JP4503750B2 - AC elevator power supply - Google Patents

AC elevator power supply Download PDF

Info

Publication number
JP4503750B2
JP4503750B2 JP36671999A JP36671999A JP4503750B2 JP 4503750 B2 JP4503750 B2 JP 4503750B2 JP 36671999 A JP36671999 A JP 36671999A JP 36671999 A JP36671999 A JP 36671999A JP 4503750 B2 JP4503750 B2 JP 4503750B2
Authority
JP
Japan
Prior art keywords
battery
power supply
circuit
charging
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36671999A
Other languages
Japanese (ja)
Other versions
JP2001180878A5 (en
JP2001180878A (en
Inventor
隆夫 岡田
義知 吉野
一洋 塩出
和則 長谷川
新一 村上
茂 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Fujitec Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Fujitec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP36671999A priority Critical patent/JP4503750B2/en
Application filed by Furukawa Battery Co Ltd, Fujitec Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to PCT/JP2000/008061 priority patent/WO2001037396A1/en
Priority to US10/129,131 priority patent/US6732838B1/en
Priority to EP00976270A priority patent/EP1235323A4/en
Priority to CN008184755A priority patent/CN100407545C/en
Priority to CA002391616A priority patent/CA2391616C/en
Priority to AU14130/01A priority patent/AU1413001A/en
Priority to KR1020027006280A priority patent/KR100738167B1/en
Priority to TW089124232A priority patent/TWI241978B/en
Publication of JP2001180878A publication Critical patent/JP2001180878A/en
Priority to HK03100995.2A priority patent/HK1048895A1/en
Publication of JP2001180878A5 publication Critical patent/JP2001180878A5/ja
Application granted granted Critical
Publication of JP4503750B2 publication Critical patent/JP4503750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Elevator Control (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、交流エレベータの電源装置の改良に関するものである。
【0002】
【従来の技術】
近年、パワーエレクトロニクス素子及びそれを制御する技術の進歩により、インバータを用いて誘導電動機に可変電圧・可変周波数の交流電力を供給して速度制御を行い、エレベータかごを運転させるものが採用されている。
【0003】
即ち、図2に示すように、第1の接触器の接点3aが閉じると商用電源1からコンバータ2を通じてインバータ3に電力が供給されるとともに、抵抗Rbを通じてコンデンサCを充電する。そして、コンデンサCの両端電圧Vabが所定の電圧になると第2の接触器の接点2aが閉路し抵抗Rbを短絡してエレベータの運転準備を完了させる。エレベータの運転については、商用電源1から接点3a、コンバータ2、接点2a及びインバータ3を通じて誘導電動機IMに電流が供給されるが、この電流は理想的な速度指令4とパルス発生器PGからの実際のエレベータかご5の速度との突き合わせによる速度調節器6を介して可変周波数電流指令演算部7からの指令により、正弦波PWM制御装置8を介してインバータ3が操作されて、エレベータかご5が適当に速度制御されるものである。ここで、9は釣合い重りである。
【0004】
ところで、誘導電動機IMにより運転されるエレベータの場合は、エレベータかご5に定員いっぱい乗客が乗っている時や、誰も乗っておらず乗場呼びに応じて空かごとして運転される時など、その都度負荷が大幅に変動するが、特に下げ荷運転の場合には電力を回生しなければならず、通常抵抗Rによって熱として消費しているのが一般的で、電力の無駄づかいが多かった。又、当然負荷の大きな場合でも不都合なことが生じないように、予め電源容量に余裕を見て設計するのが普通である。
したがって、電源回線なども太い電線を使用したりしなければならなかった。
【0005】
このため、最近になって出願人は次に述べるような回生電力を無駄にしない効率の良い電源装置について提案をしている。
【0006】
即ち、図3はこの電源装置の回路図、図4は図3に示す回路の制御ブロック線図である。
【0007】
図中、図2と同一符号のものは同一のものを示すが、10は電源回路で、Tr1とTr2はトランジスタ、D1,D2はダイオード、Eは例えばニッケル水素畜電池のようなバッテリーで、このバッテリーEは例えば単電池8個を直列に接続したものを1郡電池(1ユニット)として、エレベータの容量に応じて所定の郡電池数を適宜決定する。QはバッテリーEの充電量を検出する容量計、Lは昇圧用のコイル、RTは電流検出器、11は停電時などの非常時にバッテリーEから、マイコン等の制御電源としても利用する非常電源、12は万一この電源回路10が故障した場合に切り離すための非常接点である。
【0008】
この電源回路10は図4に示すように、インバータ3の入力電圧Vabの定電圧制御を行うもので、一定の電圧指令に対し、インバータ3の入力電圧Vabを負帰還させて突き合わせ制御を行う。
この偏差信号eが伝達関数G1及びリミッター回路20を介して電流指令を作り出し、電流検出器RTからの電流帰還と突き合わせ、伝達関数G2を通じて比較器21に入力させる。
【0009】
この比較器21では、例えば三角波発生器22からの三角波αと伝達関数G2からの出力信号を比較することにより、トランジスタTr1,Tr2の制御信号βを作り出している。トランジスタTr2の前段には否定素子23を接続しているので、トランジスタTr1とTr2が同時にONすることはない。
【0010】
今仮に、商用電源1が200Vとすると、コンバータ2を経た電圧は通常280V程度になるが、ここで、図4の電圧指令を350V程度に設定すれば、電源回路10の制御系はインバータ3の入力電圧Vabを350Vに維持しようと電圧制御される。
【0011】
即ち、入力電圧Vabが350Vの場合は、偏差信号eはゼロであり、リミッター回路20を通じた電流指令iもゼロとなり、比較器21の出力は図5に示す波形となる。
【0012】
つまり、トランジスタTr1とTr2を同じ時間交互にON状態に導く制御信号βを比較器21は出力するので、バッテリーEは充電と放電を同じ時間づつ交互に繰り返して、インバータ3の入力電圧Vabを350Vに維持しようとする。
【0013】
そして、万一入力電圧Vabが350Vよりも低くなれば、比較器21の出力は図6(a)に示す状態になり、トランジスタTr1をON状態にする時間が短く、トランジスタTr2をON状態にする時間が長くなり、結局バッテリーEからの放電を優先させることになる。
【0014】
一方、入力電圧Vabが350Vよりも高くなれば、今度は比較器21の出力は図6(b)に示す状態になり、トランジスタTr2をON状態にする時間が短く、トランジスタTr1をON状態にする時間が長くなり、結局バッテリーEへの充電を優先させて、指令電圧を維持しようと電圧制御される。
【0015】
因みに、バッテリーEを放電させる場合の通常のルートはバッテリーE、電流検出器RT、コイルL、トランジスタTr2、バッテリーEであり、一方バッテリーEを充電させる場合の通常のルートは端子a、接点12、トランジスタTr1、コイルL、電流検出器RT、バッテリーE、端子bである。そして、各トランジスタTr1,Tr2のOFF時にはダイオードD2或いはD1を通じてコイルLによるバッテリーEの充電・放電電流が瞬間的に流れる。
【0016】
ここで、容量計Qによって検出されるバッテリーEの充電状態が例えば30%以下の場合には、リミッター回路20の放電側のリミッター値をゼロにして、制御系としては充電のみを行わせ、またバッテリーEの充電状態が例えば80%以上の場合には、リミッター回路20の充電側のリミッター値をゼロにして、放電のみを行わせるようにすれば、過充電や完全放電を防ぐことでバッテリーの寿命を延ばすことが可能である。
【0017】
エレベータ停止時に商用電源からバッテリーに充電を行うことで、容量計Qによって検出される充電状態を例えば60%程度になるようにすれば、バッテリーの充電状態を最良な状態に維持させることができる。(万一60%を超える状態であれば、非常電源11のようにバッテリーから交流電源を作り、制御電源として使用すれば良い。)
因みに、最良な状態とは、次のエレベータの運転が回生運転・駆動運転の何れであってもバッテリーの充電・放電が自由に行える状態を意味する。
【0018】
そして、万一インバータ3の入力電圧Vabが高くなりすぎた場合は、トランジスタTr3をONさせて、抵抗Rで回生電力を消費させるようにする。
【0019】
このリミッター回路20のリミッター値の操作は、前述のバッテリーEの充電状態だけでなく、エレベータの運転状態に応じて変化させる事も可能である。
平日や休日、或いは時間帯によってバッテリーEの充電量における適量を変化させても良い。即ち、例えばオフィスビルの出勤時などの力行運転の連続が予想される場合には、バッテリーEの充電量を多目にして、補助電源としての利用を優先し、逆にお昼のような回生運転の連続が予想される場合は、バッテリーEの充電量を低目に抑えて回生動作を優先させる。そして、通常時は力行・回生がほぼ交互に行われるので、バッテリーEの充電量を60%程度に設定する。
【0020】
【発明が解決しようとする課題】
しかし、このような装置において、コンデンサCの両端電圧VabがバッテリEの電圧よりも低い場合に、電源装置10の出力接点1aが閉じると、限流要素がコイルLのみで、ダイオードD1を通じてコンデンサCを充電する突入電流が流れるため、ダイオードD1を破壊してしまうことがある。このため、この出力接点1aに並列に抵抗Raを接続して、コンデンサCをこの抵抗Raを通じて予め前充電しておいてから出力接点1aを閉路させなければならなかった。
【0021】
本発明は、上記の点に鑑みなされたもので、前充電回路がなくても適正に突入電流を抑制できるとともに、回生電力を無駄にしない効率の良い電源装置を提供することを目的とする。
【0022】
【課題を解決するための手段】
本発明は、商用電源と、接触器の接点を通じて商用電源からの電力により、インバータを介してエレベータ電動機が制御され、前記インバータにはコンデンサーと出力接点を有する電源装置とが並列に接続され、該電源装置は充電/放電が可能なバッテリーと、該バッテリーに充電と放電を行なわしめるための充電回路と放電回路と、該充電回路を閉路するための充電制御素子と、前記放電回路を閉路するための放電制御素子とを含み、前記電源装置の前記出力接点を通じて前記コンデンサーに接続され、前記充電制御素子と前記放電制御素子のオン/オフで前記充電/放電回路の動作を制御することにより、商用電源の全波整流電圧より高い一定の電圧に相当する値の電圧指令を目標値として前記インバータへの入力電力を制御する制御回路とを備え、該制御回路は前記充電制御素子と前記放電制御素子を交互にオン/オフすることで、前記電動機からの回生電力によって前記バッテリーを充電すると共に、該バッテリーの発生電力を前記インバータに供給する交流エレベータにおいて、前記バッテリーへの充電或いは放電を指示する働きを持つリミッターを有する電流指令回路と前記インバータの入力電圧と前記バッテリーの端子電圧とを比較する比較器を設け、前記入力電圧が前記端子電圧以上になったとき前記出力接点を閉じるものである。
【0023】
【発明の実施の形態】
本発明は、簡単な回路で突入電流を抑制しながら電力を無駄にしない電源装置を備えるものである。
【0024】
【実施例】
以下、本発明の一実施例について、図面を用いて説明する。
図1は本発明の一実施例を示す電源装置の回路図、図中図2及び図3と同一符号のものは同一のものを示すが、30は端子aの電圧VabとバッテリーEの端子dの電圧Vdbとを比較する比較器で、Vab≧Vdbのとき出力を発し、電源装置10の出力接点1aを閉路する。
【0025】
即ち、インバータ3の入力電圧VabとバッテリーEの電圧Vdbとを比較して電圧Vabの方が高くなった時に出力接点1aを閉じるため、バッテリーEからの突入電流を適正に抑制できることになり、前充電用の抵抗Raは不要となる。
【0026】
【発明の効果】
以上述べたように本発明によれば、抑制用の抵抗がなくてもバッテリーからの突入電流を自動的に抑制できるとともに、エレベータの通常の運転を通じて適宜回生電力を吸収する。又、駆動電力を適宜補いながらバッテリーへの充電・放電動作が適確に行われるため、何時停電になっても困ることはない。
【図面の簡単な説明】
【図1】本発明の一実施例を示す電源装置の回路図である。
【図2】従来の交流エレベータの制御装置の一例を示す概略図である。
【図3】新しい電源装置の回路図である。
【図4】図3に示す回路の制御ブロック線図である。
【図5】図4の各部の信号を示す図である。
【図6】図4の各部の信号を示す図である。
【符号の説明】
1 商用電源
3 インバータ
10 電源装置
E バッテリー
Q 容量計
Tr1,Tr2 トランジスタ
20、 リミッター回路
21、30 比較器
22 三角波発生器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a power supply device for an AC elevator.
[0002]
[Prior art]
2. Description of the Related Art In recent years, power electronics elements and technologies for controlling them have been used to control the speed of inverter motors by supplying variable voltage / variable frequency AC power to induction motors to drive elevator cars. .
[0003]
That is, as shown in FIG. 2, when the contact 3a of the first contactor is closed, power is supplied from the commercial power source 1 to the inverter 3 through the converter 2, and the capacitor C is charged through the resistor Rb. When the voltage Vab across the capacitor C reaches a predetermined voltage, the contact 2a of the second contactor is closed and the resistor Rb is short-circuited to complete the preparation for operation of the elevator. As for the operation of the elevator, a current is supplied from the commercial power source 1 to the induction motor IM through the contact 3a, the converter 2, the contact 2a and the inverter 3, and this current is actually transmitted from the ideal speed command 4 and the pulse generator PG. When the inverter 3 is operated via the sine wave PWM controller 8 in accordance with a command from the variable frequency current command calculation unit 7 via the speed regulator 6 by matching with the speed of the elevator car 5, the elevator car 5 is appropriately selected. The speed is controlled automatically. Here, 9 is a counterweight.
[0004]
By the way, in the case of an elevator driven by the induction motor IM, each time, for example, when there are full passengers in the elevator car 5, or when no one is on board and the car is driven as an empty car according to the hall call, etc. Although the load fluctuates greatly, the power must be regenerated especially in the case of a down load operation, and is usually consumed as heat by the resistance R, and the power is often wasted. Of course, it is usual to design the power supply capacity in advance so that no inconvenience occurs even when the load is large.
Therefore, it was necessary to use a thick electric wire for the power line.
[0005]
For this reason, the applicant has recently proposed an efficient power supply apparatus that does not waste regenerative power as described below.
[0006]
3 is a circuit diagram of the power supply apparatus, and FIG. 4 is a control block diagram of the circuit shown in FIG.
[0007]
In the figure, the same reference numerals as those in FIG. 2 denote the same components, but 10 is a power supply circuit, Tr1 and Tr2 are transistors, D1 and D2 are diodes, and E is a battery such as a nickel metal hydride battery. As the battery E, for example, one unit battery (one unit) obtained by connecting eight unit cells in series is appropriately determined according to the capacity of the elevator. Q is a capacity meter that detects the amount of charge of the battery E, L is a boosting coil, RT is a current detector, 11 is an emergency power source that is also used as a control power source for a microcomputer, etc. from the battery E in an emergency such as a power failure, Reference numeral 12 denotes an emergency contact for disconnection in the event that the power supply circuit 10 fails.
[0008]
As shown in FIG. 4, the power supply circuit 10 performs constant voltage control of the input voltage Vab of the inverter 3, and performs matching control by negatively feeding back the input voltage Vab of the inverter 3 to a constant voltage command.
The deviation signal e creates a current command via the transfer function G1 and the limiter circuit 20, matches the current command from the current detector RT, and inputs it to the comparator 21 through the transfer function G2.
[0009]
In the comparator 21, for example, the control signal β of the transistors Tr1 and Tr2 is generated by comparing the triangular wave α from the triangular wave generator 22 with the output signal from the transfer function G2. Since the negative element 23 is connected to the previous stage of the transistor Tr2, the transistors Tr1 and Tr2 are not simultaneously turned on.
[0010]
If the commercial power source 1 is 200V, the voltage passed through the converter 2 is normally about 280V. Here, if the voltage command of FIG. The voltage is controlled to maintain the input voltage Vab at 350V.
[0011]
That is, when the input voltage Vab is 350 V, the deviation signal e is zero, the current command i through the limiter circuit 20 is also zero, and the output of the comparator 21 has the waveform shown in FIG.
[0012]
That is, since the comparator 21 outputs a control signal β that alternately turns the transistors Tr1 and Tr2 into the ON state for the same time, the battery E alternately repeats charging and discharging at the same time, and the input voltage Vab of the inverter 3 is set to 350V. Try to keep on.
[0013]
If the input voltage Vab becomes lower than 350 V, the output of the comparator 21 is in the state shown in FIG. 6A, the time for turning on the transistor Tr1 is short, and the transistor Tr2 is turned on. The time becomes longer, and eventually discharge from the battery E is prioritized.
[0014]
On the other hand, if the input voltage Vab is higher than 350 V, the output of the comparator 21 will be in the state shown in FIG. 6B, the time for turning on the transistor Tr2 is short, and the transistor Tr1 is turned on. The time is long, and voltage control is performed to maintain the command voltage by giving priority to the charging of the battery E.
[0015]
Incidentally, the normal route for discharging the battery E is the battery E, the current detector RT, the coil L, the transistor Tr2, and the battery E. On the other hand, the normal route for charging the battery E is the terminal a, the contact 12, The transistor Tr1, the coil L, the current detector RT, the battery E, and the terminal b. When the transistors Tr1 and Tr2 are OFF, the charging / discharging current of the battery E by the coil L flows instantaneously through the diode D2 or D1.
[0016]
Here, when the charging state of the battery E detected by the capacity meter Q is, for example, 30% or less, the limiter value on the discharge side of the limiter circuit 20 is set to zero, and the control system performs only charging. For example, when the charge state of the battery E is 80% or more, the limiter value on the charge side of the limiter circuit 20 is set to zero so that only discharge is performed, thereby preventing overcharge and complete discharge. It is possible to extend the life.
[0017]
By charging the battery from the commercial power source when the elevator is stopped, the state of charge of the battery can be maintained at the optimum state by setting the state of charge detected by the capacity meter Q to, for example, about 60%. (If it exceeds 60%, an AC power source may be made from a battery like the emergency power source 11 and used as a control power source.)
Incidentally, the best state means a state where the battery can be freely charged / discharged regardless of whether the next elevator operation is a regenerative operation or a driving operation.
[0018]
If the input voltage Vab of the inverter 3 becomes too high, the transistor Tr3 is turned on and the regenerative power is consumed by the resistor R.
[0019]
The operation of the limiter value of the limiter circuit 20 can be changed according to not only the above-described charging state of the battery E but also the operating state of the elevator.
An appropriate amount of the charge amount of the battery E may be changed according to weekdays, holidays, or time zones. That is, for example, when continuous power running is expected, such as when working in an office building, the amount of charge of the battery E is taken into account, giving priority to use as an auxiliary power source, and conversely, regenerative operation like noon. Is expected, the regenerative operation is prioritized by keeping the charge amount of the battery E low. In normal times, power running and regeneration are performed almost alternately, so the charge amount of the battery E is set to about 60%.
[0020]
[Problems to be solved by the invention]
However, in such a device, when the voltage Vab across the capacitor C is lower than the voltage of the battery E, when the output contact 1a of the power supply device 10 is closed, the current limiting element is only the coil L, and the capacitor C through the diode D1. Since an inrush current charging the battery flows, the diode D1 may be destroyed. For this reason, it is necessary to connect the resistor Ra in parallel to the output contact 1a and precharge the capacitor C through the resistor Ra before closing the output contact 1a.
[0021]
The present invention has been made in view of the above points, and an object of the present invention is to provide an efficient power supply apparatus that can appropriately suppress an inrush current without a precharge circuit and that does not waste regenerative power.
[0022]
[Means for Solving the Problems]
According to the present invention, an elevator motor is controlled through an inverter by a commercial power source and power from the commercial power source through a contact of a contactor, and a capacitor and a power supply device having an output contact are connected in parallel to the inverter, The power supply device includes a battery that can be charged / discharged, a charging circuit and a discharging circuit for charging and discharging the battery, a charge control element for closing the charging circuit, and a circuit for closing the discharging circuit. A discharge control element, connected to the capacitor through the output contact of the power supply device, and controlling the operation of the charge / discharge circuit by turning on / off the charge control element and the discharge control element. A control circuit for controlling the input power to the inverter with a voltage command corresponding to a constant voltage higher than the full-wave rectified voltage of the power supply as a target value And the control circuit alternately turns on and off the charge control element and the discharge control element to charge the battery with regenerative power from the electric motor, and supplies the generated power of the battery to the inverter. In the AC elevator to be supplied , a current command circuit having a limiter having a function of instructing charging or discharging of the battery, a comparator for comparing the input voltage of the inverter and the terminal voltage of the battery are provided, and the input voltage is The output contact is closed when the voltage exceeds the terminal voltage.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The present invention includes a power supply device that suppresses inrush current with a simple circuit and does not waste power.
[0024]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit diagram of a power supply device showing an embodiment of the present invention. In the figure, the same reference numerals as those in FIGS. 2 and 3 denote the same components, but 30 is a voltage Vab of a terminal a and a terminal d of a battery E. The comparator compares the voltage Vdb of the power supply 10 and outputs an output when Vab ≧ Vdb, and closes the output contact 1 a of the power supply device 10.
[0025]
That is, when the input voltage Vab of the inverter 3 and the voltage Vdb of the battery E are compared and the voltage Vab becomes higher, the output contact 1a is closed, so that the inrush current from the battery E can be appropriately suppressed. The charging resistor Ra is not necessary.
[0026]
【The invention's effect】
As described above, according to the present invention, the inrush current from the battery can be automatically suppressed even without the resistance for suppression, and the regenerative power is appropriately absorbed through the normal operation of the elevator. In addition, since charging / discharging operation of the battery is appropriately performed while appropriately supplementing the driving power, there is no problem even when a power failure occurs.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a power supply device showing an embodiment of the present invention.
FIG. 2 is a schematic diagram showing an example of a conventional AC elevator control device.
FIG. 3 is a circuit diagram of a new power supply device.
4 is a control block diagram of the circuit shown in FIG. 3; FIG.
FIG. 5 is a diagram showing signals at various parts in FIG. 4;
6 is a diagram showing signals at various parts in FIG. 4. FIG.
[Explanation of symbols]
1 Commercial power supply 3 Inverter 10 Power supply E Battery Q Capacity meter
Tr1, Tr2 transistor 20, limiter circuit 21, 30 comparator 22 triangular wave generator

Claims (1)

商用電源と、接触器の接点を通じて商用電源からの電力により、インバータを介してエレベータ電動機が制御され、前記インバータにはコンデンサーと出力接点を有する電源装置とが並列に接続され、該電源装置は充電/放電が可能なバッテリーと、該バッテリーに充電と放電を行なわしめるための充電回路と放電回路と、該充電回路を閉路するための充電制御素子と、前記放電回路を閉路するための放電制御素子とを含み、前記電源装置の前記出力接点を通じて前記コンデンサーに接続され、前記充電制御素子と前記放電制御素子のオン/オフで前記充電/放電回路の動作を制御することにより、商用電源の全波整流電圧より高い一定の電圧に相当する値の電圧指令を目標値として前記インバータへの入力電力を制御する制御回路とを備え、該制御回路は前記充電制御素子と前記放電制御素子を交互にオン/オフすることで、前記電動機からの回生電力によって前記バッテリーを充電すると共に、該バッテリーの発生電力を前記インバータに供給する交流エレベータにおいて、前記バッテリーへの充電或いは放電を指示する働きを持つリミッターを有する電流指令回路と前記インバータの入力電圧と前記バッテリーの端子電圧とを比較する比較器を設け、前記入力電圧が前記端子電圧以上になったとき前記出力接点を閉じることを特徴とする交流エレベータの電源装置。The elevator motor is controlled through an inverter by the commercial power supply and the electric power from the commercial power supply through the contact of the contactor, and a capacitor and a power supply device having an output contact are connected in parallel to the inverter, and the power supply device is charged. / Dischargeable battery, charging circuit and discharging circuit for charging and discharging the battery, charging control element for closing the charging circuit, and discharging control element for closing the discharging circuit And is connected to the capacitor through the output contact of the power supply device, and controls the operation of the charge / discharge circuit by turning on / off the charge control element and the discharge control element, thereby A control circuit that controls input power to the inverter with a voltage command of a value corresponding to a constant voltage higher than the rectified voltage as a target value. The control circuit alternately turns on and off the charge control element and the discharge control element, thereby charging the battery with regenerative power from the electric motor and supplying the generated power of the battery to the inverter. A current command circuit having a limiter having a function of instructing charging or discharging of the battery, and a comparator for comparing the input voltage of the inverter and the terminal voltage of the battery, wherein the input voltage is equal to or higher than the terminal voltage. The power supply device for an AC elevator closes the output contact when
JP36671999A 1999-11-17 1999-12-24 AC elevator power supply Expired - Lifetime JP4503750B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP36671999A JP4503750B2 (en) 1999-12-24 1999-12-24 AC elevator power supply
KR1020027006280A KR100738167B1 (en) 1999-11-17 2000-11-15 Power supply for ac elevator
EP00976270A EP1235323A4 (en) 1999-11-17 2000-11-15 Power supply for ac elevator
CN008184755A CN100407545C (en) 1999-11-17 2000-11-15 Power supply for AC elevator
CA002391616A CA2391616C (en) 1999-11-17 2000-11-15 Power source device for a.c. elevator
AU14130/01A AU1413001A (en) 1999-11-17 2000-11-15 Power supply for ac elevator
PCT/JP2000/008061 WO2001037396A1 (en) 1999-11-17 2000-11-15 Power supply for ac elevator
US10/129,131 US6732838B1 (en) 1999-11-17 2000-11-15 Power supply for ac elevator
TW089124232A TWI241978B (en) 1999-11-17 2000-11-16 Power source device for an ac elevator
HK03100995.2A HK1048895A1 (en) 1999-11-17 2003-02-11 Power supply for ac elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36671999A JP4503750B2 (en) 1999-12-24 1999-12-24 AC elevator power supply

Publications (3)

Publication Number Publication Date
JP2001180878A JP2001180878A (en) 2001-07-03
JP2001180878A5 JP2001180878A5 (en) 2006-02-02
JP4503750B2 true JP4503750B2 (en) 2010-07-14

Family

ID=18487497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36671999A Expired - Lifetime JP4503750B2 (en) 1999-11-17 1999-12-24 AC elevator power supply

Country Status (1)

Country Link
JP (1) JP4503750B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520504A (en) * 2007-02-09 2009-05-28 シージェイ チェイルジェダン コープ. Method for producing xylitol using hydrolyzed saccharified solution containing xylose and arabinose produced from tropical fruit biomass by-products

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2571939T3 (en) 2008-11-21 2016-05-27 Otis Elevator Co Operation of a three-phase regenerative drive from mixed DC and AC single phase AC power supplies
KR102195653B1 (en) * 2018-09-07 2020-12-28 현대엘리베이터주식회사 Power regenerating apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131095A (en) * 1983-12-16 1985-07-12 Mitsubishi Electric Corp Controller of ac elevator
JPS61267675A (en) * 1985-05-20 1986-11-27 株式会社東芝 Controller for elevator
FI81465C (en) * 1986-12-22 1990-10-10 Kone Oy Device for coupling an accumulator battery to an elevator inverter DC direct current circuit
JPH0710150B2 (en) * 1987-09-03 1995-02-01 富士電機株式会社 How to operate the current reversible tipper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520504A (en) * 2007-02-09 2009-05-28 シージェイ チェイルジェダン コープ. Method for producing xylitol using hydrolyzed saccharified solution containing xylose and arabinose produced from tropical fruit biomass by-products

Also Published As

Publication number Publication date
JP2001180878A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
EP0570934B1 (en) Method and apparatus for controlling a battery car
JP4489238B2 (en) Electric motor control device
JP2001298873A (en) Power unit for vehicle
JP2004507996A5 (en)
JP2002010408A (en) Automobile and its electric power unit
JP3250448B2 (en) Inverter device
US5712549A (en) DC Motor drive assembly having a controller/charge with regenerative braking
JP3892528B2 (en) Auxiliary power supply battery charge control device for hybrid electric vehicle
JPH05338947A (en) Control device of elevator
JP4463912B2 (en) AC elevator power supply
JP4503750B2 (en) AC elevator power supply
JPH1084628A (en) Power supply unit for driving motor
JP4503749B2 (en) AC elevator power supply
JPH069164A (en) Control method and device of elevator
JP4402409B2 (en) Elevator control device
JP2001197788A (en) Air conditioning system for automobile
JP4503746B2 (en) AC elevator power supply
JPH09163756A (en) Electric discharge circuit for capacitor
JP5055658B2 (en) AC elevator power supply
JP2001247273A (en) Elevator operating device at service interruption
JPH03124201A (en) Auxiliary battery charger for electric car
JPH06276610A (en) Driver for motor
JP2004336833A (en) Controller of electric power transformer for rolling stock
JP4494545B2 (en) Driving device for electric compressor for automobile
JP3252709B2 (en) Electric curtain drive

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4503750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term