication number
JP4505843B2
JP4505843B2 JP2006096819A JP2006096819A JP4505843B2 JP 4505843 B2 JP4505843 B2 JP 4505843B2 JP 2006096819 A JP2006096819 A JP 2006096819A JP 2006096819 A JP2006096819 A JP 2006096819A JP 4505843 B2 JP4505843 B2 JP 4505843B2
Authority
JP
Japan
Prior art keywords
copper
tin
metal
crude
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006096819A
Other languages
Japanese (ja)
Other versions
JP2007270243A (en
Inventor
康勝 佐々木
浩二 副
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2006096819A priority Critical patent/JP4505843B2/en
Priority to CNB2006101630992A priority patent/CN100441710C/en
Publication of JP2007270243A publication Critical patent/JP2007270243A/en
Application granted granted Critical
Publication of JP4505843B2 publication Critical patent/JP4505843B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、乾式精錬による粗銅中の錫の除去方法に関する。 The present invention relates to a method for removing tin in crude copper by dry refining.

一般的に、銅製錬における電気銅は、下述の工程により製造される。先ず銅精鉱を自溶炉や反射炉などにて溶解、次に転炉にて酸化して得た粗銅を精製炉において精製し、得られた純度98〜99mass %の精製粗銅を銅電解精製用の陽極板(以下、アノードと記す)として鋳造する。 In general, electrolytic copper in copper smelting is produced by the following process. First, copper concentrate is melted in a flash furnace or a reflection furnace, and then the crude copper obtained by oxidation in a converter is refined in a refining furnace, and the obtained refined crude copper having a purity of 98 to 99 mass% is subjected to copper electrolytic purification. As an anode plate (hereinafter referred to as an anode) for casting.

次に、鋳造して得られたアノード及び陰極板(以下、カソードと記す)を、銅電解液を入れた電解槽内に交互に一定間隔で配置し、電流密度;250A/m2 もしくはそれ以上の電流が通電された条件下で、精製粗銅であるアノードから電解液中に溶出した銅イオンをカソードに電着させ、銅品位が99.99mass
%以上の電気銅が製造される。
Next, anodes and cathode plates (hereinafter referred to as cathodes) obtained by casting are alternately arranged at regular intervals in an electrolytic cell containing a copper electrolyte, and current density: 250 A / m 2 or more. The copper ion eluted into the electrolyte from the anode, which is refined crude copper, was electrodeposited on the cathode under the condition that the current of no current was applied, and the copper quality was 99.99 mass.
% Or more of electrolytic copper is produced.

一方、銅地金の用途である銅、及び金、銀、白金、パラジウムなどの貴金属、錫を含有する銅、貴金属スクラップなどを製錬原料として再利用する場合、すなわち銅、貴金属スクラップの電子部品材料、電源基板、リードフレーム、メッキ屑、及び貴金属の湿式精錬工程から発生する貴金属を含有した廃液処理後の残渣などを原料とするリサイクル原料を溶融還元処理し、得られた溶融還元後の粗銅メタルには、原料中の錫含有量に応じて、錫を数mass-% 含有している。 On the other hand, when reusing copper, a precious metal such as gold, silver, platinum, and palladium, copper containing tin, precious metal scrap, etc. as a smelting raw material, that is, copper and precious metal scrap electronic parts Recycled raw materials made from materials, power supply boards, lead frames, plating scraps, and waste liquid-treated residues containing noble metals generated from the precious metal hydrometallurgical process, and obtained crude copper after smelting reduction The metal contains several mass-% tin according to the tin content in the raw material.

この粗銅中の錫などの不純物を除去するため、空気など酸素を含有するガスを用いて、酸化精製が行われているが、この方法では銅の電解精製が可能なアノード品位まで錫など不純物を酸化除去する場合、酸化除去効率が悪く、酸化時間を要する。また、錫など不純物を酸化除去する工程では、酸化精製スラグへの銅の移行率が高くなり、還元工程へ繰り返される酸化スラグの量が多くなるなど、生産効率が低下することがある。そのため、現状は銅電線スクラップ、故銅など比較的銅品位の高いリサイクル原料に銅、貴金属及び錫を含有する銅、貴金属スクラップを少量ずつ混合して処理されているため、一定量以上の処理ができない。 In order to remove impurities such as tin in the crude copper, oxidation purification is performed using a gas containing oxygen such as air. In this method, impurities such as tin are obtained up to an anode grade capable of electrolytic purification of copper. In the case of oxidation removal, the oxidation removal efficiency is poor and an oxidation time is required. In addition, in the step of oxidizing and removing impurities such as tin, the efficiency of copper transfer to the oxidized and refined slag is increased, and the amount of oxidized slag that is repeated in the reduction step is increased, which may reduce the production efficiency. For this reason, currently, copper wire scraps, waste copper, and other recycled raw materials with relatively high copper quality are mixed with copper, noble metals and tin-containing copper, and precious metal scraps in small amounts. Can not.

このように、錫を高濃度に含有する粗銅をアノードにして銅の電解精製を行うと、錫は電解液中で浮遊スライムを形成して電気銅に巻き込まれ、最終製品である電気銅中の不純物品位を増加させる。また、アノード表面上に浮遊スライムが付着し、不働態化を引き起こさせることもある。更に、配管等にスケールを形成して、究極的には配管等を閉塞するので、設備メンテナンス上の障害となる。このため、本出願人らによる特許出願2006−054296号に記載されたアノード中の錫含有量を0.33mass-%以下とすることが好ましい。 In this way, when copper is subjected to electrolytic purification using crude copper containing a high concentration of tin as an anode, tin forms a floating slime in the electrolytic solution and is entrained in the electrolytic copper. Improve impurity quality. In addition, floating slime may adhere to the anode surface and cause passivation. Furthermore, since a scale is formed on the piping and the like, and ultimately the piping and the like are blocked, it becomes an obstacle to equipment maintenance. For this reason, it is preferable that the tin content in the anode described in Japanese Patent Application No. 2006-054296 by the applicants is 0.33 mass-% or less.

これまで知られている鉛の乾式精錬プロセスにおいては、塩基性酸化物との親和性を利用して、錫を鉛溶湯中から除去する方法として、水酸化ナトリウムと硝酸ナトリウムを用いて、500℃以下の温度にて錫酸ナトリウム(NaSnO)を含むハリス滓として錫を鉛から分離する手法(以下、ハリス法と記す)が知られているが、溶銅中の錫を効率的に除去する技術については、これまで開示されていない。また、ハリス法において、硝酸ナトリウムを使用する場合、硝酸ナトリウムが分解してNOxガスが発生するため、排ガス中のNOx処理対応を考慮しなければならなくなる。 In the known dry refining process of lead, as a method of removing tin from molten lead by utilizing the affinity with a basic oxide, sodium hydroxide and sodium nitrate are used at 500 ° C. A technique for separating tin from lead (hereinafter referred to as the Harris method) is known as a Harris soot containing sodium stannate (Na 2 SnO 3 ) at the following temperatures. The technology to remove has not been disclosed so far. In addition, when sodium nitrate is used in the Harris method, since sodium nitrate is decomposed and NOx gas is generated, it is necessary to consider measures for treating NOx in the exhaust gas.

特許出願2006−054296号Patent application 2006-054296 講座・現代の金属学 製錬編2 非鉄金属製錬(日本金属学会出版)P137Lecture ・ Contemporary Metallurgy Smelting 2 Nonferrous Metal Smelting (Published by the Japan Institute of Metals) P137

そこで、この発明の課題は、上記した従来技術の問題点を解決して、乾式精錬において、硝酸ナトリウムを使用せずに粗銅中の錫品位を0.33mass-%以下とすることが可能である乾式精錬による粗銅中の錫の除去方法を提供する。 Then, the subject of this invention solves the problem of the above-mentioned prior art, and in dry refining, it is possible to make the tin quality in crude copper into 0.33 mass-% or less without using sodium nitrate. Provided is a method for removing tin in crude copper by dry refining.


本発明は、上記課題を解決するものであって、
(1)銅、及び金、銀、白金、パラジウム、ロジウム、ルテニウム(以下、貴金属と記す)の内少なくとも一種類以上の貴金属、錫を含有する銅、貴金属スクラップ原料と溶剤(炭酸カルシウム、酸化珪素等)及び還元剤(コークス等)とともに溶融還元し、
還元スラグと還元メタルは分離後、
溶融還元メタルに空気を0.5〜3L/min/kg-メタルの流量にて0.5〜7時間酸化粗精製し、
酸化粗精製後の粗銅中の錫品位が4mass %未満の場合、粗銅中の錫に対して、水酸化ナトリウムを理論量の4.5から14.8当量添加し、酸素を含有するガスを3L/min/kg−メタル以下の流量で0.5〜3時間溶融酸化し、
粗銅中の錫を銅の電解精製が可能な品位以下まで除去する銅の乾式精錬方法。
(2)上記(1)に記載の発明において、酸化粗精製後の粗銅中の錫品位が4mass-%以上の粗銅の場合、
粗銅中の錫に対して、水酸化ナトリウムを理論量の2から5.9当量添加し、空気など酸素を含有するガスを3L/min/kg−メタル以下の流量で0.5〜3時間溶融酸化し、
粗銅中の錫を銅の電解精製が可能な品位以下まで除去する銅の乾式精錬方法。
(3)上記(1)又は(2)の何れかに記載の発明において、粗銅の酸化精製温度は1,150℃〜1,500℃の範囲であることを特徴とする銅の乾式精錬方法。
:
The present invention solves the above problems,
(1) Copper, gold, silver, platinum, palladium, rhodium, ruthenium (hereinafter referred to as noble metal), at least one kind of noble metal, copper containing tin, noble metal scrap raw material and solvent (calcium carbonate, silicon oxide) Etc.) and a reducing agent (coke etc.)
After reducing slag and reduced metal,
Oxidation is roughly refined by oxidization at a flow rate of 0.5 to 3 L / min / kg-metal for 0.5 to 7 hours.
When tin grade in crude copper after rough oxidation purification is less than 4 mass%, sodium hydroxide is added in an amount of 4.5 to 14.8 equivalents of theoretical amount to tin in crude copper, and 3 L of gas containing oxygen is added. / Min / kg-melt oxidation at a flow rate of metal or less for 0.5 to 3 hours,
A dry refining method for copper that removes tin in crude copper to a quality that allows electrolytic purification of copper.
(2) In the invention described in (1) above, when the tin quality in the crude copper after the rough oxidation purification is 4 mass-% or more of crude copper,
Add 2 to 5.9 equivalents of the theoretical amount of sodium hydroxide to tin in the crude copper, and melt oxygen-containing gas such as air at a flow rate of 3 L / min / kg-metal for 0.5 to 3 hours. Oxidize,
A dry refining method for copper that removes tin in crude copper to a quality that allows electrolytic purification of copper.
(3) The dry refining method of copper characterized in that, in the invention according to any one of (1) and (2 ) above, the oxidation purification temperature of the crude copper is in the range of 1,150 ° C to 1,500 ° C.

本発明は、以下の効果を有する。
(1)粗銅の乾式精製において、溶銅中の錫を効率的に除去することができるため、銅、及び金、銀、白金、パラジウム、ロジウム、ルテニウムの内少なくとも一種類以上の貴金属、錫を含有する銅、貴金属スクラップ原料を、錫の含有量に関わらず、溶融還元処理することができるようになる。
(2)粗銅の乾式精錬において、溶銅中の錫を効率的に除去することができるため、酸化精製工程におけるスラグへの銅移行率が低減し、銅の繰返し処理量を軽減できるようになる。
(3)粗銅の乾式精錬において、溶銅中の錫を効率的に除去することができるため、酸化精製時間が短縮でき、生産性が向上するようになる。
The present invention has the following effects.
(1) In the dry refining of crude copper, tin in molten copper can be efficiently removed, so at least one kind of noble metal and tin among copper, gold, silver, platinum, palladium, rhodium, and ruthenium is used. The contained copper and precious metal scrap raw materials can be melt-reduced regardless of the tin content.
(2) In the dry refining of crude copper, tin in the molten copper can be efficiently removed, so that the copper transfer rate to the slag in the oxidative refining process is reduced, and the amount of repeated copper treatment can be reduced. .
(3) In the dry refining of crude copper, tin in the molten copper can be efficiently removed, so that the oxidation purification time can be shortened and productivity is improved.

本発明の処理対象物は、銅、及び金、銀、白金、パラジウム、ロジウム、ルテニウムの内少なくとも一種類以上の貴金属、錫を含有する銅、貴金属スクラップの電子部品材料、電源基板、リードフレーム、メッキ屑、及び貴金属の湿式精錬工程から発生する貴金属を含有した廃液処理後の残渣などを原料とするリサイクル原料を溶剤である炭酸カルシウム、かつ/または二酸化珪素等、及び還元剤としてコークス等とともに、1,200から1,600℃の溶融温度にて0.5から4時間溶融還元処理し、還元スラグと還元メタルを分離する。分離した還元メタルを1,150から1,500℃の温度範囲にて、空気を0.5〜3L/min/kg-メタルの流量にて0.5〜7時間酸化粗精製した後、酸化炉内より酸化スラグを抜き出し、酸化メタルと分離する。 The processing object of the present invention includes copper and at least one kind of noble metal of gold, silver, platinum, palladium, rhodium, and ruthenium, copper containing tin, electronic component material of noble metal scrap, power supply board, lead frame, Recycled raw materials made from waste after treatment with waste liquid containing precious metals generated from the wet refining process of plating scraps and precious metals as a raw material, together with calcium carbonate and / or silicon dioxide as a solvent, and coke as a reducing agent, Melting reduction treatment is performed at a melting temperature of 1,200 to 1,600 ° C. for 0.5 to 4 hours to separate reduced slag and reduced metal. The reduced metal thus separated is subjected to rough oxidation by oxidation at a temperature range of 1,150 to 1,500 ° C. and a flow rate of 0.5 to 3 L / min / kg-metal for 0.5 to 7 hours, and then an oxidation furnace Extract the oxidized slag from the inside and separate it from the metal oxide.


次に、酸化粗精製後の酸化メタルに水酸化ナトリウムを添加して、粗銅中の錫を除去するものである。
この際、水酸化ナトリウムを多量に使用して精製処理すると経済上好ましくなく、後工程の銅の電解精製工程が可能となるアノード中錫品位0.33mass-%以下となるように、必要最低限の水酸化ナトリウムを添加する。
このことにより、経済上効率的な還元溶融、酸化精製処理となる。
本発明では、この水酸化ナトリウムの必要な添加量は、粗銅中の錫品位に応じ、錫品位が4mass-%未満の場合、錫に対して理論量の4.5から14.8当量、錫品位が4mass-%以上の場合、錫に対して理論量のから5.9当量であることを見出したものである。
:
Next, sodium hydroxide is added to the metal oxide after the crude oxidation purification to remove tin in the crude copper.
In this case, it is not economically preferable to use a large amount of sodium hydroxide for the purification treatment, and the minimum necessary so that the tin quality in the anode becomes 0.33 mass-% or less, which enables the copper electrolytic purification process in the subsequent step. Of sodium hydroxide is added.
This provides an economically efficient reduction melting and oxidation purification treatment.
In the present invention, the required addition amount of sodium hydroxide depends on the tin quality in the crude copper, and when the tin quality is less than 4 mass-%, a theoretical amount of 4.5 to 14.8 equivalents of tin, It has been found that when the quality is 4 mass-% or more, the theoretical amount is 2 to 5.9 equivalents with respect to tin.

次に、実施例を用いて本発明をさらに説明する。
(実施例−1)
銅及び金、銀、白金、パラジウム、ロジウム、ルテニウムの内少なくとも一種類以上の貴金属、錫を含有する銅、貴金属スクラップの内、可燃性の電子部品材料、電源基板などを固定焼炉にて焼却した銅、貴金属スクラップ原料60kg、電子部品材料などのメッキ屑140kg、貴金属の湿式製錬工程より発生した貴金属を含有する廃液処理残渣20kg、溶剤としての炭酸カルシウム26kg、及び還元剤としてのコークス15kgを溶融還元炉にて、1,300から1,400℃にて3時間溶融還元処理後、還元メタル146kgと還元スラグ68kgとを分離した。この還元メタルを酸化炉内にて、1,200℃から1,250℃の温度範囲にて溶融後、羽口より空気を0.8L/min/kg-メタルの流量にて、2時間吹き込んだ後、酸化炉内より酸化粗精製メタルを採取した。この酸化粗精製メタル中の銅品位は96.5mass-%、錫品位は1.0
mass-%、金品位320mass-ppm、白金品位15mass-ppm、パラジウム品位110mass-ppmであった。
Next, the present invention will be further described using examples.
(Example-1)
Incinerate flammable electronic component materials, power supply boards, etc. in a fixed firing furnace among copper and gold, silver, platinum, palladium, rhodium, ruthenium, at least one precious metal, copper containing tin, precious metal scrap, etc. Copper, noble metal scrap raw material 60 kg, plating scraps 140 kg of electronic component materials, waste liquid treatment residue 20 kg containing noble metal generated from the precious metal hydrometallurgical process, calcium carbonate 26 kg as a solvent, and coke 15 kg as a reducing agent In a smelting reduction furnace, after smelting reduction treatment at 1,300 to 1,400 ° C. for 3 hours, 146 kg of reducing metal and 68 kg of reducing slag were separated. After this reduced metal was melted in the oxidation furnace at a temperature range of 1,200 ° C. to 1,250 ° C., air was blown in from the tuyere at a flow rate of 0.8 L / min / kg-metal for 2 hours. Thereafter, a roughly oxidized metal was collected from the oxidation furnace. The copper grade in this rough oxidized metal is 96.5 mass-%, and the tin grade is 1.0.
They were mass-%, gold grade 320 mass-ppm, platinum grade 15 mass-ppm, and palladium grade 110 mass-ppm.

この酸化粗精製メタルと、水酸化ナトリウムとを各条件に応じて両者を採取し、高質アルミナルツボ内にて混合して、外熱式電気炉を用いて溶融温度1,200℃にて2時間、溶融酸化した。その後、外熱式電気炉内より高質アルミナルツボを取り出して冷却し、酸化メタルとスラグとを分離して、メタル中の各成分を分析した結果を表1に示す。 Both the crude oxidized metal and sodium hydroxide were sampled according to each condition, mixed in a high-quality alumina crucible, and melted at 1,200 ° C. using an externally heated electric furnace. It was melt oxidized for a time. Thereafter, a high-quality alumina crucible was taken out from the external heating type electric furnace and cooled to separate the metal oxide and slag, and the results of analysis of each component in the metal are shown in Table 1.

表1の結果からわかるように、実施例−1では、銅の電解精製において不働態化が生じず、かつ錫を起因とする浮遊スライムが生成しないアノード中の錫品位0.33mass %以下にするためには、水酸化ナトリムを錫に対して理論当量の4.4当量以上添加すれば良いことが分かる。 As can be seen from the results shown in Table 1, in Example-1, the tin quality is 0.33 mass% or less in the anode in which no passivation occurs in electrolytic refining of copper and no floating slime due to tin is generated. Therefore, it can be seen that sodium hydroxide should be added to the theoretical equivalent of 4.4 equivalents or more with respect to tin.

(実施例−2)
実施例−1において、製造した酸化粗精製メタルの錫品位が2mass-%になるように、酸化粗精製メタルと試薬の錫メタルとを黒鉛ルツボ内に入れ、外熱式電気炉を用いて、1,200℃にて1時間溶融した。その後、外熱式電気炉より黒鉛ルツボを取り出し冷却して、錫品位2mass-%に調整したメタルを得た。
(Example-2)
In Example-1, the oxidized coarsely purified metal and the reagent tin metal were placed in a graphite crucible so that the tin quality of the produced oxidized roughly purified metal was 2 mass-%, and an external heating electric furnace was used. It was melted at 1,200 ° C. for 1 hour. Thereafter, the graphite crucible was taken out from the external heating type electric furnace and cooled to obtain a metal adjusted to a tin quality of 2 mass-%.

上記のように製造した錫品位が2mass-%に調整したメタルを用いた以外は、実施例−1と同様の処理を実施して分析した。その結果を表2に示す。 The analysis was carried out in the same manner as in Example 1 except that the metal produced as described above and having a tin quality adjusted to 2 mass-% was used. The results are shown in Table 2.

表2の結果から分かるように、実施例−2の錫除去処理は、水酸化ナトリムを錫に対して理論量の4.5当量以上添加すれば、銅の電解精製工程において、電解可能なアノード品位を得ることができる。 As can be seen from the results in Table 2, the tin removal treatment of Example-2 is an anode that can be electrolyzed in the copper electrolytic refining process if sodium hydroxide is added in an amount of 4.5 equivalents or more of the theoretical amount to tin. You can get quality.

(実施例−3)
実施例−1において、製造した酸化粗精製メタルの錫品位が4mass-%になるように、酸化粗精製メタルと試薬の錫メタルとを黒鉛ルツボ内に入れ、外熱式電気炉を用いて、1,200℃にて1時間溶融した。その後、外熱式電気炉より黒鉛ルツボを取り出し冷却して、錫品位4mass-%に調整したメタルを得た。
(Example-3)
In Example-1, the oxidized crude refined metal and the reagent tin metal were placed in a graphite crucible so that the tin quality of the produced oxidized crude refined metal was 4 mass-%, and an external heating electric furnace was used. It was melted at 1,200 ° C. for 1 hour. Thereafter, the graphite crucible was taken out from the external heating type electric furnace and cooled to obtain a metal adjusted to a tin quality of 4 mass-%.

上記のように製造した錫品位が4mass-%に調整したメタルを用いた以外は、実施例−1と同様の処理を実施して分析した。その結果を表3に示す。 The analysis was carried out in the same manner as in Example 1 except that the metal produced as described above and having a tin quality adjusted to 4 mass-% was used. The results are shown in Table 3.

上記のように製造した錫品位が4mass-%の銅メタルを用いた以外は、実施例−1と同様の処理を実施して、分析した結果を表3に示す。 Table 3 shows the results of analysis performed in the same manner as in Example 1 except that copper metal having a tin quality of 4 mass-% produced as described above was used.

表3の結果から分かるように、実施例3の錫除去処理は、水酸化ナトリムを錫に対して理論量の2当量以上添加すれば、銅の電解精製工程において、電解可能なアノード品位を得ることができる。 As can be seen from the results in Table 3, in the tin removal treatment of Example 3, an anode quality which can be electrolyzed is obtained in the electrolytic purification process of copper if sodium hydroxide is added in an amount of 2 equivalents or more of the theoretical amount with respect to tin. be able to.

(実施例−4)
実施例−1において、水酸化ナトリウムの添加量を錫に対して理論量の4.5当量の条件にて、処理温度を1,150℃から1,500℃の範囲にて処理した以外は全く同様にして、水酸化ナトリウムによる酸化精製を実施した。
(Example-4)
In Example 1, except that the treatment temperature was in the range of 1,150 ° C. to 1,500 ° C. under the condition that the amount of sodium hydroxide added was 4.5 equivalents of the theoretical amount to tin. Similarly, oxidative purification with sodium hydroxide was carried out.








表4の結果から分かるように、水酸化ナトリウムを錫に対して理論量の4.5当量の条件であれば、処理温度1,150〜1,500℃の範囲においても、銅の電解精製工程において、電解可能なアノード品位を得ることができることが判明した。 As can be seen from the results in Table 4, if the condition is 4.5 equivalents of the theoretical amount of sodium hydroxide to tin, the electrolytic purification process of copper can be performed even at a treatment temperature range of 1,150 to 1,500 ° C. It was found that an anode quality capable of electrolysis can be obtained.

本発明の処理フローの一態様を示す。An aspect of the processing flow of the present invention is shown. 従来法の処理フローの一態様を示す。An aspect of the processing flow of the conventional method is shown.

Claims (3)

銅、及び金、銀、白金、パラジウム、ロジウム、ルテニウム(以下、貴金属と記す)の内少なくとも一種類以上の貴金属、錫を含有する銅、貴金属スクラップ原料と溶剤及び還元剤とともに溶融還元し、還元スラグと還元メタルは分離後、
溶融還元メタルに空気を0.5〜3L/min/kg-メタルの流量にて0.5〜7時間酸化粗精製し、
酸化粗精製後の粗銅中の錫品位が4mass %未満の場合、粗銅中の錫に対して、水酸化ナトリウムを理論量の4.5から14.8当量添加し、酸素を含有するガスを3L/min/kg−メタル以下の流量で0.5〜3時間溶融酸化し、
粗銅中の錫を銅の電解精製が可能な品位以下まで除去することを特徴とする銅の乾式精錬方法。
Copper, gold, silver, platinum, palladium, rhodium, ruthenium (hereinafter referred to as noble metal), at least one kind of noble metal, copper containing tin, noble metal scrap raw material, solvent, and reducing agent are melted and reduced. After separating slag and reduced metal,
The smelting reduction metal is subjected to rough oxidation by oxidation at a flow rate of 0.5-3 L / min / kg-metal for 0.5-7 hours,
When the tin quality in crude copper after rough oxidation purification is less than 4 mass%, sodium hydroxide is added in an amount of 4.5 to 14.8 equivalents of the theoretical amount to tin in the crude copper, and 3 L of gas containing oxygen is added. / Min / kg-melt oxidation at a flow rate of metal or less for 0.5-3 hours,
A dry refining method for copper, characterized in that tin in crude copper is removed to a quality that enables electrolytic purification of copper.
請求項1記載の発明において、酸化粗精製後の粗銅中の錫品位が4mass-%以上の粗銅の場合、
粗銅中の錫に対して、水酸化ナトリウムを理論量の2から5.9当量添加し、空気など酸素を含有するガスを3L/min/kg−メタル以下の流量で0.5〜3時間溶融酸化し、
粗銅中の錫を銅の電解精製が可能な品位以下まで除去することを特徴とする銅の乾式精錬方法。
In the invention of claim 1, in the case where the tin quality in the crude copper after the rough oxidation purification is 4 mass-% or more of crude copper,
Add 2 to 5.9 equivalents of the theoretical amount of sodium hydroxide to tin in the crude copper, and melt oxygen-containing gas such as air at a flow rate of 3 L / min / kg-metal for 0.5 to 3 hours. Oxidize,
A dry refining method for copper, characterized in that tin in crude copper is removed to a quality that enables electrolytic purification of copper.
請求項1又は2の何れかに記載の発明において、粗銅の酸化精製温度は1,150℃〜1,500℃の範囲であることを特徴とする銅の乾式精錬方法。 3. The dry refining method for copper according to claim 1 , wherein the oxidation purification temperature of the crude copper is in the range of 1,150 ° C. to 1,500 ° C. 3.
JP2006096819A 2006-03-31 2006-03-31 Copper dry refining method Expired - Fee Related JP4505843B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006096819A JP4505843B2 (en) 2006-03-31 2006-03-31 Copper dry refining method
CNB2006101630992A CN100441710C (en) 2006-03-31 2006-11-30 Dry type refining method for copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096819A JP4505843B2 (en) 2006-03-31 2006-03-31 Copper dry refining method

Publications (2)

Publication Number Publication Date
JP2007270243A JP2007270243A (en) 2007-10-18
JP4505843B2 true JP4505843B2 (en) 2010-07-21

Family

ID=38673343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096819A Expired - Fee Related JP4505843B2 (en) 2006-03-31 2006-03-31 Copper dry refining method

Country Status (2)

Country Link
JP (1) JP4505843B2 (en)
CN (1) CN100441710C (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155677A (en) * 2007-12-25 2009-07-16 Mitsubishi Materials Corp Method for recovering noble metal, and recovered noble metal
CN101748287A (en) * 2008-12-16 2010-06-23 江西铜业集团公司 Reducing medium used in copper refining process
CN102234725A (en) * 2010-04-24 2011-11-09 大冶有色金属集团控股有限公司 Continuous production technology for miscellaneous copper recycling and positive plate casting
RU2496894C1 (en) * 2012-06-14 2013-10-27 Ирина Анатольевна Бобкова Copper refining method
CN102925717B (en) * 2012-11-28 2014-08-13 昆明冶金研究院 Novel technology for comprehensively recovering copper and cobalt from cobalt-copper concentrate
CN103243223B (en) * 2013-05-23 2014-07-09 广州有色金属研究院 Method for removing tin from crude copper
CN104865148A (en) * 2015-05-08 2015-08-26 大禹节水(天津)有限公司 Method for detecting copper content in copper root-removing dripper

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293319A (en) * 1985-10-18 1987-04-28 Nippon Mining Co Ltd Method for selectively recovering sn from sn coated material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3473025B2 (en) * 1992-03-25 2003-12-02 株式会社神戸製鋼所 Purification method of copper or copper alloy raw material
CN1184337C (en) * 2002-05-22 2005-01-12 金隆铜业有限公司 Process for refining raw copper bynon-oxidizing nitrogen-doping reducing pyrometallurgy
JP4140471B2 (en) * 2003-07-22 2008-08-27 住友電気工業株式会社 Copper refining method
JP2005350753A (en) * 2004-06-14 2005-12-22 Univ Kansai Method for separating lead from copper alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293319A (en) * 1985-10-18 1987-04-28 Nippon Mining Co Ltd Method for selectively recovering sn from sn coated material

Also Published As

Publication number Publication date
CN101045963A (en) 2007-10-03
JP2007270243A (en) 2007-10-18
CN100441710C (en) 2008-12-10

Similar Documents

Publication Publication Date Title
JP4219947B2 (en) How to recover lead
CN108118157B (en) Wiring board burns the recovery method of cigarette ash pretreatment and bromine
JP4505843B2 (en) Copper dry refining method
JP4298712B2 (en) Method for electrolytic purification of copper
JP2018145479A (en) Recovery method of platinum group metals
JP5591749B2 (en) Method for recovering tellurium from alkaline leaching residue containing tellurium
JP2013209732A (en) Method for recovering nickel
JP6744981B2 (en) How to concentrate and recover precious metals
CN110684902B (en) Process for extracting noble metal by silver capture of high-alumina oil catalyst
JP5280904B2 (en) Electrolysis method of lead (5)
JP5263483B2 (en) Precious metal recovery method
JP4979751B2 (en) Electrolysis method of lead (1)
KR101805704B1 (en) Lead recovery way the disintegration of the metal oil prices from anode slime electrolytic refining
JP5591748B2 (en) How to recover tellurium
JP2009242850A (en) Method for leaching lead slag by sulfuric acid
JP2001279344A (en) Method for recovering tin
JP2013234356A (en) Pyrometallurgy process for lead using high impurity-containing lead slag as raw material
JP2012214307A (en) Method for recovering tellurium
RU2386711C1 (en) Method refining silver-gold alloys
JP2010222625A (en) Electrolytic method (2) for lead
JP4155177B2 (en) Method for recovering silver from silver-lead-containing materials
JP2010222627A (en) Electrolytic process of lead
KR101619340B1 (en) Recovery method of Sn from Sn containing dross using dry reduction process
JP4155176B2 (en) Method for recovering silver from silver-lead-containing materials
JPH101727A (en) Treatment of copper electrolyte slime

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees