JP4502944B2 - Thin steel plate rich in ductility and method for producing steel ingot to obtain the steel plate - Google Patents

Thin steel plate rich in ductility and method for producing steel ingot to obtain the steel plate Download PDF

Info

Publication number
JP4502944B2
JP4502944B2 JP2005348021A JP2005348021A JP4502944B2 JP 4502944 B2 JP4502944 B2 JP 4502944B2 JP 2005348021 A JP2005348021 A JP 2005348021A JP 2005348021 A JP2005348021 A JP 2005348021A JP 4502944 B2 JP4502944 B2 JP 4502944B2
Authority
JP
Japan
Prior art keywords
less
cao
steel
slag
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005348021A
Other languages
Japanese (ja)
Other versions
JP2006188755A (en
Inventor
世意 木村
貴光 中須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005348021A priority Critical patent/JP4502944B2/en
Publication of JP2006188755A publication Critical patent/JP2006188755A/en
Application granted granted Critical
Publication of JP4502944B2 publication Critical patent/JP4502944B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、孔拡げ性に代表される延性に富む薄鋼板(冷延鋼板)、およびこうした薄鋼板を得るための鋼塊を製造する方法に関するものである。   The present invention relates to a thin steel plate (cold rolled steel plate) rich in ductility represented by hole expansibility, and a method for producing a steel ingot for obtaining such a thin steel plate.

薄鋼板は、飲料用缶材や自動車の骨格部材に使用される場合にように、優れた延性が要求されることになる。こうした延性を阻害する要因として、Al系(酸化物系)やMnS系(硫化物系)の介在物の存在が知られている。こうしたことから、薄鋼板における優れた延性を確保するために、これらの介在物を低減することが重要な項目となる。 The thin steel plate is required to have excellent ductility as used in beverage cans and automobile frame members. As a factor inhibiting such ductility, the presence of inclusions of Al 2 O 3 (oxide) or MnS (sulfide) is known. For these reasons, it is an important item to reduce these inclusions in order to ensure excellent ductility in the thin steel sheet.

鋼板の延性を改善する技術として、例えば特許文献1、2には、アルミナクラスタ介在物の個数を低減する技術が提案されている。また、特許文献3には、所定の化学成分を有し、粒径1〜50μmの酸化物系介在物がTi酸化物およびCaO、REM酸化物の1種または2種以上含有するものとすることによって変形能に優れた高張力鋼板とする技術が提案されている。   As a technique for improving the ductility of a steel sheet, for example, Patent Documents 1 and 2 propose a technique for reducing the number of alumina cluster inclusions. Patent Document 3 includes a predetermined chemical component, and oxide inclusions having a particle diameter of 1 to 50 μm contain one or more of Ti oxide, CaO, and REM oxide. Therefore, a technique for producing a high-strength steel sheet having excellent deformability has been proposed.

これらの技術は、Tiを必須成分として含有させることによって延性を良好にする鋼板を基本とするものであるが、硬質のTiN系介在物が生成することがあり、こうした介在物に起因して延性が却って低下することがある。   These technologies are based on steel sheets that have good ductility by containing Ti as an essential component, but hard TiN inclusions may be produced, and ductility is caused by these inclusions. However, it may decrease.

一方、Tiを必須成分としない冷延鋼板として、例えば特許文献4には、Mgを添加することによって打抜き穴の断面に発生するクラックを微細均一化でき、孔拡げ性が改善できることが示されている。こうした技術によれば、延性がある程度改善されることになるが、近年要求される程の延性が達成されているとはいえない。
特開2000−144230号公報 「特許請求の範囲」等 特開2002−327239号公報 「特許請求の範囲」等 特開2000−1736号公報 「特許請求の範囲」等 特開2002−212674号公報 「特許請求の範囲」等
On the other hand, as a cold rolled steel sheet not containing Ti as an essential component, for example, Patent Document 4 shows that by adding Mg, cracks generated in the cross section of the punched hole can be made fine and uniform, and the hole expandability can be improved. Yes. According to such a technique, the ductility is improved to some extent, but it cannot be said that the ductility as required in recent years has been achieved.
Japanese Patent Laid-Open No. 2000-144230 “Claims” and the like JP 2002-327239 A "Claims" etc. Japanese Patent Laid-Open No. 2000-1736 “Claims” and the like Japanese Patent Laid-Open No. 2002-212673 “Claims” and the like

本発明はこうした状況の下でなされたものであって、その目的は、特に孔拡げ性に代表される延性が良好な薄鋼板、およびこうした薄鋼板を得るための鋼塊を製造する有用な方法を提供することにある。   The present invention has been made under such circumstances, and the object thereof is a useful method for producing a steel sheet having good ductility, particularly represented by hole expansibility, and a steel ingot for obtaining such a steel sheet. Is to provide.

上記目的を達成し得た本発明の薄鋼板とは、C:0.04〜0.25%(質量%の意味、以下同じ)、Si:0.05〜3%、Mn:0.1〜3%、Al:0.01〜2%、P:0.02%以下(0%を含まない)を夫々含むと共に、S:0.005%以下(0%を含む)に抑制し、残部がFeおよび不可避不純物からなる薄鋼板であって、CaO、Al、SiOおよびMgOの酸化物の合計を100%としたとき、CaO:5%以上、18.3%以下、SiO:0.1%以上、9.2%以下、Al:60%以上、MgO:残部であり、且つ長径30μm以上の介在物が鋼材1kg当り70個以下である点に要旨を有するものである。 The thin steel sheet of the present invention that can achieve the above object is C: 0.04 to 0.25% (meaning of mass%, the same applies hereinafter), Si: 0.05 to 3%, Mn: 0.1 to 0.1%. 3%, Al: 0.01-2%, P: 0.02% or less (excluding 0%), respectively, and S: 0.005% or less (including 0%), the balance being It is a thin steel plate made of Fe and inevitable impurities, and when the total of oxides of CaO, Al 2 O 3 , SiO 2 and MgO is 100%, CaO: 5% or more, 18.3% or less, SiO 2 : It has a gist in that it is 0.1% or more, 9.2% or less, Al 2 O 3 : 60% or more, MgO: the balance, and inclusions with a major axis of 30 μm or more are 70 or less per 1 kg of steel material. is there.

一方、本発明の鋼塊製造方法とは、脱炭炉にて脱炭した溶鋼を取鍋内に移し、CaO系フラックスを添加することによって、スラグ中のCaO、Al、SiO、MgO、MnOおよび全Fe量の合計を100%としたとき、CaO:45%以上、SiO:6.2%以下、MgO:9.7%以下、全Fe量:5%以下、MnO:3%以下、Al:残部のCaO系スラグを取鍋内溶鋼上に形成させ、溶鋼とスラグをガス撹拌しながら取鍋内溶鋼のS含有量を0.005%以下に脱硫し、引き続き真空循環脱ガス装置にて溶鋼を10分以上還流した後、この溶鋼を鋳造する点に要旨を有するものである。
On the other hand, the steel ingot manufacturing method of the present invention is a method of transferring molten steel decarburized in a decarburization furnace into a ladle and adding CaO-based flux, thereby allowing CaO, Al 2 O 3 , SiO 2 in slag, When the total amount of MgO, MnO and total Fe is 100%, CaO: 45% or more, SiO 2 : 6.2% or less, MgO: 9.7% or less, total Fe amount: 5% or less, MnO: 3 % or less, Al 2 O 3: a CaO-based slag balance is formed on the ladle molten steel, the molten steel and slag and desulfurized S content of ladle molten steel agitation gas below 0.005%, subsequently The present invention has a gist in that after the molten steel is refluxed for 10 minutes or more by a vacuum circulation degassing apparatus, the molten steel is cast.

本発明では、脱炭炉にて脱炭した溶鋼を、成分を適切に調整したCaO系スラグによって効果的に脱硫することによって、S濃度を有効に低減して硫化物系介在物の生成を抑制する共に、真空循環脱ガス装置との組み合わせによって、延性を阻害するCaO系スラグ起因の酸化物系介在物を極力低減した溶鋼が製造でき、こうした溶鋼から鋳造して得られた鋼塊から延性に富む薄鋼板を得ることができる。   In the present invention, the molten steel decarburized in the decarburization furnace is effectively desulfurized with CaO-based slag with appropriately adjusted components, thereby effectively reducing the S concentration and suppressing the formation of sulfide inclusions. At the same time, by combining with a vacuum circulation degassing device, it is possible to produce molten steel that reduces oxide inclusions due to CaO-based slag that impairs ductility as much as possible. A rich steel sheet can be obtained.

薄鋼板の延性を妨げ、加工時の割れを誘発する大きな原因として各種介在物の存在が挙げられるが、これらの介在物を少なくすることが延性の向上に繋がるものと考えられる。このうち、鋼材中のS濃度が高いと、溶鋼を鋳造する冷却段階でMnS系介在物が析出し、延性を阻害することになる。そこでまず、延性が損なわれない程度にMnS析出を抑制することが重要になる。   The presence of various inclusions can be cited as a major cause of hindering the ductility of a thin steel sheet and inducing cracking during processing. It is thought that reducing these inclusions leads to an improvement in ductility. Among these, when the S concentration in the steel material is high, MnS inclusions are precipitated in the cooling stage for casting the molten steel, and the ductility is hindered. Therefore, it is important to suppress MnS precipitation to such an extent that ductility is not impaired.

本発明者らが、検討したところによれば、鋼中のS濃度を少なくとも0.005%以下(0%を含む)とすることによって、MnSの析出を効果的に低減できることが判明した。延性の改善という観点からすれば、鋼中のS濃度は0.004%以下とすることが好ましく、より好ましくは0.003%以下とするのが良い。   According to a study by the present inventors, it was found that precipitation of MnS can be effectively reduced by setting the S concentration in the steel to at least 0.005% or less (including 0%). From the viewpoint of improving ductility, the S concentration in the steel is preferably 0.004% or less, and more preferably 0.003% or less.

鋼中のS濃度を0.005%以下に低減するためには、溶鋼精錬段階で、脱硫スラグを溶鋼中に巻き込ませて溶鋼脱硫を行う必要がある。脱硫スラグを溶鋼中の巻き込ませる方法については、特に限定されないが、従来から知られている方法、例えば(a)耐火物製ランスを介してガスを溶鋼中に吹き込むことによってスラグと溶鋼を撹拌する方法、(b)取鍋底部に設けたプラグからガスを溶鋼中に吹き込むことによってスラグと溶鋼を撹拌する方法、等が挙げられる。   In order to reduce the S concentration in steel to 0.005% or less, it is necessary to carry out molten steel desulfurization by entraining desulfurized slag in the molten steel at the molten steel refining stage. The method for entraining the desulfurized slag in the molten steel is not particularly limited, but a conventionally known method, for example, (a) slag and molten steel are stirred by blowing gas into the molten steel via a refractory lance. And (b) a method of stirring the slag and molten steel by blowing gas into the molten steel from a plug provided at the bottom of the ladle.

このとき用いる脱硫スラグは、CaOを含むものが工業的に一般に使用される。例えば、CaO単体、CaO−CaF系、CaO−Al系、CaO−Al−CaF系、CaO−Al−MgO系、CaO−Al−SiO系(これらを総括してCaO系スラグと呼ぶ)、等が挙げられる。これらの脱硫スラグ(CaO系スラグ)を溶鋼表面に形成するには、上記各系を有するCaO系フラックスを添加することになるが、形成されるスラグ中のCaO量、全Fe量およびMnO量を適切に制御する必要がある。即ち、スラグ中のCaO、Al、SiO、MgO、MnOおよび全Fe量(以下、「T.Fe」と記することがある)の合計を100%としたとき(CaO+Al+SiO+MgO+MnO+T.Fe=100%)、CaO含有量を45%以上のスラグとする必要がある。スラグ中のCaO量が45%未満になると、効果的な溶鋼脱硫が期待できない。このCaO量は好ましくは48%以上とするのが良く、より好ましくは50%以上とするのが良い。尚、スラグ中のCaO含有量を45%以上に制御するためには、添加するCaO系フラックスをCaO含有量が少なくとも50%以上となるものを使用すれば良い。 As the desulfurization slag used at this time, one containing CaO is generally used industrially. For example, CaO simple substance, CaO—CaF 2 system, CaO—Al 2 O 3 system, CaO—Al 2 O 3 —CaF 2 system, CaO—Al 2 O 3 —MgO system, CaO—Al 2 O 3 —SiO 2 system (They are collectively referred to as CaO-based slag). In order to form these desulfurization slag (CaO-based slag) on the surface of the molten steel, a CaO-based flux having the above-mentioned respective systems is added, but the amount of CaO, the total amount of Fe and the amount of MnO in the formed slag are changed. It needs to be properly controlled. That is, when the total of CaO, Al 2 O 3 , SiO 2 , MgO, MnO and total Fe amount in the slag (hereinafter sometimes referred to as “T.Fe”) is 100% (CaO + Al 2 O 3 + SiO 2 + MgO + MnO + T.Fe = 100%), CaO content needs to be 45% or more of slag. When the amount of CaO in the slag is less than 45%, effective molten steel desulfurization cannot be expected. The amount of CaO is preferably 48% or more, and more preferably 50% or more. In order to control the CaO content in the slag to 45% or more, a CaO-based flux to be added may be used with a CaO content of at least 50%.

上記スラグ中には転炉、電気炉等の酸化精錬炉から持ち越されるFeOやMnOが含まれることになるが、スラグ中のT.Fe量およびMnO量が多くなると、脱硫効果が低減してしまうのでこれらの量も適切に制御する必要がある。上記と同様に(CaO+Al+SiO+MgO+MnO+T.Fe=100%)としたときに、T.Fe量は5%以下、MnO量は3%以下とする必要がある。スラグ中のT.Fe量およびMnO量については、T.Fe:4%以下、MnO量:2%以下とすることが好ましく、より好ましくはT.Fe量:3%以下、MnO量:1%以下とすることが推奨される。尚、スラグ中のT.Fe量およびMnO量を上記のように制御するためには、脱硫フラックスを添加する前に、酸化精錬炉から持ち越されたスラグを除去する、或いは溶鋼、スラグのどちらか一方以上にAl,Si,C等を添加してスラグを還元する方法が採用できる。 The slag contains FeO and MnO carried over from an oxidation refining furnace such as a converter and an electric furnace. When the amount of Fe and the amount of MnO are increased, the desulfurization effect is reduced, so that these amounts need to be appropriately controlled. When the same as above (CaO + Al 2 O 3 + SiO 2 + MgO + MnO + T.Fe = 100%), The Fe amount needs to be 5% or less, and the MnO amount needs to be 3% or less. T. in slag Regarding the amount of Fe and the amount of MnO, see T.W. Fe: 4% or less, MnO amount: 2% or less are preferable, and T.P. Fe amount: 3% or less and MnO amount: 1% or less are recommended. In addition, T. in the slag. In order to control the amount of Fe and MnO as described above, before adding the desulfurization flux, slag carried over from the oxidation refining furnace is removed, or Al, Si, A method of reducing slag by adding C or the like can be employed.

上記の様な脱硫処理を行うことによって、MnSが介在物となって薄鋼板の延性を阻害することがなくなるのであるが、溶鋼とスラグを撹拌することによって(即ち、取鍋精錬の段階で)巻き込まれた、脱硫スラグ起因の介在物(以下、「スラグ系介在物」と呼ぶ)は、鋳造時まで溶鋼に留まり、最終製品である薄鋼板の欠陥となって鋼板の延性を阻害する原因となる。   By performing the desulfurization treatment as described above, MnS becomes an inclusion and does not hinder the ductility of the thin steel plate, but by stirring the molten steel and slag (that is, at the ladle refining stage) Inclusions caused by desulfurized slag (hereinafter referred to as “slag inclusions”) remain in the molten steel until casting, causing defects in the thin steel sheet that is the final product and impairing the ductility of the steel sheet. Become.

本発明者らが、薄鋼板に存在するスラグ系介在物が延性に及ぼす影響を調査したところ、長径が30μm以上のスラグ系介在物の存在は延性に影響を及ぼし、その個数を鋼板1kg当り70個以下、好ましくは60個以下、より好ましくは50個以下にすれば、延性が著しく向上することが判明したのである。   When the present inventors investigated the influence which the slag type inclusion which exists in a thin steel plate exerts on the ductility, the presence of the slag type inclusion having a major axis of 30 μm or more has an effect on the ductility, and the number thereof is reduced to 70 per kg of the steel plate. It has been found that the ductility is remarkably improved when the number is less than 60, preferably less than 60, more preferably less than 50.

上記のようなスラグ系介在物であるか否かは、次のようにして判断できる。即ち、取鍋スラグはCaOを45%以上含み、更にSiOを数%含んでいるが、巻き込まれた直後に、溶鋼中に存在するAlと反応してCaO、SiOの割合が変化することになり、介在物中の成分として、CaO+Al+SiO+MgO=100%としたときに、CaOを5%以上、SiOを0.1%以上、Alを60%以上含むものをスラグ系介在物とみなしている。。 Whether or not it is a slag inclusion as described above can be determined as follows. That is, ladle slag contains 45% or more of CaO and further contains several% of SiO 2 , but immediately after being entrained, the ratio of CaO and SiO 2 changes by reacting with Al present in the molten steel. As a component in the inclusion, when CaO + Al 2 O 3 + SiO 2 + MgO = 100%, CaO is 5% or more, SiO 2 is 0.1% or more, and Al 2 O 3 is 60% or more Are regarded as slag inclusions. .

スラグ系介在物を低減するためには、真空循環脱ガス処理(以下、「RH処理」と呼ぶ)を溶鋼脱硫と組み合わせることによって該介在物を浮上分離することが必要になる。スラグ系介在物を浮上分離させるためには、真空循環脱ガス装置でRH処理する時間は少なくとも10分以上行う必要がある。このRH処理時間は、好ましくは15分以上とするのが良く、より好ましくは20分以上とするのが良い。   In order to reduce slag inclusions, it is necessary to float and separate the inclusions by combining vacuum circulation degassing (hereinafter referred to as “RH treatment”) with molten steel desulfurization. In order to float and separate the slag inclusions, it is necessary to perform the RH treatment time in the vacuum circulation degassing apparatus for at least 10 minutes. This RH treatment time is preferably 15 minutes or more, more preferably 20 minutes or more.

本発明では、上記のように脱硫およびRH処理した溶鋼を鋳造して得られた鋼塊を、熱間圧延および冷間圧延することによって、延性に富む薄鋼板(例えば、板厚:1〜3mm程度)を得ることができるのであるが、その化学成分組成も適切に調整する必要がある。本発明の薄鋼板におけるS以外の化学成分の範囲およびその限定理由は、次の通りである。   In the present invention, the steel ingot obtained by casting the molten steel subjected to desulfurization and RH treatment as described above is hot-rolled and cold-rolled to produce a thin steel plate having a high ductility (for example, plate thickness: 1 to 3 mm). However, the chemical component composition must be adjusted appropriately. The range of chemical components other than S in the thin steel sheet of the present invention and the reasons for the limitation are as follows.

C:0.04〜0.25%
延性(特に、孔拡げ性)を向上させるためには、C含有量は少ないほどよいが、0.04%未満では強度低下が著しくなる。一方、C含有量が0.25%を超えると、後述のMn含有量ではパーライト量が過多になり、またパーライトのラメラ間隔が広くなって、強度−局部延性バランスが劣化するようになる。こうしたことから、本発明で対象とする薄鋼板のC含有量は0.04%〜0.25%とする必要がある。尚、C含有量の好ましい下限は0.05%程度であり、好ましい上限は0.22%程度である。
C: 0.04 to 0.25%
In order to improve ductility (especially pore expandability), the lower the C content, the better. However, if it is less than 0.04%, the strength is significantly reduced. On the other hand, when the C content exceeds 0.25%, the pearlite amount becomes excessive with the Mn content described later, and the lamella spacing of the pearlite becomes wide, and the strength-local ductility balance deteriorates. For these reasons, the C content of the thin steel sheet targeted in the present invention needs to be 0.04% to 0.25%. In addition, the preferable minimum of C content is about 0.05%, and a preferable upper limit is about 0.22%.

Si:0.05〜3%
Siは固溶強化元素として有用である。このような作用を発揮させるためには、Si含有量は0.05%以上とする必要がある。しかしながら、Si含有量が過剰になるとその効果は飽和してしまい、経済的に無駄である他、多量に含有させると熱間脆性を招くことになる。こうしたことから、Si含有量は3%以下とする必要がある。尚、Si含有量の好ましい下限は0.1%であり、より好ましくは0.2%以上とするのが良い。また、Si含有量の好ましい上限は2.5%であり、より好ましくは2%以下とするのが良い。
Si: 0.05-3%
Si is useful as a solid solution strengthening element. In order to exert such an effect, the Si content needs to be 0.05% or more. However, when the Si content is excessive, the effect is saturated, which is economically wasteful, and when it is contained in a large amount, hot brittleness is caused. For these reasons, the Si content needs to be 3% or less. In addition, the minimum with preferable Si content is 0.1%, It is good to set it as 0.2% or more more preferably. Moreover, the upper limit with preferable Si content is 2.5%, It is good to set it as 2% or less more preferably.

Mn:0.1〜3%
Mnはオーステナイト相を安定化させ、冷却過程において硬質相の生成を容易にして高強度にするために含有される。この含有量が少なくなると、高強度を達成するための硬質相を得ることができないので、Mnは0.1%以上含有させる必要がある。しかしながら、Mn含有量が過剰になるとバンド組織が発達して延性が却って低下するので、その上限を3%以下とする必要がある。尚、Mn含有量の好ましい下限は0.2%であり、より好ましくは0.3%以上とするのが良い。また、Mn含有量の好ましい上限は2.8%であり、より好ましくは2.5%以下とするのが良い。
Mn: 0.1 to 3%
Mn is contained in order to stabilize the austenite phase and facilitate formation of a hard phase in the cooling process to increase the strength. If this content decreases, a hard phase for achieving high strength cannot be obtained, so Mn needs to be contained in an amount of 0.1% or more. However, if the Mn content is excessive, the band structure develops and the ductility is lowered instead. Therefore, the upper limit needs to be 3% or less. In addition, the minimum with preferable Mn content is 0.2%, It is good to set it as 0.3% or more more preferably. Moreover, the upper limit with preferable Mn content is 2.8%, More preferably, it is good to set it as 2.5% or less.

Al:0.01〜2%
Alは溶鋼の脱酸に必要な元素であるばかりでなく、溶鋼中の酸素ポテンシャルを下げることによって取鍋精錬の脱硫を促進するのに有効な元素である。こうした効果を発揮させるためには、Al含有量を0.01%以上とする必要があるが、好ましくは0.015%、より好ましくは0.02%以上含有させるのが良い。しかしながら、Al含有量が過剰になると、その効果が飽和して経済的に不利になるので、2%以下とする必要があり、好ましくは1.5%以下とするのが良い。
Al: 0.01-2%
Al is not only an element necessary for deoxidation of molten steel, but also an element effective for promoting desulfurization in ladle refining by lowering the oxygen potential in molten steel. In order to exhibit such an effect, the Al content needs to be 0.01% or more, preferably 0.015%, more preferably 0.02% or more. However, if the Al content is excessive, the effect is saturated and disadvantageous economically, so it is necessary to make it 2% or less, preferably 1.5% or less.

P:0.02%以下(0%を含まない)
Pは鋼を強化する作用を有するが、脆化によって延性を低下させるので、その上限は0.02%とする必要がある。好ましい上限は0.015%である。尚、Pによる作用はその含有量が増加するにつれて増大するが、上記作用を有効に発揮させるためには、少なくとも0.003%以上含有させることが好ましく、より好ましくは0.005%以上含有させるのが良い。
P: 0.02% or less (excluding 0%)
P has an effect of strengthening steel, but ductility is reduced by embrittlement, so the upper limit thereof needs to be 0.02%. A preferable upper limit is 0.015%. In addition, although the effect | action by P increases as the content increases, in order to exhibit the said effect | action effectively, it is preferable to make it contain at least 0.003% or more, More preferably, it makes 0.005% or more contain. Is good.

上記基本成分の他は、Feおよび不可避不純物(例えば、Cr,Cu,Sn等)からなるものであるが、必要によって本発明の薄鋼板の特性を阻害しない程度の微量成分(例えば、0.01〜0.05%程度のMo,V,Nb等)の含有も許容できるものである。   In addition to the above basic components, it consists of Fe and inevitable impurities (for example, Cr, Cu, Sn, etc.). Inclusion of about 0.05% Mo, V, Nb, etc.) is also acceptable.

以下、実施例によって本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することは勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and is implemented with appropriate modifications within a range that can meet the purpose described above and below. Of course, it is possible and they are all included in the technical scope of the present invention.

転炉で脱炭した250トンの溶鋼を取鍋に出鋼し、取鍋精錬装置にて各種合金鉄を添加することによって所定の化学成分に調整すると同時に脱硫を行った。取鍋精錬における脱硫スラグの組成を下記表1に示す。このとき、溶鋼の撹拌はArガスをランスから溶鋼中に吹き込むことによって行った。成分調整と脱硫処理を終えた取鍋を移送し、真空循環脱ガス装置で溶鋼還流してRH処理を行った。溶鋼還流時間(RH処理時間)を下記表1に併記する。尚、比較のために、取鍋精錬を行なかったもの(表1のNo.3、4)やRH処理を行なわなかった溶鋼(表1のNo.5、6)についても準備した。   250 tons of molten steel decarburized in the converter was put into a ladle, and various alloy irons were added to the ladle using a ladle refining apparatus to adjust to a predetermined chemical composition and desulfurization was performed simultaneously. The composition of desulfurization slag in ladle refining is shown in Table 1 below. At this time, stirring of the molten steel was performed by blowing Ar gas into the molten steel from the lance. The ladle after the component adjustment and the desulfurization treatment was transferred, and the molten steel was refluxed with a vacuum circulation degassing apparatus to perform the RH treatment. The molten steel reflux time (RH treatment time) is also shown in Table 1 below. In addition, for the sake of comparison, ladle refining (No. 3 and 4 in Table 1) and molten steel not subjected to RH treatment (No. 5 and 6 in Table 1) were also prepared.

Figure 0004502944
Figure 0004502944

RH処理を終えた溶鋼は、連続鋳造によってスラブ鋼塊に鋳造し、得られたスラブ鋳塊を熱間圧延することによって厚さ:3〜4mmの熱延鋼板とした。引き続き、熱延鋼板を冷間圧延し、厚さ2〜3mmの冷延鋼板とした。   The molten steel after the RH treatment was cast into a slab ingot by continuous casting, and the obtained slab ingot was hot rolled to obtain a hot rolled steel sheet having a thickness of 3 to 4 mm. Subsequently, the hot-rolled steel sheet was cold-rolled to obtain a cold-rolled steel sheet having a thickness of 2 to 3 mm.

得られた各冷延鋼板について、孔拡げ試験片を採取し、下記の方法によって孔拡げ性を評価すると共に、鋼板中のCaO−Al系介在物の個数を下記の方法によって測定した。
[孔拡げ性]
孔拡げ試験片に打ち抜き加工を施し、得られた打ち抜き孔穴ついて孔拡げ試験を行い、得られた打ち抜き孔(直径D=10mmφ)に頂角60°の円錐ポンチを差し込んで、孔を押し拡げ、孔の周囲に生じた割れが板厚を貫通したときの直径Dを測定し、下記式によって限界孔拡げ率λ(%)を求めた。この限界孔拡げ率λ(%)が大きい値を示すほど、延性が良好であることを示す。
λ(%)=[(D−D)/D]×100
Each cold-rolled steel sheet obtained, hole expanding test pieces were taken, as well as evaluate the hole expandability by the following method, was measured the number of CaO-Al 2 O 3 inclusions in the steel sheet by the following method .
[Pole expandability]
A hole expansion test piece is punched, and a hole expansion test is performed on the obtained punched hole. A conical punch with a vertex angle of 60 ° is inserted into the obtained punched hole (diameter D 0 = 10 mmφ) to expand the hole. the diameter D 1 of the when cracks generated around the hole penetrates the thickness was measured to determine expanding ratio limit holes λ a (%) by the following equation. It shows that ductility is so favorable that this critical hole expansion rate (lambda) (%) shows a large value.
λ (%) = [(D 1 −D 0 ) / D 0 ] × 100

[CaO−Al系介在物の個数]
冷延鋼板中の介在物は、特開平2002−340885に開示された方法で抽出した。具体的には、冷延鋼板に溶体化処理(鋼板中の炭化物を消失させるために、1000℃、30分間保持した後、水冷)を施し、該冷延鋼板から各々試料1kg(3.2mm×100mm×50mmの試料を8枚)を採取した。この試料を、pH6.0に調整した塩化第一鉄水溶液(電解液)に浸漬させて、定電流電解法(電流密度:200A/m)により鉄マトリックス1kg分を溶解した後、孔径27μmのフィルタを用いて濾過を行い、CaO含有介在物を含む残渣を得た。得られた残渣を用い、波長分散型SEM装置でCaO+SiO+Al+MgO=100%としたときの、CaO:5%以上、SiO:0.1%以上、Al:60%以上を含み、且つ長径:30μm以上のCaO−Al系介在物の個数を求めた。
[Number of CaO—Al 2 O 3 inclusions]
Inclusions in the cold-rolled steel sheet were extracted by the method disclosed in Japanese Patent Application Laid-Open No. 2002-340885. Specifically, the cold-rolled steel sheet was subjected to a solution treatment (in order to eliminate carbides in the steel sheet, after holding at 1000 ° C. for 30 minutes and then water-cooled), and each 1 kg (3.2 mm ×) sample from the cold-rolled steel sheet 8 samples of 100 mm × 50 mm) were collected. This sample was immersed in a ferrous chloride aqueous solution (electrolytic solution) adjusted to pH 6.0, and 1 kg of iron matrix was dissolved by a constant current electrolysis method (current density: 200 A / m 2 ), and then the pore diameter was 27 μm. Filtration was performed using a filter to obtain a residue containing CaO-containing inclusions. Using the obtained residue, CaO: 5% or more, SiO 2 : 0.1% or more, Al 2 O 3 : 60% when CaO + SiO 2 + Al 2 O 3 + MgO = 100% with a wavelength dispersion type SEM apparatus. The number of CaO—Al 2 O 3 inclusions including the above and having a major axis of 30 μm or more was determined.

その結果を、鋼板の化学成分組成および抽出されたCaO−Al系介在物の平均組成と共に、下記表2に示す。 The results are shown in Table 2 below together with the chemical composition of the steel sheet and the average composition of the extracted CaO—Al 2 O 3 inclusions.

Figure 0004502944
Figure 0004502944

この結果から、次のように考察できる。まず、試験No.9〜12のものは、本発明で規定する要件の全てを満足するものであり、CaO−Al系介在物の個数が少なくなって、優れた孔拡げ性が達成されていることが分かる。 From this result, it can be considered as follows. First, test no. 9-12 of things is to satisfy all the requirements specified in the present invention, is less the number of CaO-Al 2 O 3 inclusions, that good hole expandability is achieved I understand.

これに対して、試験No.1〜8のものでは、本発明で規定する要件の少なくともいずれかを欠くものであり、良好な孔拡げ性が得られていない。即ち、試験No.1〜5のものでは、RH処理時間は本発明で規定する範囲内であり、CaO−Al系介在物個数も本発明で規定する範囲内になっているのであるが、取鍋精錬における脱硫スラグ組成が本発明で規定する要件を満たしていないか(試験No.1〜3)、或いは取鍋精錬を実施していない(試験No.4,5)ので、鋼板中のS含有量が多くなっており、良好な延性が得られていない。 In contrast, test no. In the thing of 1-8, at least any of the requirements prescribed | regulated by this invention is missing, and favorable hole expansibility is not acquired. That is, test no. In the case of 1-5, the RH treatment time is within the range specified by the present invention, and the number of CaO-Al 2 O 3 inclusions is also within the range specified by the present invention. S desulfurization slag composition in the steel does not meet the requirements specified in the present invention (Test Nos. 1 to 3), or ladle refining is not carried out (Test Nos. 4 and 5), S content in the steel plate Is increasing, and good ductility is not obtained.

また、試験No.6〜8のものでは、取鍋精錬における脱硫スラグ組成が本発明で規定する要件を満たしており、鋼板中のS含有量は0.005%以下となっているのであるが、取鍋精錬に続くRH処理を実施していない(試験No.6,7)か、或いはRH処理における処理時間が10分に満たない(試験No.8)ため、CaO−Al系介在物の個数が70個/kgを超えてしまい、孔拡げ性が劣化している。
In addition, Test No. In the case of 6-8, the desulfurization slag composition in ladle refining satisfies the requirements defined in the present invention, and the S content in the steel sheet is 0.005% or less. Since the subsequent RH treatment is not carried out (test No. 6, 7) or the treatment time in the RH treatment is less than 10 minutes (test No. 8), the number of CaO—Al 2 O 3 inclusions is It exceeds 70 pieces / kg, and the hole expandability is deteriorated.

Claims (2)

C:0.04〜0.25%(質量%の意味、以下同じ)、Si:0.05〜3%、Mn:0.1〜3%、Al:0.01〜2%、P:0.02%以下(0%を含まない)を夫々含むと共に、S:0.005%以下(0%を含む)に抑制し、残部がFeおよび不可避不純物からなる薄鋼板であって、
CaO、Al、SiOおよびMgOの酸化物の合計を100%としたとき、CaO:5%以上、18.3%以下、SiO:0.1%以上、9.2%以下、Al:60%以上、MgO:残部であり、且つ長径30μm以上の介在物が鋼材1kg当り70個以下であることを特徴とする延性に富む薄鋼板。
C: 0.04 to 0.25% (meaning of mass%, the same applies hereinafter), Si: 0.05 to 3%, Mn: 0.1 to 3%, Al: 0.01 to 2%, P: 0 0.02% or less (not including 0%) and S: 0.005% or less (including 0%), and the balance is a thin steel plate made of Fe and inevitable impurities,
When the total of oxides of CaO, Al 2 O 3 , SiO 2 and MgO is 100%, CaO: 5% or more, 18.3% or less, SiO 2 : 0.1% or more, 9.2% or less, al 2 O 3: 60% or more, MgO: a balance, and steel sheets ductile, wherein the major axis 30μm or more inclusions is not more than 70 per steel 1 kg.
請求項1に記載の薄鋼板を得るための鋼塊を製造する方法であって、脱炭炉にて脱炭した溶鋼を取鍋内に移した後、CaO系フラックスを添加することによって、スラグ中のCaO、Al、SiO、MgO、MnOおよび全Fe量の合計を100%としたとき、CaO:45%以上、SiO :6.2%以下、MgO:9.7%以下、全Fe量:5%以下MnO:3%以下、Al :残部のCaO系スラグを取鍋内溶鋼上に形成させ、溶鋼とスラグをガス撹拌しながら取鍋内溶鋼のS含有量を0.005%以下に脱硫し、引き続き真空循環脱ガス装置にて溶鋼を10分以上還流した後、この溶鋼を鋳造することを特徴とする延性に富む薄鋼板を得るための鋼塊の製造方法。 A method for producing a steel ingot for obtaining the thin steel plate according to claim 1, wherein the molten steel decarburized in a decarburization furnace is transferred into a ladle, and then a CaO-based flux is added to thereby add slag. CaO: 45% or more , SiO 2 : 6.2% or less, MgO: 9.7% or less, assuming that the total amount of CaO, Al 2 O 3 , SiO 2 , MgO, MnO and total Fe is 100% , Total Fe content: 5% or less , MnO: 3% or less , Al 2 O 3 : The remaining CaO-based slag is formed on the molten steel in the ladle, and the molten steel and slag are mixed with S in the ladle while gas stirring. The amount of steel ingot to obtain a ductile thin steel sheet characterized by desulfurizing the amount to 0.005% or less and subsequently refluxing the molten steel for 10 minutes or more in a vacuum circulation degassing apparatus and then casting the molten steel Production method.
JP2005348021A 2004-12-09 2005-12-01 Thin steel plate rich in ductility and method for producing steel ingot to obtain the steel plate Expired - Fee Related JP4502944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005348021A JP4502944B2 (en) 2004-12-09 2005-12-01 Thin steel plate rich in ductility and method for producing steel ingot to obtain the steel plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004357161 2004-12-09
JP2005348021A JP4502944B2 (en) 2004-12-09 2005-12-01 Thin steel plate rich in ductility and method for producing steel ingot to obtain the steel plate

Publications (2)

Publication Number Publication Date
JP2006188755A JP2006188755A (en) 2006-07-20
JP4502944B2 true JP4502944B2 (en) 2010-07-14

Family

ID=36796210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005348021A Expired - Fee Related JP4502944B2 (en) 2004-12-09 2005-12-01 Thin steel plate rich in ductility and method for producing steel ingot to obtain the steel plate

Country Status (1)

Country Link
JP (1) JP4502944B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102400035B (en) * 2010-09-07 2014-06-04 鞍钢股份有限公司 Ultra-fine grain common carbon steel plate with yield strength of more than 550MPa and manufacturing method thereof
JP6048623B2 (en) * 2014-06-23 2016-12-21 Jfeスチール株式会社 High strength steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200317A (en) * 1992-12-28 1994-07-19 Kawasaki Steel Corp Method for melting high cleanliness steel
JPH08283826A (en) * 1995-04-10 1996-10-29 Sumitomo Metal Ind Ltd Production of high purity ultralow sulfur hic resistant steel
JP2000119802A (en) * 1998-10-08 2000-04-25 Kawasaki Steel Corp Ultra-thin steel sheet excellent in surface characteristic
JP2003247047A (en) * 2002-02-25 2003-09-05 Sumitomo Metal Ind Ltd Electric resistance welded tube and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200317A (en) * 1992-12-28 1994-07-19 Kawasaki Steel Corp Method for melting high cleanliness steel
JPH08283826A (en) * 1995-04-10 1996-10-29 Sumitomo Metal Ind Ltd Production of high purity ultralow sulfur hic resistant steel
JP2000119802A (en) * 1998-10-08 2000-04-25 Kawasaki Steel Corp Ultra-thin steel sheet excellent in surface characteristic
JP2003247047A (en) * 2002-02-25 2003-09-05 Sumitomo Metal Ind Ltd Electric resistance welded tube and production method thereof

Also Published As

Publication number Publication date
JP2006188755A (en) 2006-07-20

Similar Documents

Publication Publication Date Title
JP5277556B2 (en) Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab
JP5803824B2 (en) Method of melting carburized bearing steel
CN112011738B (en) Low-cost composite rare earth structural steel and production method thereof
WO2021172381A1 (en) Stainless steel for metal foils, satinless steel foil, method for roducing stainless steel for metal foils, and method for producing satinless steel foil
JP5541310B2 (en) Manufacturing method of highly clean steel
JP5381243B2 (en) Method for refining molten steel
US20120261085A1 (en) Extremely low carbon steel plate excellent in surface characteristics, workability, and formability and a method of producing extremely low carbon cast slab
KR100711410B1 (en) Highly Ductile Steel Sheet and Method of Manufacturing the Same
JP6903182B1 (en) Ni-Cr-Al-Fe alloy with excellent surface properties and its manufacturing method
JP2009242912A (en) Method for melting and manufacturing titanium-added ultra-low carbon steel and method for producing titanium-added ultra-low carbon steel cast slab
CN115244199A (en) Stainless steel, stainless steel material, and method for producing stainless steel
JP4502944B2 (en) Thin steel plate rich in ductility and method for producing steel ingot to obtain the steel plate
JP5590056B2 (en) Manufacturing method of highly clean steel
JP4510787B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JP2018015794A (en) Manufacturing method of low carbon steel thin slab, low carbon steel thin slab, and manufacturing method of low carbon steel thin steel sheet
JP2008266706A (en) Method for continuously casting ferritic stainless steel slab
JP2019018238A (en) Method for producing low carbon steel thin slab, low carbon steel thin slab, and method for producing low carbon thin steel sheet
JP2001105101A (en) Melting method of steel plate for thin sheet
JP2001011528A (en) Method for melting steel excellent in hydrogen induced cracking resistance
JP4418119B2 (en) Method for dispersing fine oxides in molten steel
JP4312068B2 (en) Method of melting ultra-low carbon steel
JP4025718B2 (en) Extremely low carbon steel sheet excellent in surface properties, workability and formability, and method for producing the same
JP2015183259A (en) Method for melting high cleanliness steel
JPWO2020071048A1 (en) Manufacturing method of non-oriented electrical steel sheet and slab slab as its material
TW202132588A (en) Ferritic stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100420

R150 Certificate of patent or registration of utility model

Ref document number: 4502944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees