JP4502673B2 - Filler, composite resin using the filler, and dental prosthesis using the composite resin - Google Patents

Filler, composite resin using the filler, and dental prosthesis using the composite resin Download PDF

Info

Publication number
JP4502673B2
JP4502673B2 JP2004075011A JP2004075011A JP4502673B2 JP 4502673 B2 JP4502673 B2 JP 4502673B2 JP 2004075011 A JP2004075011 A JP 2004075011A JP 2004075011 A JP2004075011 A JP 2004075011A JP 4502673 B2 JP4502673 B2 JP 4502673B2
Authority
JP
Japan
Prior art keywords
filler
composite resin
particle size
refractive index
dental
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004075011A
Other languages
Japanese (ja)
Other versions
JP2005263648A (en
Inventor
武 星川
愛 宮崎
喬大 加藤
照男 安楽
裕久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamamoto Precious Metal Co Ltd
Original Assignee
Yamamoto Precious Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamoto Precious Metal Co Ltd filed Critical Yamamoto Precious Metal Co Ltd
Priority to JP2004075011A priority Critical patent/JP4502673B2/en
Publication of JP2005263648A publication Critical patent/JP2005263648A/en
Application granted granted Critical
Publication of JP4502673B2 publication Critical patent/JP4502673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、歯科用複合レジンに関する。詳しくは、義歯、前装歯冠、及び歯科修復物などの歯科補綴物においてその作製の操作性と研削加工性が良好であり、しかも硬化した後に審美性(光透過性)、機械的強度、耐摩耗性、表面滑沢性、耐汚染性及び低吸水性に優れる複合レジン、並びに該複合レジンから作製された歯科補綴物(義歯、前装歯冠及び歯科修復物)に関する。   The present invention relates to a dental composite resin. Specifically, in dental prostheses such as dentures, prosthetic crowns, and dental restorations, the operability and grinding workability of the preparation are good, and after curing, aesthetics (light transmission), mechanical strength, The present invention relates to a composite resin excellent in wear resistance, surface smoothness, stain resistance and low water absorption, and a dental prosthesis (denture, anterior crown and dental restoration) made from the composite resin.

近年、透明性多官能性メタクリレート系のレジンが、審美性に優れ操作が簡便であるなどの理由から金属材料やセラミックス材料に代わって、義歯、前装歯冠及び歯科修復物などの補綴材料として多用されている。歯科用のレジンは、一般的に多官能性メタクリレート系のモノマーに、無機質フィラー、重合開始剤、着色剤、乳化剤などを配合したペースト状からなり、各成分に特徴を持たせた多くの組成が提案されている。   In recent years, transparent polyfunctional methacrylate resins have been used as prosthetic materials such as dentures, prosthetic crowns, and dental restorations in place of metal materials and ceramic materials because they have excellent aesthetics and are easy to operate. It is used a lot. A dental resin is generally made of a polyfunctional methacrylate-based monomer and an inorganic filler, a polymerization initiator, a colorant, an emulsifier, etc., and has a composition with many characteristics. Proposed.

歯科補綴物は、まず天然歯と同じ色調の外観の再現(審美性)が求められる。即ち、硬化後のレジンは、透明性に優れ、乳化剤の添加により半透明性を制御でき、着色顔料の添加により多様な色調を表現できることが使命である。さらに、硬化後のレジンは、咀嚼に耐える機械的強度と耐摩耗性、さらには表面光沢の保持、耐汚染性、低吸水性などが求められている。   Dental prosthesis is required to reproduce the appearance of the same color tone as natural teeth (aesthetics). That is, the mission of the resin after curing is excellent in transparency, the translucency can be controlled by adding an emulsifier, and various color tones can be expressed by adding a coloring pigment. Furthermore, the cured resin is required to have mechanical strength and abrasion resistance that can withstand mastication, as well as maintenance of surface gloss, contamination resistance, low water absorption, and the like.

多官能性メタクリレート系のポリマーは、透光性や生体安全性に優れるが、硬度と機械的強度が小さく歯科補綴材には適合しない。そのため、硬化後の硬さや機械的強さを増強させるため、該ポリマーに無機質フィラーを充填した複合レジンが歯科補綴用に供されている。従って、フィラーの特性(例えば、フィラーの成分、機械的強度や光透過性などの物性、形状、粒子径、屈折率(nD))やその含有率は、硬化後の複合レジンの透明性、光沢、機械的強度、耐摩耗性、吸水量などに影響を与えるとともに操作性に大きな影響を与える。   Polyfunctional methacrylate polymers are excellent in translucency and biosafety, but have low hardness and mechanical strength and are not suitable for dental prosthetic materials. Therefore, in order to enhance the hardness and mechanical strength after curing, a composite resin in which the polymer is filled with an inorganic filler is used for dental prosthesis. Therefore, filler properties (for example, filler components, physical properties such as mechanical strength and light transmittance, shape, particle diameter, refractive index (nD)) and their contents are determined by the transparency and gloss of the composite resin after curing. It affects the mechanical strength, wear resistance, water absorption, etc. as well as the operability.

ここで、複合レジン硬化体の透明性については、次のような知見が報告されている。   Here, the following knowledge about the transparency of the composite resin cured body has been reported.

(1)フィラーの屈折率(nD)と硬化後のポリマー相の屈折率(nD)との差が大きいと、その複合レジンの硬化体が白濁し光透過率が極端に低下して、天然歯の色調再現に不可欠な着色が困難になる。そのため、フィラーの屈折率(nD)は、硬化後のポリマーの屈折率(nD)に対して、±0.006以内で調整する必要がある(非特許文献1)。   (1) If the difference between the refractive index (nD) of the filler and the refractive index (nD) of the polymer phase after curing is large, the cured product of the composite resin becomes cloudy and the light transmittance is extremely reduced. Coloring that is indispensable for color tone reproduction becomes difficult. Therefore, the refractive index (nD) of the filler needs to be adjusted within ± 0.006 with respect to the refractive index (nD) of the polymer after curing (Non-patent Document 1).

(2)フィラー粒子径が約40nm以下の時には、可視光線の波長(0.4〜0.7μm)より十分に小さいために、ポリマー相とフィラー材質の屈折率(nD)とは無関係に、光を透過し透明となるため好ましい(非特許文献2)。   (2) When the filler particle diameter is about 40 nm or less, it is sufficiently smaller than the wavelength of visible light (0.4 to 0.7 μm), so it transmits light regardless of the polymer phase and the refractive index (nD) of the filler material. Since it becomes transparent, it is preferable (nonpatent literature 2).

(3)フィラーを、例えばゲル体のような微細孔組織を持つ多孔質体にすると、重合性モノマーが細孔に含浸し、実質的に(2)の微粒子を使用した場合と同じように、可視光線を透過して透明になる。   (3) When the filler is made into a porous body having a fine pore structure such as a gel body, for example, the polymerizable monomer is impregnated into the pores, and substantially the same as when the fine particles of (2) are used, Transparent to visible light.

(1)の要求を満足するために、例えば、屈折率(nD)を調整したガラス製フィラーがある。ガラス製フィラーの粒子径が1μm以下になると硬化複合レジンは機械的強度と表面光沢に優れるが、フィラー表面積が増大するために複合レジンの粘性が著しく増大して操作性に欠け、結果として充填率と機械強度が低下する。他方、ガラス製フィラーの粒子径が5μm以上になると、充填量が増加できるが機械的強度の増大率が小さくなると共に研磨面が粗くて滑沢性に劣る。   In order to satisfy the requirement of (1), for example, there is a glass filler whose refractive index (nD) is adjusted. When the particle size of the glass filler is 1 μm or less, the cured composite resin is excellent in mechanical strength and surface gloss. However, since the filler surface area is increased, the viscosity of the composite resin is remarkably increased, resulting in lack of operability, resulting in a filling rate. And mechanical strength decreases. On the other hand, when the particle size of the glass filler is 5 μm or more, the filling amount can be increased, but the rate of increase in mechanical strength is reduced and the polished surface is rough and the lubricity is poor.

そこで、1μm以下のガラス粉体を、1〜10数μmの大きさに凝集・焼結させてフィラーとして使用することにより、複合体中における充填率を増加させ、機械的強度と耐摩耗性を大幅に改善できることが報告されている(特許文献1)。しかし、ボールミル、遊星ミル、振動床ミル、ジェットミル法等によりガラスを粉砕する際に、ボールや容器からの混入物が発生し透明性を損なわれ、その除去は事実上不可能とされている。しかも、混入物が少ないジェットミル法は量産性に劣るなど問題が大きい。   Therefore, glass powder of 1 μm or less is aggregated and sintered to a size of 1 to several tens of μm and used as a filler, thereby increasing the filling rate in the composite and improving mechanical strength and wear resistance. It has been reported that it can be greatly improved (Patent Document 1). However, when glass is crushed by ball mill, planetary mill, vibrating bed mill, jet mill method, etc., contaminants are generated from the balls and containers, and transparency is lost, and its removal is virtually impossible. . In addition, the jet mill method with few contaminants has serious problems such as inferior mass productivity.

(2)の場合、透明性の高いレジン硬化体が得られるが、硬さと機械的強度に問題がある。   In the case of (2), a cured resin having high transparency can be obtained, but there are problems in hardness and mechanical strength.

(3)ゾルーゲル体を焼成して得た多孔質体をフィラーとする報告例は多く、主としてSiO2-ZrO2(又はTiO2)系のフィラー等が実用的と考えられている。この多孔質体は、屈折率(nD)の調節、研削性、表面滑性と光沢性など優れた性能をするが、臼歯での咀嚼に耐えるに必要な硬度と機械的強度が得られないという問題がある。 (3) There are many reports that use a porous body obtained by firing a sol-gel body as a filler, and SiO 2 —ZrO 2 (or TiO 2 ) based fillers are considered to be practical. This porous body has excellent performance such as adjustment of refractive index (nD), grindability, surface lubricity and glossiness, but the hardness and mechanical strength necessary to withstand mastication with molars cannot be obtained. There's a problem.

また、SiO2-ZrO2(又はTiO2)系ゲル体は、高温度で焼結すると大きな屈折率(nD)を持つtetra-ZrO2(屈折率(nD)=2.2)やルチル(TiO2、屈折率(nD)=2.4)結晶が析出し、透明性が損なわれることが多い。 In addition, SiO 2 -ZrO 2 (or TiO 2 ) -based gel bodies are tetra-ZrO 2 (refractive index (nD) = 2.2) or rutile (TiO 2 , having a large refractive index (nD) when sintered at high temperatures. (Refractive index (nD) = 2.4) Crystals often precipitate, and transparency is often impaired.

なお、粒子径が0.1〜1μmの範囲にあり、粒度分布が整った真球状フィラーを使用する方法が提案されているが(特許文献2〜4を参照)、真球フィラーを使用するとペースト状態での流れ性が大きいために、複合レジンの操作性に問題を生じる。   A method of using a true spherical filler having a particle size in the range of 0.1 to 1 μm and a uniform particle size distribution has been proposed (see Patent Documents 2 to 4). Since the flowability in the state is large, a problem occurs in the operability of the composite resin.

また、上記以外の複合レジンとしては、X線造影性を有するBaOを含むハイブリッドセラミックスタイプのSiO2-BaO-Al2O3系ガラスを用いる複合レジンが報告されている(特許文献5及び6を参照)。 As composite resins other than the above, composite resins using hybrid ceramic type SiO 2 —BaO—Al 2 O 3 glass containing BaO having X-ray contrast properties have been reported (Patent Documents 5 and 6). reference).

以上のように、これまでに多くの歯科用複合レジンが開発・発売されており、それらの概要は例えば非特許文献3及び非特許文献4に示されている。   As described above, many dental composite resins have been developed and put on the market, and their outline is shown in, for example, Non-Patent Document 3 and Non-Patent Document 4.

結局のところ、(1)のガラス材では約1μmへの粉砕とその過程で発生するコンタミに問題があり、(2)の微粒子SiO2では強度と硬度に問題がある。また、(3)の多孔質体では強度に問題があり、またSiO2−ZrO2(又はSiO2−TiO2)ゲルの焼結体では析出する高屈折率(nD)のZrO2またはTiO2結晶粒子の異常成長による乳濁化などが問題となり、生産性において、多くの課題を含んでいる。
日歯技工誌22,109〜114(2001) 日歯技工誌22,112〜117(2001) QDT別冊、新版 硬質レジンの世界―硬質レジンの理論・臨床応用・技工操作・熱から光への変遷―クインテッセンス出版株式会社、(2001年1月) ‘99 月刊歯科技工別冊「セラミックス・高分子複合型歯科修復材料の臨床・技工」、医歯薬出版社、(1999年8月) 特開平7-196430号公報 特開昭62-89701号公報 特公平1-57082号公報 米国特許第4764497号明細書 米国特許第3826778号明細書 米国特許第3629187号明細書
After all, the glass material of (1) has a problem in crushing to about 1 μm and the contamination generated in the process, and the fine particle SiO 2 of (2) has a problem in strength and hardness. Further, the porous body (3) has a problem in strength, and the sintered body of SiO 2 —ZrO 2 (or SiO 2 —TiO 2 ) gel precipitates high refractive index (nD) ZrO 2 or TiO 2. Emulsification due to abnormal growth of crystal particles is a problem, and many problems are involved in productivity.
Nippon Dental Technology Journal 22, 109-114 (2001) Nippon Dental Technology Journal 22,112-117 (2001) QDT separate volume, new edition The world of hard resin-Theory, clinical application, engineering operation, transition from heat to light of hard resin-Quintessence Publishing Co., Ltd. (January 2001) '99 Monthly Dental Technician Volume "Clinical / Technology of Ceramics / Polymer Composite Type Dental Restoration Materials", Ishiyaku Publishing Co., Ltd. (August 1999) Japanese Unexamined Patent Publication No. 7-19430 JP-A-62-89701 Japanese Patent Publication No. 1-57082 U.S. Patent No. 4764497 US Pat. No. 3,826778 U.S. Pat.No. 3,629,187

本発明は、従来の問題点を解消乃至低減し得る、優れた特性を有する複合レジンの原料となるフィラーを提供することを目的とする。具体的には、該複合レジンを硬化させて得られる硬化物(義歯、前装歯冠、及び歯科修復物など)に、優れた光透過性、機械的強度、表面硬度、耐汚染性、低吸水性、耐研磨性、表面光沢性、滑沢性などの特性を付与できるフィラーを提供することを目的とする。   An object of this invention is to provide the filler used as the raw material of the composite resin which has the outstanding characteristic which can eliminate thru | or reduce the conventional problem. Specifically, cured products (dentures, anterior crowns, dental restorations, etc.) obtained by curing the composite resin have excellent light transmittance, mechanical strength, surface hardness, stain resistance, low It is an object of the present invention to provide a filler capable of imparting properties such as water absorption, abrasion resistance, surface glossiness, and lubricity.

また、本発明は、該フィラーを含む複合レジン、並びに該複合レジンから作製された義歯、前装歯冠、及び歯科修復物などを提供することをも目的とする。   Another object of the present invention is to provide a composite resin containing the filler, and a denture, anterior crown, and a dental restoration made from the composite resin.

本発明者は、上記の課題を解決するべく鋭意検討を行った結果、次のような知見を得た。   As a result of intensive studies to solve the above problems, the present inventor has obtained the following knowledge.

SiO2-Al2O3系のゾルーゲル体を乾燥して乾燥ゲル体とし、これを粉砕することにより、コンタミがなく透明性の高い特定の粒子径(平均粒子径0.4〜0.9μm程度)を有する乾燥ゲル微粒子(焼成後、焼結1次粒子となる)が得られる。 The SiO 2 —Al 2 O 3 sol-gel body is dried to form a dry gel body, and this is pulverized to have a specific particle diameter (average particle diameter of about 0.4 to 0.9 μm) with no contamination and high transparency. Dry gel fine particles (which become sintered primary particles after firing) are obtained.

該ゲル微粒子を特定の条件で加熱処理することにより、微細なムライト結晶(屈折率(nD)=1.68)が均質に析出し、透明性が高い焼結1次粒子が形成される。該ゲル微粒子を予め3〜20μmの大きさに凝集させておくと、上記の加熱処理により1次粒子が部分的に結合して平均粒子径3〜20μm程度の2次粒子が形成され、フィラーとなる。この1次粒子間の結合は緩く、簡単な解砕操作で任意の粒度分布へと粒度調整できる。また、フィラーの屈折率は、複合する重合高分子の屈折率と同等又は近似するため、複合レジン硬化物は該フィラー充填率を高めても透明性が確保され、高い曲げ強度と研磨面の滑沢性などを兼ね備える。   By subjecting the gel fine particles to heat treatment under specific conditions, fine mullite crystals (refractive index (nD) = 1.68) are uniformly precipitated, and sintered primary particles having high transparency are formed. When the gel fine particles are agglomerated in advance to a size of 3 to 20 μm, the primary particles are partially bonded by the heat treatment to form secondary particles having an average particle size of about 3 to 20 μm. Become. The bond between the primary particles is loose, and the particle size can be adjusted to an arbitrary particle size distribution by a simple crushing operation. In addition, since the refractive index of the filler is equal to or close to the refractive index of the polymerized polymer to be compounded, the cured composite resin can maintain transparency even when the filler filling rate is increased, and has high bending strength and smoothness of the polished surface. Combined with a variety of characteristics.

従って、上記の特徴を有するフィラーは、上記の従来技術の問題点を解消しうる、歯科用複合レジンのフィラーとして好適に用いることができると考えられた。   Therefore, it was considered that the filler having the above-described characteristics can be suitably used as a filler for a dental composite resin that can solve the above-described problems of the prior art.

かかる知見に基づき、さらに検討を加えることにより、本発明を完成させるに至った。   Based on this knowledge, further studies have been made to complete the present invention.

即ち、本発明は、以下のフィラー、該フィラーを含む歯科用複合レジン、及び該レジンから作製された義歯、前装歯冠、及び歯科修復物を提供する。   That is, the present invention provides the following filler, a dental composite resin containing the filler, and a denture, a prosthetic crown, and a dental restoration made from the resin.

項1. SiO2を90〜65重量%、Al2O3を10〜35重量%、及びZrO2を0〜10重量%含有するフィラーであって、微細ムライト結晶を含有する焼結1次粒子が部分的に結合して二次粒子を形成してなる高い透明性を有するフィラー。 Item 1. The SiO 2 90 to 65 wt%, the Al 2 O 3 10 to 35 wt%, and ZrO 2 with a filler containing 0-10% by weight, partially sintered primary particles containing fine mullite crystals A highly transparent filler formed by bonding to a secondary particle.

項2. 屈折率(nD)が1.49〜1.52の範囲にある項1に記載のフィラー。   Item 2. Item 3. The filler according to Item 1, wherein the refractive index (nD) is in the range of 1.49 to 1.52.

項3. 微細ムライト結晶を含有する焼結1次粒子の平均粒子径が0.4〜0.9μmである項2に記載のフィラー。   Item 3. Item 3. The filler according to Item 2, wherein the sintered primary particles containing fine mullite crystals have an average particle size of 0.4 to 0.9 μm.

項4. 微細ムライト結晶を含有する焼結1次粒子が部分的に結合した二次粒子の平均粒子径が1〜20μmである項3に記載のフィラー。   Item 4. Item 4. The filler according to Item 3, wherein the secondary particles in which sintered primary particles containing fine mullite crystals are partially bonded have an average particle diameter of 1 to 20 µm.

項5. 項4に記載のフィラー、重合性モノマー、重合開始剤、及び必要に応じ着色顔料を含有する複合レジン。   Item 5. Item 5. A composite resin containing the filler according to item 4, a polymerizable monomer, a polymerization initiator, and, if necessary, a color pigment.

項6. 項5に記載の複合レジンを成形後、光照射で重合されてなる歯科補綴物。   Item 6. A dental prosthesis obtained by polymerizing the composite resin according to Item 5 by light irradiation after molding.

項7. 項5に記載の複合レジンを成形後、加熱で重合されてなる歯科補綴物。   Item 7. A dental prosthesis obtained by polymerizing the composite resin according to Item 5 by heating after molding.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

フィラー
本発明のフィラーは、微細なムライト結晶(ムライト固溶体を含む)が均質に分布したSiO2-Al2O3系無機酸化物(必要に応じSiO2-Al2O3-ZrO2系無機酸化物)を含む焼結1次粒子が部分的に結合して二次粒子を形成したもので構成される。ここで、ムライトとは、3Al2O3・2SiO2-2Al2O3SiO2の範囲の化学組成を有し、斜方晶系、密度約3.16、モース硬度7.5、無色透明の結晶である。
Filler The filler of the present invention is a SiO 2 -Al 2 O 3 inorganic oxide in which fine mullite crystals (including mullite solid solution) are homogeneously distributed (SiO 2 -Al 2 O 3 -ZrO 2 inorganic oxide if necessary) Sintered primary particles including the product are partially bonded to form secondary particles. Here, mullite and has a chemical composition ranging from 3Al 2 O 3 · 2SiO 2 -2Al 2 O 3 SiO 2, orthorhombic, density of about 3.16, Mohs hardness 7.5, is a colorless transparent crystals.

本発明のフィラーは、SiO2成分を90〜65重量%程度(好ましくは83〜68重量%程度)、Al2O3成分を10〜35重量%程度(好ましくは13〜32重量%程度)、及びZrO2成分を0〜10重量%程度含有している。 The filler of the present invention has a SiO 2 component of about 90 to 65% by weight (preferably about 83 to 68% by weight), an Al 2 O 3 component of about 10 to 35% by weight (preferably about 13 to 32% by weight), And ZrO 2 component is contained in an amount of about 0 to 10% by weight.

本発明のフィラー屈折率(nD)は、複合レジン硬化物のマトリックスである重合高分子の屈折率(nD)と同等乃至近似している点に特徴を有する。該フィラーの屈折率(nD)と重合高分子の屈折率(nD)の差が±0.006の範囲内となる。   The filler refractive index (nD) of the present invention is characterized in that it is equivalent to or close to the refractive index (nD) of a polymerized polymer that is a matrix of a composite resin cured product. The difference between the refractive index (nD) of the filler and the refractive index (nD) of the polymerized polymer is in the range of ± 0.006.

また、上記フィラーの屈折率(nD)は、使用する重合高分子の屈折率によって変動するが、通常、1.49〜1.52の範囲内で制御すればよい。これらのフィラーの特性により、歯科補綴物(義歯、前装歯冠及び歯科修復物)は、高い透明性を有することとなる。   Further, the refractive index (nD) of the filler varies depending on the refractive index of the polymer used, but it is usually controlled within the range of 1.49 to 1.52. Due to the properties of these fillers, dental prostheses (dentures, anterior crowns and dental restorations) have high transparency.

さらに、本発明のフィラーは、上記焼結1次粒子の平均粒子径が特定の範囲内に制御されているという特徴も有している。その平均粒子径は0.4〜0.9μmの範囲内にあることが重要である。該1次粒子の平均粒子径が0.4μm未満になると後述の加熱処理工程(焼結工程)により1次粒子間の結合が過度に進行して20μm以上の焼結二次粒子が形成されてしまう。また1次粒子に平均粒子径が0.9μmを超えると5μm以上の大きな1次粒子が含まれる確率が多くなり、その大きな粒子を含む複合レジン硬化物ではその研磨面の十分な滑沢性が得られない。   Furthermore, the filler of the present invention also has a feature that the average particle diameter of the sintered primary particles is controlled within a specific range. It is important that the average particle diameter is in the range of 0.4 to 0.9 μm. When the average particle diameter of the primary particles becomes less than 0.4 μm, the bonding between the primary particles proceeds excessively by the heat treatment step (sintering step) described later, and sintered secondary particles of 20 μm or more are formed. . In addition, if the average particle diameter exceeds 0.9 μm in the primary particles, there is a high probability that large primary particles of 5 μm or more will be included, and the composite resin cured product containing such large particles will have sufficient smoothness of the polished surface. I can't.

本発明のフィラー、即ち焼結1次粒子が結合した凝集状の2次粒子は、ゾル−ゲル法で調整された多孔質SiO2-Al2O3非晶質体(必要に応じ、X線造影性のためにZrO2成分が少量加えられたSiO2-Al2O3-ZrO2非晶質体であってもよい)からなる粒子を上記粒子径に微粉砕してゲル微粒子を得、該ゲル微粒子を凝集させた後、加熱処理して作製される。 The filler of the present invention, that is, the aggregated secondary particles to which the sintered primary particles are bonded, is a porous SiO 2 —Al 2 O 3 amorphous material prepared by a sol-gel method (if necessary, X-ray The particles made of SiO 2 —Al 2 O 3 —ZrO 2 amorphous material to which a small amount of ZrO 2 component is added for contrast may be finely pulverized to the above particle diameter to obtain gel fine particles, The gel fine particles are aggregated and then heat-treated.

本発明のSiO2-Al2O3系のゲル微粉粒子(焼結後には1次粒子)は、高温での焼成により、粒子内にムライト結晶が均質分散状態で析出すると同時に焼結する。このムライト結晶の屈折率(nD)は1.68で、フィラーの非晶質相の屈折率(nD)に近く、しかもこの結晶が針状であるため、濁りが生じにくいと考えられる。 SiO 2 -Al 2 O 3 -based gel fine particles of the present invention (primary particles after sintering) is by firing at high temperature, sintering simultaneously mullite crystals precipitate homogeneous dispersed state in the particles. The refractive index (nD) of this mullite crystal is 1.68, which is close to the refractive index (nD) of the amorphous phase of the filler, and since this crystal is needle-shaped, it is considered that turbidity is unlikely to occur.

該焼成により、焼結1次粒子間の結合が弱い2次粒子を形成し、これが本発明のフィラーとなる。該フィラーを使用した歯科補綴物は、研削加工性能と研削・研磨後の表面滑沢性に優れる。また、該フィラーは、1次粒子間の結合が弱い2次粒子状であるために、歯科用複合レジンの操作性に必要な粒度分布の調整が容易である。   By the firing, secondary particles having weak bonds between the sintered primary particles are formed, and this becomes the filler of the present invention. A dental prosthesis using the filler is excellent in grinding performance and surface smoothness after grinding and polishing. In addition, since the filler is in the form of secondary particles with weak bonds between the primary particles, it is easy to adjust the particle size distribution necessary for the operability of the dental composite resin.

本発明の複合レジン硬化体は、平均粒子径が0.4〜0.9μm程度の1次粒子が結合したフィラー(平均粒子径=1〜20μm)を含有することにより大きな曲げ強度が付与される。本発明のフィラー(2次粒子)の表面は、大きな凹凸を持っており、この凹凸の中に重合性モノマーが入り込んで硬化することでかん合効果が生じ、機械的強度が高くなるものと考えられる。   The composite resin cured product of the present invention is provided with a large bending strength by containing a filler (average particle size = 1 to 20 μm) in which primary particles having an average particle size of about 0.4 to 0.9 μm are bound. The surface of the filler (secondary particle) of the present invention has large irregularities, and it is considered that a mating effect is produced by the polymerization monomer entering and curing in the irregularities and the mechanical strength is increased. It is done.

また、本発明のフィラーは、焼結1次粒子で構成されているのでその比表面積は小さくなっており、このフィラーを使用した複合レジン硬化体では吸水率が小さい。   Further, since the filler of the present invention is composed of sintered primary particles, its specific surface area is small, and a cured composite resin body using this filler has a low water absorption rate.

製造方法
本発明のフィラーは、アルコキシシラン、加水分解可能なアルミニウム化合物、及び必要に応じ加水分解可能なジルコニウム化合物の混合物を、ゾル−ゲル法により共沈−乾燥させてゲル体とし、該ゲル体を粉砕して微細粒子とした後、凝集させて加熱処理することにより製造される。
Production method The filler of the present invention comprises a mixture of an alkoxysilane, a hydrolyzable aluminum compound, and, if necessary, a hydrolyzable zirconium compound, co-precipitated and dried by a sol-gel method to form a gel body. Is pulverized into fine particles, and then agglomerated and heat-treated.

具体的には、アルコキシシラン、加水分解可能なアルミニウム化合物及び加水分解可能なジルコニウム化合物を溶媒中で均一に混合して、SiO2 90〜65重量%(好ましくは85〜70重量%)、Al2O3 10〜35重量%(好ましくは10〜30重量%)及びZrO2 0〜10重量%を含有する溶液を作製し、アルカリ溶液を混合して各成分を同時に加水分解させて、反応生成物のゲル粒子を析出させる。 Specifically, alkoxysilane, a hydrolyzable aluminum compound and a hydrolyzable zirconium compound are uniformly mixed in a solvent to obtain SiO 2 90 to 65% by weight (preferably 85 to 70% by weight), Al 2 A solution containing 10 to 35% by weight of O 3 (preferably 10 to 30% by weight) and 0 to 10% by weight of ZrO 2 is prepared, and an alkaline solution is mixed to hydrolyze each component at the same time. The gel particles are precipitated.

本発明においてフィラーをポリマーの屈折率(nD)に近似させるために、Al2O3含有率を適切な値に選択することが重要であり、アルミニウム化合物の使用量は上記の範囲内で調節することが好ましい。また、歯科補綴物においてX線造影性を付与するために、ZrO2成分を含有させてもよいが、レジン硬化物の透明度を維持するためには、上記ジルコニウム化合物の添加量は上記の範囲内で調節することが好ましい。 In the present invention, in order to approximate the filler to the refractive index (nD) of the polymer, it is important to select an appropriate content of Al 2 O 3 , and the amount of aluminum compound used is adjusted within the above range. It is preferable. Further, in order to provide X-ray contrast properties in a dental prosthesis, a ZrO 2 component may be contained, but in order to maintain the transparency of the cured resin, the amount of the zirconium compound added is within the above range. It is preferable to adjust with.

なお、フィラーの屈折率(nD)を増加させるTiO2、CeO2、Y2O3成分等の導入も可能であるが、それらの含有量は、加熱処理におけるムライト結晶の生成を妨げない範囲内であることが必要であり、最終的なフィラー全重量に対し3重量%以下の少量に留めることが望ましい。 It is possible to introduce TiO 2 , CeO 2 , Y 2 O 3 components, etc. that increase the refractive index (nD) of the filler, but their content is within a range that does not hinder the formation of mullite crystals in the heat treatment. It is desirable that the amount be 3% by weight or less based on the total weight of the final filler.

ここで、アルコキシシランとしては、一般式:Si(OR)4(Rはアルキル基、好ましくはメチル基、エチル基、プロピル基、ブチル基などを示す)で表わされる化合物が一般的である。好ましくはエトキシシラン又はメトキシシランが挙げられる。或いは、既にアルコキシシランの幾分かが加水分解したメチルシリケイトオリゴマーオリゴマー(SiO2含有量=52wt%、(CH3O)10Si4=約4量体、三菱化学(株)製のMS51)が安価で取り扱いやすい。 Here, the alkoxysilane is generally a compound represented by the general formula: Si (OR) 4 (R represents an alkyl group, preferably a methyl group, an ethyl group, a propyl group, a butyl group, or the like). Preferably, ethoxysilane or methoxysilane is used. Alternatively, a methyl silicate oligomer oligomer (SiO 2 content = 52 wt%, (CH 3 O) 10 Si 4 = about tetramer, MS51 manufactured by Mitsubishi Chemical Corporation) in which some alkoxysilanes are already hydrolyzed Cheap and easy to handle.

また、加水分解可能なアルミニウム化合物としては、安価で加熱分解し易いAl硝酸塩(Al(NO3)3)、Al酢酸塩(Al(OAc)3)、Alアセチルアセトネート塩等のAl塩類が挙げられる。該Al塩類は、通常水溶液として用いられる。また、一般式:Al(OR)3(Rはアルキル基、好ましくはプロピル基、ブチル基、イソプロピル基等を示す)で表される化合物も利用できる。 In addition, examples of the hydrolyzable aluminum compound include Al salts such as Al nitrate (Al (NO 3 ) 3 ), Al acetate (Al (OAc) 3 ), and Al acetylacetonate that are inexpensive and easily decomposed by heating. It is done. The Al salts are usually used as an aqueous solution. A compound represented by the general formula: Al (OR) 3 (R represents an alkyl group, preferably a propyl group, a butyl group, an isopropyl group, etc.) can also be used.

また、加水分解可能なジルコニウム化合物としては、一般式:Zr(OR')4(R’はアルキル基、好ましくはメチル基、エチル基、プロピル基、ブチル基などを示す)で表わされる化合物、ZrO(NO3)2・nH2O、ZrOCl2・nH2O等が例示される。ZrO(NO3)2・nH2O又はZrOCl2・nH2Oはその水溶液が安価であり好ましく、特に焼成時の分解ガスの取り扱いからは硝酸塩(ZrO(NO3)2・nH2O)がより望ましい。 Further, as a hydrolyzable zirconium compound, a compound represented by the general formula: Zr (OR ′) 4 (R ′ represents an alkyl group, preferably a methyl group, an ethyl group, a propyl group, a butyl group, etc.), ZrO Examples include (NO 3 ) 2 · nH 2 O, ZrOCl 2 · nH 2 O, and the like. ZrO (NO 3 ) 2 · nH 2 O or ZrOCl 2 · nH 2 O is preferred because its aqueous solution is inexpensive, and nitrates (ZrO (NO 3 ) 2 · nH 2 O) are particularly preferred from the handling of decomposition gas during firing. More desirable.

より具体的には、硝酸アルミニウム(Al(NO3)3・9H2O)を水に溶解し、エタノールなど親水性の有機溶媒で希釈する。これにジルコニウム化合物(例えば、ZrO(NO32水溶液(例えば25wt%ZrO2水溶液))を加えて充分混合する。さらにアルコキシシラン(例えば、メトキシオリゴマー(例えば三菱化学製のMS51:SiO2含有率=51wt%))を加えて均一透明な原料混合溶液とする。原料混合溶液における無機酸化物含有率は、1〜35重量%程度の範囲であり、好ましくは3〜10重量%程度の範囲である。水や有機溶媒の含有率が多いと乾燥に時間を要し不経済となり、溶媒が少ないと次の中和攪拌操作が困難となるからである。 More specifically, aluminum nitrate (Al (NO 3 ) 3 · 9H 2 O) is dissolved in water and diluted with a hydrophilic organic solvent such as ethanol. A zirconium compound (for example, a ZrO (NO 3 ) 2 aqueous solution (for example, a 25 wt% ZrO 2 aqueous solution)) is added to this and mixed well. Further, alkoxysilane (for example, methoxy oligomer (for example, MS51: SiO 2 content = 51 wt% manufactured by Mitsubishi Chemical)) is added to obtain a uniform transparent raw material mixed solution. The inorganic oxide content in the raw material mixed solution is in the range of about 1 to 35% by weight, preferably in the range of about 3 to 10% by weight. This is because if the content of water or organic solvent is large, it takes time to dry, which is uneconomical, and if the amount of solvent is small, the next neutralization stirring operation becomes difficult.

以上のように調製した原料混合溶液は、アルカリ性溶液を添加することにより、加水分解、共沈反応によりゾル−ゲル体化させる。アルカリ性溶液としては、前記に示した原料混合溶液を溶解し、水に任意の割合で溶解し、乾燥及び加熱処理によりフィラー中に残留しないアンモニア水が好ましい。アンモニア水の量は、原料混合溶液と混合した時に塩基性を示すことが必要で、一般には、pH7〜9程度、好ましくはpH8程度になる量が一つの目安となる。例えば、例えば市販アンモニア水(含有率:35wt%)の2倍希釈程度を採用することができる。   The raw material mixed solution prepared as described above is made into a sol-gel body by hydrolysis and coprecipitation reaction by adding an alkaline solution. The alkaline solution is preferably ammonia water in which the raw material mixed solution shown above is dissolved, dissolved in water at an arbitrary ratio, and does not remain in the filler by drying and heat treatment. The amount of aqueous ammonia is required to show basicity when mixed with the raw material mixed solution, and generally, an amount of about pH 7 to 9, preferably about pH 8 is one standard. For example, it is possible to employ, for example, about a 2-fold dilution of commercially available aqueous ammonia (content: 35 wt%).

上記原料混合溶液とアルカリ性溶液の混合方法は、特に限定はないが、各原料成分におけるアルカリによるそれぞれの加水分解条件が異なることが原因である共沈物における成分の偏りを防止するために、一括添加することが望ましい。攪拌速度、反応温度と時間についても特に限定されないが、均一反応を目的に激しく攪拌して急速中和を行い、共沈微粒子の集合体(ゼリー状ゲル体)を得るのが成分の偏り防止に益する。   The mixing method of the raw material mixed solution and the alkaline solution is not particularly limited, but in order to prevent the bias of components in the coprecipitate caused by different hydrolysis conditions due to alkali in each raw material component, It is desirable to add. The stirring speed, reaction temperature, and time are not particularly limited, but for the purpose of uniform reaction, vigorous stirring is performed and rapid neutralization is performed to obtain an aggregate of coprecipitated fine particles (jelly-like gel body) to prevent component bias. Profit.

上記の操作により得られるゾル−ゲル体は、通常のエバポレーターあるいは乾燥機で溶媒、過剰のアンモニア、水等を蒸発除去と乾燥を行う。乾燥温度としては特に限定されないが、40〜150℃、好ましくは70〜120℃の範囲である。   The sol-gel body obtained by the above operation is subjected to evaporation removal and drying of the solvent, excess ammonia, water and the like with a normal evaporator or dryer. Although it does not specifically limit as drying temperature, It is 40-150 degreeC, Preferably it is the range of 70-120 degreeC.

次いで乾燥したゲル体を水洗して、副成硝酸アンモニウムなどを除去する。これにエタノールを加えて、遊星ミル等により平均粒子径0.4〜0.9μmのゲル微粒子に粉砕後、エタノールを蒸発除去、乾燥してゲル微粒子粉体とする。この微粒子粉体を、遊星ミルを利用して平均粒子径が3〜20μmの凝集粒子とし、電気炉中で加熱処理を行う。   Next, the dried gel body is washed with water to remove by-product ammonium nitrate and the like. Ethanol is added thereto, and the mixture is pulverized into gel fine particles having an average particle size of 0.4 to 0.9 μm by a planetary mill or the like, and then ethanol is removed by evaporation and dried to obtain gel fine particle powder. This fine particle powder is made into agglomerated particles having an average particle diameter of 3 to 20 μm using a planetary mill, and is subjected to heat treatment in an electric furnace.

該凝集粒子の加熱処理では、ゲル微粒子内の微細ムライト結晶の生成を伴う1次粒子の焼結と、該1次粒子が結合した二次粒子(平均粒子径1〜20μm)の形成が重要となる。Al2O3成分の含有率によって、その最適な加熱処理条件(温度、時間)は適宜選択することができる。 In the heat treatment of the agglomerated particles, it is important to sinter the primary particles accompanied by the formation of fine mullite crystals in the gel fine particles and to form secondary particles (average particle diameter of 1 to 20 μm) bonded to the primary particles. Become. The optimum heat treatment conditions (temperature, time) can be appropriately selected depending on the content of the Al 2 O 3 component.

例えば、昇温速度は、最速でも毎分20℃程度、通常毎分5〜10℃程度とすることが望ましい。焼成温度は、目的とする微細ムライト結晶が1次粒子内に均質に析出する温度であることが好ましく、1000〜1190℃程度、より好ましくは1050〜1150℃である。焼成温度が低いと焼結が不十分で、該フィラーを使用した硬化複合レジンは機械的強度や吸水性に劣る。一方、温度が高いとムライト結晶の生成量が多くなるが、全体が焼結された塊状となり再粉砕が困難になる。   For example, the rate of temperature increase is desirably about 20 ° C. per minute at the fastest, and usually about 5 to 10 ° C. per minute. The firing temperature is preferably a temperature at which the intended fine mullite crystals are uniformly precipitated in the primary particles, and is about 1000 to 1190 ° C, more preferably 1050 to 1150 ° C. When the firing temperature is low, sintering is insufficient, and the cured composite resin using the filler is inferior in mechanical strength and water absorption. On the other hand, when the temperature is high, the amount of mullite crystals generated increases, but the whole becomes a sintered lump, making regrind difficult.

上記方法により製造された二次粒子は、解砕、ブレンド等の方法により適当な粒度分布を有するように調整される。調製された2次粒子(フィラー)は、平均粒子径が0.4〜0.9μm程度の焼結1次粒子がネック形成によって相互に結合された不定形粒子(粒径=1〜20μm)であり、鋭いエッジを持たず、粒度分布がブロードで粒子の大きさが不揃いで、凸凹の表面を有している(例えば、図1を参照)。調製されたフィラーの平均粒子径が2〜7μmの時、それをモノマーに充填しペースト化するとタレ、ベタツキ等が少なく、適度の伸びを示すなど、前装歯冠や歯科修復物の作製において操作性が良好な複合レジンが得られる。   The secondary particles produced by the above method are adjusted to have an appropriate particle size distribution by a method such as crushing or blending. The prepared secondary particles (fillers) are amorphous particles (particle size = 1 to 20 μm) in which sintered primary particles having an average particle size of about 0.4 to 0.9 μm are bonded to each other by neck formation, and are sharp. It has no edges, broad particle size distribution, uneven particle size, and uneven surface (see, for example, FIG. 1). When the average particle size of the prepared filler is 2 to 7 μm, filling it with a monomer and making it into a paste will reduce sagging, stickiness, etc., and show moderate elongation. A composite resin having good properties can be obtained.

さらに本発明のフィラーは、該フィラーを含む複合レジン硬化体の機械的強度、耐磨耗性が向上させるためには、表面処理を施すことが好ましい。表面処理剤及びその表面処理法としては、公知の方法が採用され特に限定されない。   Furthermore, the filler of the present invention is preferably subjected to a surface treatment in order to improve the mechanical strength and abrasion resistance of the cured composite resin containing the filler. As a surface treating agent and its surface treating method, a well-known method is employ | adopted and it does not specifically limit.

表面処理剤としては、例えばγ−(メタ)アクリロキシプロピルトリメトキシシラン(γ-MPTS)、ビニルトリエトキシシラン、3−アミノプロピルエトキシシラン、3−クロロプロピルトリメトキシシランシリルイソシアネ−ト、ビニルトリクロロシラン等のシランカップリング剤等通常無機酸化物の表面改質剤として使用される化合物が挙げられる。特に好ましくはγ-MPTSを挙げることができる。   Examples of the surface treatment agent include γ- (meth) acryloxypropyltrimethoxysilane (γ-MPTS), vinyltriethoxysilane, 3-aminopropylethoxysilane, 3-chloropropyltrimethoxysilanesilyl isocyanate, vinyl. Examples include compounds that are usually used as surface modifiers for inorganic oxides such as silane coupling agents such as trichlorosilane. Particularly preferred is γ-MPTS.

フィラーの表面処理剤による処理方法としては、フィラーと表面処理剤とをアルコ−ル等の溶剤中で数十分間〜数時間、好ましくは1時間〜5時間の範囲で加熱環流する方法が挙げられる。また、表面処理剤の加水分解を促進する必要があれば、該溶剤中に水もしくは酢酸等の酸性水を添加して上記範囲内で加熱環流した後、溶媒を除去し常圧もしくは減圧下乾燥する方法が挙げられる。   Examples of the method for treating the filler with the surface treatment agent include a method in which the filler and the surface treatment agent are heated and refluxed in a solvent such as alcohol for several tens of minutes to several hours, preferably in the range of 1 hour to 5 hours. It is done. If it is necessary to promote hydrolysis of the surface treatment agent, water or acid water such as acetic acid is added to the solvent and heated to reflux within the above range, and then the solvent is removed and dried under normal pressure or reduced pressure. The method of doing is mentioned.

表面処理剤の量は、本発明のフィラー100重量部に対して5〜15重量部、好ましくは8〜12重量部の範囲である。なお、表面処理後のフィラーは、処理前のフィラーと粒径もしくは粒度分布は殆ど変化しない。   The amount of the surface treatment agent is in the range of 5 to 15 parts by weight, preferably 8 to 12 parts by weight with respect to 100 parts by weight of the filler of the present invention. In addition, the filler after the surface treatment hardly changes in particle size or particle size distribution from the filler before the treatment.

複合レジン
本発明の複合レジンは、本発明のフィラー、重合性モノマー、重合開始剤、及び必要に応じ着色顔料を含有する。
Composite Resin The composite resin of the present invention contains the filler of the present invention, a polymerizable monomer, a polymerization initiator, and, if necessary, a color pigment.

本発明に用いる重合性モノマーとしては、一般的に歯科補綴材に用いられるものを好適に使用することができる。より具体的に重合性モノマーの例を示すと、(メタ)アクリル酸アルキルエステル(アルキル基の炭素数1〜10)、ポリアルキレングリコールジ(メタ)アクリレート(炭素数2〜20)、エチレングリコールオリゴマージ(メタ)アクリレート(2〜10量体)、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の1官能性、多官能性の(メタ)アクリル酸エステル類や、ヒドロキシル基を有する(メタ)アクリレート2モルとジイソシアネート1モルとの反応生成物であるウレタン(メタ)アクリル酸エステル類が挙げられる。具体的には、特公昭55−33687号公報や特開昭56−152408号公報に開示されているようなモノマー等が好適である。これらのモノマーは単独で用いることもあるが、2種類以上のモノマーを混合して使用することが好ましい。モノマーは複合レジン中に10〜60重量%程度(好ましくは15〜45重量%程度)の割合で使用する。   As the polymerizable monomer used in the present invention, those generally used for dental prosthetic materials can be preferably used. More specifically, examples of the polymerizable monomer include (meth) acrylic acid alkyl ester (alkyl group having 1 to 10 carbon atoms), polyalkylene glycol di (meth) acrylate (2 to 20 carbon atoms), ethylene glycol oligo. Monofunctional and polyfunctional (meth) acrylic esters such as merged (meth) acrylate (2 to 10-mer), trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and hydroxyl groups And urethane (meth) acrylic acid esters which are reaction products of 2 moles of (meth) acrylate and 1 mole of diisocyanate. Specifically, monomers such as those disclosed in JP-B-55-33687 and JP-A-56-152408 are suitable. These monomers may be used alone, but it is preferable to use a mixture of two or more monomers. The monomer is used in the composite resin at a ratio of about 10 to 60% by weight (preferably about 15 to 45% by weight).

本発明に用いる重合開始剤は特に限定されず、公知のものが特に制限なく使用される。一般に、重合開始剤は、重合性モノマーの重合手段によって異なる種類のものが使用される。重合手段には光重合開始剤、熱重合開始剤などがある。光重合開始剤としては公知の光重合開始剤を使用することができ、カンファーキノン(CQ)が好ましく使用される。熱重合開始剤としては、過酸化物、あるいはアゾ化合物など、公知の熱重合開始剤を使用することが出来る。具体的にはベンゾイルパーオキサイド、2,2'-アゾビスイソブチロニトリルを例示できる。   The polymerization initiator used for this invention is not specifically limited, A well-known thing is used without a restriction | limiting in particular. Generally, different types of polymerization initiators are used depending on the polymerization means of the polymerizable monomer. Examples of the polymerization means include a photopolymerization initiator and a thermal polymerization initiator. A known photopolymerization initiator can be used as the photopolymerization initiator, and camphorquinone (CQ) is preferably used. As the thermal polymerization initiator, a known thermal polymerization initiator such as a peroxide or an azo compound can be used. Specific examples include benzoyl peroxide and 2,2′-azobisisobutyronitrile.

また、本発明の複合レジンにおいて、その硬化物よりなる義歯、前装歯冠、及び歯科修復物としての審美性と耐用性を発揮させるために、着色顔料を配合することが好ましい。   Moreover, in the composite resin of this invention, in order to exhibit the aesthetics and durability as a denture which consists of the hardened | cured material, a pre-deciduous crown, and a dental restoration, it is preferable to mix | blend a color pigment.

着色顔料としては、天然歯との色合わせのために酸化鉄系着色顔料、有機顔料、酸化ジルコニウム系顔料、チタンホワイト、チタンイエロ−等が挙げられる。   Examples of the color pigment include iron oxide color pigments, organic pigments, zirconium oxide pigments, titanium white, and titanium yellow for color matching with natural teeth.

また、上記に加え、蛍光材、オパール化材、重合促進剤(還元剤)、重合禁止剤、安定化剤、紫外線吸収剤、フッ素徐放性材、変色防止剤、抗菌剤、その他従来公知の各種等公知の添加剤を配合できる。   In addition to the above, fluorescent materials, opalizing materials, polymerization accelerators (reducing agents), polymerization inhibitors, stabilizers, ultraviolet absorbers, sustained-release fluorine materials, anti-discoloring agents, antibacterial agents, and other conventionally known materials Various known additives can be blended.

上記の複合レジン中の各成分の混合比は、使用目的によって随時増減すればよい。例えば、重合性モノマー100重量部に対して、重合開始剤0.01〜10重量部(好ましくは0.1〜3重量部)、本発明のフィラー100〜900重量部(好ましくは250〜600重量部)を配合し、さらに必要に応じて着色顔料0.001〜15重量部(好ましくは0.05〜10重量部)、及び必要に応じてオパール化剤、蛍光剤などを適宜配合することができる。   What is necessary is just to increase / decrease the mixing ratio of each component in said composite resin at any time according to the intended purpose. For example, 0.01 to 10 parts by weight (preferably 0.1 to 3 parts by weight) of a polymerization initiator and 100 to 900 parts by weight (preferably 250 to 600 parts by weight) of the filler of the present invention are blended with 100 parts by weight of a polymerizable monomer. Further, if necessary, 0.001 to 15 parts by weight (preferably 0.05 to 10 parts by weight) of a color pigment, and if necessary, an opalizing agent, a fluorescent agent, and the like can be appropriately blended.

本発明の複合レジンは、重合性モノマー、本発明のフィラー、及び重合開始剤の各必須成分、必要に応じて着色顔料及び他の任意成分を所定量とり、十分に混練して各成分を均一に分散し、さらにこのペーストを減圧下で混練後、気泡を除去することにより得ることができる。このようにして作製された複合レジンは、重合開始剤を含むためにその保存と取り扱い、つまり、大気遮断、暗所・低温が必須である。   The composite resin of the present invention takes a predetermined amount of each of the essential components of the polymerizable monomer, the filler of the present invention, and the polymerization initiator, and if necessary, a colored pigment and other optional components, and kneads thoroughly to make each component uniform. Further, the paste can be obtained by kneading under reduced pressure and removing bubbles. Since the composite resin thus prepared contains a polymerization initiator, it must be stored and handled, that is, it must be shielded from the atmosphere and dark / low temperature.

歯科補綴物
本発明の複合レジンは、特に歯科補綴物(例、義歯、前装歯冠、歯科修復物)の用途に好適に用いられる。歯科補綴物は、通常、本発明の複合レジンを成形した後、光照射或いは加熱をするなど公知の方法により製造することができる。
Dental prosthesis The composite resin of the present invention is particularly suitable for use in dental prostheses (eg, dentures, anterior crowns, and dental restorations). The dental prosthesis can usually be produced by a known method such as light irradiation or heating after molding the composite resin of the present invention.

義歯
上記の複合レジンから本発明の義歯を製造する方法は、公知の方法を採用することができる。熱重合開始剤を用いた複合レジンを金型で成形し、加熱して硬化させることにより製造される。
Dentures As a method for producing the dentures of the present invention from the above composite resin, known methods can be employed. It is manufactured by molding a composite resin using a thermal polymerization initiator with a mold and heating to cure.

前装歯冠
本発明の複合レジンは、公知の方法によって、天然歯と同様な審美性を付与した前装歯冠として使用される。天然歯における齲触部位を削除し、金属材料で修復の骨格部位(フレームと称する)を作製し、該フレームの前面を本発明の複合レジンで天然歯と同様に表装するに威力を発揮する。
Pre-decorated crown The composite resin of the present invention is used as a pre-decorated crown imparted with aesthetics similar to natural teeth by a known method. It eliminates the touching part of the natural tooth, creates a skeletal part (referred to as a frame) for restoration with a metal material, and exerts the power to mount the front surface of the frame with the composite resin of the present invention in the same manner as the natural tooth.

具体的には、先ず該フレームの複合レジン築盛面に接着性液体(プライマー)を塗布する。次に該フレームの金属色の隠蔽を目的に、高濁度複合レジン(通称オペーク)を積層、光重合する。該硬化オペーク上に天然歯の形状と色調を構築するために、歯髄様に着色した複合レジン(通称デンティン)と歯のエナメル質模倣用に着色した複合レジン(通称エナメル)、さらには透明感を持たせた複合レジン(通称トランス)が順次築盛された後、光照射器(例えば、モルテンメディカル製、Water Light)を用いて光重合を行う。重合硬化後、望ましい回復歯の形状に研削補修と研磨艶出しを行い、前装歯冠として口腔内に装着する。   Specifically, an adhesive liquid (primer) is first applied to the composite resin build-up surface of the frame. Next, for the purpose of hiding the metallic color of the frame, a high turbidity composite resin (commonly called opaque) is laminated and photopolymerized. In order to build the shape and color of natural teeth on the hardened opaque, a composite resin colored as a pulp (commonly called dentine), a composite resin colored for imitation of tooth enamel (commonly known as enamel), and a transparency After the built-in composite resin (commonly referred to as “trans”) is successively built up, photopolymerization is performed using a light irradiator (for example, Water Light manufactured by Molten Medical). After the polymerization and curing, the desired restoration tooth shape is ground and polished and polished and mounted in the oral cavity as a front crown.

歯科修復物
本発明の複合レジンは、公知の方法によって、天然歯と同様な審美性を持つ歯科修復を行うことが出来る。天然歯における齲触部位を削孔除去し、プライマーを塗布、光照射ののち、複合レジンを充填、光照射で重合硬化した後、望ましい回復歯の形状に研削補修と研磨艶出しを行い、欠損部位を修復する。
Dental restoration The composite resin of the present invention can perform dental restoration having the same aesthetics as natural teeth by a known method. After removing holes in natural teeth, applying primer, light irradiation, filling composite resin, polymerizing and curing by light irradiation, grinding and polishing to desired recovery tooth shape and polishing Repair the site.

かくして得られる本発明の義歯、前装歯冠及び歯科修復物は、優れた外観の審美性、機械的強度、表面硬度、耐汚染性、低吸水性、耐研磨性、表面光沢及び滑沢性などの特性を有している。   The dentures, pre-decorated crowns and dental restorations of the present invention thus obtained have excellent appearance aesthetics, mechanical strength, surface hardness, contamination resistance, low water absorption, abrasion resistance, surface gloss and lubricity. It has the characteristics such as.

本発明のフィラーを含む複合レジンは歯科技工上の操作性が良好であり、該複合レジン硬化物は光透過性に優れているために、該硬化物よりなる歯科補綴物(義歯、前装歯冠及び歯科修復物)は審美性に優れ、さらに該歯科補綴物は優れた機械的強度、表面硬度、耐汚染性、低吸水性、耐研磨性、表面の光沢及び滑沢性などの特性を兼ね備えている。   The composite resin containing the filler of the present invention has good operability in dental technology, and the cured composite resin is excellent in light transmittance. Therefore, a dental prosthesis (denture, anterior teeth) made of the cured product. Crowns and dental restorations) are excellent in aesthetics, and the dental prosthesis has excellent mechanical strength, surface hardness, stain resistance, low water absorption, abrasion resistance, surface gloss and lubricity. Have both.

次に、実施例によって本発明の内容を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Next, the content of the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.

実施例及び比較例で使用した重合性モノマーは、ジ(メタクリロキシエチル)トリメチルヘキサメチレンジウレタンとトリエチレングリコールジメタクリレートの比率を、78.6/21.4(重量%)に固定した混合モノマーである。この混合モノマーの重合硬化体の屈折率(nD)は、1.502であり、これに適合する屈折率(nD)を持つフィラーを調製した。   The polymerizable monomer used in Examples and Comparative Examples is a mixed monomer in which the ratio of di (methacryloxyethyl) trimethylhexamethylenediurethane and triethyleneglycol dimethacrylate is fixed at 78.6 / 21.4 (% by weight). It is. The refractive index (nD) of the polymerized cured product of this mixed monomer was 1.502, and a filler having a refractive index (nD) suitable for this was prepared.

なお、先ず、実施例、比較例で使用した化合物名及びその略称を表1に示す。   First, Table 1 shows the names of compounds used in Examples and Comparative Examples and their abbreviations.

実施例、比較例に示したフィラーの粒径とその粒度分布、含有結晶の種類、透明性、屈折率(nD)、硬化複合レジンの諸物性(曲げ強度、吸水量、光透過率及び歯ブラシ摩耗試験など)は以下の測定方法で測定した。
<フィラーの物性測定>
1.屈折率(nD)
フィラーの25℃における屈折率(nD)を、アッベ屈折率計(アタゴ社製、NAR−1T)を用いた液浸法によって測定した。
2.透明性
上記の屈折率(nD)測定において、肉眼観察で判別した。
3.形態、粒径及び粒度分布
フィラーの形態形態は走査型電子顕微鏡(日立サイエンスシステムズ社製)で観察し、また粉末の粒径はレ−ザ−回折式粒度分布測定装置(島津製作所製、SALD-2000)を用いて測定した。
4.含有結晶の種類
X線回折装置(ブルカー・エイエックスエス社製 M03XHF22、CuKα線)を用いた粉末X線回折分析により、フィラー中の生成結晶を同定した。
<硬化複合レジン(歯科補綴物に対応)の物性測定>
1.曲げ強さはJIS T 6517(1998)に従った。
2.吸水量はJIS T 6517(1998)に従った。
3.透明性
吸水量測定と同じ円盤状試験片(厚さ:1mm)について、濁度計(日本電子製、H2000)により透過率を測定し、透明性を評価した。透過率60%以上を透明として評価した。
4.歯ブラシ摩耗性
複合レジンを金型(内径15mm, 厚さ0.5mm)に充填し、吸水量測定と同じ方法により、円板状の試験片を作製した。この試験片を歯ブラシ摩耗試験機(自社製)を用い加重50gで歯ブラシ摩耗の試験を行い、表面粗さ(Ra)を表面粗さ計(ミツトヨ製、SV-622)で平均粗さ測定を行った。
Filler particle size and particle size distribution shown in Examples and Comparative Examples, types of contained crystals, transparency, refractive index (nD), various properties of cured composite resin (bending strength, water absorption, light transmittance and toothbrush wear) The test and the like were measured by the following measuring method.
<Measurement of physical properties of filler>
1. Refractive index (nD)
The refractive index (nD) at 25 ° C. of the filler was measured by an immersion method using an Abbe refractometer (NAR-1T, manufactured by Atago Co., Ltd.).
2. Transparency In the above refractive index (nD) measurement, it was determined by visual observation.
3. Morphology, particle size and particle size distribution The morphology of the filler was observed with a scanning electron microscope (manufactured by Hitachi Science Systems), and the particle size of the powder was measured with a laser diffraction particle size distribution measuring device (manufactured by Shimadzu Corporation, SALD- 2000).
4). Types of contained crystals The produced crystals in the filler were identified by powder X-ray diffraction analysis using an X-ray diffractometer (M03XHF 22 manufactured by Bruker AXS, CuKα rays).
<Measurement of physical properties of cured composite resin (corresponding to dental prosthesis)>
1. The bending strength was in accordance with JIS T 6517 (1998).
2. The amount of water absorption was in accordance with JIS T 6517 (1998).
3. Transparency About the same disk-shaped test piece (thickness: 1 mm) as the water absorption measurement, the transmittance was measured with a turbidimeter (manufactured by JEOL Ltd., H2000) to evaluate the transparency. A transmittance of 60% or more was evaluated as transparent.
4). Toothbrush wearability A composite resin was filled in a mold (inner diameter: 15 mm, thickness: 0.5 mm), and a disk-shaped test piece was prepared by the same method as the water absorption measurement. The test piece was tested for toothbrush wear at a load of 50 g using a toothbrush wear tester (manufactured in-house), and the surface roughness (Ra) was measured with a surface roughness meter (Mitutoyo, SV-622). It was.

実施例1
(1)フィラーの製造
Al(NO3)3 655.6gを655.6gの蒸留水に溶解し、AP-1を500g添加した後、MS51500g添加し透明且つ均一な原料混合液を調製した。アンモニア水溶液(例えば、ナカライテスク社製、NH3=28%)の2倍希釈液1Lを攪拌機(小平製作所製、ACM-5LVTJ)に入れ、90r.p.m.で攪拌しながら、先に調製した原料混合液添加すると、共沈ゲル化してゼリー状となった。このゲル化体を取り出し、100℃で乾燥して過剰のアンモニア、水、溶媒を除去し乾燥ゲルを得た。この乾燥ゲルを水洗し、副成した硝酸アンモニウムを除去し、再度乾燥した。
Example 1
(1) Manufacture of filler
655.6 g of Al (NO 3 ) 3 was dissolved in 655.6 g of distilled water, 500 g of AP-1 was added, and then 51500 g of MS was added to prepare a transparent and uniform raw material mixture. 1L of 2 times diluted solution of ammonia aqueous solution (for example, Nacalai Tesque, NH 3 = 28%) is placed in a stirrer (ACM-5LVTJ, manufactured by Kodaira Seisakusho) and mixed with the raw material prepared above while stirring at 90 rpm. When the solution was added, it co-precipitated to form a jelly. The gelled product was taken out and dried at 100 ° C. to remove excess ammonia, water, and solvent to obtain a dried gel. The dried gel was washed with water to remove by-produced ammonium nitrate and dried again.

この乾燥ゲル100gを直径1mmのアルミナボール2kgと直径8mmのアルミナボール1kgとAP-1 340gを入れた3.6Lのアルミナポットに入れ、遊星ミル(セイシン企業製、SKF-04)で150r.p.m.で90分間粉砕して、スラリーとした。このスラリーの粒径及び粒度分布を測定したところ、平均粒径は0.7μmで、粒径が0.3μm未満にまで粉砕されることはなかった。   100 g of this dried gel was placed in a 3.6 L alumina pot containing 2 kg of 1 mm diameter alumina balls, 1 kg of 8 mm diameter alumina balls and 340 g of AP-1, and 150 r.pm on a planetary mill (SKF-04, manufactured by Seishin Enterprise). For 90 minutes to form a slurry. When the particle size and particle size distribution of the slurry were measured, the average particle size was 0.7 μm and the particle size was not pulverized to less than 0.3 μm.

スラリーを回収し、乾燥して溶媒を除去した。この段階の粒子は、完成フィラーの1次粒子に対応する。次にこの粉砕乾燥ゲル30gを直径5mmのアルミナボール300gと共にアルミナポットに入れ、遊星ミル(ITOH社製、LA-PO.4)で200r.p.m.で30分間処理して、凝集させた。凝集粉体の平均粒子径は8.5μmであった。この粉砕凝集ゲルをアルミナ製の皿に入れ電気炉中、毎時500℃の昇温速度で1100℃まで昇温して、同温度で2時間保持した後、炉外に取り出し放冷し、白色の粉末を得た。   The slurry was collected and dried to remove the solvent. The particles at this stage correspond to the primary particles of the finished filler. Next, 30 g of this pulverized and dried gel was placed in an alumina pot together with 300 g of alumina balls having a diameter of 5 mm, and agglomerated by treatment with a planetary mill (LA-PO.4, manufactured by ITOH) at 200 rpm for 30 minutes. The average particle size of the agglomerated powder was 8.5 μm. The crushed and agglomerated gel is placed in an alumina dish, heated to 1100 ° C. at a heating rate of 500 ° C. per hour in an electric furnace, held at the same temperature for 2 hours, taken out of the furnace, allowed to cool, A powder was obtained.

この焼成ゲル30gを、直径5mmのアルミナビーズ300gを入れた500mlのアルミナポットに入れ、遊星ミルで200r.p.mで30分間解砕してフィラーとした。当該フィラーの平均粒径は3.3μmで、約0.5〜約20μmの範囲に幅広く分布し多分散系であることが認められた。   30 g of this calcined gel was put in a 500 ml alumina pot containing 300 g of alumina beads having a diameter of 5 mm, and crushed with a planetary mill at 200 rpm for 30 minutes to obtain a filler. The average particle size of the filler was 3.3 μm, and it was widely distributed in the range of about 0.5 to about 20 μm, and was confirmed to be a polydisperse system.

該フィラーの走査型顕微鏡(SEM)写真を図1a(低倍率)及び図1b(高倍率)に示した。該フィラー粒子の形態は不定形であり、その表面は粒径が約0.7μmの1次粒子が密に結合した凹凸を持つ表面性状を呈しており、破砕エッジが認められず、透明であった。図3にX線回折パターンを示した。各回折線はムライト結晶に基づくものと同定できた。   Scanning microscope (SEM) photographs of the filler are shown in FIGS. 1a (low magnification) and 1b (high magnification). The form of the filler particles is indeterminate, and the surface has a surface property having irregularities in which primary particles having a particle size of about 0.7 μm are tightly bonded, and no crushing edges are observed and the surface is transparent. It was. FIG. 3 shows an X-ray diffraction pattern. Each diffraction line could be identified as being based on mullite crystals.

なお、各回折線の幅が広いことから含有結晶の見かけの粒子径が小さく、その組成はSiO2成分が固溶したムライト固溶体(R.F.Davis, et al, J.Am.Ceram.Soc., 55, 525 (1972))と考えられた。またこのフィラーの屈折率(nD)を測定したところ1.507であった。 The particle size of the apparent containing crystals from the width of the diffraction line is wide is small, the composition is mullite solid solution SiO 2 component is solid-solved (RFDavis, et al, J.Am.Ceram.Soc. , 55, 525 (1972)). The refractive index (nD) of the filler was measured and found to be 1.507.

このフィラー100重量部をAP-1中に懸濁し、γ-MPTS(GE東芝シリコーン社製、TSL−8370)10重量部を添加し2時間撹拌した。溶媒をエバポレ−タ−で除去した後、減圧下80℃で2時間乾燥し、減圧下110℃で1時間熱処理してカップリングフィラーとした。
(2)複合レジンの製造
複合レジンの作製は全て遮光下で行った。UDMA/3G=78.6/21.4(重量%)の混合モノマ−に、CQ=0.2wt%を溶解して複合レジン用のモノマ−を調製した。混合モノマ−10gに、メノウ乳鉢を用いて前記のカップリングフィラーを添加、混合した。得られたペ−スト化複合レジンが歯科補綴物作製に適した硬さになるまでフィラーを添加した。その後、減圧下で脱泡して気泡を除去して光重合型複合レジンとした。この場合、操作性が最適なフィラー含有率は74wt%で、複合レジンは光硬化前、後共に透明であった。
100 parts by weight of this filler was suspended in AP-1, 10 parts by weight of γ-MPTS (GE Toshiba Silicone, TSL-8370) was added, and the mixture was stirred for 2 hours. After removing the solvent with an evaporator, it was dried at 80 ° C. under reduced pressure for 2 hours and heat-treated at 110 ° C. for 1 hour under reduced pressure to obtain a coupling filler.
(2) Manufacture of composite resin All composite resins were produced in the dark. A monomer for composite resin was prepared by dissolving CQ = 0.2 wt% in a mixed monomer of UDMA / 3G = 78.6 / 21.4 (wt%). The above coupling filler was added to and mixed with 10 g of the mixed monomer using an agate mortar. Fillers were added until the obtained pasted composite resin had a hardness suitable for producing a dental prosthesis. Thereafter, bubbles were removed by defoaming under reduced pressure to obtain a photopolymerizable composite resin. In this case, the filler content with the optimum operability was 74 wt%, and the composite resin was transparent both before and after photocuring.

実施例2
Al(NO3)3148.7gを148.7gの水に溶解し、AP-1を132.3g添加し均一化した後、ジルコゾールZN(ZrO2含有率=25wt%)を18.1g添加溶解する。さらに、MS51を132.3g溶解して原料混合液とした。
Example 2
148.7 g of Al (NO 3 ) 3 was dissolved in 148.7 g of water, 132.3 g of AP-1 was added and homogenized, and then 18.1 g of zircozole ZN (ZrO 2 content = 25 wt%) was added and dissolved. To do. Further, 132.3 g of MS51 was dissolved to prepare a raw material mixture.

この原料混合液を、実施例1と同様の方法でフィラーを作製し、該フィラーを用いて実施例1と同様の方法で光重合型複合レジンを作製した。   A filler was produced from this raw material mixed solution in the same manner as in Example 1, and a photopolymerizable composite resin was produced in the same manner as in Example 1 using the filler.

実施例3
実施例2のMS51溶液をTEOS(キシダ化学社製、SiO2含有率=28.5wt%)とした以外は、実施例2と同様の方法でフィラーを作製し、該フィラーを用いて実施例1と同様の方法で光重合型複合レジンを作製した。
Example 3
A filler was prepared in the same manner as in Example 2 except that the MS51 solution of Example 2 was changed to TEOS (manufactured by Kishida Chemical Co., SiO 2 content = 28.5 wt%), and Example 1 was prepared using the filler. A photopolymerizable composite resin was prepared in the same manner as described above.

実施例4
実施例2のジルコゾールZNをTBOZ(和光純薬工業社製、ZrO2含有率=27.3wt%)とした以外は、実施例2と同様の方法でフィラーを作製し、該フィラーを用いて実施例1と同様の方法で光重合型複合レジンを作製した。
Example 4
A filler was produced in the same manner as in Example 2 except that Zrcozole ZN of Example 2 was changed to TBOZ (manufactured by Wako Pure Chemical Industries, Ltd., ZrO 2 content = 27.3 wt%), and the filler was used. A photopolymerizable composite resin was prepared in the same manner as in Example 1.

比較例1
実施例1の焼成温度を900℃とした以外は、実施例1と同様の方法でフィラーを作製し、該フィラーを用いて実施例1と同様の方法で光重合型複合レジンを作製した。
Comparative Example 1
A filler was prepared in the same manner as in Example 1 except that the firing temperature in Example 1 was 900 ° C., and a photopolymerizable composite resin was prepared in the same manner as in Example 1 using the filler.

比較例2
実施例2の焼成温度を900℃とした以外は、実施例2と同様の方法でフィラーを作製し、該フィラーを用いて実施例1と同様の方法で光重合型複合レジンを作製した。
Comparative Example 2
A filler was produced in the same manner as in Example 2 except that the firing temperature in Example 2 was set to 900 ° C., and a photopolymerizable composite resin was produced in the same manner as in Example 1 using the filler.

比較例3
原料の金属アルコキシドにMS51とTBZRを用いて焼成温度を900℃とした以外は、実施例1と同様の方法でフィラーを作製し、該フィラーを用いて実施例1と同様の方法で光重合型複合レジンを作製した。
Comparative Example 3
A filler was prepared in the same manner as in Example 1 except that MS51 and TBZR were used as the raw material metal alkoxide and the firing temperature was 900 ° C., and the photopolymerization type was performed in the same manner as in Example 1 using the filler. A composite resin was made.

比較例4
原料のアルコキシドにMS51とTBOZを用いて焼成温度を1200℃とした以外は、実施例1と同様の方法でフィラーを作製し、該フィラーを用いて実施例1と同様の方法で光重合型複合レジンを作製した。
Comparative Example 4
A filler is prepared in the same manner as in Example 1 except that MS51 and TBOZ are used as raw material alkoxide and the firing temperature is 1200 ° C. The photopolymerizable composite is prepared in the same manner as in Example 1 using the filler. A resin was prepared.

比較例5
原料の金属アルコキシドにMS51のみを用いた以外は、実施例1と同様の方法でフィラーを作製し、該フィラーを用いて実施例1と同様の方法で光重合型複合レジンを作製した。
Comparative Example 5
A filler was prepared in the same manner as in Example 1 except that only MS51 was used as the starting metal alkoxide, and a photopolymerizable composite resin was prepared in the same manner as in Example 1 using this filler.

上記実施例1〜4及び比較例1〜5のフィラー調製に使用した原材の種類、組成、及び焼成条件を表2に示した。   Table 2 shows the types, compositions, and firing conditions of the raw materials used for preparing the fillers of Examples 1 to 4 and Comparative Examples 1 to 5.

また、中間体である乾燥粉砕ゲルの平均粒子径、並びにフィラー(解砕後)のSEM観察結果、透明性、屈折率、析出結晶の種類、比表面積、粒度分布と平均粒子径を表3に示した。 Table 3 shows the average particle size of the dry crushed gel, which is an intermediate, and SEM observation results of the filler (after pulverization), transparency, refractive index, type of precipitated crystals, specific surface area, particle size distribution and average particle size. Indicated.

また、操作性が最適なフィラー含有率、光重合後の複合レジンの吸水量、光の透過率、曲げ強度、及び歯ブラシ摩耗後の表面粗さを表4に示した。併せて重合複合レジンに関する歯科補綴材としての評価も表4に示した。 Table 4 shows the filler content with the optimum operability, the water absorption of the composite resin after photopolymerization, the light transmittance, the bending strength, and the surface roughness after toothbrush wear. In addition, Table 4 shows the evaluation as a dental prosthetic material related to the polymer composite resin.

表2〜4を見ると、実施例1〜4では、使用フィラーは適度に焼結されておりそのSA値が小さいために硬化複合レジンの吸水量がJIS T 6517 (1998) 規定値(32μg/mm3)内であり、硬化複合レジンは透明性と機械的強度に優れ、しかも歯ブラシ摩耗後においても表面粗さ(Ra)値が小さく平滑性が保たれていた。また、複合レジンはタレ、ベタツキが無く、伸びの良いペ−スト性状であるため、金属製フレーム表面への塗布、築盛などの操作性、及び歯牙欠損部位への充填補修での操作性も良好であった。さらに、実施例2〜4の複合レジンはX線造影性をも兼ね備えており、歯科補綴材料として優れていることが明らかである。 Tables 2 to 4 show that in Examples 1 to 4, the filler used was appropriately sintered and the SA value was small, so the water absorption of the cured composite resin was JIS T 6517 (1998) specified value (32 μg / mm 3) it is within, cured composite resin has excellent transparency and mechanical strength, yet also the surface roughness after toothbrush abrasion (Ra) value is small smoothness was maintained. In addition, the composite resin is free from sagging and stickiness and has a good paste property, so that it is easy to apply to the surface of a metal frame, build up, etc., and to repair and repair tooth missing sites. Met. Furthermore, it is clear that the composite resins of Examples 2 to 4 have X-ray contrast properties and are excellent as dental prosthetic materials.

また、比較例1、2、3および5では、該フィラーのSA値が大きいために硬化複合レジンの吸水量も多く、JIS T 6517 (1998) 規定値(32μg/mm3)に不合格であった。比較例1〜5は硬化複合レジンの機械的強度が小さい。比較例4は使用フィラーが乳濁しているために硬化複合レジンも乳濁し、他方比較例5は使用フィラーのnDが重合ポリマーのnDに適合しないために、硬化後の複合レジンが乳濁し、何れも透明性が不足した。比較例4の複合レジンは使用フィラーが焼結過剰で、硬化複合レジンにおいて歯ブラシ摩耗後の表面にフィラーが突起として残り平滑性に劣ることなどから、比較例1〜5の複合レジンは実用に供し得ない。 Further, in Comparative Examples 1, 2, 3 and 5, since the SA value of the filler was large, the water absorption amount of the cured composite resin was also large, and failed the JIS T 6517 (1998) specified value (32 μg / mm 3 ). It was. In Comparative Examples 1 to 5, the cured composite resin has low mechanical strength. In Comparative Example 4, since the filler used is emulsified, the cured composite resin is also emulsified. On the other hand, in Comparative Example 5, since the nD of the filler used is not compatible with the nD of the polymerized polymer, the cured composite resin is emulsified. Also lacked transparency. In the composite resin of Comparative Example 4, since the filler used is excessively sintered, the filler remains as protrusions on the surface after toothbrush wear in the cured composite resin, and the smoothness of the composite resin of Comparative Examples 1-5 is practically used. I don't get it.

なお、本明細書に記載された公知文献は、参考として援用される。   In addition, the well-known literature described in this specification is used as reference.

実施例1で用いられたフィラーの形態を示すSEM写真(図1a:低倍率、図1b:高倍率)である。It is a SEM photograph (FIG. 1a: low magnification, FIG. 1b: high magnification) which shows the form of the filler used in Example 1. FIG. 比較例2で用いられたフィラーの形態を示すSEM写真(図2a:低倍率、図2b:高倍率)である。It is a SEM photograph (Drawing 2a: low magnification, Drawing 2b: high magnification) which shows the form of the filler used in comparative example 2. 本発明で用いられるフィラー中に含有する結晶の種類を示すX線回折パターンである。It is an X-ray diffraction pattern which shows the kind of crystal | crystallization contained in the filler used by this invention.

Claims (7)

SiO2を90〜65重量%、Al2O3を10〜35重量%、及びZrO2を0〜10重量%含有するフィラーであって、微細ムライト結晶を含有する焼結1次粒子が部分的に結合して二次粒子を形成してなる高い透明性を有するフィラー。 The SiO 2 90 to 65 wt%, the Al 2 O 3 10 to 35 wt%, and ZrO 2 with a filler containing 0-10% by weight, partially sintered primary particles containing fine mullite crystals A highly transparent filler formed by bonding to a secondary particle. 屈折率(nD)が1.49〜1.52の範囲にある請求項1に記載のフィラー。 The filler according to claim 1, wherein the refractive index (nD) is in the range of 1.49 to 1.52. 微細ムライト結晶を含有する焼結1次粒子の平均粒子径が0.4〜0.9μmである請求項2に記載のフィラー。 The filler according to claim 2, wherein the sintered primary particles containing fine mullite crystals have an average particle size of 0.4 to 0.9 µm. 微細ムライト結晶を含有する焼結1次粒子が部分的に結合した二次粒子の平均粒子径が1〜20μmである請求項3に記載のフィラー。 The filler according to claim 3, wherein the average particle diameter of secondary particles in which sintered primary particles containing fine mullite crystals are partially bonded is 1 to 20 µm. 請求項4に記載のフィラー、重合性モノマー、重合開始剤、及び必要に応じ着色顔料を含有する複合レジン。 A composite resin comprising the filler according to claim 4, a polymerizable monomer, a polymerization initiator, and, if necessary, a color pigment. 請求項5に記載の複合レジンを成形後、光照射で重合されてなる歯科補綴物。 A dental prosthesis obtained by polymerizing the composite resin according to claim 5 by light irradiation after molding. 請求項5に記載の複合レジンを成形後、加熱で重合されてなる歯科補綴物。 A dental prosthesis obtained by polymerizing the composite resin according to claim 5 by heating after molding.
JP2004075011A 2004-03-16 2004-03-16 Filler, composite resin using the filler, and dental prosthesis using the composite resin Expired - Lifetime JP4502673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004075011A JP4502673B2 (en) 2004-03-16 2004-03-16 Filler, composite resin using the filler, and dental prosthesis using the composite resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004075011A JP4502673B2 (en) 2004-03-16 2004-03-16 Filler, composite resin using the filler, and dental prosthesis using the composite resin

Publications (2)

Publication Number Publication Date
JP2005263648A JP2005263648A (en) 2005-09-29
JP4502673B2 true JP4502673B2 (en) 2010-07-14

Family

ID=35088562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075011A Expired - Lifetime JP4502673B2 (en) 2004-03-16 2004-03-16 Filler, composite resin using the filler, and dental prosthesis using the composite resin

Country Status (1)

Country Link
JP (1) JP4502673B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101957204B1 (en) * 2018-04-18 2019-03-12 주식회사 디오 manufacturing method of dental prosthesis
KR101957203B1 (en) * 2018-04-18 2019-03-12 주식회사 디오 manufacturing method of digital denture

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8647426B2 (en) 2006-12-28 2014-02-11 3M Innovative Properties Company Dental filler and methods
US8722759B2 (en) 2008-10-15 2014-05-13 3M Innovative Properties Company Fillers and composite materials with zirconia and silica nanoparticles
JP6255144B2 (en) * 2013-09-26 2017-12-27 Yamakin株式会社 Composite resin material for dental cutting
CN106667595B (en) * 2015-11-11 2020-06-23 中国科学院上海微***与信息技术研究所 Fibroin dental implant and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279101A (en) * 1993-03-29 1994-10-04 Toshiba Ceramics Co Ltd Production of cordierite ceramics
JPH11514625A (en) * 1995-11-01 1999-12-14 ウエスチングハウス・エレクトリック・コーポレイション Ecologically compatible aqueous stable mullite precursor sols, mullite composites and methods of making them

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279101A (en) * 1993-03-29 1994-10-04 Toshiba Ceramics Co Ltd Production of cordierite ceramics
JPH11514625A (en) * 1995-11-01 1999-12-14 ウエスチングハウス・エレクトリック・コーポレイション Ecologically compatible aqueous stable mullite precursor sols, mullite composites and methods of making them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101957204B1 (en) * 2018-04-18 2019-03-12 주식회사 디오 manufacturing method of dental prosthesis
KR101957203B1 (en) * 2018-04-18 2019-03-12 주식회사 디오 manufacturing method of digital denture

Also Published As

Publication number Publication date
JP2005263648A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
EP2881077B1 (en) Method for manufacturing dental mill blank
WO2002015847A1 (en) Dental curable composition
EP2098215A1 (en) Dental filling material, process for producing the same, and dental composite material
JP3523410B2 (en) Dental composite materials
JP6739809B2 (en) Dental composition, and composite resin material for dental cutting using the dental composition
JP5054321B2 (en) Dental filler, method for producing the same, and dental composite material
JP6255144B2 (en) Composite resin material for dental cutting
KR102228118B1 (en) Dentistry composite comprising a Glass-ceramics
JPWO2019189698A1 (en) Resin block for dental cutting
JP3481660B2 (en) Fillers and dental composites containing fillers
JP2002138008A (en) Dental curable composition
JPH08259415A (en) Polymerizable dental material
Cao et al. CaF 2/SiO 2 core–shell nanoparticles as novel fillers with reinforced mechanical properties and sustained fluoride ion release for dental resin composites
JP4502673B2 (en) Filler, composite resin using the filler, and dental prosthesis using the composite resin
JP4271800B2 (en) Dental multifunctional filler
JP5616672B2 (en) Curable composition and dental cured product
US7393883B2 (en) Filler for dental composite materials
WO2011129356A1 (en) Curable composition and cured product for dental use
JP4798680B2 (en) Dental curable composition
JP5108173B2 (en) Dental surface modified inorganic filler
JP4568416B2 (en) Dental coloring filler
JP7420405B2 (en) Dental curable composition
JP7288462B2 (en) Dental curable composition and method for producing the same
JPH07196431A (en) Filler and dental complex restorative material containing the same
JP7321456B2 (en) dental restorative kit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100420

R150 Certificate of patent or registration of utility model

Ref document number: 4502673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350