JP4498394B2 - Method for producing granular silicon single crystal - Google Patents

Method for producing granular silicon single crystal Download PDF

Info

Publication number
JP4498394B2
JP4498394B2 JP2007193216A JP2007193216A JP4498394B2 JP 4498394 B2 JP4498394 B2 JP 4498394B2 JP 2007193216 A JP2007193216 A JP 2007193216A JP 2007193216 A JP2007193216 A JP 2007193216A JP 4498394 B2 JP4498394 B2 JP 4498394B2
Authority
JP
Japan
Prior art keywords
silicon
single crystal
particles
producing
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007193216A
Other languages
Japanese (ja)
Other versions
JP2007284346A5 (en
JP2007284346A (en
Inventor
暢之 北原
俊夫 鈴木
昇 須田
信 菅原
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007193216A priority Critical patent/JP4498394B2/en
Publication of JP2007284346A publication Critical patent/JP2007284346A/en
Publication of JP2007284346A5 publication Critical patent/JP2007284346A5/ja
Application granted granted Critical
Publication of JP4498394B2 publication Critical patent/JP4498394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は粒状シリコン単結晶の製造方法に関し、特に太陽電池に用いられるシリコン粒子の作製に用いる粒状シリコン単結晶の製造方法に関する。   The present invention relates to a method for producing a granular silicon single crystal, and more particularly to a method for producing a granular silicon single crystal used for producing silicon particles used in solar cells.

太陽電池の開発では、性能面での効率、資源の有限性、あるいは製造コストなどといった市場ニーズを捉えて開発がされている。有望な太陽電池の一つとして、球状シリコンを用いた太陽電池が活発に開発されている。   In the development of solar cells, market needs such as performance efficiency, resource finiteness, manufacturing cost, etc. are being developed. As one promising solar cell, a solar cell using spherical silicon has been actively developed.

粒状シリコンを作製するための原料としては、単結晶シリコン材料を粉砕した結果として発生するシリコンの微小粒子や流動床法によって気相合成された高純度シリコンが用いられている。これら原料をサイズや重量によって分別した後、赤外線や高周波コイルを用いて容器内で再溶融し、その後自由落下させることで球状化させる方法(例えば特許文献1、特許文献2等を参照)や、同じく高周波プラズマで加熱溶融(特許文献3)して球状化させる方法が用いられている。また、特許文献2にもあるように、落下によって作製される球のうち、ティアー状の粒子はそれを構成する結晶粒子が3〜5個程度以下の結晶粒で構成され、高い結晶性をもつとされている。
国際公開WO99/22048号パンフレット 米国特許第4188177号明細書 特開平5−78115号公報 米国特許第6074476号明細書 米国特許第4430150号明細書
As raw materials for producing granular silicon, silicon fine particles generated as a result of pulverizing a single crystal silicon material or high-purity silicon synthesized in a gas phase by a fluidized bed method is used. After separating these raw materials by size and weight, a method of re-melting them in a container using an infrared ray or a high-frequency coil, and then spheroidizing by free-falling (see, for example, Patent Document 1, Patent Document 2), Similarly, a method of heating and melting with high-frequency plasma (Patent Document 3) to spheroidize is used. Further, as described in Patent Document 2, among spheres produced by dropping, tear-like particles are composed of 3 to 5 or less crystal grains, and have high crystallinity. It is said that.
International publication WO99 / 22048 pamphlet U.S. Pat. No. 4,188,177 JP-A-5-78115 US Pat. No. 6,074,476 U.S. Pat. No. 4,430,150

しかしながら、これらの方法では粉砕原料の重量の均一化や不純物量の制御といった点から問題があった。すなわち、粉砕原料の重量のバラツキは、作られる球の大きさにそのまま反映されるため、均一な重量の粉砕原料が望まれるが、ボールソーラー太陽電池を作成するために有効な大きさの原料を粉砕や分級などの手法で効率よく得ることは困難である。   However, these methods have problems in terms of uniformizing the weight of the pulverized raw material and controlling the amount of impurities. In other words, the variation in the weight of the pulverized raw material is directly reflected in the size of the sphere to be produced. Therefore, a pulverized raw material having a uniform weight is desired, but a raw material having an effective size for producing a ball solar cell is required. It is difficult to obtain efficiently by methods such as pulverization and classification.

また、そのように粉砕や分級された原料に一定の半導体不純物を添加するには、初めから原料中に混入させておいたり、あとから添加することが必要である。従って、その原料を作製する段階、例えば単結晶を作製するときに不純物を添加する方法や、粉砕した後に気相中で不純物を拡散する方法などが用いられる。しかし、粉砕する工程においては、粉砕メディアからのコンタミが生じることから、工程が複雑になったり高価な設備が必要になり、コスト増加が避けられない。   In addition, in order to add a certain semiconductor impurity to the pulverized or classified raw material, it is necessary to add it to the raw material from the beginning or add it later. Therefore, a step of producing the raw material, for example, a method of adding impurities when producing a single crystal, a method of diffusing impurities in the gas phase after pulverization, or the like is used. However, in the pulverizing process, contamination from the pulverizing media occurs, so that the process becomes complicated and expensive equipment is required, and an increase in cost is inevitable.

この問題を解決する方法として、一定の半導体不純物原料をシリコン原料と予め調合して坩堝の中で溶融し、それを排出させると同時に粒子化する方法も提案されている(特許文献4参照)。しかしながら、製造されるシリコン粒子は1mmをこえる大きさの粒子であり、その後の熱処理によって球を一つづつ時間をかけて作製しているため、その生産性は極めて低い。すなわち、大量の粒子を必要とする太陽電池素子を形成するための粒子の作製工程としては不向きである。   As a method for solving this problem, a method has also been proposed in which a certain semiconductor impurity raw material is preliminarily mixed with a silicon raw material, melted in a crucible, discharged and simultaneously granulated (see Patent Document 4). However, the produced silicon particles are particles having a size exceeding 1 mm, and the spheres are produced over time by the subsequent heat treatment, so that the productivity is extremely low. That is, it is not suitable as a process for producing particles for forming a solar cell element that requires a large amount of particles.

一方、これらの方法とは別に、特許文献5や特許文献4のように、球状の金属粒子を用いてその形状を球状に維持するために、その周囲を酸化皮膜で覆った後、熱処理して再結晶化させて単結晶を作製しようとするものが提案されている。   On the other hand, apart from these methods, as in Patent Document 5 and Patent Document 4, in order to keep the shape spherical using spherical metal particles, the periphery is covered with an oxide film and then heat-treated. There has been proposed one that attempts to produce a single crystal by recrystallization.

しかしながら、この方法でも、一定重量の粒状シリコンあるいはシリコン粉末を一旦は安定して作製する必要があるため、造粒あるいは粉砕と分級といった工程をとり入れる必要があり、製造プロセスは煩雑で長くなり、生産性が低いものとなってしまう。また、作製される球の形状も出発原料となる元の粒子の形状を反映するため、太陽電池素子を形成するには、その不均一さが安定した特性を有する素子の製造に支障がある。   However, even with this method, since it is necessary to stably produce a certain amount of granular silicon or silicon powder, it is necessary to incorporate steps such as granulation or pulverization and classification, and the production process becomes complicated and lengthy. It will be low. In addition, since the shape of the sphere to be produced reflects the shape of the original particles as a starting material, the formation of a solar cell element has a hindrance to the production of an element having stable characteristics.

本発明では、太陽電池向けに用いる粒状シリコンを製造する場合に、その粒状シリコンを安定して高効率に作製すると同時に、高い結晶性をもったシリコン粒子を低コストで製造できる粒状シリコン単結晶の製造方法を提供することを目的とする。   In the present invention, when producing granular silicon to be used for solar cells, the granular silicon single crystal can be produced stably and highly efficiently, and at the same time, silicon particles having high crystallinity can be produced at low cost. An object is to provide a manufacturing method.

上記目的を達成するために、請求項1に係る粒状シリコン単結晶の製造方法では、坩堝のノズル部からシリコン融液を滴状に排出して落下させ、酸素を含む雰囲気中において、このシリコン融液を冷却して表面に酸化皮膜を有する凝固物を形成させた後、この凝固物を皿状の容器に均一に敷き詰めて雰囲気焼成炉で容器共に熱処理を行うことによって、前記凝固物を再溶融させて単結晶化することを特徴とする。さらに、本願発明において、前記雰囲気は、0.05%以上50.0%以下の酸素を含むことが好ましい。 In order to achieve the above object, in the method for producing a granular silicon single crystal according to claim 1, the silicon melt is discharged and dropped from the nozzle part of the crucible in an atmosphere containing oxygen. After the liquid is cooled to form a solidified product having an oxide film on the surface, the solidified product is uniformly spread in a dish-shaped container and heat-treated with the container in an atmosphere firing furnace to remelt the solidified product. And single crystallizing. Further, in the present invention, the atmosphere preferably contains 0.05% or more and 50.0% or less oxygen.

上記粒状シリコン単結晶の製造方法では、前記粒状シリコン単結晶中の酸素濃度が2×1018atoms/cm3未満であることが望ましい。 In the method for producing a granular silicon single crystal, it is desirable that the oxygen concentration in the granular silicon single crystal is less than 2 × 10 18 atoms / cm 3 .

上記粒状シリコン単結晶の製造方法では、前記シリコン融液に予め半導体用不純物を含有させておくことが望ましい。   In the method for producing a granular silicon single crystal, it is desirable that the silicon melt contains semiconductor impurities in advance.

本発明の粒状シリコン単結晶の製造方法は、坩堝のノズル部からシリコン融液を滴状に排出して、このシリコン融液を冷却して凝固させた後、この凝固物を熱処理して単結晶化することから、高い結晶性をもった粒状シリコン結晶を低コストに製造できる。
In the method for producing a granular silicon single crystal according to the present invention, the silicon melt is discharged in a droplet form from the nozzle portion of the crucible, and the silicon melt is cooled and solidified, and then the solidified product is heat treated. Therefore, granular silicon crystals having high crystallinity can be manufactured at low cost.

また、坩堝のノズル部からシリコン融液を滴状に排出して落下させるとともに、このシリコン融液を落下中に冷却して凝固させることによって球状シリコン結晶を製造する場合、シリコン融液の液滴同士が接触して結合して大粒子化してしまうことを避ける必要がある。通常、不活性ガス雰囲気中を落下した場合、液滴の粒子同士が高温で落下中に接触すると、粒子同士は結合して大粒子化してしまう。一方、酸素を含む雰囲気に調整することで、たとえ高温で接触したとしても落下中には結合せず、大粒子化を回避することが可能である。これは酸素を含む雰囲気中で皮膜を形成するためである。また、酸素を含む雰囲気中で落下した場合、個々の粒子は明確な球形状を示し、凝固するときの体積膨張による突起は見られない。   In addition, when producing a spherical silicon crystal by discharging and dropping the silicon melt from the nozzle part of the crucible and solidifying by cooling the silicon melt during dropping, the silicon melt droplets It is necessary to avoid that the particles come into contact with each other and become large particles. Usually, when falling in an inert gas atmosphere, when the particles of the liquid droplets come into contact with each other during the dropping at a high temperature, the particles are combined to become large particles. On the other hand, by adjusting to an atmosphere containing oxygen, even if it contacts at high temperature, it does not bond during the fall and it is possible to avoid the formation of large particles. This is because a film is formed in an atmosphere containing oxygen. Moreover, when it falls in the atmosphere containing oxygen, each particle | grain shows a clear spherical shape, and the protrusion by volume expansion when solidifying is not seen.

また、引き続いて行なう単結晶化の工程では、粒子を溶融温度以上に上げて再溶融するために、粒子の形状を維持するための構造として酸化によって形成された皮膜が必要である。このため、予め酸化雰囲気での処理を行なったり、再溶融するときの酸素雰囲気をコントロールしている。しかしながら、上述のように凝固するときに体積膨張するシリコン材料では、落下中に融液が冷却して凝固する場合、体積膨張の緩和のために、その表面に突起が形成されるため、酸化によって形成された皮膜もこの形状を反映するものとなり、再溶融した後の形状は球状にできない。そのため、本発明ではシリコン融液を落下中に冷却して凝固させる際に、酸素を含む雰囲気中で落下させて凝固させることで、酸化皮膜を粒子表面に予め形成すると共に、凝固の最終段階の体積膨張による突起も生じることなく凝固し、粒子形状そのものを球状にする。このことによって後に再溶融した際にも、その出発形状である球状を反映した単結晶粒子を作製することができる。   Further, in the subsequent single crystallization step, a film formed by oxidation is required as a structure for maintaining the shape of the particles in order to remelt the particles at a melting temperature or higher. For this reason, the oxygen atmosphere at the time of processing in an oxidizing atmosphere or remelting is controlled in advance. However, in the case of a silicon material that expands in volume when solidified as described above, when the melt cools and solidifies during the fall, protrusions are formed on the surface to reduce the volume expansion. The formed film also reflects this shape, and the shape after remelting cannot be made spherical. Therefore, in the present invention, when the silicon melt is cooled and solidified during dropping, the oxide film is preliminarily formed on the particle surface by being dropped and solidified in an atmosphere containing oxygen, and at the final stage of solidification. The particles are solidified without generating protrusion due to volume expansion, and the particle shape itself is made spherical. Thus, even when remelted later, single crystal particles reflecting the starting shape of the sphere can be produced.

以上により、太陽電池素子向けに用いる粒状シリコン結晶の球形を揃えることができ、太陽電池モジュールを作製する際に、効率的なシリコン材料の利用を可能にすると同時にその信頼性を向上させることができる。   As described above, the spherical shape of the granular silicon crystal used for the solar cell element can be made uniform, and when the solar cell module is manufactured, the silicon material can be used efficiently and at the same time the reliability thereof can be improved. .

以下、本発明を添付図面に基づいて詳細に説明する。図1は本発明に係る粒状シリコン単結晶の製造方法に用いられる坩堝の一形態を示す図であり、1は全体として坩堝、2は本体部材、3はノズル部材である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a view showing an embodiment of a crucible used in the method for producing a granular silicon single crystal according to the present invention, wherein 1 is a crucible as a whole, 2 is a main body member, and 3 is a nozzle member.

坩堝1は、円筒状の本体部材2とこの本体部材2の底部に取り付けられる円盤状のノズル部材3とで構成される。   The crucible 1 includes a cylindrical main body member 2 and a disk-shaped nozzle member 3 attached to the bottom of the main body member 2.

坩堝の本体部材2は、例えばシリコンとの反応を抑えるための内壁部材2aとこの内壁部材2aの外側に配設される外壁部材2bとから構成される。この外壁部材2bは、強度を確保するために設ける。この内壁部材2aと外壁部材2bは、鋳込み成形法やホットプレス法などで緻密化された焼結体などで構成される。シリコンとの反応を抑えるためには、酸化アルミニウム、炭化珪素、グラファイトなどが適するが、加工のしやすさの点ではホットプレスで焼結したグラファイトなどが適する。グラファイトで形成する場合、加工した後にその純度を上げるために、酸による洗浄を行なった後、水洗と乾燥を行なって使用する。これらは、例えば内壁部材2aの外側と外壁部材2bの内側にネジ2dを設けて組み立てる。   The crucible body member 2 includes, for example, an inner wall member 2a for suppressing reaction with silicon and an outer wall member 2b disposed outside the inner wall member 2a. This outer wall member 2b is provided to ensure strength. The inner wall member 2a and the outer wall member 2b are formed of a sintered body that is densified by a casting method, a hot press method, or the like. In order to suppress the reaction with silicon, aluminum oxide, silicon carbide, graphite, and the like are suitable. From the viewpoint of ease of processing, graphite sintered by hot pressing is suitable. In the case of forming with graphite, in order to increase the purity after processing, after washing with acid, washing with water and drying are used. These are assembled by providing screws 2d on the outer side of the inner wall member 2a and the inner side of the outer wall member 2b, for example.

また、坩堝1の先端側にはノズル孔3aを有するノズル部材3が設けられている。つまり、先端に小径部2cを有する坩堝1の外壁部材2bとは別体にシリコン融液を排出するためのノズル孔3aを有するノズル部材3を設け、このノズル部材3を坩堝1の本体部材2の先端小径部2cの内側に配設した。このノズル部材3は、炭化珪素、ダイヤモンド、酸化アルミニウム、立方晶窒化ボロンなどからなる。この各材料は単結晶体あるいは多結晶体が用いられる。   Further, a nozzle member 3 having a nozzle hole 3 a is provided on the tip side of the crucible 1. That is, the nozzle member 3 having the nozzle hole 3a for discharging the silicon melt is provided separately from the outer wall member 2b of the crucible 1 having the small diameter portion 2c at the tip, and the nozzle member 3 is provided as the body member 2 of the crucible 1. The tip is arranged inside the small diameter portion 2c. The nozzle member 3 is made of silicon carbide, diamond, aluminum oxide, cubic boron nitride, or the like. Each of these materials is a single crystal or a polycrystal.

このノズル部材3にノズル孔3aを複数設けてもよい。このことにより孔3aの個数だけ生産性の向上が図れるため、製造上のメリットは大きい。ノズル孔3aは、機械加工、レーザー加工、あるいは超音波加工などで形成する。   A plurality of nozzle holes 3 a may be provided in the nozzle member 3. As a result, the productivity can be improved by the number of the holes 3a, so that the manufacturing merit is great. The nozzle hole 3a is formed by machining, laser processing, ultrasonic processing, or the like.

上述のように坩堝1の本体部材2とノズル部材3とを別部材で形成して、それを組立てる構造にすることで、ノズル部材3のみを差し替えることが可能となり、高価な坩堝1の本体部材2は繰り返して使用することができる。   As described above, the main body member 2 and the nozzle member 3 of the crucible 1 are formed as separate members, and the structure is assembled so that only the nozzle member 3 can be replaced, and the main body member of the expensive crucible 1 2 can be used repeatedly.

このような坩堝1にシリコン原料を投入して誘導加熱または抵抗加熱ヒータ(不図示)でシリコン原料全体を溶融させる。   The silicon raw material is put into such a crucible 1 and the whole silicon raw material is melted by induction heating or a resistance heater (not shown).

溶解したシリコン融液4の上部をアルゴンガスなどで例えば0.5MPa以下で加圧してノズル部材3のノズル孔3aから押し出すことにより、シリコン融液4を多数の滴状にする。滴状に噴出するシリコン融液4は自由落下中に凝固して単結晶シリコンまたは少数の結晶粒からなる結晶シリコンとなって容器に収容される。このとき、滴状のシリコン融液4は、雰囲気を調整できる管状体5の内部を自由落下する。この管状体5は気密に保たれるものが用いられ、石英管、アルミナ管、あるいはステンレス管などを用いることができる。管状体5内部の雰囲気を調整する方法は、管状体5内の圧力とガス濃度を調整できる機構を持つものであれば特に限定されるものではない。   The upper portion of the melted silicon melt 4 is pressurized with, for example, 0.5 MPa or less with an argon gas or the like and pushed out from the nozzle hole 3a of the nozzle member 3, thereby forming the silicon melt 4 into a large number of droplets. The silicon melt 4 ejected in the form of droplets solidifies during free fall and becomes single crystal silicon or crystalline silicon made up of a small number of crystal grains and is accommodated in a container. At this time, the drop-like silicon melt 4 freely falls inside the tubular body 5 whose atmosphere can be adjusted. The tubular body 5 is kept airtight, and a quartz tube, an alumina tube, a stainless tube, or the like can be used. The method for adjusting the atmosphere inside the tubular body 5 is not particularly limited as long as it has a mechanism capable of adjusting the pressure and gas concentration in the tubular body 5.

このようなシリコン粒子は太陽電池を形成するために使用される。したがって、溶解させるシリコンには所望の半導体用不純物を含有させておくのが望ましい。   Such silicon particles are used to form solar cells. Therefore, it is desirable that the silicon to be dissolved contains a desired semiconductor impurity.

引き続いて、回収したシリコン粒子を皿状の石英容器に均一に敷き詰めて雰囲気焼成炉で石英容器共に熱処理を行なうことで、再溶融させて単結晶粒子を作製する。   Subsequently, the recovered silicon particles are uniformly spread in a dish-shaped quartz container, and the quartz container is subjected to heat treatment in an atmosphere firing furnace to be remelted to produce single crystal particles.

このようにして得られた粒状シリコン6を用いて、図2に示す方法で光電変換装置を作製する。まず、粒状シリコン6の表面を5μm以上エッチングして除去する。次に、金属基板7の上に粒状シリコン6を配置する。次に、この全体を加熱して粒状シリコン6を金属基板7に接合層8を介して接合させる。金属基板7上の粒状シリコン6の隙間に絶縁層9を形成する。これらの上側の全体にわたってアモルファスまたは多結晶のシリコン膜10を成膜する。このとき、粒状シリコン6は一導電形のp型またはn型であるので、シリコン膜10は逆導電形のn型またはp型で成膜する。さらに、その上から透明導電膜11を形成する。このようにして、金属基板7を一方の電極にし、透明導電膜11上に銀ペースト等を塗布してもう一方の電極12とする光電変換素子が得られる。   Using the granular silicon 6 thus obtained, a photoelectric conversion device is produced by the method shown in FIG. First, the surface of the granular silicon 6 is removed by etching 5 μm or more. Next, the granular silicon 6 is disposed on the metal substrate 7. Next, this whole is heated and the granular silicon 6 is bonded to the metal substrate 7 through the bonding layer 8. An insulating layer 9 is formed in the gap between the granular silicon 6 on the metal substrate 7. An amorphous or polycrystalline silicon film 10 is formed over the entire upper side. At this time, since the granular silicon 6 is p-type or n-type with one conductivity type, the silicon film 10 is formed with n-type or p-type with opposite conductivity type. Further, a transparent conductive film 11 is formed thereon. In this way, a photoelectric conversion element in which the metal substrate 7 is used as one electrode and a silver paste or the like is applied onto the transparent conductive film 11 to form the other electrode 12 is obtained.

内径19.0mmφ、外径25.0mmφ、長さ143mmの寸法に加工され、ノズル孔3aをレーザ加工したノズル部材3を有するグラファイト(ポコ社グラファイトDFP−2など)から成る坩堝1を、ArまたはHeなどの不活性ガス雰囲気に維持できる炉の中にセットして1470℃に全体の温度を設定した。この坩堝へ同じく不活性雰囲気に保たれた経路を通じてシリコン原料18gを供給して完全に溶解させた。十分に溶解した状態の原料に0.15MPaのガス圧力をかけて、ノズル孔3aから一気に全量を噴霧して排出した。噴霧した液滴は同じく不活性雰囲気に維持した管状体5の中で自由落下させて冷却して凝固させた。管状体5には石英管を用い、内部の圧力が外気圧と同じになるように維持した。不活性雰囲気にはArガスを用い、Ar流量に対する酸素流量によって雰囲気中の酸素濃度を調整した。   A crucible 1 made of graphite (Poco Graphite DFP-2 or the like) having a nozzle member 3 that has been processed into dimensions of an inner diameter of 19.0 mmφ, an outer diameter of 25.0 mmφ, and a length of 143 mm and laser-processed the nozzle hole 3a is Ar or The whole temperature was set to 1470 ° C. in a furnace capable of maintaining an inert gas atmosphere such as He. Similarly, 18 g of silicon raw material was supplied to the crucible through a path maintained in an inert atmosphere and completely dissolved. A gas pressure of 0.15 MPa was applied to the sufficiently dissolved raw material, and the entire amount was sprayed and discharged from the nozzle hole 3a at once. The sprayed droplets were allowed to fall freely in the tubular body 5 maintained in an inert atmosphere, and were cooled and solidified. A quartz tube was used as the tubular body 5, and the internal pressure was maintained to be the same as the external pressure. Ar gas was used as the inert atmosphere, and the oxygen concentration in the atmosphere was adjusted by the oxygen flow rate relative to the Ar flow rate.

次に、回収したシリコン粒子を皿状の石英容器に均一に敷き詰めて、雰囲気焼成炉で石英容器と共にシリコンの熱処理を行なって再溶融することにより、単結晶粒子を作製した。   Next, the recovered silicon particles were uniformly spread in a dish-shaped quartz container, and the silicon container was heat-treated with the quartz container in an atmosphere firing furnace to remelt the single crystal particles.

[実施例1]
管状体中の酸素濃度が2%となるように酸素ガス流量の調整を行なって、雰囲気を調整した。この雰囲気下で、溶融したシリコン原料を噴霧して自由落下させて冷却して固化させた。固化したシリコン粒子は個々の粒子が独立している単分散粒子であった。粒子の外観形状を図3に示す。
[Example 1]
The atmosphere was adjusted by adjusting the oxygen gas flow rate so that the oxygen concentration in the tubular body was 2%. Under this atmosphere, the melted silicon raw material was sprayed, dropped freely, cooled and solidified. The solidified silicon particles were monodisperse particles in which individual particles were independent. The appearance of the particles is shown in FIG.

(比較例1)
酸素を停止した状態にした以外は実施例1と同じにして、シリコン融液を噴霧して落下中に固化させた粒子を回収した。回収したシリコン粒子は個々の粒子が結合をしている凝集体が多く含まれていた。凝集体の外観形状を図4に示す。凝集しなかった粒子の外観形状のSEM像を図5に示す。
(Comparative Example 1)
In the same manner as in Example 1 except that oxygen was stopped, the silicon melt was sprayed to collect particles solidified during the fall. The recovered silicon particles contained many agglomerates in which individual particles were bonded. The appearance shape of the aggregate is shown in FIG. FIG. 5 shows an SEM image of the external shape of the particles that have not been aggregated.

[実施例2]
実施例1で固化したシリコン粒子を再溶融によって単結晶粒子とした後、その形状を観察した。そのSEM像を図6に示す。
[Example 2]
The silicon particles solidified in Example 1 were made into single crystal particles by remelting, and then their shapes were observed. The SEM image is shown in FIG.

(比較例2)
比較例1で作製した粒子のうち、単分散粒子(図5のSEM像)を選別し、実施例2と同様にシリコン粒子を再溶融して単結晶粒子とした後、その形状を観察した。そのSEM像を図7に示す。
(Comparative Example 2)
Of the particles produced in Comparative Example 1, monodispersed particles (SEM image in FIG. 5) were selected, and after re-melting silicon particles to form single crystal particles in the same manner as in Example 2, the shape was observed. The SEM image is shown in FIG.

実施例2に示したように、酸素雰囲気中で落下させて凝固させた粒子は、再溶融による単結晶化で突起等の見られない球状を維持しているのに対し、比較例2の突起を残した粒子を再溶融した場合、表面には依然として突起が残る形状であった。   As shown in Example 2, the particles dropped and solidified in an oxygen atmosphere maintained a spherical shape with no protrusions or the like due to single crystallization by remelting, whereas the protrusions of Comparative Example 2 When the particles that remained were remelted, the protrusions still remained on the surface.

[実施例3]
表1に示すように、雰囲気に含まれる酸素濃度を段階的に変化させた雰囲気で融液を噴霧して落下中に冷却して固化させた。
[Example 3]
As shown in Table 1, the melt was sprayed in an atmosphere in which the oxygen concentration contained in the atmosphere was changed stepwise, and was cooled and solidified during the fall.

Figure 0004498394
Figure 0004498394

表1に示すように、0.05%を下回る濃度(比較例3−1)では、粒子間の凝集が発生し、単分散ができなかった。また、50%を超える酸素濃度(比較例3−2)では、粒子の表面に亀裂が発生して形状が崩れてしまった。   As shown in Table 1, when the concentration was lower than 0.05% (Comparative Example 3-1), aggregation between particles occurred and monodispersion was not possible. Further, at an oxygen concentration exceeding 50% (Comparative Example 3-2), cracks occurred on the surface of the particles and the shape collapsed.

[実施例4]
実施例3で作製した各粒子から、雰囲気中の酸素濃度の高いものを選び出し、実施例2と同様に再溶融して結晶化させた。各粒子をフッ酸と硝酸の混酸で表面の酸化皮膜を除去するエッチングを行なった後、図2に示すような光電変換装置を作製し、所定の強度と所定の波長の光を照射して太陽電池特性を測定して変換効率を計算した。その結果を表2に示す。
[Example 4]
From each of the particles produced in Example 3, those having a high oxygen concentration in the atmosphere were selected and remelted and crystallized in the same manner as in Example 2. After each particle is etched to remove the oxide film on the surface with a mixed acid of hydrofluoric acid and nitric acid, a photoelectric conversion device as shown in FIG. 2 is produced, and the solar light is irradiated with light of a predetermined intensity and a predetermined wavelength. The conversion efficiency was calculated by measuring the battery characteristics. The results are shown in Table 2.

一方、変換効率の測定とは別にエッチングを行なった後のシリコン球についてSIMSで表面から酸素濃度の分析を行なった。その結果を表2に示す。ここでの分析値は表面から掘り進んで酸素濃度の値が一定になった値を記した。   On the other hand, the oxygen concentration was analyzed from the surface by SIMS on the silicon spheres after etching separately from the conversion efficiency measurement. The results are shown in Table 2. The analysis value here is a value obtained by digging from the surface and making the value of the oxygen concentration constant.

Figure 0004498394
Figure 0004498394

表2に示すように、酸素濃度が2×1018atoms/cm3を超えるもの(比較例4)は全く光電変換特性を示さなかった。 As shown in Table 2, those having an oxygen concentration exceeding 2 × 10 18 atoms / cm 3 (Comparative Example 4) did not show any photoelectric conversion characteristics.

以上のように、本発明に係る粒状シリコン単結晶の製造方法では、坩堝のノズル部からシリコン融液を滴状に排出して落下させる際に、その排出雰囲気に酸素を存在させることで、粒子形状を制御すると共に、その後の単結晶化の工程においても、粒子形状の均質化を容易に進めることが可能となり、工業的価値は極めて高い。   As described above, in the method for producing a granular silicon single crystal according to the present invention, when the silicon melt is discharged and dropped from the nozzle part of the crucible, the particles are obtained by allowing oxygen to exist in the discharge atmosphere. In addition to controlling the shape, it is possible to easily promote homogenization of the particle shape also in the subsequent single crystallization step, and the industrial value is extremely high.

本発明の方法に用いられる坩堝の一形態を示す図であるIt is a figure which shows one form of the crucible used for the method of this invention. 本発明の方法で形成される粒状シリコン結晶を用いて作製した太陽電池を示す図である。It is a figure which shows the solar cell produced using the granular silicon crystal formed by the method of this invention. 実施例1の粒子形状を示す写真である。2 is a photograph showing the particle shape of Example 1. FIG. 比較例1の凝集した粒子形状を示す写真である。4 is a photograph showing the aggregated particle shape of Comparative Example 1. 比較例1の単分散の粒子形状を示すSEM像である。4 is a SEM image showing a monodisperse particle shape of Comparative Example 1. 実施例2の粒子形状を示すSEM像である。4 is a SEM image showing the particle shape of Example 2. 比較例2の粒子形状を示すSEM像である。6 is a SEM image showing the particle shape of Comparative Example 2.

符号の説明Explanation of symbols

1 坩堝
3 ノズル部材
4 シリコン融液
1 crucible 3 nozzle member 4 silicon melt

Claims (4)

坩堝のノズル部からシリコン融液を滴状に排出して落下させ、酸素を含む雰囲気中において、このシリコン融液を冷却して表面に酸化皮膜を有する凝固物を形成させた後、この凝固物を皿状の容器に均一に敷き詰めて雰囲気焼成炉で容器共に熱処理を行うことによって、前記凝固物を再溶融させて単結晶化することを特徴とする粒状シリコン単結晶の製造方法。   After the silicon melt is discharged and dropped from the nozzle part of the crucible, the silicon melt is cooled to form a solid having an oxide film on the surface in an oxygen-containing atmosphere. A method for producing a granular silicon single crystal, wherein the solidified material is uniformly spread in a dish-shaped container, and the container is heat-treated in an atmosphere baking furnace to remelt the solidified material to form a single crystal. 前記雰囲気は、0.05%以上50.0%以下の酸素を含むことを特徴とする請求項1に記載の粒状単結晶の製造方法。   The method for producing a granular single crystal according to claim 1, wherein the atmosphere contains 0.05% or more and 50.0% or less oxygen. 前記粒状シリコン単結晶中の酸素濃度が2×1018atoms/cm3未満であること
を特徴とする請求項1または請求項2に記載の粒状シリコン単結晶の製造方法。
3. The method for producing a granular silicon single crystal according to claim 1, wherein an oxygen concentration in the granular silicon single crystal is less than 2 × 10 18 atoms / cm 3. 4 .
前記シリコン融液に予め半導体用不純物を含有させておくことを特徴とする請求項1〜3のいずれかに記載の粒状シリコン単結晶の製造方法。 The method for producing a granular silicon single crystal according to any one of claims 1 to 3 , wherein impurities for semiconductor are previously contained in the silicon melt.
JP2007193216A 2007-07-25 2007-07-25 Method for producing granular silicon single crystal Expired - Fee Related JP4498394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007193216A JP4498394B2 (en) 2007-07-25 2007-07-25 Method for producing granular silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007193216A JP4498394B2 (en) 2007-07-25 2007-07-25 Method for producing granular silicon single crystal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002020777A Division JP4127356B2 (en) 2001-10-23 2002-01-29 Method for producing granular metal single crystal

Publications (3)

Publication Number Publication Date
JP2007284346A JP2007284346A (en) 2007-11-01
JP2007284346A5 JP2007284346A5 (en) 2008-03-27
JP4498394B2 true JP4498394B2 (en) 2010-07-07

Family

ID=38756464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007193216A Expired - Fee Related JP4498394B2 (en) 2007-07-25 2007-07-25 Method for producing granular silicon single crystal

Country Status (1)

Country Link
JP (1) JP4498394B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073413A1 (en) * 2008-12-25 2010-07-01 学校法人芝浦工業大学 Apparatus for manufacturing spherical semiconductor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379794A (en) * 1986-07-10 1988-04-09 テキサス インスツルメンツ インコ−ポレイテツド Material treatment furnace and method of forming single crystal silicon sphere
JPH06228612A (en) * 1992-12-17 1994-08-16 Deutsche Forsch & Vers Luft Raumfahrt Ev Method and device for producing small metal spheres nearly equal in diameter
JP2002292265A (en) * 2001-03-30 2002-10-08 Yukio Yamaguchi Device for mass production of globular semiconductor particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379794A (en) * 1986-07-10 1988-04-09 テキサス インスツルメンツ インコ−ポレイテツド Material treatment furnace and method of forming single crystal silicon sphere
JPH06228612A (en) * 1992-12-17 1994-08-16 Deutsche Forsch & Vers Luft Raumfahrt Ev Method and device for producing small metal spheres nearly equal in diameter
JP2002292265A (en) * 2001-03-30 2002-10-08 Yukio Yamaguchi Device for mass production of globular semiconductor particle

Also Published As

Publication number Publication date
JP2007284346A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4286053B2 (en) THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC SEMICONDUCTOR ELEMENT USING THE THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC MODULE USING THE THERMOELECTRIC SEMICONDUCTOR ELEMENT, AND METHOD FOR PRODUCING THEM
US20110139208A1 (en) Nanocomposite thermoelectric material, and thermoelectric device and thermoelectric module including the same
JP2001320097A (en) Thermoelectric element and method of production and thermoelectric module
KR20110112993A (en) Thermoelectric materials and method for manufacturing the same
WO1996015298A1 (en) Process for producing spherical crystal
JP4498394B2 (en) Method for producing granular silicon single crystal
JP4127356B2 (en) Method for producing granular metal single crystal
JP4051234B2 (en) Method for producing granular silicon
US7875790B2 (en) Method of preparing a thermoelectric material, method of forming a thermoelectric device, and method of fabricating a thermoelectric module
JP5223048B2 (en) Method for producing spherical semiconductor particles
JP4553521B2 (en) Powder thermoelectric material manufacturing apparatus and powder thermoelectric material manufacturing method using the same
JP3967904B2 (en) Production apparatus and production method of granular metal crystal
JP2008156184A (en) Method for growing sapphire crystal
JP2000036627A (en) Thermoelectric material and thermoelectric transfer element
JP4025608B2 (en) Method for producing granular silicon crystal
JP6430473B2 (en) Semiconductor device
JP2006090591A (en) Crucible for producing inorganic particle, and method of producing inorganic particle
JP2006036597A (en) Method for manufacturing granular crystal
JP3548560B2 (en) Thermoelectric module
JP2006151717A (en) Method for manufacturing granular crystal
JP2003165800A (en) Particulate metal crystal and method for producing the same
JP2008207984A (en) Method and apparatus for manufacturing crystalline silicon grain
JP4084609B2 (en) Manufacturing method of granular silicon single crystal and manufacturing apparatus used therefor
JP2002009350A (en) Thermoelectric module and its manufacturing method
JP2887468B2 (en) Manufacturing method of thermoelectric semiconductor material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees