JP4501584B2 - COMPRESSION RATIO CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE - Google Patents

COMPRESSION RATIO CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE Download PDF

Info

Publication number
JP4501584B2
JP4501584B2 JP2004228763A JP2004228763A JP4501584B2 JP 4501584 B2 JP4501584 B2 JP 4501584B2 JP 2004228763 A JP2004228763 A JP 2004228763A JP 2004228763 A JP2004228763 A JP 2004228763A JP 4501584 B2 JP4501584 B2 JP 4501584B2
Authority
JP
Japan
Prior art keywords
compression ratio
engine
internal combustion
ratio control
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004228763A
Other languages
Japanese (ja)
Other versions
JP2006046194A (en
Inventor
亮介 日吉
俊一 青山
信一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004228763A priority Critical patent/JP4501584B2/en
Publication of JP2006046194A publication Critical patent/JP2006046194A/en
Application granted granted Critical
Publication of JP4501584B2 publication Critical patent/JP4501584B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

この発明は、可変圧縮比機構を備えた内燃機関、特に火花点火式ガソリン機関における圧縮比制御装置に関する。   The present invention relates to a compression ratio control device for an internal combustion engine having a variable compression ratio mechanism, particularly a spark ignition gasoline engine.

本出願人は、先に、レシプロ式内燃機関の可変圧縮比機構として、複リンク式ピストン−クランク機構を用い、そのリンク構成の一部を動かすことによりピストン上死点位置を変化させるようにした機構を種々提案している(例えば特許文献1)。この種の可変圧縮比機構は、内燃機関の機械的な圧縮比つまり公称圧縮比を変化させるものであり、一般に、部分負荷時には、熱効率向上のために高圧縮比に制御され、高負荷時には、ノッキング回避のために低圧縮比に制御される。
特開2001−227367号公報
The present applicant previously used a multi-link type piston-crank mechanism as a variable compression ratio mechanism of a reciprocating internal combustion engine, and changed a piston top dead center position by moving a part of the link configuration. Various mechanisms have been proposed (for example, Patent Document 1). This type of variable compression ratio mechanism changes the mechanical compression ratio of the internal combustion engine, that is, the nominal compression ratio, and is generally controlled at a high compression ratio to improve thermal efficiency during partial load, and at high load, The compression ratio is controlled to be low in order to avoid knocking.
JP 2001-227367 A

上記のように従来の圧縮比制御装置においては、一般に、機関の負荷と回転速度とに応じて目標圧縮比が与えられ、例えば、低速低負荷側の最大圧縮比から全開出力域での最小圧縮比まで、制御可能な全範囲で圧縮比が変化する。ここで、最小圧縮比は、機関温度(油水温)が高くかつ吸入空気温度も高いようなノッキングが発生しやすい条件での全開出力時にも、できるだけノッキングを抑制しうるように、低い圧縮比であることが望ましく、また最大圧縮比は熱効率向上のために十分に高いことが望ましいので、圧縮比可変幅は、広く要求されることになる。   As described above, in the conventional compression ratio control device, generally, a target compression ratio is given according to the engine load and the rotational speed. For example, the minimum compression in the fully-open output range from the maximum compression ratio on the low speed and low load side. Up to the ratio, the compression ratio changes over the entire controllable range. Here, the minimum compression ratio is a low compression ratio so that knocking can be suppressed as much as possible even when the engine is fully open under conditions where the engine temperature (oil temperature) is high and the intake air temperature is high. Since it is desirable that the maximum compression ratio is sufficiently high in order to improve the thermal efficiency, the variable compression ratio width is widely required.

しかしながら、機関の全開出力時に機関温度等に拘わらずに最小圧縮比まで低圧縮比化する制御では、ノッキング発生の危険が小さい条件下での全開出力時においても、機関温度(油水温)や吸入空気温度が非常に高い特殊な条件においてのみ必要とされるような十分に低い圧縮比に制御されるので、トルクが大きく低下するという問題が生じる。また、通常の運転時に、負荷や回転速度に応じて圧縮比が大きく変化することになるが、電動モータ等からなる圧縮比制御アクチュエータを用いて、所定の応答性を維持しながら圧縮比可変幅を大きく得るためには、アクチュエータを高出力化する必要があり、そのサイズが大きくなるとともにコストが増大し、さらに圧縮比可変化に要するアクチュエータの駆動エネルギが大きくなるため燃費が悪化する、という問題点があった。   However, in the control to reduce the compression ratio to the minimum compression ratio regardless of the engine temperature etc. when the engine is fully open, the engine temperature (oil water temperature) and suction are also achieved even when the engine is fully open under conditions where the risk of knocking is small. Since the compression ratio is controlled to be sufficiently low as required only under special conditions where the air temperature is very high, there arises a problem that the torque is greatly reduced. Also, during normal operation, the compression ratio varies greatly depending on the load and rotational speed, but using a compression ratio control actuator such as an electric motor, the compression ratio variable width is maintained while maintaining a predetermined response. In order to obtain a large value, it is necessary to increase the output of the actuator, which increases the size and cost, and further increases the driving energy of the actuator required to change the compression ratio, resulting in a deterioration in fuel consumption. There was a point.

本発明は、機関圧縮比を変更する可変圧縮比機構と、機関回転速度および負荷を検出する手段と、検出された機関回転速度および負荷に基づき、高負荷側で低く低負荷側で高い圧縮比となるように上記可変圧縮比機構を制御する圧縮比制御手段と、を備えてなる内燃機関の圧縮比制御装置において、ノッキングが生じにくい所定の温度条件の成立時には、制御可能な最小圧縮比よりも高い所定の中間圧縮比と最大圧縮比との範囲内で、上記圧縮比制御手段による圧縮比制御を行うことを特徴としている。 The present invention relates to a variable compression ratio mechanism for changing the engine compression ratio, means for detecting the engine speed and load, and a high compression ratio that is low on the high load side and high on the low load side based on the detected engine speed and load. And a compression ratio control means for controlling the variable compression ratio mechanism so that, when a predetermined temperature condition in which knocking does not easily occur is established, the controllable minimum compression ratio is The compression ratio control by the compression ratio control means is performed within a range of a high predetermined intermediate compression ratio and maximum compression ratio.

すなわち、従来の圧縮比可変制御に対して、ノッキングが特に問題とならない通常の運転条件においては、使用する圧縮比域(圧縮比可変幅)を最大圧縮比から中間圧縮比までに縮小し、高圧縮比側に圧縮比可変域を維持する。これによって、所定のアクチュエータ応答性を維持しながらアクチュエータの小型化が可能となる。そして、ノッキング回避のために低圧縮比化が必要となる特殊な条件においては、さらに低圧縮比側に圧縮比を設定することで、ノッキング回避が可能である。   That is, compared to the conventional variable compression ratio control, under normal operating conditions where knocking is not particularly problematic, the compression ratio range (compression ratio variable width) to be used is reduced from the maximum compression ratio to the intermediate compression ratio. Maintain the compression ratio variable range on the compression ratio side. As a result, the actuator can be miniaturized while maintaining a predetermined actuator response. Under special conditions that require a low compression ratio in order to avoid knocking, knocking can be avoided by further setting the compression ratio on the low compression ratio side.

例えば、制御可能な圧縮比可変の範囲が、10〜14である可変圧縮比内燃機関の場合、触媒暖機後で、油水温80℃程度かつ吸入空気温度30℃程度、ハイオク燃料を使用、という条件の通常の機関状態・運転状態から全開加速を開始したときに、圧縮比を12〜14程度に維持しつつノッキングを回避するような点火時期設定とすることで、ノッキングを発生させることなく、しかも、圧縮比を10まで低下させて最適点火時期設定とした場合よりもトルクを増大することができる。従って、このようなノッキングが生じにくい条件下では、図1の説明図に例示するように、低速低負荷域では最大圧縮比(例えば圧縮比14)に設定し、全開加速時の圧縮比を中間圧縮比(例えば圧縮比12程度)に設定するようにして、圧縮比可変範囲を例えば12〜14のように制限する。つまり、この条件下では、圧縮比12より小さい領域を使用しない。   For example, in the case of a variable compression ratio internal combustion engine whose controllable variable compression ratio range is 10 to 14, after warming up the catalyst, oil water temperature is about 80 ° C. and intake air temperature is about 30 ° C., and high-octane fuel is used. Without starting knocking by setting the ignition timing so as to avoid knocking while maintaining the compression ratio at about 12-14 when full-open acceleration is started from the normal engine state / operating state of the condition, Moreover, the torque can be increased as compared with the case where the compression ratio is reduced to 10 and the optimum ignition timing is set. Therefore, under such conditions that knocking is unlikely to occur, the maximum compression ratio (for example, compression ratio 14) is set in the low speed and low load region, and the compression ratio at the time of full opening acceleration is intermediate as illustrated in the explanatory diagram of FIG. The compression ratio variable range is limited to 12 to 14, for example, by setting the compression ratio (for example, about 12 compression ratio). That is, under this condition, an area smaller than the compression ratio 12 is not used.

このように中間圧縮比以上の特定圧縮比域のみ使用することで、圧縮比を高圧縮比側に維持することができるため熱効率が向上し、燃費・トルクを向上することができる。また、圧縮比可変域が狭くなるため、可変圧縮比機構の圧縮比制御アクチュエータの作動量を低減することが可能になり、アクチュエータ作動に要するエネルギが低減し、燃費が向上する。さらに、通常時の圧縮比可変幅が狭いことから、アクチュエータ応答速度が低い小型アクチュエータを使用することが可能になり、部品コストが低減する。   Thus, by using only the specific compression ratio region equal to or higher than the intermediate compression ratio, the compression ratio can be maintained on the high compression ratio side, so that the thermal efficiency can be improved and the fuel consumption and torque can be improved. In addition, since the compression ratio variable range is narrowed, the amount of operation of the compression ratio control actuator of the variable compression ratio mechanism can be reduced, energy required for actuator operation is reduced, and fuel consumption is improved. Furthermore, since the compression ratio variable width at the normal time is narrow, it is possible to use a small actuator with a low actuator response speed, and the component cost is reduced.

また、通常の機関状態・運転状態から外れた場合に備えて、中間圧縮比以下の低圧縮比域を使用することも可能にしておくことで、例えば油水温、吸気温度、燃焼室壁温などの異常上昇によって中間圧縮比においてノッキング発生の危険が高くなるような場合においては、中間圧縮比以下の低圧縮比に設定することでノッキングを回避することが可能になる。   In addition, it is possible to use a low compression ratio region that is lower than the intermediate compression ratio in preparation for a case where it is out of the normal engine state / operation state, for example, oil water temperature, intake air temperature, combustion chamber wall temperature, etc. When the risk of knocking increases at the intermediate compression ratio due to an abnormal rise in the engine, knocking can be avoided by setting the compression ratio to a low compression ratio equal to or lower than the intermediate compression ratio.

なお、アクチュエータを小型化すると、圧縮比可変速度が低下するため、過渡時等に、燃費・加速・出力性能を最適化するような最適圧縮比制御を必ずしも行うことができないことも有り得るが、コスト低減、小型軽量化などを含めたシステム全体として考えると有利なものとなる。   Note that when the actuator is downsized, the compression ratio variable speed decreases, so it may not always be possible to perform optimal compression ratio control that optimizes fuel consumption, acceleration, and output performance during transitions. This is advantageous when considered as a whole system, including reduction and reduction in size and weight.

また本発明では、望ましくは、排気系に設けた触媒コンバータの暖機が必要なときに、アイドル時の圧縮比を、上記中間圧縮比よりも低い圧縮比に制御する。すなわち、冷機状態からの始動後のアイドリング中において、まだ触媒が暖機されていない状態においては、触媒を急速に活性化するために排気温度を上昇させることが望ましい。そのため、上述した通常の機関状態・運転状態で使用する圧縮比領域よりも低圧縮比に設定して熱効率を低下させることによって、排気ガス温度を上昇させる。図2は、このような場合の圧縮比の一例を示す説明図である。このように、冷機始動後アイドリング中のように所定触媒温度以下の場合に、上記中間圧縮比以下の低圧縮比に設定することによって、排気温度の上昇により、触媒活性までに要する時間を短縮することができ、未燃HC排出量を低減することが可能になる。   In the present invention, preferably, when the catalytic converter provided in the exhaust system needs to be warmed up, the compression ratio during idling is controlled to be lower than the intermediate compression ratio. That is, during idling after startup from the cold state, when the catalyst is not yet warmed up, it is desirable to raise the exhaust temperature in order to rapidly activate the catalyst. Therefore, the exhaust gas temperature is raised by setting the compression ratio region to be lower than the compression ratio region used in the normal engine state / operating state described above to lower the thermal efficiency. FIG. 2 is an explanatory diagram showing an example of the compression ratio in such a case. As described above, when the temperature is lower than the predetermined catalyst temperature during idling after the start of the cooler, the time required for the catalyst activity is shortened by increasing the exhaust gas temperature by setting the compression ratio to a low compression ratio lower than the intermediate compression ratio. It is possible to reduce unburned HC emissions.

また本発明では、望ましくは、機関温度が所定温度以上または吸入空気温度が所定温度以上のときには、高負荷時の圧縮比を、上記中間圧縮比よりも低い圧縮比に制御する。大気温度40℃以上、あるいは、長時間高負荷運転後のような所定油水温以上または所定吸入空気温度以上である場合には、高負荷時の設定圧縮比を、請求項1のように中間圧縮比設定にするとノッキングが発生し、このノッキング回避のために点火時期を大きくリタードする制御がなされる結果、トルクが大きく低下してしまう。そのため、このようにノッキングが生じやすい条件下では、図3に例示するように、高負荷時の圧縮比を、所定の中間圧縮比よりも低圧縮比に設定し、ノッキング発生ならびに点火時期リタードによるトルク低下を回避する。   In the present invention, preferably, when the engine temperature is equal to or higher than the predetermined temperature or the intake air temperature is equal to or higher than the predetermined temperature, the compression ratio at the time of high load is controlled to a compression ratio lower than the intermediate compression ratio. When the atmospheric temperature is 40 ° C. or higher, or is higher than a predetermined oil / water temperature or a predetermined intake air temperature after a high load operation for a long time, the set compression ratio at the time of high load is intermediate compression as in claim 1 When the ratio is set, knocking occurs, and control is performed to largely retard the ignition timing in order to avoid this knocking, resulting in a significant reduction in torque. Therefore, under such conditions where knocking is likely to occur, as shown in FIG. 3, the compression ratio at the time of high load is set to a lower compression ratio than a predetermined intermediate compression ratio, so that knocking occurs and ignition timing retards. Avoid torque reduction.

また本発明では、望ましくは、機関温度が所定温度未満でかつ所定の機関回転速度以下の非アイドル時には、負荷に拘わらず最大圧縮比に制御する。所定油水温未満でかつ所定の機関回転速度以下の状態においては、ノッキング発生またはノッキング発生によるトルク低下を回避できるため、圧縮比を熱効率最大となる最大圧縮比よりも低圧縮比側に設定する必要がない。そこで、図4に例示するように、常に最大圧縮比に固定することによって、燃費・トルク向上効果を最大にすることができる。ただし所定油水温未満の場合でも、アイドル状態にあるときは、請求項2のように低圧縮比化設定とするために最大圧縮比設定としないようにすることもできる。所定の機関回転速度を超える場合には、最大燃焼圧力または最大燃焼荷重が許容値を超える危険があるか、または燃焼室壁温が急上昇してノッキング発生に至る危険があるため、所定油水温未満においても最大圧縮比に固定しないことが望ましい。   In the present invention, it is desirable to control the maximum compression ratio regardless of the load when the engine temperature is lower than a predetermined temperature and is not idling below a predetermined engine speed. It is necessary to set the compression ratio to a lower compression ratio side than the maximum compression ratio at which the thermal efficiency is maximum in order to avoid the occurrence of knocking or torque reduction due to the occurrence of knocking when the temperature is lower than the predetermined oil temperature and below the predetermined engine speed. There is no. Therefore, as illustrated in FIG. 4, the fuel efficiency / torque improvement effect can be maximized by always fixing the maximum compression ratio. However, even when the oil temperature is lower than the predetermined oil / water temperature, when the engine is in the idle state, the maximum compression ratio setting may not be set in order to achieve the low compression ratio setting as in claim 2. If the engine speed exceeds the specified value, the maximum combustion pressure or maximum combustion load may exceed the allowable value, or the combustion chamber wall temperature may rise rapidly, resulting in knocking. It is desirable that the maximum compression ratio is not fixed.

上記中間圧縮比の値は、機関の状態ないしは運転状態に応じて可変的に設定することが望ましい。つまり、中間圧縮比は、機関状態・運転状態によって最適値が変化するため、機関状態・運転状態の変化に応じて、最適圧縮比になるように可変に設定する。これにより、圧縮比可変幅を適切な範囲に縮小することが可能になり、圧縮比制御アクチュエータの消費エネルギを低減して燃費を向上することができる。また、全開加速時においても最適な中間圧縮比まで高圧縮比化することができるため、熱効率向上によってトルクを向上することができる。また、圧縮比を必要以上に低下させないようにできるため、高回転速度の高負荷状態においても、熱効率向上によって排気熱エネルギ排出量が低減し、排温が低下する。従って、排温の上限を超えることを回避するために通常行われる燃料増量を減少することができ、出力域における排気、燃費が向上する。   The value of the intermediate compression ratio is desirably set variably according to the state of the engine or the operating state. That is, since the optimum value of the intermediate compression ratio varies depending on the engine state / operating state, the intermediate compression ratio is set variably so as to become the optimum compression ratio according to the change of the engine state / operating state. As a result, the variable compression ratio width can be reduced to an appropriate range, and the energy consumption of the compression ratio control actuator can be reduced to improve fuel efficiency. In addition, since the compression ratio can be increased to an optimum intermediate compression ratio even during full-open acceleration, the torque can be improved by improving the thermal efficiency. In addition, since the compression ratio can be prevented from being lowered more than necessary, the exhaust heat energy discharge amount is reduced and the exhaust temperature is lowered by improving the thermal efficiency even in a high load state at a high rotational speed. Therefore, it is possible to reduce the fuel increase normally performed to avoid exceeding the upper limit of the exhaust temperature, and the exhaust and fuel consumption in the output range are improved.

この発明によれば、機関温度が高いときや吸入空気温度が高いときなどのノッキングに至りやすい特殊な条件下では、十分な低圧縮比化を可能としつつ、通常の機関状態・運転条件においては、使用圧縮比域が中間圧縮比以上に制限されるので、出力域において過度の圧縮比低下が生じず、トルク・燃費を向上させることができるとともに、圧縮比制御アクチュエータの小型化が可能となる。   According to the present invention, under special conditions that are likely to lead to knocking such as when the engine temperature is high or when the intake air temperature is high, a sufficiently low compression ratio can be achieved while under normal engine conditions and operating conditions. Since the use compression ratio range is limited to the intermediate compression ratio or more, an excessive reduction in the compression ratio does not occur in the output range, torque and fuel consumption can be improved, and the compression ratio control actuator can be downsized. .

以下、この発明の好ましい一実施例を図面に基づいて詳細に説明する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings.

図5は、この発明に係る内燃機関の圧縮比制御装置の一実施例を示している。この内燃機関は、火花点火式ガソリン機関であって、公称圧縮比εを可変制御する可変圧縮比機構1と、ノッキングを検出するノックセンサ3の検出信号に基づいて、微弱なノッキング状態となるように、点火時期を制御する点火進角制御装置2と、上記可変圧縮比機構1および点火進角制御装置2を制御するエンジンコントロールユニット4と、を備えている。上記エンジンコントロールユニット4は、機関運転条件に対応して目標圧縮比を予め割り付けた圧縮比制御マップ5を備えており、また、図示せぬセンサ類によって検出された機関回転数信号、負荷信号、冷却水温度信号、潤滑油温度信号、吸入空気温度信号、触媒温度信号、などが入力されている。なお、上記圧縮比制御マップ5としては、例えば、油水温や吸入空気温度等が異常に高くない通常時(ノッキングが生じにくい条件下)を前提として、機関の負荷および回転速度をパラメータとして図1に相当する基本の圧縮比値を割り当てたものとなっており、高油水温時等には、この基本の圧縮比値を補正することで、図2〜図4のような目標圧縮比を得るようにしているが、これに限定されるものではなく、温度条件等の条件毎に異なる特性の圧縮比制御マップを備えることなども可能である。   FIG. 5 shows an embodiment of a compression ratio control device for an internal combustion engine according to the present invention. The internal combustion engine is a spark ignition gasoline engine, and is in a weak knocking state based on a detection signal from a variable compression ratio mechanism 1 that variably controls the nominal compression ratio ε and a knock sensor 3 that detects knocking. Further, an ignition advance control device 2 for controlling the ignition timing, and an engine control unit 4 for controlling the variable compression ratio mechanism 1 and the ignition advance control device 2 are provided. The engine control unit 4 includes a compression ratio control map 5 in which a target compression ratio is assigned in advance corresponding to engine operating conditions, and an engine speed signal, a load signal detected by sensors (not shown), A coolant temperature signal, a lubricating oil temperature signal, an intake air temperature signal, a catalyst temperature signal, and the like are input. As the compression ratio control map 5, for example, assuming that the oil water temperature, the intake air temperature, etc. are not abnormally high (a condition in which knocking does not easily occur), the engine load and the rotation speed are used as parameters. The basic compression ratio value corresponding to is assigned, and when the oil temperature is high, the basic compression ratio value is corrected to obtain the target compression ratio as shown in FIGS. However, the present invention is not limited to this, and it is possible to provide a compression ratio control map having different characteristics for each condition such as a temperature condition.

図6は、可変圧縮比機構1の構成を示す図である。   FIG. 6 is a diagram illustrating a configuration of the variable compression ratio mechanism 1.

クランクシャフト51は、複数のジャーナル部52とクランクピン53とを備えており、シリンダブロック50の主軸受に、ジャーナル部52が回転自在に支持されている。上記クランクピン53は、ジャーナル部52から所定量偏心しており、ここに第2リンクとなるロアリンク54が回転自在に連結されている。   The crankshaft 51 includes a plurality of journal portions 52 and a crankpin 53, and the journal portion 52 is rotatably supported by the main bearing of the cylinder block 50. The crank pin 53 is eccentric by a predetermined amount from the journal portion 52, and a lower link 54 serving as a second link is rotatably connected thereto.

上記ロアリンク54は、左右の2部材に分割可能に構成されているとともに、略中央の連結孔に上記クランクピン53が嵌合している。   The lower link 54 is configured to be split into two left and right members, and the crank pin 53 is fitted in a substantially central connecting hole.

第1リンクとなるアッパリンク55は、下端側が連結ピン56によりロアリンク54の一端に回動可能に連結され、上端側がピストンピン57によりピストン58に回動可能に連結されている。上記ピストン58は、燃焼圧力を受け、シリンダブロック50のシリンダ59内を往復動する。なお、上記シリンダブロック50の一部に、図5に示したように、ノッキングに起因した振動を検出するノックセンサ3が配置されている。   The upper link 55 serving as the first link has a lower end side rotatably connected to one end of the lower link 54 by a connecting pin 56, and an upper end side rotatably connected to a piston 58 by a piston pin 57. The piston 58 receives the combustion pressure and reciprocates in the cylinder 59 of the cylinder block 50. As shown in FIG. 5, a knock sensor 3 that detects vibration caused by knocking is disposed in a part of the cylinder block 50.

第3リンクとなるコントロールリンク60は、上端側が連結ピン61によりロアリンク54の他端に回動可能に連結され、下端側が制御軸62を介して機関本体の一部となるシリンダブロック50の下部に回動可能に連結されている。詳しくは、制御軸62は、回転可能に機関本体に支持されているとともに、その回転中心から偏心している偏心カム部62aを有し、この偏心カム部62aに上記コントロールリンク60下端部が回転可能に嵌合している。   The control link 60 serving as the third link is pivotally connected at its upper end side to the other end of the lower link 54 by a connecting pin 61, and the lower end side of the lower part of the cylinder block 50 that forms part of the engine body via the control shaft 62. It is connected to the pivotable. Specifically, the control shaft 62 is rotatably supported by the engine body and has an eccentric cam portion 62a that is eccentric from the center of rotation, and the lower end portion of the control link 60 is rotatable on the eccentric cam portion 62a. Is fitted.

上記制御軸62は、エンジンコントロールユニット4(図5参照)からの制御信号に基づき、電動モータを用いた圧縮比制御アクチュエータ63によって回動位置が制御される。   The rotation position of the control shaft 62 is controlled by a compression ratio control actuator 63 using an electric motor based on a control signal from the engine control unit 4 (see FIG. 5).

上記のような複リンク式ピストン−クランク機構を用いた可変圧縮比機構1においては、上記制御軸62が圧縮比制御アクチュエータ63によって回動されると、偏心カム部62aの中心位置、特に、機関本体に対する相対位置が変化する。これにより、コントロールリンク60の下端の揺動支持位置が変化する。そして、上記コントロールリンク60の揺動支持位置が変化すると、ピストン58の行程が変化し、ピストン上死点(TDC)におけるピストン58の位置が高くなったり低くなったりする。これにより、機関圧縮比を変えることが可能となり、特に、最大圧縮比と最小圧縮比との間で、圧縮比を連続的に変化させることができる。   In the variable compression ratio mechanism 1 using the multi-link type piston-crank mechanism as described above, when the control shaft 62 is rotated by the compression ratio control actuator 63, the center position of the eccentric cam portion 62a, in particular, the engine. The relative position with respect to the main body changes. Thereby, the rocking | fluctuation support position of the lower end of the control link 60 changes. When the swing support position of the control link 60 changes, the stroke of the piston 58 changes, and the position of the piston 58 at the piston top dead center (TDC) becomes higher or lower. As a result, the engine compression ratio can be changed, and in particular, the compression ratio can be continuously changed between the maximum compression ratio and the minimum compression ratio.

なお、本発明においては、この実施例の可変圧縮比機構に限定されず、種々の形式の可変圧縮比機構を適用することが可能である。   The present invention is not limited to the variable compression ratio mechanism of this embodiment, and various types of variable compression ratio mechanisms can be applied.

請求項1の圧縮比設定の例を示す特性図。The characteristic view which shows the example of the compression ratio setting of Claim 1. 請求項2の圧縮比設定の例を示す特性図。The characteristic view which shows the example of the compression ratio setting of Claim 2. 請求項3の圧縮比設定の例を示す特性図。The characteristic view which shows the example of the compression ratio setting of Claim 3. 請求項4の圧縮比設定の例を示す特性図。The characteristic view which shows the example of the compression ratio setting of Claim 4. この発明に係る圧縮比制御装置のシステム全体を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS The structure explanatory drawing which shows the whole system of the compression ratio control apparatus based on this invention. 可変圧縮比機構の一実施例を示す説明図。Explanatory drawing which shows one Example of a variable compression ratio mechanism.

符号の説明Explanation of symbols

1…可変圧縮比機構
2…点火進角制御装置
3…ノックセンサ
4…エンジンコントロールユニット
5…圧縮比制御マップ
DESCRIPTION OF SYMBOLS 1 ... Variable compression ratio mechanism 2 ... Ignition advance angle control device 3 ... Knock sensor 4 ... Engine control unit 5 ... Compression ratio control map

Claims (6)

機関圧縮比を変更する可変圧縮比機構と、機関回転速度および負荷を検出する手段と、検出された機関回転速度および負荷に基づき、高負荷側で低く低負荷側で高い圧縮比となるように上記可変圧縮比機構を制御する圧縮比制御手段と、を備えてなる内燃機関の圧縮比制御装置において、ノッキングが生じにくい所定の温度条件の成立時には、制御可能な最小圧縮比よりも高い所定の中間圧縮比と最大圧縮比との範囲内で、上記圧縮比制御手段による圧縮比制御を行うことを特徴とする内燃機関の圧縮比制御装置。 A variable compression ratio mechanism that changes the engine compression ratio, a means for detecting the engine speed and load, and a high compression ratio that is low on the high load side and high on the low load side based on the detected engine speed and load. In a compression ratio control device for an internal combustion engine comprising a compression ratio control means for controlling the variable compression ratio mechanism, when a predetermined temperature condition in which knocking is unlikely to occur is established, a predetermined compression ratio higher than the controllable minimum compression ratio A compression ratio control device for an internal combustion engine, wherein compression ratio control is performed by the compression ratio control means within a range between an intermediate compression ratio and a maximum compression ratio. 排気系に設けた触媒コンバータの暖機が必要なときに、アイドル時の圧縮比を、上記中間圧縮比よりも低い圧縮比に制御することを特徴とする請求項1に記載の内燃機関の圧縮比制御装置。   2. The compression of an internal combustion engine according to claim 1, wherein when the catalytic converter provided in the exhaust system needs to be warmed up, the compression ratio during idling is controlled to a compression ratio lower than the intermediate compression ratio. Ratio control device. 機関温度が所定温度以上または吸入空気温度が所定温度以上のときには、高負荷時の圧縮比を、上記中間圧縮比よりも低い圧縮比に制御することを特徴とする請求項1または2に記載の内燃機関の圧縮比制御装置。   3. The compression ratio at high load is controlled to a compression ratio lower than the intermediate compression ratio when the engine temperature is equal to or higher than the predetermined temperature or the intake air temperature is equal to or higher than the predetermined temperature. A compression ratio control device for an internal combustion engine. 機関温度が所定温度未満でかつ所定の機関回転速度以下の非アイドル時には、負荷に拘わらず最大圧縮比に制御することを特徴とする請求項1または2に記載の内燃機関の圧縮比制御装置。   The internal combustion engine compression ratio control apparatus according to claim 1 or 2, wherein when the engine temperature is lower than a predetermined temperature and is not idling below a predetermined engine rotational speed, the maximum compression ratio is controlled regardless of the load. 上記中間圧縮比の値を、機関の状態ないしは運転状態に応じて可変的に設定することを特徴とする請求項1〜4のいずれかに記載の内燃機関の圧縮比制御装置。   5. The compression ratio control device for an internal combustion engine according to claim 1, wherein the value of the intermediate compression ratio is variably set according to the state of the engine or the operating state. 上記可変圧縮比機構は、ピストンにピストンピンを介して連結された第1リンクと、この第1リンクに揺動可能に連結されるとともにクランクシャフトのクランクピンに回転可能に連結された第2リンクと、上記第2リンクに揺動可能に連結されるとともに機関本体に揺動可能に支持された第3リンクと、を備えた複リンク式ピストン−クランク機構からなり、上記第3リンクの機関本体に対する支点位置を圧縮比制御アクチュエータにより変化させることで圧縮比を変更することを特徴とする請求項1〜5のいずれかに記載の内燃機関の圧縮比制御装置。   The variable compression ratio mechanism includes a first link coupled to a piston via a piston pin, and a second link coupled to the first link so as to be swingable and rotatably coupled to a crankpin of a crankshaft. And a third link that is swingably connected to the second link and is swingably supported by the engine body. The engine body of the third link The compression ratio control device for an internal combustion engine according to any one of claims 1 to 5, wherein the compression ratio is changed by changing a fulcrum position with respect to the position by a compression ratio control actuator.
JP2004228763A 2004-08-05 2004-08-05 COMPRESSION RATIO CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE Active JP4501584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004228763A JP4501584B2 (en) 2004-08-05 2004-08-05 COMPRESSION RATIO CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004228763A JP4501584B2 (en) 2004-08-05 2004-08-05 COMPRESSION RATIO CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE

Publications (2)

Publication Number Publication Date
JP2006046194A JP2006046194A (en) 2006-02-16
JP4501584B2 true JP4501584B2 (en) 2010-07-14

Family

ID=36025068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004228763A Active JP4501584B2 (en) 2004-08-05 2004-08-05 COMPRESSION RATIO CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE

Country Status (1)

Country Link
JP (1) JP4501584B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4697183B2 (en) * 2007-05-23 2011-06-08 トヨタ自動車株式会社 Control device for internal combustion engine
BRPI0820340B1 (en) 2007-11-07 2020-04-14 Toyota Motor Co Ltd control device
CN102239318B (en) 2008-12-03 2014-03-26 丰田自动车株式会社 Engine system control device
JP5660252B2 (en) * 2012-05-17 2015-01-28 日産自動車株式会社 Control device for variable compression ratio internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963340A (en) * 1982-10-05 1984-04-11 Mazda Motor Corp Variable compression ratio engine
JPS64328A (en) * 1987-06-19 1989-01-05 Fuji Heavy Ind Ltd Compression ratio variable type engine
JP2004092639A (en) * 2002-07-11 2004-03-25 Nissan Motor Co Ltd Compression ratio control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963340A (en) * 1982-10-05 1984-04-11 Mazda Motor Corp Variable compression ratio engine
JPS64328A (en) * 1987-06-19 1989-01-05 Fuji Heavy Ind Ltd Compression ratio variable type engine
JP2004092639A (en) * 2002-07-11 2004-03-25 Nissan Motor Co Ltd Compression ratio control device for internal combustion engine

Also Published As

Publication number Publication date
JP2006046194A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP4134830B2 (en) COMPRESSION RATIO CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
US6705257B2 (en) Apparatus and method for controlling variable valve in internal combustion engine
JP4581273B2 (en) Start-up control device for internal combustion engine
US7451739B2 (en) Ignition timing control system and method for internal combustion engine, and engine control unit
JP2002285876A (en) Combustion control system for internal combustion engine
JP5668458B2 (en) Control device for internal combustion engine
US20200232325A1 (en) Variable operation system for internal combustion engine, and control device therefor
JP2002285898A (en) Control device for internal combustion engine
JP6666232B2 (en) Variable system for internal combustion engine and control method thereof
JP2004218551A (en) Control device for internal combustion engine
JP4501584B2 (en) COMPRESSION RATIO CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
JP5515793B2 (en) Variable mechanism control system for internal combustion engine
JP4765699B2 (en) Reciprocating internal combustion engine control method
JP4470727B2 (en) Control device and control method for internal combustion engine
JP6835235B2 (en) Internal combustion engine control method and internal combustion engine control device
JP2005016381A (en) Start controller for internal combustion engine with variable compression ratio mechanism
JP4400116B2 (en) Ignition control device for internal combustion engine with variable compression ratio mechanism
JP4285221B2 (en) Internal combustion engine
JP2006046193A (en) Controller for internal combustion engine
JP5906591B2 (en) Control device for variable compression ratio internal combustion engine
JP2008101520A (en) Mirror cycle engine
JP4978300B2 (en) Internal combustion engine
WO2016067375A1 (en) Control device for internal combustion engine
JP2005030253A (en) Control device of internal combustion engine with variable compression ratio mechanism
JP2011247177A (en) Control device for variable compression ratio internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R150 Certificate of patent or registration of utility model

Ref document number: 4501584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4