JP4501052B2 - Thermally crosslinkable polymer solid electrolyte, polymer solid electrolyte membrane and method for producing the same - Google Patents

Thermally crosslinkable polymer solid electrolyte, polymer solid electrolyte membrane and method for producing the same Download PDF

Info

Publication number
JP4501052B2
JP4501052B2 JP2002015987A JP2002015987A JP4501052B2 JP 4501052 B2 JP4501052 B2 JP 4501052B2 JP 2002015987 A JP2002015987 A JP 2002015987A JP 2002015987 A JP2002015987 A JP 2002015987A JP 4501052 B2 JP4501052 B2 JP 4501052B2
Authority
JP
Japan
Prior art keywords
polymer
solid electrolyte
group
polymer solid
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002015987A
Other languages
Japanese (ja)
Other versions
JP2003217343A (en
Inventor
幸太 北村
敏 高瀬
佳充 坂口
重徳 永原
史朗 濱本
淳子 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002015987A priority Critical patent/JP4501052B2/en
Publication of JP2003217343A publication Critical patent/JP2003217343A/en
Application granted granted Critical
Publication of JP4501052B2 publication Critical patent/JP4501052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyethers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐久性及びイオン伝導性に優れた熱架橋性高分子固体電解質、高分子固体電解質膜及びその製造方法に関するものである。
【0002】
【従来の技術】
液体電解質のかわりに高分子固体電解質をイオン伝導体として用いる電気化学的装置の例として、水電解槽や燃料電池を挙げることができる。これらに用いられる高分子膜は、カチオン交換膜として高いプロトン伝導率を有すると共に化学的、熱的、電気化学的及び力学的に十分安定なものでなくてはならない。このため、長期にわたり使用できるものとして、主に米デュポン社製の「ナフィオン(登録商標)」を代表例とするパーフルオロカーボンスルホン酸膜が使用されてきた。しかしながら、100℃を越える条件で運転しようとすると、膜の含水率が急激に落ちる他、膜の軟化も顕著となる。このため、メタノールを燃料とする燃料電池においては、膜内のメタノール透過による性能低下が起こり、十分な性能を発揮することはできない。また、現在主に検討されている水素を燃料として80℃付近で運転する燃料電池においても、膜のコストが高すぎることが燃料電池技術の確立の障害として指摘されている。
【0003】
パーフルオロカーボンスルホン酸膜に代わる電解質膜として、ポリエーテルエーテルケトンやポリエーテルスルホン、ポリスルホンなどのポリマーにスルホン酸基などイオン性基を導入した、いわゆる炭化水素系高分子固体電解質が近年盛んに検討されている。しかしながら、炭化水素系高分子固体電解質はパーフルオロカーボンスルホン酸に比べて水和・膨潤しやすく、高湿度下での耐久性に問題があった。
【0004】
膨潤を抑制する方策の一つとして、塩基性ポリマーとの混合が行なわれている。これは、高分子固体電解質中のスルホン酸基を、塩基性ポリマーによって架橋することで膨潤を抑制しようとするものである。例えば、スルホン酸基を有するポリエーテルスルホンやスルホン酸基を有するポリエーテルエーテルケトン(酸性ポリマー)と、ポリベンズイミダゾール(塩基性ポリマー)との混合物(国際公開特許公報WO99/54389号公報)などが知られている。
【0005】
また、特開平6−93114号公報、国際公開特許WO99/61141号公報、特開2001−522401号公報に記載されているように、イオン性基であるスルホン酸基間を共有結合により架橋することで、膨潤を抑制することも行なわれている。
【0006】
上記の方法はいずれも膨潤は抑制できるものの、イオン性基が架橋反応によりイオン性を示さなくなるため、イオン伝導性が低下するという問題点があった。
【0007】
架橋構造を有する高分子固体電解質としてスチレン/ジビニルベンゼン共重合体のスルホン化物は、初期の固体高分子形燃料電池に使用されたことで良く知られている。この高分子固体電解質は、ポリマー骨格そのものの耐久性に乏しく燃料電池として満足な性質を示さなかった。特開平2−248434号公報、特開平2−245035号公報には、ルイス酸を触媒としてポリマー中のクロロメチル基を架橋反応させて得られるイオン交換体が記載されている。しかしながら架橋反応に触媒が必要である。よって、ポリマーと触媒を混合して成形体を得る場合には触媒の残留が、ポリマー成形体を触媒で処理する場合には内部で架橋反応が起こりにくいことが、それぞれ問題であった。
【0008】
【発明が解決しようとする課題】
本発明の目的は、燃料電池などのプロトン交換膜に好適な、イオン伝導性及び耐久性に優れた、熱架橋性高分子固体電解質、架橋高分子固体電解質膜及びその製造方法を提供することである。
【0009】
【課題を解決するための手段】
本発明者らは、鋭意研究を重ねた結果、下記の高分子固体電解質を用いることで上記目的を達成できることを見出した。
【0010】
すなわち本発明は、(1)スルホン酸基及びホスホン酸基からなる群より選ばれる1種以上のイオン性基及びその塩を有し下記一般式(1)〜(6)で表される群より選ばれる1種以上の熱架橋性基を分子末端に1個以上有しており、ポリマー主鎖がポリエーテルスルホン又はポリエーテルケトンであることを特徴とする高分子固体電解質、
【0011】
【化2】

Figure 0004501052
(式中、R1〜R9は水素原子、炭素数1〜10のアルキル基、フェニル基、炭素数6〜20の芳香族基、ハロゲンのいずれかを、Zは水素原子、炭素数1〜10の炭化水素基、ハロゲン、ニトロ基、−SO3X基{XはHあるいは1価の金属イオンを表す。}のいずれかを、nは1〜4の整数を表す。)
(2) (1)に記載の高分子固体電解質を単独又は一成分として含むポリマー組成物を架橋して得ることを特徴とする架橋高分子固体電解質、(3) (1)に記載の高分子固体電解質を単独又は一成分として含むポリマー組成物から形成された膜を熱処理して架橋高分子固体電解質膜を得ることを特徴とする高分子固体電解質膜の製造方法、(4) (3)に記載の方法で製造された高分子固体電解質膜、(5) (4)に記載の高分子固体電解質膜を用いたことを特徴とする燃料電池、(6) (2)に記載の高分子固体電解質を用いたことを特徴とする燃料電池である。
【0012】
【発明の実施の形態】
以下、本発明に関して詳細に説明する。本発明における熱架橋性高分子固体電解質は、ポリマー分子中に少なくとも1個以上の熱架橋性基及びイオン性基を有していることが必要である。ポリマーの数平均分子量は1000〜1,000,000の間であることが好ましく、5,000〜500,000の間であることが物性と加工性のバランスが取れるため好ましい。
【0013】
イオン性基はスルホン酸基及びホスホン酸基からなる群より選ばれる1種以上のイオン性基及びその塩である。
スルホン酸基はイオン伝導性が高く、ホスホン酸基は高温でもイオン伝導性を示すため、それぞれ好ましい。ポリマー中のイオン性基の量は、0.1〜5.0mmol/gであることが好ましく、1.0〜3.0mmol/gであることがより好ましい。ポリマー中には、イオン性基を有するモノマーの共重合やポリマーのスルホン化反応によってイオン性基を導入することができる。イオン性基を有するモノマーとしては、下記に示すような化合物が挙げられる。
【0014】
【化3】
Figure 0004501052
【0015】
また、無水硫酸、無水硫酸の錯体、発煙硫酸、濃硫酸、クロロスルホン酸などのスルホン化剤を用いてポリマーにスルホン酸基を導入することもできる。ポリマーをスルホン化剤に対して不活性な溶媒に溶解した状態でスルホン化剤を反応させる方法や、ポリマーを適当な溶媒で膨潤させた状態でスルホン化剤を反応させる方法、ポリマーを直接スルホン化剤と反応させる方法、などの方法によってスルホン化反応を行なうことができる。スルホン化剤はそのまま用いてもよいし、適当な溶媒に溶解、分散した状態で用いることもできる。反応温度は−100〜100℃の間で行なうことができる。また、スルホン化反応を受けやすいユニットとスルホン化反応を受けにくいユニットの共重合体構造としたり、反応温度、反応時間などのスルホン化条件を変えることによりポリマー中に導入するスルホン酸基量をコントロールすることができる。
【0016】
熱架橋性基としては、下記一般式(1)〜(6)で表される群より選ばれる1種以上の熱架橋性基を分子末端に1個以上有している。
【0017】
【化4】
Figure 0004501052
(式中、R1〜R9は水素原子、炭素数1〜10のアルキル基、フェニル基、炭素数6〜20の芳香族基、ハロゲンのいずれかを、Zは水素原子、炭素数1〜10の炭化水素基、ハロゲン、ニトロ基、−SO3X基{XはHあるいは1価の金属イオンを表す。}のいずれかを、nは1〜4の整数を表す。)
【0018】
これらの基を、ポリマーの分子末端に1個以上有している。ポリマー中の熱架橋性基の量は、1〜1,000mmol/kgであることが好ましく、5〜500mmol/kgであることがさらに好ましい。 熱架橋性基は、熱架橋性基を有する化合物を、共重合モノマーや末端停止剤として反応させることでポリマーに導入することができる。
【0019】
ポリマーの主鎖はポリエーテルスルホン又はポリエーテルケトンであり、耐久性に優れかつ合成も容易である。
【0020】
ポリエーテルスルホンやポリエーテルケトンは、電子吸引性基を有する芳香族ジハロゲン化合物と、ビスフェノール化合物を縮合することで得られる。縮合反応は公知の方法で行なうことができる。例えば有機溶媒中で塩基の存在下加熱することで縮合できる。有機溶媒としては、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、スルホラン、ジメチルスルホキシドなどの非プロトン性極性溶媒を挙げることができる。中でもN−メチル−2−ピロリドンが好ましい。塩基としては、炭酸カリウム、炭酸ナトリウム、水酸化カリウム、水酸化ナトリウムなどが挙げられる。中でも炭酸カリウムが好ましい。ビスフェノール化合物と塩基との反応で生成する水は、トルエンやベンゼンとの共沸で除くことができる。共沸脱水は100〜150℃で行なうことが好ましい。脱水が完了後、縮合反応を行なうことができる。縮合反応は120〜300℃で行なうことができる。反応は窒素、アルゴンなど不活性ガス雰囲気下で行なうことが好ましい。反応終了後、溶液を水、アセトンなどポリマーが不溶の溶媒に投入することで再沈させることができる。再沈したポリマーは、公知の方法で精製することができる。
【0021】
芳香族ジハロゲン化合物の例としては下記の化合物を挙げることができる。
【化5】
Figure 0004501052
【0022】
ポリマーにイオン性基を導入する目的で下記の化合物も使用することができる。
【化6】
Figure 0004501052
【0023】
ビスフェノール化合物の例としては下記の化合物を挙げることができる。
【化7】
Figure 0004501052
【0024】
ポリマーに熱架橋性基を導入するための化合物としては下記に示すような化合物を挙げることができる。
【化8】
Figure 0004501052
【0025】
これらの化合物は、最初から原料として系に加えていてもよいし、縮合反応がある程度進んだ段階で加えてもよい。
【0026】
一般式3で表される熱架橋性基は、下記のようにフェノール性水酸基末端のポリマーにホルムアルデヒド及びアミンを反応させることで得ることができる。
【化9】
Figure 0004501052
(式中、R〜Rは水素原子、炭素数1〜10のアルキル基、フェニル基、炭素数6〜20の芳香族基を表す)
【0027】
本発明の熱架橋性高分子固体電解質の例を以下に示すが、これらに限定されるものではない。
【化10】
Figure 0004501052
【0028】
本発明の熱架橋性高分子固体電解質は、熱処理によって架橋することができる。熱処理は窒素、アルゴンなどの不活性ガス中で行なうことが好ましい。熱処理の温度は、100〜400℃の範囲で行なうことができる。熱処理時間は、1秒〜100時間の間で行なうことができる。場合に応じて、アゾ系重合開始剤、過酸化物系重合開始剤など公知の任意の重合開始剤を添加してもよい。熱架橋をする際、本発明の高分子電解質そのものを熱処理して架橋体構造とすることもできるが、他の非架橋性ポリマーとの組成物としてから熱架橋することもできる。その際、非架橋性ポリマーは本発明の架橋性ポリマーと同様にイオン性基を分子鎖中に含有するものでもイオン性基を含有しないものでもよい。非架橋性ポリマーの基本構造としては、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル類、ナイロン6、ナイロン6,6、ナイロン6,10、ナイロン12等のポリアミド類、ポリメチルメタクリレート、ポリメタクリル酸エステル類、ポリメチルアクリレート、ポリアクリル酸エステル類等のアクリレート系樹脂、ポリアクリル酸酸系樹脂、ポリメタクリル酸系樹脂、ジエン系ポリマーを含む各種ポリオレフィン、ポリウレタン系樹脂、酢酸セルロース、エチルセルロースなどのセルロース系樹脂、ポリアリレート、アラミド、ポリカーボネート、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリイミド、ポリベンズオキサゾール、ポリベンズチアゾール、ポリベンズイミダゾール、ポリアミドイミド等の芳香族系ポリマーなど、特に制限はない。
【0029】
本発明の熱架橋性高分子固体電解質は、膜に成形した後で架橋することで優れた高分子固体電解質膜となる。膜への成形は、キャスト、溶融成形など任意の方法で行なうことができるが、溶液からのキャストで作製することが好ましい。溶媒には、ジメチルスルホキシド、ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルホルムアミドなど非プロトン性極性溶媒を用いることができる。溶液の濃度は1〜50wt%であることが好ましい。溶液をガラス板上に流延し、溶媒を乾燥させることで膜を得ることができる。膜の厚みは、1〜500μmが好ましく、5〜100μmがより好ましい。必要に応じて、シリカなどの無機化合物や、他のポリマーなどを混合してもよい。イオン性基が塩になっている場合には、膜に成形した後、酸で処理することで酸型に変換することができる。その場合、架橋反応が終了した後で酸変換することが好ましい。膜を熱処理する場合には、収縮などを防ぐため、適当な治具に固定して加熱することが好ましい。この場合も、本発明の高分子電解質そのものの成形体を熱処理して架橋体構造とすることもできるが、上述のような他の非架橋性ポリマーとの組成物成形体としてから熱架橋することもできる。
【0030】
本発明の高分子固体電解質膜は、水電解や燃料電池のプロトン交換膜として使用することができる。また、電極に触媒を接合する際のバインダーとして、本発明の高分子固体電解質を用いることができる。
【0031】
【実施例】
以下、本発明について実施例を用いて具体的に説明するが、本発明はこれらの実施例に限定されることはない。各種測定は以下のようにして行なった。
【0032】
(膜の厚み測定)
膜の厚みは膜厚計(PEAKOCK DIGITAL GAUGE D−10/OZAKI MFG. CO.,LTD)を用いて測定した。サンプル中のランダムな3点の厚みを測定し、それらを平均したものを膜の厚みとした。
【0033】
(イオン伝導性測定)
自作測定用プローブ(ポリテトラフロロエチレン製)上で短冊状膜試料の表面に白金線(直径:0.2mm)を押しあて、80℃95%RHの恒温・恒湿オーブン((株)ナガノ科学機械製作所、LH−20−01)中に試料を保持し、白金線間の10KHzにおける交流インピーダンスをSOLARTRON社1250FREQUENCY RESPONSE ANALYSERにより測定した。極間距離を変化させて測定し、極間距離と抵抗測定値をプロットした勾配から以下の式により膜と白金線間の接触抵抗をキャンセルした導電率を算出した。
導電率[S/cm]=1/膜幅[cm]×膜厚[cm]×抵抗極間勾配[Ω/cm]
【0034】
(ポリマー対数粘度)
ポリマー濃度0.25g/dlのN−メチル−2−ピロリドン溶液について、オストワルド粘度計を用いて30℃で測定した。
【0035】
(耐水性試験)
ポリマー電解質膜50mgを5mlのイオン交換水と共にガラスアンプル中に封入した。アンプルは105℃で3日間加熱した。冷却後アンプルを開封し、1G2のガラスフィルターで固形物を濾取した。フィルターは80℃で一晩減圧乾燥し、濾過前後の重量から、固形分の重量を求め、重量減少率を求めた。
重量減少率[%]=残留物重量[mg]/50×100
【0036】
(イオン性基の定量)
ポリマー電解質膜100mgを0.01NのNaOH水溶液50mlに浸漬し、25℃で一晩攪拌した。その後、0.05NのHCl水溶液で中和滴定した。中和滴定には、平沼産業株式会社製電位差滴定装置COMTITE−980を用いた。イオン性基量は下記式で求められる。
イオン性基含有量[meq/g]=(10−滴定量[ml])/2
【0037】
(実施例1)
4,4’−ジクロロジフェニルスルホン−3,3’−ジスルホン酸ソーダ2.948g(6.0mmol)、4,4’−ジクロロジフェニルスルホン1.149g(4.0mmol)、ビフェノール1.825g(9.8mmol)、炭酸カリウム1.589g(11.5mmol)、N−メチル−2−ピロリドン17ml、トルエン3mlを窒素導入管、攪拌翼、ディーンスタークトラップ、温度計を取り付けた100ml枝付きフラスコに入れ、オイルバス中で攪拌しつつ窒素気流下で加熱した。トルエンとの共沸による脱水を140℃で行なった後、トルエンを全て留去した。その後200℃に昇温し、15時間加熱した。反応溶液を140℃まで冷却してから、4−エチニルフェノール0.024g(0.2mmol)とトルエン3mlを加え、さらに2時間攪拌した。その後、室温まで冷却した溶液を500mlの純水に注ぎポリマーを再沈させた。濾過したポリマーは50℃で減圧乾燥した。ポリマーの対数粘度は0.62dl/gだった。得られたポリマー0.4gを1.6gのジメチルアセトアミドに溶解した溶液を、0.02cmの厚みでガラス板上にキャストし、70℃で3日間減圧乾燥した。ガラス板から膜を剥離した後、金属製の枠に固定し、窒素雰囲気下200℃で1時間処理した。その後、膜を80℃の1mol/L硫酸で1時間処理してスルホン酸基を酸型に変換し、さらに酸が検出できなくなるまで水で洗浄した。洗浄した膜は風乾したところ、厚み0.0035cmの透明な膜が得られた。膜のイオン性基濃度は2.1meq/gだった。耐水性試験での重量減少率は0%、イオン伝導性は0.32S/cmであり、良好な耐久性とイオン伝導性を示した。
【0038】
(比較例1)
4,4’−ジクロロジフェニルスルホン−3,3’−ジスルホン酸ソーダ2.948g(6.0mmol)、4,4’−ジクロロジフェニルスルホン1.149g(4.0mmol)、ビフェノール1.862g(10.0mmol)、炭酸カリウム1.589g(11.5mmol)、N−メチル−2−ピロリドン17ml、トルエン3mlを窒素導入管、攪拌翼、ディーンスタークトラップ、温度計を取り付けた100ml枝付きフラスコに入れ、オイルバス中で攪拌しつつ窒素気流下で加熱した。トルエンとの共沸による脱水を140℃で行なった後、トルエンを全て留去した。その後200℃に昇温し、15時間加熱した。室温まで冷却した溶液を500mlの純水に注ぎポリマーを再沈させた。濾過したポリマーは50℃で減圧乾燥した。ポリマーの対数粘度は0.82dl/gだった。得られたポリマー0.4gを1.6gのジメチルアセトアミドに溶解した溶液を、0.02cmの厚みでガラス板上にキャストし、70℃で3日間減圧乾燥した。その後、膜を80℃の1mol/L硫酸で1時間処理してスルホン酸基を酸型に変換し、さらに酸が検出できなくなるまで水で洗浄した。洗浄した膜は風乾したところ、厚み0.0032cmの透明な膜が得られた。膜のイオン性基濃度は2.1meq/gだった。耐水性試験では膜が溶解してしまい固形分が回収できなかった。イオン伝導性は0.25S/cmだった。
【0039】
(比較例2)
4,4’−ジクロロジフェニルスルホン−3,3’−ジスルホン酸ソーダ0.983g(2.0mmol)、4,4’−ジクロロジフェニルスルホン2.297g(8.0mmol)、ビフェノール1.862g(10.0mmol)、炭酸カリウム1.589g(11.5mmol)、N−メチル−2−ピロリドン17ml、トルエン3mlを窒素導入管、攪拌翼、ディーンスタークトラップ、温度計を取り付けた100ml枝付きフラスコに入れ、オイルバス中で攪拌しつつ窒素気流下で加熱した。トルエンとの共沸による脱水を140℃で行なった後、トルエンを全て留去した。その後200℃に昇温し、15時間加熱した。室温まで冷却した溶液を500mlの純水に注ぎポリマーを再沈させた。濾過したポリマーは50℃で減圧乾燥した。ポリマーの対数粘度は0.84dl/gだった。得られたポリマー0.4gを1.6gのジメチルアセトアミドに溶解した溶液を、0.02cmの厚みでガラス板上にキャストし、70℃で3日間減圧乾燥した。その後、膜を80℃の1mol/L硫酸で1時間処理してスルホン酸基を酸型に変換し、さらに酸が検出できなくなるまで水で洗浄した。洗浄した膜は風乾したところ、厚み0.0031cmの透明な膜が得られた。膜のイオン性基濃度は0.7meq/gだった。耐水性試験での重量減少率は0%だった。イオン伝導性は0.05S/cmと低かった。
【0040】
【発明の効果】
本発明の熱架橋性高分子固体電解質により、耐久性とイオン伝導性に優れる高分子固体電解質膜を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermally crosslinkable polymer solid electrolyte excellent in durability and ionic conductivity, a polymer solid electrolyte membrane, and a method for producing the same.
[0002]
[Prior art]
As an example of an electrochemical device using a polymer solid electrolyte as an ionic conductor instead of a liquid electrolyte, a water electrolysis tank and a fuel cell can be mentioned. The polymer membrane used for these must have high proton conductivity as a cation exchange membrane and be sufficiently stable chemically, thermally, electrochemically and mechanically. For this reason, perfluorocarbon sulfonic acid membranes, mainly “Nafion (registered trademark)” manufactured by DuPont, USA, have been used as long-term usable products. However, if it is attempted to operate at a temperature exceeding 100 ° C., the moisture content of the membrane drops rapidly, and the membrane softens significantly. For this reason, in a fuel cell using methanol as a fuel, performance degradation occurs due to methanol permeation in the membrane, and sufficient performance cannot be exhibited. Further, even in a fuel cell that is currently studied mainly using hydrogen as a fuel and operated at around 80 ° C., it is pointed out that the cost of the membrane is too high as an obstacle to the establishment of fuel cell technology.
[0003]
As electrolyte membranes that can replace perfluorocarbon sulfonic acid membranes, so-called hydrocarbon polymer solid electrolytes in which ionic groups such as sulfonic acid groups are introduced into polymers such as polyether ether ketone, polyether sulfone, and polysulfone have been actively studied in recent years. ing. However, the hydrocarbon-based polymer solid electrolyte is more easily hydrated and swollen than perfluorocarbon sulfonic acid, and has a problem in durability under high humidity.
[0004]
As one of the measures for suppressing the swelling, mixing with a basic polymer is performed. This intends to suppress swelling by crosslinking the sulfonic acid group in the polymer solid electrolyte with a basic polymer. For example, a mixture of polyethersulfone having a sulfonic acid group or polyetheretherketone having a sulfonic acid group (acidic polymer) and polybenzimidazole (basic polymer) (International Patent Publication No. WO99 / 54389) Are known.
[0005]
Further, as described in JP-A-6-93114, International Publication No. WO99 / 6111, and JP-A-2001-522401, sulfonic acid groups that are ionic groups are crosslinked by covalent bonds. Therefore, the swelling is also suppressed.
[0006]
Although any of the above methods can suppress swelling, there is a problem that the ionic conductivity is lowered because the ionic group does not exhibit ionicity due to the crosslinking reaction.
[0007]
A sulfonated product of a styrene / divinylbenzene copolymer as a polymer solid electrolyte having a crosslinked structure is well known for being used in an early polymer electrolyte fuel cell. This polymer solid electrolyte was poor in durability of the polymer skeleton itself and did not show satisfactory properties as a fuel cell. JP-A-2-248434 and JP-A-2-245535 describe ion exchangers obtained by crosslinking reaction of chloromethyl groups in a polymer using a Lewis acid as a catalyst. However, a catalyst is required for the crosslinking reaction. Therefore, when a polymer and a catalyst are mixed to obtain a molded product, the catalyst remains, and when the polymer molded product is treated with a catalyst, a cross-linking reaction hardly occurs inside.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a thermally crosslinkable solid polymer electrolyte, a crosslinked polymer solid electrolyte membrane excellent in ion conductivity and durability, suitable for a proton exchange membrane such as a fuel cell, and a method for producing the same. is there.
[0009]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that the above object can be achieved by using the following polymer solid electrolyte.
[0010]
That is, this invention has (1) 1 or more types of ionic groups chosen from the group which consists of a sulfonic acid group and a phosphonic acid group, and its salt, The group represented by following General formula (1)-(6) A polymer solid electrolyte characterized in that it has one or more thermal crosslinkable groups selected from more than one at the molecular end, and the polymer main chain is polyethersulfone or polyetherketone,
[0011]
[Chemical 2]
Figure 0004501052
(Wherein R 1 to R 9 are each a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a phenyl group, an aromatic group having 6 to 20 carbon atoms, or a halogen, Z is a hydrogen atom, Any one of 10 hydrocarbon groups, halogen, nitro group, —SO 3 X group {X represents H or a monovalent metal ion}, and n represents an integer of 1 to 4.)
(2) A crosslinked polymer solid electrolyte obtained by crosslinking a polymer composition containing the polymer solid electrolyte according to (1) alone or as a component, (3) the polymer according to (1) A method for producing a solid polymer electrolyte membrane, characterized in that a membrane formed from a polymer composition containing the solid electrolyte alone or as a component is heat-treated to obtain a crosslinked polymer solid electrolyte membrane, (4) (3) A polymer solid electrolyte membrane produced by the method described in (5), a fuel cell using the polymer solid electrolyte membrane described in (4), and (6) a polymer solid described in (2) A fuel cell using an electrolyte.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The heat-crosslinkable polymer solid electrolyte in the present invention needs to have at least one heat-crosslinkable group and an ionic group in the polymer molecule. The number average molecular weight of the polymer is preferably between 1,000 and 1,000,000, and is preferably between 5,000 and 500,000 since the balance between physical properties and processability can be achieved.
[0013]
The ionic group is one or more ionic groups selected from the group consisting of sulfonic acid groups and phosphonic acid groups and salts thereof.
A sulfonic acid group is preferable because it has high ion conductivity and a phosphonic acid group exhibits ion conductivity even at high temperatures. The amount of ionic groups in the polymer is preferably 0.1 to 5.0 mmol / g, more preferably 1.0 to 3.0 mmol / g. An ionic group can be introduced into the polymer by copolymerization of a monomer having an ionic group or a sulfonation reaction of the polymer. Examples of the monomer having an ionic group include the following compounds.
[0014]
[Chemical 3]
Figure 0004501052
[0015]
In addition, a sulfonic acid group can be introduced into the polymer using a sulfonating agent such as sulfuric anhydride, a complex of sulfuric anhydride, fuming sulfuric acid, concentrated sulfuric acid, or chlorosulfonic acid. A method of reacting a sulfonating agent in a state where the polymer is dissolved in a solvent inert to the sulfonating agent, a method of reacting a sulfonating agent in a state where the polymer is swollen with an appropriate solvent, or a direct sulfonation of the polymer The sulfonation reaction can be carried out by a method such as a method of reacting with an agent. The sulfonating agent may be used as it is, or may be used in a state dissolved and dispersed in an appropriate solvent. Reaction temperature can be performed between -100-100 degreeC. In addition, the amount of sulfonic acid groups introduced into the polymer can be controlled by changing the sulfonation conditions such as reaction temperature and reaction time to a copolymer structure of units that are susceptible to sulfonation reaction and units that are not susceptible to sulfonation reaction. can do.
[0016]
As a thermally crosslinkable group, it has 1 or more types of 1 or more types of thermally crosslinkable groups chosen from the group represented by the following general formula (1)-(6) at the molecule terminal.
[0017]
[Formula 4]
Figure 0004501052
(Wherein R 1 to R 9 are each a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a phenyl group, an aromatic group having 6 to 20 carbon atoms, or a halogen, Z is a hydrogen atom, Any one of 10 hydrocarbon groups, halogen, nitro group, —SO 3 X group {X represents H or a monovalent metal ion}, and n represents an integer of 1 to 4.)
[0018]
One or more of these groups are present at the molecular end of the polymer. The amount of the thermally crosslinkable group in the polymer is preferably 1 to 1,000 mmol / kg, more preferably 5 to 500 mmol / kg. The thermally crosslinkable group can be introduced into the polymer by reacting a compound having a thermally crosslinkable group as a copolymerization monomer or a terminal terminator.
[0019]
The main chain of the polymer is polyethersulfone or polyetherketone, which is excellent in durability and easy to synthesize.
[0020]
Polyether sulfone and polyether ketone can be obtained by condensing an aromatic dihalogen compound having an electron-withdrawing group and a bisphenol compound. The condensation reaction can be carried out by a known method. For example, condensation can be performed by heating in the presence of a base in an organic solvent. Examples of the organic solvent include aprotic polar solvents such as N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N, N-dimethylformamide, sulfolane, and dimethyl sulfoxide. Of these, N-methyl-2-pyrrolidone is preferred. Examples of the base include potassium carbonate, sodium carbonate, potassium hydroxide, sodium hydroxide and the like. Of these, potassium carbonate is preferred. The water produced by the reaction of the bisphenol compound and the base can be removed by azeotropy with toluene or benzene. The azeotropic dehydration is preferably performed at 100 to 150 ° C. After the dehydration is completed, a condensation reaction can be performed. The condensation reaction can be carried out at 120 to 300 ° C. The reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon. After completion of the reaction, the solution can be reprecipitated by adding it to a solvent insoluble in polymers such as water and acetone. The reprecipitated polymer can be purified by a known method.
[0021]
Examples of the aromatic dihalogen compound include the following compounds.
[Chemical formula 5]
Figure 0004501052
[0022]
The following compounds can also be used for the purpose of introducing an ionic group into the polymer.
[Chemical 6]
Figure 0004501052
[0023]
Examples of the bisphenol compound include the following compounds.
[Chemical 7]
Figure 0004501052
[0024]
Examples of the compound for introducing a thermally crosslinkable group into the polymer include the following compounds.
[Chemical 8]
Figure 0004501052
[0025]
These compounds may be added to the system as raw materials from the beginning, or may be added when the condensation reaction has progressed to some extent.
[0026]
The thermally crosslinkable group represented by the general formula 3 can be obtained by reacting a phenolic hydroxyl group-terminated polymer with formaldehyde and an amine as described below.
[Chemical 9]
Figure 0004501052
(Wherein R to R represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a phenyl group, or an aromatic group having 6 to 20 carbon atoms)
[0027]
Examples of the thermally crosslinkable polymer solid electrolyte of the present invention are shown below, but are not limited thereto.
[Chemical Formula 10]
Figure 0004501052
[0028]
The thermally crosslinkable solid polymer electrolyte of the present invention can be crosslinked by heat treatment. The heat treatment is preferably performed in an inert gas such as nitrogen or argon. The temperature of heat processing can be performed in the range of 100-400 degreeC. The heat treatment time can be performed between 1 second and 100 hours. Depending on the case, you may add arbitrary well-known polymerization initiators, such as an azo polymerization initiator and a peroxide polymerization initiator. At the time of thermal crosslinking, the polymer electrolyte itself of the present invention can be heat-treated to form a crosslinked structure, but it can also be thermally crosslinked after forming a composition with another non-crosslinkable polymer. In that case, the non-crosslinkable polymer may contain an ionic group in the molecular chain as in the crosslinkable polymer of the present invention, or may contain no ionic group. Examples of the basic structure of the non-crosslinkable polymer include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyamides such as nylon 6, nylon 6,6, nylon 6,10, and nylon 12, polymethyl methacrylate, Polyacrylates such as polymethacrylates, polymethylacrylates, polyacrylates, polyacrylate resins, polymethacrylate resins, various polyolefins including diene polymers, polyurethane resins, cellulose acetate, ethyl cellulose Cellulosic resins such as polyarylate, aramid, polycarbonate, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyethersulfone, polyetheretherketone Polyetherimide, polyimide, polybenzoxazole, polybenzthiazole, polybenzimidazole, and aromatic polymers such as polyamide-imide, not particularly limited.
[0029]
The heat-crosslinkable polymer solid electrolyte of the present invention becomes an excellent polymer solid electrolyte membrane by being crosslinked after being formed into a membrane. The film can be formed by any method such as casting or melt molding, but it is preferably produced by casting from a solution. As the solvent, an aprotic polar solvent such as dimethyl sulfoxide, dimethylacetamide, N-methyl-2-pyrrolidone or dimethylformamide can be used. The concentration of the solution is preferably 1 to 50 wt%. A film can be obtained by casting the solution on a glass plate and drying the solvent. The thickness of the film is preferably 1 to 500 μm, more preferably 5 to 100 μm. As needed, you may mix inorganic compounds, such as a silica, another polymer. When the ionic group is a salt, it can be converted into an acid form by treatment with an acid after forming into a film. In that case, it is preferable to perform acid conversion after completion of the crosslinking reaction. When heat-treating the film, it is preferable to heat it while fixing it to a suitable jig in order to prevent shrinkage. In this case as well, the molded product of the polymer electrolyte itself of the present invention can be heat-treated to form a crosslinked product structure, but it is thermally crosslinked after forming a composition molded product with other non-crosslinkable polymers as described above. You can also.
[0030]
The polymer solid electrolyte membrane of the present invention can be used as a proton exchange membrane for water electrolysis or a fuel cell. Moreover, the polymer solid electrolyte of this invention can be used as a binder at the time of joining a catalyst to an electrode.
[0031]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example, this invention is not limited to these Examples. Various measurements were performed as follows.
[0032]
(Measurement of film thickness)
The thickness of the film was measured using a film thickness meter (PEAKOCK DIGITAL GAUGE D-10 / OZAKI MFG. CO., LTD). The thickness of three random points in the sample was measured, and the average of them was taken as the film thickness.
[0033]
(Ion conductivity measurement)
A platinum wire (diameter: 0.2 mm) was pressed against the surface of a strip-shaped membrane sample on a probe for self-made measurement (made of polytetrafluoroethylene), and a constant temperature and humidity oven at 80 ° C and 95% RH (Nagano Science Co., Ltd.) The sample was held in Machine Works, LH-20-01), and the AC impedance at 10 KHz between the platinum wires was measured by SOLARTRON 1250 FREQUENCY RESPONSE ANALYSER. The measurement was performed while changing the distance between the electrodes, and the conductivity in which the contact resistance between the film and the platinum wire was canceled was calculated from the gradient obtained by plotting the distance between the electrodes and the measured resistance value.
Conductivity [S / cm] = 1 / film width [cm] × film thickness [cm] × resistance interelectrode gradient [Ω / cm]
[0034]
(Polymer logarithmic viscosity)
The N-methyl-2-pyrrolidone solution having a polymer concentration of 0.25 g / dl was measured at 30 ° C. using an Ostwald viscometer.
[0035]
(Water resistance test)
50 mg of polymer electrolyte membrane was sealed in a glass ampoule together with 5 ml of ion exchange water. The ampoule was heated at 105 ° C. for 3 days. After cooling, the ampule was opened, and the solid matter was collected with a 1G2 glass filter. The filter was dried under reduced pressure at 80 ° C. overnight, and the weight of solid content was determined from the weight before and after filtration to determine the weight reduction rate.
Weight reduction rate [%] = residue weight [mg] / 50 × 100
[0036]
(Quantification of ionic groups)
100 mg of the polymer electrolyte membrane was immersed in 50 ml of 0.01N NaOH aqueous solution and stirred at 25 ° C. overnight. Then, neutralization titration with 0.05N HCl aqueous solution was performed. For neutralization titration, a potentiometric titrator COMMITITE-980 manufactured by Hiranuma Sangyo Co., Ltd. was used. The amount of ionic groups is determined by the following formula.
Ionic group content [meq / g] = (10-titer [ml]) / 2
[0037]
Example 1
2,948 g (6.0 mmol) of sodium 4,4′-dichlorodiphenylsulfone-3,3′-disulfonate, 1.149 g (4.0 mmol) of 4,4′-dichlorodiphenylsulfone, and 1.825 g of biphenol (9. 8 mmol), 1.589 g (11.5 mmol) of potassium carbonate, 17 ml of N-methyl-2-pyrrolidone, and 3 ml of toluene into a 100 ml branch flask equipped with a nitrogen inlet tube, stirring blade, Dean-Stark trap, thermometer, and oil. The mixture was heated in a nitrogen stream while stirring in a bath. After dehydration by azeotropy with toluene at 140 ° C., all the toluene was distilled off. Thereafter, the temperature was raised to 200 ° C. and heated for 15 hours. After the reaction solution was cooled to 140 ° C., 0.024 g (0.2 mmol) of 4-ethynylphenol and 3 ml of toluene were added and further stirred for 2 hours. Thereafter, the solution cooled to room temperature was poured into 500 ml of pure water to reprecipitate the polymer. The filtered polymer was dried at 50 ° C. under reduced pressure. The logarithmic viscosity of the polymer was 0.62 dl / g. A solution obtained by dissolving 0.4 g of the obtained polymer in 1.6 g of dimethylacetamide was cast on a glass plate with a thickness of 0.02 cm, and dried under reduced pressure at 70 ° C. for 3 days. After peeling off the film from the glass plate, it was fixed to a metal frame and treated at 200 ° C. for 1 hour in a nitrogen atmosphere. Thereafter, the membrane was treated with 1 mol / L sulfuric acid at 80 ° C. for 1 hour to convert the sulfonic acid group to the acid form, and further washed with water until no acid could be detected. When the washed film was air-dried, a transparent film having a thickness of 0.0035 cm was obtained. The ionic group concentration of the membrane was 2.1 meq / g. In the water resistance test, the weight loss rate was 0%, and the ionic conductivity was 0.32 S / cm, indicating good durability and ionic conductivity.
[0038]
(Comparative Example 1)
2,948 g (6.0 mmol) of sodium 4,4′-dichlorodiphenylsulfone-3,3′-disulfonate, 1.149 g (4.0 mmol) of 4,4′-dichlorodiphenylsulfone, and 1.862 g (10.10) of biphenol. 0 mmol), 1.589 g (11.5 mmol) of potassium carbonate, 17 ml of N-methyl-2-pyrrolidone and 3 ml of toluene into a 100 ml branch flask equipped with a nitrogen inlet tube, stirring blade, Dean-Stark trap, thermometer, and oil. The mixture was heated in a nitrogen stream while stirring in a bath. After dehydration by azeotropy with toluene at 140 ° C., all the toluene was distilled off. Thereafter, the temperature was raised to 200 ° C. and heated for 15 hours. The solution cooled to room temperature was poured into 500 ml of pure water to reprecipitate the polymer. The filtered polymer was dried at 50 ° C. under reduced pressure. The logarithmic viscosity of the polymer was 0.82 dl / g. A solution obtained by dissolving 0.4 g of the obtained polymer in 1.6 g of dimethylacetamide was cast on a glass plate with a thickness of 0.02 cm, and dried under reduced pressure at 70 ° C. for 3 days. Thereafter, the membrane was treated with 1 mol / L sulfuric acid at 80 ° C. for 1 hour to convert the sulfonic acid group to the acid form, and further washed with water until no acid could be detected. When the washed film was air-dried, a transparent film having a thickness of 0.0032 cm was obtained. The ionic group concentration of the membrane was 2.1 meq / g. In the water resistance test, the membrane was dissolved and the solid content could not be recovered. The ionic conductivity was 0.25 S / cm.
[0039]
(Comparative Example 2)
0.983 g (2.0 mmol) of sodium 4,4′-dichlorodiphenylsulfone-3,3′-disulfonate, 2.297 g (8.0 mmol) of 4,4′-dichlorodiphenylsulfone, 1.862 g (10.10) of biphenol. 0 mmol), 1.589 g (11.5 mmol) of potassium carbonate, 17 ml of N-methyl-2-pyrrolidone and 3 ml of toluene into a 100 ml branch flask equipped with a nitrogen inlet tube, stirring blade, Dean-Stark trap, thermometer, and oil. The mixture was heated in a nitrogen stream while stirring in a bath. After dehydration by azeotropy with toluene at 140 ° C., all the toluene was distilled off. Thereafter, the temperature was raised to 200 ° C. and heated for 15 hours. The solution cooled to room temperature was poured into 500 ml of pure water to reprecipitate the polymer. The filtered polymer was dried at 50 ° C. under reduced pressure. The logarithmic viscosity of the polymer was 0.84 dl / g. A solution obtained by dissolving 0.4 g of the obtained polymer in 1.6 g of dimethylacetamide was cast on a glass plate with a thickness of 0.02 cm, and dried under reduced pressure at 70 ° C. for 3 days. Thereafter, the membrane was treated with 1 mol / L sulfuric acid at 80 ° C. for 1 hour to convert the sulfonic acid group to the acid form, and further washed with water until no acid could be detected. When the washed film was air-dried, a transparent film having a thickness of 0.0031 cm was obtained. The ionic group concentration of the membrane was 0.7 meq / g. The weight loss rate in the water resistance test was 0%. The ionic conductivity was as low as 0.05 S / cm.
[0040]
【The invention's effect】
With the heat crosslinkable polymer solid electrolyte of the present invention, a polymer solid electrolyte membrane having excellent durability and ion conductivity can be obtained.

Claims (6)

分子中に、スルホン酸基及びホスホン酸基からなる群より選ばれる1種以上のイオン性基及びその塩を有し下記一般式(1)〜(6)で表される群より選ばれる1種以上の熱架橋性基を分子末端に1個以上有しており、ポリマー主鎖がポリエーテルスルホン又はポリエーテルケトンであることを特徴とする高分子固体電解質。
Figure 0004501052
(式中、R 1 〜R 9 は水素原子、炭素数1〜10のアルキル基、フェニル基、炭素数6〜20の芳香族基、ハロゲンのいずれかを、Zは水素原子、炭素数1〜10の炭化水素基、ハロゲン、ニトロ基、−SO 3 X基{XはHあるいは1価の金属イオンを表す。}のいずれかを、nは1〜4の整数を表す。)
The molecule has one or more ionic groups selected from the group consisting of sulfonic acid groups and phosphonic acid groups and salts thereof, and is selected from the group represented by the following general formulas (1) to (6) A polymer solid electrolyte, comprising at least one kind of thermally crosslinkable group at a molecular end and having a polymer main chain of polyethersulfone or polyetherketone .
Figure 0004501052
(Wherein R 1 to R 9 are each a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a phenyl group, an aromatic group having 6 to 20 carbon atoms, or a halogen, Z is a hydrogen atom, Any one of 10 hydrocarbon groups, halogen, nitro group, —SO 3 X group {X represents H or a monovalent metal ion}, and n represents an integer of 1 to 4.)
請求項1に記載の高分子固体電解質を単独又は一成分として含むポリマー組成物を架橋して得ることを特徴とする架橋高分子固体電解質。 Crosslinked polymer solid electrolyte, characterized in that obtained by crosslinking a polymer composition comprising a polymer solid electrolyte according alone or as a component in claim 1. 請求項に記載の高分子固体電解質を単独又は一成分として含むポリマー組成物から形成された膜を熱処理して架橋高分子固体電解質膜を得ることを特徴とする高分子固体電解質膜の製造方法。A method for producing a solid polymer electrolyte membrane, characterized by obtaining a crosslinked polymer solid electrolyte membrane by heat-treating a membrane formed from a polymer composition containing the polymer solid electrolyte according to claim 1 alone or as a component. . 請求項に記載の方法で製造された高分子固体電解質膜。A polymer solid electrolyte membrane produced by the method according to claim 3 . 請求項に記載の高分子固体電解質を用いたことを特徴とする燃料電池。A fuel cell using the solid polymer electrolyte membrane according to claim 4 . 請求項2に記載の高分子固体電解質を用いたことを特徴とする燃料電池。A fuel cell comprising the solid polymer electrolyte according to claim 2.
JP2002015987A 2002-01-24 2002-01-24 Thermally crosslinkable polymer solid electrolyte, polymer solid electrolyte membrane and method for producing the same Expired - Fee Related JP4501052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002015987A JP4501052B2 (en) 2002-01-24 2002-01-24 Thermally crosslinkable polymer solid electrolyte, polymer solid electrolyte membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002015987A JP4501052B2 (en) 2002-01-24 2002-01-24 Thermally crosslinkable polymer solid electrolyte, polymer solid electrolyte membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003217343A JP2003217343A (en) 2003-07-31
JP4501052B2 true JP4501052B2 (en) 2010-07-14

Family

ID=27652186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002015987A Expired - Fee Related JP4501052B2 (en) 2002-01-24 2002-01-24 Thermally crosslinkable polymer solid electrolyte, polymer solid electrolyte membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP4501052B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106537676A (en) * 2014-07-01 2017-03-22 I-Ten公司 All-solid battery including a solid electrolyte and a layer of polymer material

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI236486B (en) 2001-10-10 2005-07-21 Mitsui Chemicals Inc Crosslinkable aromatic resin having protonic acid group, and ion conductive polymer membrane, binder and fuel cell using the resin
WO2004036679A1 (en) * 2002-10-17 2004-04-29 Toyo Boseki Kabushiki Kaisha Composite ion-exchange membrane
CA2518414C (en) 2003-03-06 2013-01-08 Toray Industries, Inc. Polymer electrolyte material, polymer electrolyte part, membrane electrode composite and polymer electrolyte fuel cell
KR101054145B1 (en) 2003-06-25 2011-08-03 도레이 카부시키가이샤 Polymer electrolyte, polymer electrolyte membrane, membrane electrode composite, and polymer electrolyte fuel cell using same
JP4720091B2 (en) * 2004-02-27 2011-07-13 東洋紡績株式会社 Ion exchange membrane
JP4501391B2 (en) * 2003-09-30 2010-07-14 旭硝子株式会社 Crosslinkable fluorine-containing aromatic prepolymer and use thereof
DE112004002716B4 (en) * 2004-02-23 2013-07-25 Fujitsu Ltd. Solid electrolyte and fuel cell
JP4821946B2 (en) * 2004-03-22 2011-11-24 東洋紡績株式会社 Electrolyte membrane and method for producing the same
JP2005281568A (en) * 2004-03-30 2005-10-13 Hitachi Chem Co Ltd Acid group-containing polymer compound, polymer electrolyte membrane and fuel cell using it
JP4573023B2 (en) 2004-07-23 2010-11-04 信越化学工業株式会社 Curable resin composition for fuel cell electrolyte membrane, electrolyte membrane, method for producing the same, electrolyte membrane / electrode assembly, method for producing the same
KR101232445B1 (en) * 2004-09-03 2013-02-12 도레이 카부시키가이샤 Polyelectrolyte material, polyelectrolyte component, membrane electrode composite body, and polyelectrolyte type fuel cell
US8232324B2 (en) 2005-02-28 2012-07-31 Shin-Etsu Chemical Co., Ltd. Electrolyte membrane-forming curable resin composition, and preparation of electrolyte membrane and electrolyte membrane/electrode assembly
CN101203546B (en) 2005-06-24 2012-02-01 旭硝子株式会社 Crosslinkable fluorine-containing aromatic prepolymer and use thereof
JP5470674B2 (en) * 2005-07-07 2014-04-16 東洋紡株式会社 Polymer electrolyte membrane, polymer electrolyte membrane / electrode assembly, fuel cell, and fuel cell operating method
JP4999039B2 (en) * 2005-09-30 2012-08-15 日立化成工業株式会社 Ion conductive binder
KR100634551B1 (en) 2005-10-12 2006-10-16 삼성에스디아이 주식회사 Crosslinked proton conductive copolymer and fuel cell comprising the same
KR101255538B1 (en) 2006-02-22 2013-04-16 삼성에스디아이 주식회사 Sulfonated copolymer comprising crosslinkable functional group and fuel cell comprising polymerization product of the same
JP5151051B2 (en) * 2006-03-27 2013-02-27 東レ株式会社 POLYMER ELECTROLYTE MATERIAL, POLYMER ELECTROLYTE PARTS, MEMBRANE ELECTRODE COMPOSITE AND POLYMER ELECTROLYTE TYPE FUEL CELL USING SAME
CN101454375B (en) 2006-06-02 2012-06-06 旭硝子株式会社 Crosslinkable prepolymer, process for production thereof, and use thereof
EP2084210A1 (en) * 2006-11-22 2009-08-05 Gwangju Institute of Science and Technology Sulfonated poly(arylene ether) containing crosslinkable moity at end group, method of manufacturing the same, and polymer electrolyte membrane using the sulfonated poly(arylene ether) and the method
JP5003415B2 (en) * 2006-11-22 2012-08-15 旭硝子株式会社 Negative photosensitive composition, cured film using the same, and method for producing the same
TW201024333A (en) * 2008-12-26 2010-07-01 Ind Tech Res Inst Sulfonated polyether ether ketone ketone, film utilizing the same, and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693114A (en) * 1992-06-13 1994-04-05 Hoechst Ag Polyelectrolyte film and its preparation
JPH06275301A (en) * 1993-03-19 1994-09-30 Asahi Glass Co Ltd Fuel cell
JP2000501223A (en) * 1995-11-22 2000-02-02 カリフォルニア インスティチュート オブ テクノロジー Novel polymer materials for fuel cell electrolyte membranes
WO2003033566A1 (en) * 2001-10-10 2003-04-24 Mitsui Chemicals,Inc. Crosslinkable aromatic resins having protonic acid groups, and ion-conductive polymer membranes, binders, and fuel cells made by using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693114A (en) * 1992-06-13 1994-04-05 Hoechst Ag Polyelectrolyte film and its preparation
JPH06275301A (en) * 1993-03-19 1994-09-30 Asahi Glass Co Ltd Fuel cell
JP2000501223A (en) * 1995-11-22 2000-02-02 カリフォルニア インスティチュート オブ テクノロジー Novel polymer materials for fuel cell electrolyte membranes
WO2003033566A1 (en) * 2001-10-10 2003-04-24 Mitsui Chemicals,Inc. Crosslinkable aromatic resins having protonic acid groups, and ion-conductive polymer membranes, binders, and fuel cells made by using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106537676A (en) * 2014-07-01 2017-03-22 I-Ten公司 All-solid battery including a solid electrolyte and a layer of polymer material

Also Published As

Publication number Publication date
JP2003217343A (en) 2003-07-31

Similar Documents

Publication Publication Date Title
JP4501052B2 (en) Thermally crosslinkable polymer solid electrolyte, polymer solid electrolyte membrane and method for producing the same
JP4517272B2 (en) Photocrosslinkable polymer solid electrolyte, cross-linked polymer solid electrolyte membrane and method for producing the same
CA2350205C (en) Polymer composition, membrane comprising the same, process for production thereof and use thereof
Mistri et al. Naphthalene dianhydride based semifluorinated sulfonated copoly (ether imide) s: Synthesis, characterization and proton exchange properties
Xie et al. Synthesis of highly branched sulfonated polymers and the effects of degree of branching on properties of branched sulfonated polymers as proton exchange membranes
Ding et al. Cross-linked sulfonated poly (phathalazinone ether ketone) s for PEM fuel cell application as proton-exchange membrane
Chen et al. Crosslinked sulfonated poly (arylene ether ketone) membranes bearing quinoxaline and acid–base complex cross-linkages for fuel cell applications
JP2001250567A (en) Polymer electrolyte and manufacturing method therefor
Bai et al. Direct synthesis of fully sulfonated polyarylenethioether sulfones as proton‐conducting polymers for fuel cells
Dai et al. Soluble polybenzimidazoles incorporating Tröger’s base for high-temperature proton exchange membrane fuel cells
WO2007079004A2 (en) Fluorinated polyarylenethioethersulfone polymers having sulfonate pendants and phenyl-endcapping groups for use as proton exchange membranes
Zhang et al. Ionomers based on multisulfonated perylene dianhydride: Synthesis and properties of water resistant sulfonated polyimides
JP4411505B2 (en) POLYMER SOLID ELECTROLYTE MOLDED BODY, POLYMER SOLID ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THEM
Liu et al. Sulfonated poly (aryl ether ether ketone ketone) s containing fluorinated moieties as proton exchange membrane materials
Schönberger et al. Partially fluorinated poly (arylene ether) s: Investigation of the dependence of monomeric structures on polymerisability and degradation during sulfonation
Jeong et al. Synthesis and characterization of sulfonated poly (arylene ether ketone) copolymers containing crosslinking moiety
US7265198B2 (en) Sulfonated polyarylenethioethersulfone polymer and copolymer compositions
Jeong et al. Selective and quantitative sulfonation of poly (arylene ether ketone) s containing pendant phenyl rings by chlorosulfonic acid
JP4356546B2 (en) Sulfonated polymers and solid polymer electrolytes
JP2004244517A (en) Polyarylene copolymer, its preparation method and proton conducting membrane
JP4940549B2 (en) Novel sulfonic acid group-containing segmented block copolymer and its use
JP4590824B2 (en) Sulfonated aromatic polyether compounds, composites thereof, and production methods thereof.
JP2003055457A (en) Sulfonic acid-containing ion conductive polybenzimidazole
JP2006176665A (en) New sulfonate group-containing segmented block copolymer and application of the same
WO2006048942A1 (en) Sulfonated polymer comprising nitrile-type hydrophobic block and solid polymer electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

R151 Written notification of patent or utility model registration

Ref document number: 4501052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees