JP4500252B2 - Injection control method and apparatus for injection molding machine - Google Patents

Injection control method and apparatus for injection molding machine Download PDF

Info

Publication number
JP4500252B2
JP4500252B2 JP2005342186A JP2005342186A JP4500252B2 JP 4500252 B2 JP4500252 B2 JP 4500252B2 JP 2005342186 A JP2005342186 A JP 2005342186A JP 2005342186 A JP2005342186 A JP 2005342186A JP 4500252 B2 JP4500252 B2 JP 4500252B2
Authority
JP
Japan
Prior art keywords
pressure
injection
deviation
detected
physical quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005342186A
Other languages
Japanese (ja)
Other versions
JP2007144782A5 (en
JP2007144782A (en
Inventor
和男 碓井
和孝 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takagi Industrial Co Ltd
Nissei Plastic Industrial Co Ltd
Original Assignee
Takagi Industrial Co Ltd
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takagi Industrial Co Ltd, Nissei Plastic Industrial Co Ltd filed Critical Takagi Industrial Co Ltd
Priority to JP2005342186A priority Critical patent/JP4500252B2/en
Publication of JP2007144782A publication Critical patent/JP2007144782A/en
Publication of JP2007144782A5 publication Critical patent/JP2007144782A5/ja
Application granted granted Critical
Publication of JP4500252B2 publication Critical patent/JP4500252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、駆動機構によりスクリュを前進移動させる際における射出成形機の射出制御方法及び装置に関する。   The present invention relates to an injection control method and apparatus for an injection molding machine when a screw is moved forward by a drive mechanism.

一般に、電動式射出成形機における射出装置では、サーボモータを用いた駆動機構によりスクリュを前進移動させる射出制御を行っている。この場合、サーボモータの回転運動は、回転伝達機構及びボールねじ機構を介して直進運動に変換され、これに基づいてスクリュが前進移動する。スクリュの前進移動時には、予め設定した目標速度(射出速度)となるように射出速度に対するフィードバック制御が行われるとともに、リミット圧力が設定され、射出圧力(検出圧力)がリミット圧力を超えないように圧力制御される。この圧力制御には、圧力に対するフィードバック制御系が利用され、検出圧力がリミット圧力に一致するようにフィードバック制御される。なお、通常、圧力のフィードバック制御系には、圧力補償部が接続され、フィードバック制御系に適したPID定数が設定(調整)されている。   In general, in an injection device in an electric injection molding machine, injection control is performed in which a screw is moved forward by a drive mechanism using a servo motor. In this case, the rotational motion of the servo motor is converted into a straight motion through the rotation transmission mechanism and the ball screw mechanism, and the screw moves forward based on this. During forward movement of the screw, feedback control is performed on the injection speed so that the target speed (injection speed) is set in advance, and the limit pressure is set and the pressure so that the injection pressure (detected pressure) does not exceed the limit pressure. Be controlled. In this pressure control, a feedback control system for pressure is used, and feedback control is performed so that the detected pressure matches the limit pressure. Normally, a pressure compensation unit is connected to the pressure feedback control system, and a PID constant suitable for the feedback control system is set (adjusted).

ところで、この種の射出成形機では、サーボモータとスクリュ間の慣性モーメントが問題となる。即ち、図6に示すように、一般的なPID制御では、射出圧力(検出圧力)Pfがリミット圧力Psに近付いてきた際に、リミット圧力Psに達する手前のtd時点で減速を開始し、リミット圧力Psを大きく超えないように制御しているが、慣性モーメントの作用により応答遅れを生じ、この結果、射出圧力Pfにリミット圧力Psに対する過大なオーバシュート或いはアンダシュートが発生する。なお、図6中、Psdは、td時点における射出圧力(減速開始圧力)を示す。そして、射出圧力Pfの過大なオーバシュートは、スクリュの折損を招くなど、射出成形機の機構部分に重大なダメージを及ぼす虞れがあるとともに、過大なアンダシュートは安定成形を損なう問題を生じる。この問題は、PID制御(PID定数を設定した圧力補償部)では改善できないとともに、特に、射出速度の高速化が求められる近年の射出成形機にとっては重要な問題となる。また、図6中、Vsは射出速度の目標速度、Vfは射出速度の検出速度を示している。   By the way, in this type of injection molding machine, the moment of inertia between the servo motor and the screw becomes a problem. That is, as shown in FIG. 6, in general PID control, when the injection pressure (detected pressure) Pf approaches the limit pressure Ps, deceleration is started at the time td before reaching the limit pressure Ps, and the limit Although control is performed so as not to greatly exceed the pressure Ps, a response delay occurs due to the action of the moment of inertia, and as a result, an excessive overshoot or undershoot with respect to the limit pressure Ps occurs in the injection pressure Pf. In FIG. 6, Psd represents the injection pressure (deceleration start pressure) at the time point td. An excessive overshoot of the injection pressure Pf may cause serious damage to the mechanical part of the injection molding machine such as screw breakage, and an excessive undershoot causes a problem of impairing stable molding. This problem cannot be improved by PID control (a pressure compensation unit in which a PID constant is set), and is an important problem particularly for recent injection molding machines that require a high injection speed. In FIG. 6, Vs indicates the target speed of the injection speed, and Vf indicates the detection speed of the injection speed.

一方、この問題に対処する射出制御方法(装置)も知られており、例えば、特開2002−331561号公報には、圧力増減量演算部によりA/D変換器から出力された圧力フィードバックの今回値と前回値の差分をとり、圧力増減量を求めるとともに、この圧力増減量を加算器により圧力フィードバックの今回値に加算し、新たな圧力フィードバック値として圧力設定値との差分を減算器で求め、PID制御器に入力することにより、電動射出成形機の射出軸の圧力制御において、オーバシュートを抑えてゲインを高く設定できるようにした電動射出成形機の射出軸の圧力制御方法及び装置が開示されている。   On the other hand, an injection control method (apparatus) for coping with this problem is also known. For example, Japanese Patent Laid-Open No. 2002-331561 discloses the current pressure feedback output from the A / D converter by the pressure increase / decrease amount calculation unit. The difference between the current value and the previous value is calculated to obtain the pressure increase / decrease amount, and the pressure increase / decrease amount is added to the current value of the pressure feedback by the adder, and the difference from the pressure set value is obtained as a new pressure feedback value by the subtractor. , A pressure control method and apparatus for an injection shaft of an electric injection molding machine that can be set to a high gain by suppressing overshoot in the pressure control of the injection shaft of the electric injection molding machine by inputting to a PID controller Has been.

また、特開2003−300236号公報には、スクリュを設定速度で前進させ、金型キャビティ内に溶融材料を射出し、この際、射出速度および射出圧力を常時測定しながら射出を行うとともに、射出圧力と予め記憶した慣性流れ時昇圧との和が限界圧力より大きい場合に、コントローラから射出サーボモータに急制動信号を送信して急制動をかけ、異常状態発生時においても、射出圧力が限界圧力を超えない制御を行う電動射出成形機の射出制御方法が開示されている。
特開2002−331561号 特開2003−300236号
Japanese Patent Laid-Open No. 2003-300236 discloses that a screw is advanced at a set speed and a molten material is injected into a mold cavity. At this time, injection is performed while constantly measuring the injection speed and injection pressure. If the sum of the pressure and the pre-stored pressure increase during inertia flow is greater than the limit pressure, a sudden braking signal is sent from the controller to the injection servo motor to apply sudden braking. An injection control method for an electric injection molding machine that performs control that does not exceed 1 is disclosed.
JP 2002-331561 A JP 2003-300236 A

しかし、上述した従来における射出成形機の射出制御方法(装置)は、次のような問題点があった。   However, the above-described conventional injection control method (apparatus) of an injection molding machine has the following problems.

第一に、圧力補正がいわゆるワンパターンで行われるため、本来圧力補正の必要がない動作区間においても補正が行われてしまう。したがって、正常な動作中においても補正が影響し、本来の成形動作が損なわれる虞れがあるとともに、例えば、ユーザが正規の検出圧力に基づいてリミット圧力を設定してもユーザの設定が十分に反映されず、ユーザの予期しない制御(動作)が行われる虞れがある。   First, since the pressure correction is performed in a so-called one pattern, the correction is performed even in the operation section where the pressure correction is not originally required. Therefore, the correction may be affected even during normal operation, and the original molding operation may be impaired.For example, even if the user sets the limit pressure based on the normal detection pressure, the user setting is sufficient. There is a possibility that unexpected control (operation) of the user is performed without being reflected.

第二に、前者の制御方法は、今回値と前回値の差分である圧力増減量により圧力フィードバック値を補正するとともに、後者の制御方法は、予め記憶した慣性流れ時昇圧を用いて射出圧力を補正するものであり、いずれの制御方法も単一の補正要素を採用するに過ぎない。したがって、外乱要素を十分に反映できないことから圧力補正の有効性を期待できず、制御の的確性及び安定性を十分に確保できないとともに、オーバシュートの回避に対する確実性及び信頼性に欠け、しかも、高速化する射出成形機の要請に応えることができないなど、汎用性及び発展性にも難がある。   Secondly, the former control method corrects the pressure feedback value based on the pressure increase / decrease amount that is the difference between the current value and the previous value, and the latter control method uses the pre-stored boost during inertia flow to control the injection pressure. Each control method employs a single correction element. Therefore, the effectiveness of pressure correction cannot be expected because the disturbance factors cannot be sufficiently reflected, the accuracy and stability of the control cannot be sufficiently secured, and the certainty and reliability for avoiding overshoot are lacking, and There are also difficulties in versatility and development, such as failure to meet the demand for high-speed injection molding machines.

本発明は、このような背景技術に存在する課題を解決した射出成形機の射出制御方法及び装置の提供を目的とするものである。   An object of the present invention is to provide an injection control method and apparatus for an injection molding machine that solves the problems existing in the background art.

本発明に係る射出成形機Mの射出制御方法は、上述した課題を解決するため、駆動機構2によりスクリュ4を所定の射出速度Vfで前進移動させるとともに、射出圧力Pfを検出し、この射出圧力(検出圧力)Pfが予め設定した所定圧力Psを超えないように制御するに際し、所定圧力(第一設定圧力)Psとこの所定圧力Psよりも大きい第二設定圧力Pmを設定し、検出圧力Pfと第一設定圧力Psの第一偏差Esを求めるとともに、検出したスクリュ4の前進移動に伴う動作物理量及び予め設定した少なくとも駆動機構2における力学要素の一又は二以上に係わる設定値を含む設定物理量に基づいて射出速度Vfが0になるまでの射出圧力に対する予測圧力を求める予測演算式から得る補正圧力Pxを検出圧力Pfに加算した修正検出圧力Pfxと第二設定圧力Pmの第二偏差Emを求め、第一偏差Esと第二偏差Emのいずれか小さい偏差Es又はEmを用いて射出圧力に対する制御を行うようにしたことを特徴とする。   In order to solve the above-described problem, the injection control method of the injection molding machine M according to the present invention moves the screw 4 forward at a predetermined injection speed Vf by the drive mechanism 2 and detects the injection pressure Pf. (Control pressure) Pf is controlled so as not to exceed a predetermined pressure Ps set in advance, a predetermined pressure (first set pressure) Ps and a second set pressure Pm larger than the predetermined pressure Ps are set, and the detected pressure Pf And the first deviation Es of the first set pressure Ps, and the detected physical quantity associated with the forward movement of the screw 4 and the preset physical quantity including at least a preset set value related to one or more of the mechanical elements in the drive mechanism 2 Correction correction Px obtained by adding a correction pressure Px obtained from a prediction calculation formula for obtaining a predicted pressure for the injection pressure until the injection speed Vf becomes 0 based on the detected pressure Pf. The second deviation Em of the pressure Pfx and the second set pressure Pm is obtained, and the injection pressure is controlled using the smaller deviation Es or Em of the first deviation Es and the second deviation Em. .

一方、本発明に係る射出成形機Mの射出制御装置1は、上述した課題を解決するため、駆動機構2によりスクリュ4を所定の射出速度Vfで前進移動させた際における射出圧力(検出圧力)Pfが予め設定した所定圧力Psを超えないように制御する射出制御装置を構成するに際して、所定圧力(第一設定圧力)Psとこの所定圧力Psよりも大きい第二設定圧力Pmを設定する圧力設定手段W1と、検出圧力Pfと第一設定圧力Psの第一偏差Esを求める第一偏差演算手段W2と、スクリュ4の前進移動に伴う動作物理量を検出する物理量検出手段W5と、この物理量検出手段W5により検出した動作物理量及び予め設定した少なくとも駆動機構2における力学要素の一又は二以上に係わる設定値を含む設定物理量に基づいて射出速度Vfが0になるまでの射出圧力に対する予測圧力を求める予測演算式から補正圧力を得る補正圧力演算手段W6と、この補正圧力演算手段W6から得る補正圧力Pxを検出圧力Pfに加算して修正検出圧力Pfxを得る検出圧力修正手段W7と、この修正検出圧力Pfxと第二設定圧力Pmの第二偏差Emを求める第二偏差演算手段W3と、第一偏差Esと第二偏差Emのいずれか小さい偏差Es又はEmを選択する偏差選択手段W4を備えることを特徴とする。   On the other hand, the injection control device 1 of the injection molding machine M according to the present invention has an injection pressure (detected pressure) when the screw 4 is moved forward at a predetermined injection speed Vf by the drive mechanism 2 in order to solve the above-described problem. When configuring an injection control device that controls so that Pf does not exceed a predetermined pressure Ps set in advance, a pressure setting that sets a predetermined pressure (first set pressure) Ps and a second set pressure Pm that is greater than the predetermined pressure Ps. Means W1, first deviation calculating means W2 for obtaining a first deviation Es of the detected pressure Pf and the first set pressure Ps, physical quantity detecting means W5 for detecting an operating physical quantity associated with the forward movement of the screw 4, and the physical quantity detecting means The injection speed V based on the operation physical quantity detected by W5 and the preset physical quantity including at least a preset set value related to one or more of the dynamic elements in the drive mechanism 2. Correction pressure calculation means W6 for obtaining a correction pressure from a prediction calculation formula for obtaining a prediction pressure for the injection pressure until the injection pressure becomes 0, and a correction detection pressure by adding the correction pressure Px obtained from the correction pressure calculation means W6 to the detection pressure Pf Detected pressure correcting means W7 for obtaining Pfx, second deviation calculating means W3 for obtaining the second deviation Em of the corrected detected pressure Pfx and the second set pressure Pm, and the smaller one of the first deviation Es and the second deviation Em Deviation selection means W4 for selecting Es or Em is provided.

また、発明の好適な態様により、動作物理量には、射出圧力Pf,射出圧力Pfの微分値dPf及び射出速度Vfを含ませることができるとともに、力学要素には、駆動機構2に備える、モータ3の慣性モーメントJm,モータ3からスクリュ4に至る機構上の慣性モーメントJt,モータ3の最大トルクTを含ませることができる。   Further, according to a preferred aspect of the invention, the operation physical quantity can include the injection pressure Pf, the differential value dPf of the injection pressure Pf, and the injection speed Vf, and the dynamic element includes the motor 3 provided in the drive mechanism 2. , The inertia moment Jt on the mechanism from the motor 3 to the screw 4, and the maximum torque T of the motor 3 can be included.

さらに、設定物理量には、力学要素(Jm,Jt,T)に加え、調整用ゲインG,樹脂反力の算出用ゲインCの一方又は双方を含ませることができる。   Furthermore, the set physical quantity can include one or both of an adjustment gain G and a resin reaction force calculation gain C in addition to the dynamic elements (Jm, Jt, T).

このような手法及び構成を有する本発明に係る射出成形機Mの射出制御方法及び装置1によれば、次のような顕著な効果を奏する。   According to the injection control method and apparatus 1 of the injection molding machine M according to the present invention having such a method and configuration, the following remarkable effects can be obtained.

(1) 第一設定圧力Psとこの所定圧力Psよりも大きい第二設定圧力Pmを設定し、検出圧力Pfと第一設定圧力Psの第一偏差Esを求めるとともに、検出したスクリュ4の前進移動に伴う動作物理量及び予め設定した少なくとも駆動機構2における力学要素の一又は二以上に係わる設定値を含む設定物理量に基づいて射出速度Vfが0になるまでの射出圧力に対する予測圧力を求める予測演算式から得る補正圧力Pxを検出圧力Pfに加算した修正検出圧力Pfxと第二設定圧力Pmの第二偏差Emを求め、第一偏差Esと第二偏差Emのいずれか小さい偏差Es又はEmを用いて射出圧力に対する制御を行うため、本来圧力補正の必要がない動作区間における補正を回避でき、この結果、本来の成形動作が損なわれる不具合を解消できるとともに、ユーザの設定を十分に反映することが可能となる。   (1) The first set pressure Ps and the second set pressure Pm larger than the predetermined pressure Ps are set, the first deviation Es between the detected pressure Pf and the first set pressure Ps is obtained, and the detected forward movement of the screw 4 is performed. Predictive calculation formula for obtaining a predicted pressure for the injection pressure until the injection speed Vf becomes 0 based on the set physical quantity including the set physical value related to at least one or more of the dynamic elements in the drive mechanism 2 A corrected detected pressure Pfx obtained by adding the detected pressure Pf to the detected pressure Pf and a second deviation Em of the second set pressure Pm are obtained, and the smaller one of the first deviation Es and the second deviation Em is used. Since control is performed on the injection pressure, correction in the operation zone where pressure correction is not originally required can be avoided, and as a result, the problem of impairing the original molding operation is eliminated. With wear, it is possible to sufficiently reflect the setting of the user.

(2) 検出した動作物理量及び予め設定した少なくとも駆動機構2における力学要素に係わる一又は二以上の設定値を含む設定物理量に基づく所定の予測演算式により補正圧力Pxを求め、この補正圧力Pxを検出圧力Pfに加算した修正検出圧力Pfxにより射出圧力に対する制御を行うようにしたため、外乱要素を十分に反映した補正圧力Pxを得ることができ、もって、圧力補正の有効性、更には制御の的確性及び安定性を確保できるとともに、確実なオーバシュートの回避が可能となり、スクリュ4の折損を招くなどの射出成形機Mの機構部分に重大なダメージを及ぼす問題を解消できる。   (2) A correction pressure Px is obtained by a predetermined predictive calculation formula based on the detected operation physical quantity and a preset physical quantity including one or two or more set values related to a mechanical element in the drive mechanism 2 set in advance. Since the injection pressure is controlled by the corrected detection pressure Pfx added to the detection pressure Pf, it is possible to obtain a correction pressure Px that sufficiently reflects the disturbance element. Performance and stability can be ensured, reliable overshoot can be avoided, and problems that cause serious damage to the mechanical part of the injection molding machine M such as breakage of the screw 4 can be solved.

(3) 好適な態様により、動作物理量に、射出圧力Pf,この射出圧力Pfの微分値dPf及び射出速度Vfを含ませるとともに、力学要素に、駆動機構2に備える、モータ3の慣性モーメントJm,モータ3からスクリュ4に至る機構上の慣性モーメントJt,モータ3の最大トルクTを含ませれば、射出速度が高速化した場合であってもオーバシュートの回避に対する確実性及び信頼性を確保できるとともに、高速化する射出成形機の要請に対して十分に応えることができるなど、汎用性及び発展性にも優れる。   (3) According to a preferred embodiment, the operation physical quantity includes the injection pressure Pf, the differential value dPf of the injection pressure Pf, and the injection speed Vf, and the mechanical element includes the moment of inertia Jm, If the moment of inertia Jt on the mechanism from the motor 3 to the screw 4 and the maximum torque T of the motor 3 are included, the reliability and reliability for avoiding overshoot can be ensured even when the injection speed is increased. It is excellent in versatility and expansibility, such as being able to fully meet the demand for high-speed injection molding machines.

(4) 好適な態様により、設定物理量に、力学要素Jm,Jt,Tに加え、調整用ゲインG,樹脂反力の算出用ゲインCの一方又は双方を含ませれば、制御の的確性及び安定性をより高めることができるとともに、オーバシュートの回避に対する確実性及び信頼性をより高めることができる。   (4) If the set physical quantity includes one or both of the adjustment gain G and the resin reaction force calculation gain C in addition to the mechanical elements Jm, Jt, and T according to a preferred embodiment, the control accuracy and stability are improved. The reliability and the reliability with respect to avoiding overshoot can be further increased.

次に、本発明に係る最良の実施形態を挙げ、図面に基づき詳細に説明する。   Next, the best embodiment according to the present invention will be given and described in detail with reference to the drawings.

まず、本実施形態に係る射出制御装置1を含む射出成形機Mの構成について、図1及び図2を参照して説明する。   First, the structure of the injection molding machine M including the injection control device 1 according to the present embodiment will be described with reference to FIGS. 1 and 2.

図2に示す射出成形機Mは、型締装置を除いた射出装置Miのみを示す。射出装置Miは、離間して配した射出台11と駆動台12を備え、この射出台11の前面に加熱筒13の後端が支持される。加熱筒13は、前端に射出ノズル14を、後部に当該加熱筒13に成形材料を供給するホッパ15をそれぞれ備えるとともに、加熱筒13の内部にはスクリュ4を挿通させる。一方、射出台11と駆動台12間には、四本のタイバー16…を架設し、このタイバー16…にスライドブロック17をスライド自在に装填する。スライドブロック17の前端には、被動プーリ18を一体に有するロータリブロック19を回動自在に支持し、このロータリブロック19の中央にスクリュ4の後端を結合する。さらに、スライドブロック17の側面には、スクリュ回転用のサーボモータ20を取付けるとともに、このサーボモータ20の回転シャフトに固定した駆動プーリ21と被動プーリ18間に無端タイミングベルト22を架け渡し、これにより、スクリュ回転用の駆動機構を構成する。なお、20eはサーボモータ20の回転数を検出するロータリエンコーダであり、サーボモータ20の後端に付設される。   The injection molding machine M shown in FIG. 2 shows only the injection device Mi excluding the mold clamping device. The injection device Mi includes an injection stand 11 and a drive stand 12 that are spaced apart from each other, and the rear end of the heating cylinder 13 is supported on the front surface of the injection stand 11. The heating cylinder 13 includes an injection nozzle 14 at the front end and a hopper 15 that supplies a molding material to the heating cylinder 13 at the rear, and the screw 4 is inserted into the heating cylinder 13. On the other hand, four tie bars 16 are laid between the injection table 11 and the drive table 12, and a slide block 17 is slidably loaded on the tie bars 16. A rotary block 19 integrally having a driven pulley 18 is rotatably supported at the front end of the slide block 17, and the rear end of the screw 4 is coupled to the center of the rotary block 19. Further, a screw rotating servo motor 20 is attached to the side surface of the slide block 17, and an endless timing belt 22 is bridged between a driving pulley 21 and a driven pulley 18 fixed to a rotating shaft of the servo motor 20, thereby A screw rotation drive mechanism is configured. Reference numeral 20e denotes a rotary encoder that detects the number of rotations of the servo motor 20, and is attached to the rear end of the servo motor 20.

また、スライドブロック17の後部には、ナット部25を同軸上一体に設けるとともに、駆動台12に回動自在に支持されたボールねじ部26の前側をナット部25に螺合させることにより、ボールねじ機構24を構成する。さらに、駆動台12から後方に突出したボールねじ部26の後端には、被動プーリ27を取付けるとともに、駆動台12に取付けた支持盤12sには、スクリュ進退用のサーボモータ3を取付け、このサーボモータ3の回転シャフトに固定した駆動プーリ29と被動プーリ27間に無端タイミングベルト30を架け渡し、これにより、スクリュ進退用の駆動機構2を構成する。したがって、この駆動機構2には、サーボモータ3及びこのサーボモータ3からスクリュ4に至る間の機構が含まれる。3eはサーボモータ3の回転数を検出するロータリエンコーダであり、サーボモータ3の後端に付設される。   Further, a nut portion 25 is provided coaxially and integrally on the rear portion of the slide block 17, and the ball screw portion 26 that is rotatably supported by the drive base 12 is screwed into the nut portion 25, so that the ball A screw mechanism 24 is configured. Further, a driven pulley 27 is attached to the rear end of the ball screw portion 26 that protrudes rearward from the drive base 12, and a screw motor servo 3 is attached to the support board 12 s attached to the drive base 12. An endless timing belt 30 is bridged between a drive pulley 29 fixed to the rotating shaft of the servo motor 3 and the driven pulley 27, thereby constituting a drive mechanism 2 for screw advance / retreat. Therefore, the drive mechanism 2 includes a servo motor 3 and a mechanism from the servo motor 3 to the screw 4. Reference numeral 3e denotes a rotary encoder that detects the rotation speed of the servo motor 3, and is attached to the rear end of the servo motor 3.

一方、1は本実施形態に係る射出制御装置を示す。射出制御装置1は、射出成形機Mの全体の制御を司るコンピュータ機能を有する成形機コントローラ31を備え、この成形機コントローラ31の出力ポートには、サーボモータ3及び20を接続するとともに、成形機コントローラ31の入力ポートには、ロータリエンコーダ3e及び20eを接続する。また、ロータリブロック19とスライドブロック17間にはロードセルを用いた圧力センサ32を組付け、この圧力センサ32は、成形機コントローラ31の入力ポートに接続する。この圧力センサ32により射出圧力Pfを検出できる。さらに、成形機コントローラ31には、タッチパネル式のディスプレイを含む各種設定を行うことができる設定部33が付属するとともに、本実施形態に係る射出制御方法を実行するための制御プログラム31pが格納されている。   On the other hand, 1 indicates an injection control apparatus according to the present embodiment. The injection control device 1 includes a molding machine controller 31 having a computer function for controlling the entire injection molding machine M. The output port of the molding machine controller 31 is connected to servo motors 3 and 20 and the molding machine. The rotary encoders 3e and 20e are connected to the input port of the controller 31. Further, a pressure sensor 32 using a load cell is assembled between the rotary block 19 and the slide block 17, and this pressure sensor 32 is connected to an input port of the molding machine controller 31. This pressure sensor 32 can detect the injection pressure Pf. Further, the molding machine controller 31 is attached with a setting unit 33 capable of performing various settings including a touch panel display, and stores a control program 31p for executing the injection control method according to the present embodiment. Yes.

図1に、射出制御装置1(成形機コントローラ31)の具体的な機能ブロック図を示す。同図は、主に圧力制御系Upを示し、サーボモータ3,ロータリエンコーダ3e,圧力センサ32は前述のものと同じである。図1中、35及び36は偏差演算部、37は加算部、38は切換部、39は偏差選択部、40は圧力補償部、41は切換部、42は速度−圧力制御判断部、43は偏差演算部、44は速度補償部、45は電流制御部、46は電流検出器、47は速度変換部、48は微分器、49は圧力予測演算部をそれぞれ示し、各部の信号系統は図示のようになる。   FIG. 1 shows a specific functional block diagram of the injection control device 1 (molding machine controller 31). This figure mainly shows the pressure control system Up, and the servo motor 3, the rotary encoder 3e, and the pressure sensor 32 are the same as those described above. In FIG. 1, 35 and 36 are deviation calculating units, 37 is an adding unit, 38 is a switching unit, 39 is a deviation selecting unit, 40 is a pressure compensating unit, 41 is a switching unit, 42 is a speed-pressure control determining unit, 43 is Deviation calculation unit, 44 is a speed compensation unit, 45 is a current control unit, 46 is a current detector, 47 is a speed conversion unit, 48 is a differentiator, and 49 is a pressure prediction calculation unit. It becomes like this.

図1において、偏差演算部35は、検出圧力Pfと第一設定圧力Psの第一偏差Esを求める第一偏差演算手段W2を構成し、偏差演算部35の非反転入力部には、成形機コントローラ31における設定部33により予め設定した第一設定圧力(所定圧力)Psが付与されるとともに、偏差演算部35の反転入力部には、圧力センサ32から検出される射出圧力(検出圧力)Pfが付与される。そして、偏差演算部35の出力部からは、第一設定圧力Psと検出圧力Pfの偏差となる第一偏差Esが得られる。例示の第一設定圧力Psは、ユーザにより任意に設定されるリミット圧力である。   In FIG. 1, the deviation calculation unit 35 constitutes first deviation calculation means W2 for obtaining a first deviation Es of the detected pressure Pf and the first set pressure Ps, and a non-inverting input unit of the deviation calculation unit 35 includes a molding machine. A first set pressure (predetermined pressure) Ps preset by the setting unit 33 in the controller 31 is applied, and an injection pressure (detected pressure) Pf detected by the pressure sensor 32 is applied to the reverse input unit of the deviation calculating unit 35. Is granted. Then, a first deviation Es that is a deviation between the first set pressure Ps and the detected pressure Pf is obtained from the output unit of the deviation calculation unit 35. The illustrated first set pressure Ps is a limit pressure arbitrarily set by the user.

偏差演算部36は、修正検出圧力Pfxと第二設定圧力Pmの第二偏差Emを求める第二偏差演算手段W3を構成し、偏差演算部36の非反転入力部には、成形機コントローラ31における設定部33において予め設定され、上述した第一設定圧力(リミット圧力)Psよりも大きい第二設定圧力Pmが付与されるとともに、偏差演算部36の反転入力部には、所定の条件により求める後述の補正圧力Pxを検出圧力Pfに加算した修正検出圧力Pfxが付与される。そして、偏差演算部36の出力部からは、第二設定圧力Pmと修正検出圧力Pfxの偏差となる第二偏差Emが得られる。例示の第二設定圧力Pmは、最大射出圧力である。この最大射出圧力は、これ以上の射出圧力が付加されたなら破損を生じる虞れのある限界的な圧力であり、各機種毎の固定的な設定値として工場出荷前に設定される。したがって、成形機コントローラ31に付属する設定部33は、ユーザによりリミット圧力Psが設定できるとともに、工場出荷前に固定的な設定値となる最大射出圧力Pmを設定する圧力設定手段W1を構成する。   The deviation calculation unit 36 constitutes a second deviation calculation means W3 for obtaining a second deviation Em of the corrected detection pressure Pfx and the second set pressure Pm, and the non-inversion input unit of the deviation calculation unit 36 is connected to the molding machine controller 31. A second set pressure Pm that is set in advance in the setting unit 33 and is larger than the first set pressure (limit pressure) Ps described above is applied, and an inverting input unit of the deviation calculating unit 36 is obtained in accordance with predetermined conditions. The corrected detected pressure Pfx obtained by adding the corrected pressure Px to the detected pressure Pf is applied. Then, a second deviation Em that is a deviation between the second set pressure Pm and the corrected detected pressure Pfx is obtained from the output unit of the deviation calculation unit 36. The exemplified second set pressure Pm is the maximum injection pressure. This maximum injection pressure is a limit pressure that may cause damage if an injection pressure higher than this is applied, and is set as a fixed set value for each model before shipment from the factory. Accordingly, the setting unit 33 attached to the molding machine controller 31 constitutes pressure setting means W1 that allows the user to set the limit pressure Ps and sets the maximum injection pressure Pm that is a fixed set value before shipment from the factory.

切換部38と偏差選択部39は、第一偏差Esと第二偏差Emのいずれか小さい偏差Es又はEmを選択する偏差選択手段W4を構成し、偏差選択手段W4には、偏差演算部35から得られる第一偏差Esと偏差演算部36から得られる第二偏差Emがそれぞれ付与されるとともに、切換部38は偏差選択部39により制御され、第一偏差Es<第二偏差Emの場合には第一偏差Esが選択され、第二偏差Em≦第一偏差Esの場合には第二偏差Emが選択される。   The switching unit 38 and the deviation selecting unit 39 constitute a deviation selecting unit W4 that selects a smaller deviation Es or Em of the first deviation Es and the second deviation Em, and the deviation selecting unit W4 includes a deviation calculating unit 35. The obtained first deviation Es and the second deviation Em obtained from the deviation calculating unit 36 are respectively given, and the switching unit 38 is controlled by the deviation selecting unit 39. When the first deviation Es <the second deviation Em, The first deviation Es is selected, and if the second deviation Em ≦ the first deviation Es, the second deviation Em is selected.

ロータリエンコーダ3e,速度変換部47,圧力センサ32及び微分器48は、スクリュ4の前進移動に伴う動作物理量を検出する物理量検出手段W5を構成し、速度変換部47からは射出速度(検出速度)Vfを得るとともに、圧力センサ32からは射出圧力(検出圧力)Pfを得る。また、微分器48は射出圧力Pfを微分して微分値dPfを出力する。   The rotary encoder 3e, the speed conversion unit 47, the pressure sensor 32, and the differentiator 48 constitute a physical quantity detection means W5 that detects an operation physical quantity associated with the forward movement of the screw 4, and an injection speed (detection speed) from the speed conversion unit 47. In addition to obtaining Vf, the pressure sensor 32 obtains an injection pressure (detected pressure) Pf. The differentiator 48 differentiates the injection pressure Pf and outputs a differential value dPf.

圧力予測演算部49は、検出した動作物理量及び予め設定した少なくとも駆動機構2における力学要素の一又は二以上に係わる設定値を含む設定物理量に基づく所定の予測演算式により補正圧力Pxを求める補正圧力演算手段W6を構成する。動作物理量には、上述した射出圧力Pf,微分値dPf及び射出速度Vfを用いる。また、駆動機構2における力学要素には、サーボモータ3の慣性モーメントJm,サーボモータ3からスクリュ4に至る機構上の慣性モーメントJt,サーボモータ3の最大トルクTを用いるとともに、設定物理量には、このような力学要素Jm,Jt,Tに加え、調整用ゲインG及び樹脂反力の算出用ゲインCを用いる。   The pressure prediction calculation unit 49 obtains a correction pressure Px by a predetermined prediction calculation formula based on the detected operation physical quantity and a preset physical quantity including at least a preset set value related to one or more of the dynamic elements in the drive mechanism 2. The calculating means W6 is configured. As the operation physical quantity, the above-described injection pressure Pf, differential value dPf, and injection speed Vf are used. Further, as the mechanical elements in the drive mechanism 2, the inertia moment Jm of the servo motor 3, the inertia moment Jt on the mechanism from the servo motor 3 to the screw 4, and the maximum torque T of the servo motor 3 are used. In addition to such dynamic elements Jm, Jt, T, an adjustment gain G and a resin reaction force calculation gain C are used.

この場合、Jmはサーボモータ3自身の持つ慣性モーメント、JtはJmを除いたサーボモータ3からスクリュ4に至る機構上の慣性モーメントであり、両者を合わせた慣性モーメントJ(=Jm+Jt)を用いる。Tはサーボモータ3の規格となる定格トルクを用いる。Gは圧力予測の反応の良さ(感度)を調整するためのゲインであり、PID定数におけるP定数に類似する。Cは樹脂の反力(弾性)をばね定数として見立て、スクリュ4を前進移動させた際における樹脂反力を算出するためのゲインである。これらの物理要素J,T,G,Cは、各機種毎の固定的な設定値として工場出荷前に設定される。   In this case, Jm is the inertia moment of the servomotor 3 itself, Jt is the inertial moment on the mechanism from the servomotor 3 to the screw 4 excluding Jm, and the inertial moment J (= Jm + Jt) is used. For T, a rated torque that is the standard of the servo motor 3 is used. G is a gain for adjusting the response (sensitivity) of the pressure prediction reaction, and is similar to the P constant in the PID constant. C is a gain for calculating the resin reaction force when the screw 4 is moved forward by assuming the reaction force (elasticity) of the resin as a spring constant. These physical elements J, T, G, and C are set before shipment from the factory as fixed setting values for each model.

圧力予測演算部49は、付与される動作物理量(Pf,dPf,Vf)及び設定物理量(J,T,G,C)により補正圧力Pxを演算する。この補正圧力Pxは、射出速度Vfが0になるまでの射出圧力に対する予測圧力に基づくものであり、次の予測演算式(1)により求めることができる。なお、予測演算式(1)において、Tpは樹脂反力トルク、tはモータ停止時間を表している。
Px=G・dPf・t/2
=G・dPf・(J・Vf/(T+Tp))/2
=G・dPf・(J・Vf/(T+(C・Pf)))/2 …(1)
The pressure prediction calculation unit 49 calculates a correction pressure Px based on the applied physical quantity (Pf, dPf, Vf) and the set physical quantity (J, T, G, C). The correction pressure Px is based on the predicted pressure with respect to the injection pressure until the injection speed Vf becomes 0, and can be obtained by the following prediction calculation formula (1). In the prediction calculation formula (1), Tp represents the resin reaction torque and t represents the motor stop time.
Px = G · dPf · t / 2
= G · dPf · (J · Vf / (T + Tp)) / 2
= G · dPf · (J · Vf / (T + (C · Pf))) / 2 (1)

一方、加算部37は、圧力予測演算部49から得る補正圧力Pxを検出圧力Pfに加算して修正検出圧力Pfxを得る検出圧力修正手段W7を構成し、この加算部37には、圧力センサ32から得る射出圧力Pfと圧力予測演算部49から得る補正圧力Pxがそれぞれ付与される。また、速度−圧力制御判断部42は、検出圧力,圧力上昇率,偏差等の各種要素に基づいて射出速度の減速を開始する最適なタイミングを判断する。なお、他の各部における機能は後述の動作において説明する。   On the other hand, the adding unit 37 constitutes a detection pressure correcting means W7 that obtains a corrected detected pressure Pfx by adding the corrected pressure Px obtained from the pressure prediction calculating unit 49 to the detected pressure Pf. And the correction pressure Px obtained from the pressure prediction calculation unit 49 are respectively applied. Further, the speed-pressure control determination unit 42 determines the optimum timing for starting the deceleration of the injection speed based on various factors such as the detected pressure, the pressure increase rate, and the deviation. In addition, the function in each other part is demonstrated in the below-mentioned operation | movement.

次に、このような射出制御装置1の動作を含む本実施形態に係る射出制御方法について、各図を参照しつつ図3に示すフローチャートに従って説明する。   Next, the injection control method according to the present embodiment including the operation of the injection control apparatus 1 will be described according to the flowchart shown in FIG. 3 with reference to the drawings.

図3は、射出開始から射出終了までの射出工程(保圧工程を含まない)を示す。まず、成形機コントローラ31には、成形条件として、射出速度(目標速度)Vs及びリミット圧力Psが設定される。そして、図1に示すように、射出速度Vsは切換部41に付与され、リミット圧力Psは偏差演算部35の非反転入力部に付与される。また、工場出荷前に固定的な設定値として設定された最大射出圧力Pmは偏差演算部36の非反転入力部に付与される。   FIG. 3 shows an injection process (not including a pressure holding process) from the start of injection to the end of injection. First, in the molding machine controller 31, an injection speed (target speed) Vs and a limit pressure Ps are set as molding conditions. As shown in FIG. 1, the injection speed Vs is applied to the switching unit 41, and the limit pressure Ps is applied to the non-inverting input unit of the deviation calculating unit 35. In addition, the maximum injection pressure Pm set as a fixed set value before shipment from the factory is applied to the non-inverting input unit of the deviation calculating unit 36.

射出工程では、射出開始により射出開始位置にあるスクリュ4が前進移動し、計量された樹脂(溶融樹脂)が射出ノズル14から不図示の金型キャビティに射出充填される。スクリュ4の前進移動時には、射出速度(検出速度)Vfが予め設定された目標速度Vsに一致するように、射出速度に対するフィードバック制御が行われる(ステップS1)。図5中、Vfが検出速度を示し、Vsが目標速度を示す。   In the injection process, the screw 4 at the injection start position moves forward by the start of injection, and the measured resin (molten resin) is injected and filled from the injection nozzle 14 into a mold cavity (not shown). During forward movement of the screw 4, feedback control is performed on the injection speed so that the injection speed (detection speed) Vf matches the preset target speed Vs (step S1). In FIG. 5, Vf indicates the detection speed, and Vs indicates the target speed.

スクリュ4の前進移動は駆動機構2の制御により行われる。この場合、サーボモータ3の回転運動は、駆動プーリ29,タイミングベルト30及び被動プーリ27を含む回転伝達機構を介して回転伝達されるとともに、ボールねじ部26及びナット部25を含むボールねじ機構24により運動変換され、スライドブロック17を介してスクリュ4に伝達される。一方、サーボモータ3の回転数は、ロータリエンコーダ3eにより検出されるとともに、速度変換部47により射出速度(検出速度)Vfに変換され、この検出速度Vfは、圧力予測部49及び偏差演算部43の反転入力部にそれぞれ付与される。射出工程の開始により射出速度に対するフィードバック制御が行われるため、切換部41は射出速度(目標速度)Vsを選択する側に切換わっており、偏差演算部43の非反転入力部には、目標速度Vsが付与される。これにより、偏差演算部43の出力部には、目標速度Vsと検出速度Vfの偏差が得られ、この偏差は、PID定数を設定した速度補償部44により速度補償された後、電流制御部45に付与され、さらに、この電流制御部45からサーボモータ3に対して給電が行われる。なお、サーボモータ3に流れる電流は電流検出器46により検出され、電流制御部45に付与される。これにより、電流に対するマイナループのフィードバック制御が行われる。   The forward movement of the screw 4 is performed under the control of the drive mechanism 2. In this case, the rotational motion of the servo motor 3 is transmitted through a rotation transmission mechanism including the drive pulley 29, the timing belt 30 and the driven pulley 27, and the ball screw mechanism 24 including the ball screw portion 26 and the nut portion 25. Is converted into motion and transmitted to the screw 4 via the slide block 17. On the other hand, the rotation speed of the servo motor 3 is detected by the rotary encoder 3e and converted into an injection speed (detection speed) Vf by the speed conversion unit 47. The detection speed Vf is converted into the pressure prediction unit 49 and the deviation calculation unit 43. To the inverting input section. Since feedback control for the injection speed is performed by the start of the injection process, the switching unit 41 is switched to the side for selecting the injection speed (target speed) Vs. Vs is given. As a result, a deviation between the target speed Vs and the detected speed Vf is obtained at the output section of the deviation calculating section 43. The deviation is compensated for speed by the speed compensating section 44 in which the PID constant is set, and then the current control section 45. Furthermore, the current controller 45 supplies power to the servo motor 3. The current flowing through the servo motor 3 is detected by the current detector 46 and applied to the current control unit 45. Thereby, the feedback control of the minor loop with respect to an electric current is performed.

他方、射出開始により動作物理量の検出が行われる(ステップS2)。この動作物理量には、上述した検出速度(射出速度)Vfが含まれるとともに、射出圧力(検出圧力)Pfが含まれる。検出圧力Pfは、圧力センサ32から検出され、この検出圧力Pfは、偏差演算部35の反転入力部,加算部37及び圧力予測演算部49にそれぞれ付与される。また、射出圧力Pfは、微分器48により微分され、この微分により得た微分値dPfは、圧力予測演算部49に付与される。   On the other hand, the operation physical quantity is detected by the start of injection (step S2). This operation physical quantity includes the detection speed (injection speed) Vf described above and the injection pressure (detection pressure) Pf. The detected pressure Pf is detected from the pressure sensor 32, and the detected pressure Pf is applied to the inverting input unit, the adding unit 37, and the pressure prediction calculating unit 49 of the deviation calculating unit 35, respectively. The injection pressure Pf is differentiated by the differentiator 48, and the differential value dPf obtained by this differentiation is given to the pressure prediction calculation unit 49.

圧力予測演算部49では、得られた動作物理量(Pf,dPf,Vf)と予め設定されている設定物理量(J,T,G,C)に基づき、前述した予測演算式(1)を用いて補正圧力Pxが求められる(ステップS3)。また、得られた補正圧力Pxは、加算部37に付与されることにより検出圧力Pfに加算される(ステップS4)。この結果、加算部37の出力部には、検出圧力Pfに補正圧力Pxを加算した修正検出圧力Pfxが得られ、この修正検出圧力Pfxは偏差演算部36の反転入力部に付与される。これにより、偏差演算部36の出力部には、最大射出圧力Pmと修正検出圧力Pfxの偏差となる第二偏差Emが得られ、この第二偏差Emは、切換部38及び偏差選択部39に付与される。一方、偏差演算部35の出力部には、リミット圧力Psと検出圧力Pfの偏差となる第一偏差Esが得られ、この第一偏差Esも、切換部38及び偏差選択部39に付与される。   In the pressure prediction calculation unit 49, based on the obtained operation physical quantity (Pf, dPf, Vf) and a preset physical quantity (J, T, G, C), the above-described prediction calculation expression (1) is used. A correction pressure Px is obtained (step S3). Further, the obtained correction pressure Px is added to the detection pressure Pf by being applied to the addition unit 37 (step S4). As a result, a correction detection pressure Pfx obtained by adding the correction pressure Px to the detection pressure Pf is obtained at the output section of the addition section 37, and this correction detection pressure Pfx is applied to the inverting input section of the deviation calculation section 36. As a result, a second deviation Em, which is a deviation between the maximum injection pressure Pm and the corrected detected pressure Pfx, is obtained at the output section of the deviation calculating section 36, and this second deviation Em is sent to the switching section 38 and the deviation selecting section 39. Is granted. On the other hand, a first deviation Es that is a deviation between the limit pressure Ps and the detected pressure Pf is obtained at the output section of the deviation calculating section 35, and this first deviation Es is also given to the switching section 38 and the deviation selecting section 39. .

これにより、偏差選択部39には第一偏差Esと第二偏差Emが付与されるため、偏差選択部39は第一偏差Esと第二偏差Emの大きさを比較する(ステップS5)。そして、第一偏差Es<第二偏差Emのときは、切換部38を第一偏差Esが選択される側に切換える(ステップS6)。また、第二偏差Em≦第一偏差Esのときは、切換部38を第二偏差Emが選択される側に切換える(ステップS7)。即ち、図4に示すように、t1時点では、第一偏差Es<第二偏差Emとなるため、切換部38からは第一偏差Esが出力するとともに、t2時点では、第二偏差Em≦第一偏差Esとなるため、切換部38からは第二偏差Emが出力する。なお、第一偏差Esと第二偏差Emの大きさは、絶対値ではなく正負の大きさが対象となる。切換部38から出力した第一偏差Es又は第二偏差Emは、PID定数を設定した圧力補償部40により圧力補償され、圧力補償速度Vpとして切換部41に付与される。なお、以上の処理は制御周期毎に行われる。   Thereby, since the 1st deviation Es and the 2nd deviation Em are provided to the deviation selection part 39, the deviation selection part 39 compares the magnitude | size of the 1st deviation Es and the 2nd deviation Em (step S5). When the first deviation Es <the second deviation Em, the switching unit 38 is switched to the side where the first deviation Es is selected (step S6). When the second deviation Em ≦ the first deviation Es, the switching unit 38 is switched to the side on which the second deviation Em is selected (step S7). That is, as shown in FIG. 4, since the first deviation Es <the second deviation Em at time t1, the first deviation Es is output from the switching unit 38, and the second deviation Em ≦ the first deviation at time t2. Since the first deviation Es is obtained, the second deviation Em is output from the switching unit 38. Note that the magnitudes of the first deviation Es and the second deviation Em are not absolute values but positive and negative magnitudes. The first deviation Es or the second deviation Em output from the switching unit 38 is pressure compensated by the pressure compensation unit 40 in which the PID constant is set, and is given to the switching unit 41 as the pressure compensation speed Vp. The above processing is performed every control cycle.

したがって、本実施形態に係る射出制御方法によれば、リミット圧力Psとこのリミット圧力Psよりも大きい最大射出圧力Pmを設定し、検出圧力Pfとリミット圧力Psの第一偏差Esを求めるとともに、検出圧力Pfに補正圧力Pxを加算した修正検出圧力Pfxと最大射出圧力Pmの第二偏差Emを求め、第一偏差Esと第二偏差Emのいずれか小さい偏差Es又はEmを用いて射出圧力に対する制御が行われるため、最大射出圧力Pmを用いる必要が生じる直前、即ち、修正検出圧力Pfxが最大射出圧力Pmを超える直前まではユーザの設定したリミット圧力Psに基づいて圧力制御が行われるとともに、最大射出圧力Pmを超える直前で最大射出圧力Pmが選択されることにより制動制御(射出圧力のフィードバック制御)が行われることになる。この結果、本来圧力補正の必要がない動作区間における補正を回避でき、この結果、本来の成形動作が損なわれる不具合を解消できるとともに、ユーザの設定を十分に反映することが可能となる。   Therefore, according to the injection control method according to the present embodiment, the limit pressure Ps and the maximum injection pressure Pm larger than the limit pressure Ps are set, and the first deviation Es between the detected pressure Pf and the limit pressure Ps is obtained and detected. A correction detection pressure Pfx obtained by adding the correction pressure Px to the pressure Pf and a second deviation Em of the maximum injection pressure Pm are obtained, and the control for the injection pressure is performed using the smaller deviation Es or Em of the first deviation Es or the second deviation Em. Therefore, immediately before the maximum injection pressure Pm needs to be used, that is, until immediately before the corrected detection pressure Pfx exceeds the maximum injection pressure Pm, the pressure control is performed based on the limit pressure Ps set by the user, and the maximum Braking control (injection pressure feedback control) is performed by selecting the maximum injection pressure Pm immediately before exceeding the injection pressure Pm. It will be divided. As a result, it is possible to avoid correction in an operation section where pressure correction is not originally required, and as a result, it is possible to eliminate the problem of impairing the original molding operation and to fully reflect the user's settings.

射出工程では基本的に射出速度に対するフィードバック制御が行われるため、射出工程中に、修正検出圧力Pfxが最大射出圧力Pmに達しない場合及び射出圧力Pfがリミット圧力Psに達しない場合には、射出速度に対するフィードバック制御が継続し、射出終了時間或いは射出終了位置に達することにより射出工程は終了する(ステップS8,S9)。しかし、通常、スクリュ2が前進移動するに従って樹脂の充填が進み、射出圧力Pfは徐々に高くなる。そして、図5に示すように、修正検出圧力Pfxが最大射出圧力Pmに近付いた際には、速度−圧力制御判断部42が最適なタイミング(td時点)で切換部41を制御し、圧力補償部40の出力を選択する側に切換える。これにより、射出速度に対するフィードバック制御から射出圧力に対するフィードバック制御に切換えられる(ステップS8,S10)。この場合、最大射出圧力Pmに近付いたタイミングで射出圧力に対するフィードバック制御に切換えられるため、この時点での圧力制御は、スクリュ4の前進移動に対して制動する制御となる。   In the injection process, feedback control on the injection speed is basically performed. Therefore, during the injection process, when the corrected detection pressure Pfx does not reach the maximum injection pressure Pm and when the injection pressure Pf does not reach the limit pressure Ps, the injection is performed. The feedback control for the speed is continued, and the injection process ends when the injection end time or the injection end position is reached (steps S8 and S9). However, normally, as the screw 2 moves forward, resin filling proceeds, and the injection pressure Pf gradually increases. Then, as shown in FIG. 5, when the corrected detection pressure Pfx approaches the maximum injection pressure Pm, the speed-pressure control determination unit 42 controls the switching unit 41 at the optimal timing (at time td), and the pressure compensation The output of the unit 40 is switched to the selection side. Thereby, the feedback control for the injection speed is switched to the feedback control for the injection pressure (steps S8 and S10). In this case, since the control is switched to the feedback control with respect to the injection pressure at a timing approaching the maximum injection pressure Pm, the pressure control at this time is a control for braking the forward movement of the screw 4.

ところで、リミット圧力Psに近付いたか否かの監視は、検出圧力Pfに対してではなく、修正検出圧力Pfxに対して行われる。この修正検出圧力Pfxは、検出圧力Pfに対して補正圧力Pxが加算された大きさとなる。したがって、検出圧力Pfの変化度合(上昇率)が図5に示すような特性となる場合、修正検出圧力Pfxは検出圧力Pfよりも早く立ち上がり、修正検出圧力Pfxが減速を開始するタイミング(td時点)は、検出圧力Pfが減速を開始する減速開始圧力Psdに達するタイミング(tds時点)よりも早くなる。この結果、検出圧力Pfの挙動は図5に示すようになり、検出圧力Pfのリミット圧力Psに対する検出圧力Pfのオーバシュート及びアンダシュータは回避され、安定した状態でリミット圧力Psに到達する。一方、例えば、射出圧力Pfの上昇率が図5とは異なった場合、微分値dPfが変更されるため、検出圧力Pfの減速開始圧力Psdに達する時点が図5に示すtds時点であっても、修正検出圧力Pfxが減速を開始するタイミングは、射出圧力Pfの上昇率に対応して図5に示すtd時点とは異なるものとなる。   By the way, whether or not the limit pressure Ps has been approached is monitored not with respect to the detected pressure Pf but with the corrected detected pressure Pfx. The corrected detected pressure Pfx has a magnitude obtained by adding the corrected pressure Px to the detected pressure Pf. Therefore, when the degree of change (increase rate) of the detected pressure Pf has the characteristics shown in FIG. 5, the corrected detected pressure Pfx rises earlier than the detected pressure Pf, and the timing at which the corrected detected pressure Pfx starts to decelerate (at time td). ) Is earlier than the timing (tds time point) when the detected pressure Pf reaches the deceleration start pressure Psd at which deceleration starts. As a result, the behavior of the detected pressure Pf becomes as shown in FIG. 5, and the overshoot and undershooter of the detected pressure Pf with respect to the limit pressure Ps of the detected pressure Pf are avoided and reach the limit pressure Ps in a stable state. On the other hand, for example, when the rate of increase of the injection pressure Pf is different from that in FIG. 5, the differential value dPf is changed. Therefore, even when the time when the detected pressure Pf reaches the deceleration start pressure Psd is the time tds shown in FIG. The timing at which the corrected detection pressure Pfx starts to decelerate is different from the time point td shown in FIG. 5 corresponding to the rate of increase of the injection pressure Pf.

そして、この後は、予め設定した射出終了時間或いは射出終了位置に達することにより射出工程が終了する(ステップS11)。なお、検出圧力Pfがリミット圧力Psに到達した後に検出圧力Pfが低下しても、射出圧力に対するフィードバック制御が行われているため、射出圧力を上昇させる制御が行われ、この結果、射出速度が上昇する。射出速度が上昇した場合、設定された目標速度Vsが速度リミッタとして働くため、結局、圧力制御が行われていても実質的には速度制御状態となる。   Thereafter, the injection process is completed by reaching a preset injection end time or injection end position (step S11). Even if the detected pressure Pf decreases after the detected pressure Pf reaches the limit pressure Ps, the feedback control is performed on the injection pressure, so that the control for increasing the injection pressure is performed. As a result, the injection speed is reduced. To rise. When the injection speed is increased, the set target speed Vs serves as a speed limiter. Consequently, even if pressure control is performed, the speed control state is substantially achieved.

よって、検出した各種動作物理量(Pf,dPf,Vf)及び予め設定した少なくとも駆動機構2における力学要素の一又は二以上に係わる設定値を含む設定物理量(J,T,G,C)に基づく所定の予測演算式(1)により補正圧力Pxを求め、この補正圧力Pxを検出圧力Pfに加算した修正検出圧力Pfxにより射出圧力に対する制御を行うため、外乱要素を十分に反映した補正圧力Pxを得ることができ、もって、圧力補正の有効性、更には制御の的確性及び安定性を確保できるとともに、確実なオーバシュートの回避が可能となり、スクリュ4の折損を招くなどの射出成形機Mの機構部分に重大なダメージを及ぼす問題を解消できる。   Therefore, a predetermined value based on the detected physical quantities (Pf, dPf, Vf) and a preset physical quantity (J, T, G, C) including a preset value related to at least one or more of the dynamic elements in the drive mechanism 2. The correction pressure Px is obtained by the prediction calculation formula (1) and the injection pressure is controlled by the corrected detection pressure Pfx obtained by adding the correction pressure Px to the detection pressure Pf. Therefore, the correction pressure Px sufficiently reflecting the disturbance element is obtained. Therefore, the effectiveness of the pressure correction, as well as the accuracy and stability of the control can be ensured, the overshoot can be avoided reliably, and the screw 4 can be broken. The problem of serious damage to the part can be solved.

しかも、動作物理量に、射出圧力Pf,この射出圧力Pfの微分値dPf及び射出速度Vfを用いるとともに、力学要素に、サーボモータ3の慣性モーメントJm,サーボモータ3からスクリュ4に至る機構上の慣性モーメントJt,サーボモータ3の最大トルクTを用いたため、射出速度が高速化した場合であってもオーバシュートの回避に対する確実性及び信頼性を確保できるとともに、高速化する射出成形機の要請に対して十分に応えることができるなど、汎用性及び発展性にも優れる。また、設定物理量に、力学要素Jm,Jt,Tに加え、調整用ゲインG及び樹脂反力の算出用ゲインCを用いたため、制御の的確性及び安定性をより高めることができるとともに、オーバシュートの回避に対する確実性及び信頼性をより高めることができる。   Moreover, the injection pressure Pf, the differential value dPf of the injection pressure Pf, and the injection speed Vf are used as the operating physical quantity, and the inertia moment Jm of the servo motor 3 and the mechanical inertia from the servo motor 3 to the screw 4 are used as the dynamic elements. Because the moment Jt and the maximum torque T of the servo motor 3 are used, the reliability and reliability for avoiding overshoot can be ensured even when the injection speed is increased, and in response to the demand for an injection molding machine that increases the speed. It is excellent in versatility and developability. Moreover, since the adjustment gain G and the resin reaction force calculation gain C are used as the set physical quantity in addition to the mechanical elements Jm, Jt, and T, the accuracy and stability of the control can be further improved, and overshoot The certainty and reliability with respect to avoidance can be further increased.

以上、最良の実施形態について詳細に説明したが、本発明は、このような実施形態に限定されるものではなく、細部の構成,手法等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。例えば、第一設定圧力Ps及び第二設定圧力Pmは、必ずしもリミット圧力及び射出最大圧力に限定されるものではない。また、動作物理量として、射出圧力Pf,微分値dPf及び射出速度Vfを用いた場合を示したが、これらの一部を用いる場合或いは他の動作物理量を追加する場合を排除するものではない。さらに、設定物理量として、サーボモータ3の慣性モーメントJm,サーボモータ3からスクリュ4に至る機構上の慣性モーメントJt,サーボモータ3の最大トルクT,調整用ゲインG及び樹脂反力の算出用ゲインCを用いる場合を示したが、これらの一部を用いる場合或いは他の設定物理量を追加する場合を排除するものではない。したがって、動作物理量或いは設定物理量を変更した場合には、これに対応して予測演算式(1)を変更すればよい。特に、調整用ゲインGと樹脂反力の算出用ゲインCは、いずれか一方を用いることができ、この場合には、他方を予測演算式(1)から除けばよい。なお、本発明におけるスクリュ4はプランジャも含む概念である。   Although the best embodiment has been described in detail above, the present invention is not limited to such an embodiment, and the detailed configuration, method, and the like can be arbitrarily set within the scope of the present invention. Can be changed, added or deleted. For example, the first set pressure Ps and the second set pressure Pm are not necessarily limited to the limit pressure and the maximum injection pressure. Moreover, although the case where the injection pressure Pf, the differential value dPf, and the injection speed Vf are used as the operation physical quantity is shown, the case where a part of these is used or the case where another operation physical quantity is added is not excluded. Further, as the set physical quantities, the inertia moment Jm of the servo motor 3, the inertia moment Jt on the mechanism from the servo motor 3 to the screw 4, the maximum torque T of the servo motor 3, the adjustment gain G, and the resin reaction force calculation gain C However, this does not exclude the case where some of these are used or the case where another set physical quantity is added. Therefore, when the operation physical quantity or the set physical quantity is changed, the prediction calculation formula (1) may be changed correspondingly. In particular, any one of the adjustment gain G and the resin reaction force calculation gain C can be used. In this case, the other may be excluded from the prediction calculation formula (1). In addition, the screw 4 in this invention is a concept also including a plunger.

本発明の最良の実施形態に係る射出成形機の射出制御装置を抽出して示す機能ブロック図、The functional block diagram which extracts and shows the injection control device of the injection molding machine concerning the best embodiment of the present invention, 同射出制御装置を備える射出成形機の一部断面構成図、Partial cross-sectional configuration diagram of an injection molding machine equipped with the same injection control device, 同射出制御装置による射出制御方法を説明するための射出工程の処理手順を示すフローチャート、The flowchart which shows the process sequence of the injection process for demonstrating the injection control method by the injection control apparatus, 同射出制御装置における時間に対するスクリュ前進移動時の圧力の挙動を説明するための圧力の変化特性図、Pressure change characteristic diagram for explaining the behavior of pressure during screw forward movement with respect to time in the same injection control device, 同射出制御装置における時間に対するスクリュ前進移動時の圧力及び速度の変化特性図、Pressure and speed change characteristic diagram during screw forward movement with respect to time in the same injection control device, 背景技術を説明するための時間に対するスクリュ前進移動時の圧力及び速度の変化特性図、A characteristic diagram of pressure and speed change during forward movement of the screw with respect to time for explaining the background art;

符号の説明Explanation of symbols

1 射出制御装置
2 駆動機構
3 サーボモータ
4 スクリュ
M 射出成形機
Vf 射出速度
Pf 射出圧力(検出圧力)
Ps 所定圧力(第一設定圧力)
Pm 第二設定圧力
Px 補正圧力
Pfx 修正検出圧力
dPf 微分値
Es 第一偏差
Em 第二偏差
Jm サーボモータの慣性モーメント
Jt,サーボモータからスクリュに至る機構上の慣性モーメント
T サーボモータの最大トルク
G 調整用ゲイン
C 樹脂反力の算出用ゲイン
W1 圧力設定手段
W2 第一偏差演算手段
W3 第二偏差演算手段
W4 偏差選択手段
W5 物理量検出手段
W6 補正圧力演算手段
W7 検出圧力修正手段
DESCRIPTION OF SYMBOLS 1 Injection control apparatus 2 Drive mechanism 3 Servo motor 4 Screw M Injection molding machine Vf Injection speed Pf Injection pressure (detection pressure)
Ps Predetermined pressure (first set pressure)
Pm Second set pressure Px Correction pressure Pfx Corrected detection pressure dPf Differential value Es First deviation Em Second deviation Jm Servo motor inertia moment Jt, inertia moment on mechanism from servo motor to screw T Servo motor maximum torque G Adjustment Gain C Resin reaction force calculation gain W1 Pressure setting means W2 First deviation calculation means W3 Second deviation calculation means W4 Deviation selection means W5 Physical quantity detection means W6 Correction pressure calculation means W7 Detection pressure correction means

Claims (5)

駆動機構によりスクリュを所定の射出速度で前進移動させるとともに、射出圧力を検出し、この射出圧力(検出圧力)が予め設定した所定圧力を超えないように制御する射出成形機の射出制御方法において、前記所定圧力(第一設定圧力)とこの所定圧力よりも大きい第二設定圧力を設定し、前記検出圧力と前記第一設定圧力の第一偏差を求めるとともに、検出した前記スクリュの前進移動に伴う動作物理量及び予め設定した少なくとも前記駆動機構における力学要素の一又は二以上に係わる設定値を含む設定物理量に基づいて射出速度が0になるまでの射出圧力に対する予測圧力を求める予測演算式から得る補正圧力を前記検出圧力に加算した修正検出圧力と前記第二設定圧力の第二偏差を求め、前記第一偏差と前記第二偏差のいずれか小さい偏差を用いて射出圧力に対する制御を行うことを特徴とする射出成形機の射出制御方法。   In the injection control method of the injection molding machine, the screw is moved forward at a predetermined injection speed by the drive mechanism, the injection pressure is detected, and the injection pressure (detected pressure) is controlled so as not to exceed a predetermined pressure. The predetermined pressure (first set pressure) and a second set pressure larger than the predetermined pressure are set, a first deviation between the detected pressure and the first set pressure is obtained, and the detected forward movement of the screw is accompanied. Correction obtained from a prediction calculation formula for obtaining a predicted pressure with respect to an injection pressure until the injection speed becomes zero based on an operating physical quantity and a preset physical quantity including at least a preset setting value related to one or more of the mechanical elements in the drive mechanism A correction detection pressure obtained by adding a pressure to the detection pressure and a second deviation of the second set pressure are obtained, and one of the first deviation and the second deviation is smaller. Injection control method for an injection molding machine and performing control for injection pressure using a stomach deviation. 前記動作物理量には、前記射出圧力,この射出圧力の微分値及び前記射出速度を含むことを特徴とする請求項1記載の射出成形機の射出制御方法。   2. The injection control method for an injection molding machine according to claim 1, wherein the operation physical quantity includes the injection pressure, a differential value of the injection pressure, and the injection speed. 前記力学要素には、前記駆動機構に備える、モータの慣性モーメント,前記モータから前記スクリュに至る機構上の慣性モーメント,前記モータの最大トルクを含むことを特徴とする請求項1記載の射出成形機の射出制御方法。   2. The injection molding machine according to claim 1, wherein the dynamic element includes an inertia moment of a motor provided in the drive mechanism, an inertia moment on a mechanism from the motor to the screw, and a maximum torque of the motor. Injection control method. 前記設定物理量には、前記力学要素に加え、調整用ゲイン,樹脂反力の算出用ゲインの一方又は双方を含むことを特徴とする請求項1記載の射出成形機の射出制御方法。   2. The injection control method for an injection molding machine according to claim 1, wherein the set physical quantity includes one or both of an adjustment gain and a resin reaction force calculation gain in addition to the dynamic element. 駆動機構によりスクリュを所定の射出速度で前進移動させた際における射出圧力(検出圧力)が予め設定した所定圧力を超えないように制御する射出成形機の射出制御装置において、前記所定圧力(第一設定圧力)とこの所定圧力よりも大きい第二設定圧力を設定する圧力設定手段と、前記検出圧力と前記第一設定圧力の第一偏差を求める第一偏差演算手段と、前記スクリュの前進移動に伴う動作物理量を検出する物理量検出手段と、この物理量検出手段により検出した動作物理量及び予め設定した少なくとも前記駆動機構における力学要素の一又は二以上に係わる設定値を含む設定物理量に基づいて射出速度が0になるまでの射出圧力に対する予測圧力を求める予測演算式から補正圧力を得る補正圧力演算手段と、この補正圧力演算手段により求めた補正圧力を前記検出圧力に加算した修正検出圧力と前記第二設定圧力の第二偏差を求める第二偏差演算手段と、前記第一偏差と前記第二偏差のいずれか小さい偏差を選択する偏差選択手段を備えることを特徴とする射出成形機の射出制御装置。   In an injection control device of an injection molding machine that controls an injection pressure (detected pressure) when a screw is moved forward at a predetermined injection speed by a drive mechanism so as not to exceed a predetermined pressure set in advance, the predetermined pressure (first Set pressure), pressure setting means for setting a second set pressure larger than the predetermined pressure, first deviation calculating means for obtaining a first deviation between the detected pressure and the first set pressure, and forward movement of the screw The injection speed is based on a physical quantity detecting means for detecting the accompanying operating physical quantity, and an operating physical quantity detected by the physical quantity detecting means and a preset physical quantity including at least a preset set value relating to one or more of the mechanical elements in the drive mechanism. A correction pressure calculation means for obtaining a correction pressure from a prediction calculation formula for obtaining a prediction pressure for the injection pressure until zero, and a correction pressure calculation means A corrected detection pressure obtained by adding the corrected pressure obtained to the detected pressure and a second deviation calculating means for obtaining a second deviation between the second set pressure and a smaller one of the first deviation and the second deviation. An injection control apparatus for an injection molding machine, comprising deviation selection means for
JP2005342186A 2005-11-28 2005-11-28 Injection control method and apparatus for injection molding machine Active JP4500252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005342186A JP4500252B2 (en) 2005-11-28 2005-11-28 Injection control method and apparatus for injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005342186A JP4500252B2 (en) 2005-11-28 2005-11-28 Injection control method and apparatus for injection molding machine

Publications (3)

Publication Number Publication Date
JP2007144782A JP2007144782A (en) 2007-06-14
JP2007144782A5 JP2007144782A5 (en) 2007-07-26
JP4500252B2 true JP4500252B2 (en) 2010-07-14

Family

ID=38206764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005342186A Active JP4500252B2 (en) 2005-11-28 2005-11-28 Injection control method and apparatus for injection molding machine

Country Status (1)

Country Link
JP (1) JP4500252B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002331561A (en) * 2001-05-11 2002-11-19 Yaskawa Electric Corp Method and apparatus for controlling pressure of injection axis of electromotive injection molding machine
JP2003021351A (en) * 2001-07-04 2003-01-24 Matsushita Electric Ind Co Ltd Bathroom heater
JP2003300236A (en) * 2002-04-09 2003-10-21 Japan Steel Works Ltd:The Method for controlling injecting of motor-operated injection molding machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285920A (en) * 1985-10-11 1987-04-20 Canon Inc Control method for injection molding machine
JPH0622824B2 (en) * 1985-10-15 1994-03-30 東芝機械株式会社 Injection control method of injection molding machine
JPH03213323A (en) * 1990-01-18 1991-09-18 Nissei Plastics Ind Co Pressure controlling method in injection molding machine
JPH03221428A (en) * 1990-01-26 1991-09-30 Nissei Plastics Ind Co Pressure controlling method in injection molding machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002331561A (en) * 2001-05-11 2002-11-19 Yaskawa Electric Corp Method and apparatus for controlling pressure of injection axis of electromotive injection molding machine
JP2003021351A (en) * 2001-07-04 2003-01-24 Matsushita Electric Ind Co Ltd Bathroom heater
JP2003300236A (en) * 2002-04-09 2003-10-21 Japan Steel Works Ltd:The Method for controlling injecting of motor-operated injection molding machine

Also Published As

Publication number Publication date
JP2007144782A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
KR930004046B1 (en) Method for controlling back-pressure in electrically operated injection apparatus
JP4272205B2 (en) Control method of injection molding machine
JP4168036B2 (en) Pressure abnormality detection device for injection molding machine
JP4168039B2 (en) Control device for injection molding machine
JP5998009B2 (en) Molding machine control device and molding machine control method
EP1645395B1 (en) Controller of injection molding machine
KR20120064940A (en) Real time servo motor controller which controlled by load weight
US20090230910A1 (en) Numerical controller having function to switch between pressure control and position control
JP4627250B2 (en) Control method of injection molding machine
JP4540597B2 (en) Injection control method and apparatus for injection molding machine
JP2006168325A (en) Metering control method of injection molding machine and injection molding machine
JP4156651B2 (en) Method for determining the backflow prevention valve closed state of an injection molding machine
CN107894749B (en) Servo motor control device, servo motor control method, and computer-readable recording medium
JP4500252B2 (en) Injection control method and apparatus for injection molding machine
JP4022646B2 (en) Pressure control device using servo motor
JP5093750B2 (en) Control method of electric injection molding machine
CN101340171A (en) Pecking motor control device
JP2007021888A (en) Injection molding machine and injection shaft controlling method
JPH03213323A (en) Pressure controlling method in injection molding machine
JP4636271B2 (en) Servo control device and adjustment method thereof
JP4021428B2 (en) Control device for injection molding machine
EP3678290B1 (en) Motor driving device
JP4677682B2 (en) Pressure control method and apparatus for injection shaft of electric injection molding machine
JP3601871B2 (en) Back pressure control method and apparatus for electric injection molding machine
JPH1044206A (en) Control of pressure of injection molding machine and apparatus therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4500252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160423

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250