JP4495766B2 - Direct fuel injection engine - Google Patents

Direct fuel injection engine Download PDF

Info

Publication number
JP4495766B2
JP4495766B2 JP2008112449A JP2008112449A JP4495766B2 JP 4495766 B2 JP4495766 B2 JP 4495766B2 JP 2008112449 A JP2008112449 A JP 2008112449A JP 2008112449 A JP2008112449 A JP 2008112449A JP 4495766 B2 JP4495766 B2 JP 4495766B2
Authority
JP
Japan
Prior art keywords
fuel injection
cavity
fuel
piston
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008112449A
Other languages
Japanese (ja)
Other versions
JP2009264169A (en
Inventor
晃弘 山口
比呂志 園
宜正 金子
寛 但馬
健一郎 池谷
吾一 片山
信彦 佐々木
幸久 山谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008112449A priority Critical patent/JP4495766B2/en
Priority to AT09158482T priority patent/ATE544939T1/en
Priority to EP09158482A priority patent/EP2112348B1/en
Publication of JP2009264169A publication Critical patent/JP2009264169A/en
Application granted granted Critical
Publication of JP4495766B2 publication Critical patent/JP4495766B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

本発明は、頂面のピストン中心軸方向の高さが円周方向に変化するピストンと、前記ピストンの頂面の中央部に凹設されたキャビティと、前記キャビティ内に燃料を噴射するフュエルインジェクタとを備えた燃料直噴エンジンに関する。   The present invention relates to a piston in which the height of the top surface in the piston central axis direction changes in the circumferential direction, a cavity recessed at the center of the top surface of the piston, and a fuel injector that injects fuel into the cavity. And a fuel direct injection engine.

燃料直噴エンジン用のフュエルインジェクタの先端部に設けられる燃料噴射孔を複数の大径燃料噴射孔および複数の小径燃料噴射孔から構成し、大径燃料噴射孔および小径燃料噴射孔を円周方向に交互に配置することで、キャビティ内の燃料および空気の混合状態を均一化するものが、下記特許文献1により公知である。
特開平7−208303号公報
A fuel injection hole provided at the tip of a fuel injector for a direct fuel injection engine is composed of a plurality of large diameter fuel injection holes and a plurality of small diameter fuel injection holes, and the large diameter fuel injection hole and the small diameter fuel injection hole are arranged in the circumferential direction. It is known from Patent Document 1 below that the fuel and air mixing state in the cavity is made uniform by arranging them alternately.
JP 7-208303 A

ところでペントルーフ型ピストンを備えた燃料直噴ディーゼルエンジンで、吸気にスワールを発生させない場合、フュエルインジェクタから噴射された燃料と空気とが均一に混合せず、混合気の燃焼状態が悪化する可能性がある。   By the way, in a direct fuel injection diesel engine equipped with a pent roof type piston, if the swirl is not generated in the intake air, the fuel injected from the fuel injector and air may not be mixed uniformly, and the combustion state of the air-fuel mixture may deteriorate. is there.

例えば、図17(A)に示すように、フュエルインジェクタから60°間隔で6本の燃料噴射軸Liに沿ってピストン13のキャビティ25内に燃料を噴射した場合、隣接する燃料噴射軸Liの間に燃料と混合しない未利用空気が残ってしまう問題がある。前記未利用空気を最小限に抑えるために、図17(B)に示すように、燃料噴射軸Liの数を増加させると(例えば、8本)、キャビティ25の内周面に衝突して円周方向に拡散した燃料が相互に重なり合って局所的に燃料濃度が高い領域が発生してしまい、しかも前記領域に存在する燃料が逆スキッシュ流によってキャビティ25の外部に吹きこぼれてしまう問題がある。   For example, as shown in FIG. 17A, when the fuel is injected into the cavity 25 of the piston 13 along the six fuel injection axes Li at intervals of 60 ° from the fuel injector, between the adjacent fuel injection axes Li. However, there is a problem that unused air that does not mix with fuel remains. In order to minimize the unused air, as shown in FIG. 17B, when the number of fuel injection shafts Li is increased (for example, eight), it collides with the inner peripheral surface of the cavity 25 and becomes a circle. There is a problem that fuel diffused in the circumferential direction overlaps each other to generate a region where the fuel concentration is locally high, and the fuel existing in the region is blown out of the cavity 25 by the reverse squish flow.

本発明は前述の事情に鑑みてなされたもので、ペントルーフ型ピストンを備えた燃料直噴エンジンにおいて、キャビティ内での燃料および空気の混合状態を円周方向に均一化することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to make the mixed state of fuel and air in a cavity uniform in a circumferential direction in a fuel direct injection engine having a pent roof type piston.

上記目的を達成するために、請求項1に記載された発明によれば、頂面のピストン中心軸方向の高さが円周方向に変化するピストンと、前記ピストンの頂面の中央部に凹設されたキャビティと、前記キャビティ内に燃料を噴射するフュエルインジェクタとを備え、Nを2以上の自然数とし、前記キャビティの内壁面と、ピストン中心軸から放射方向に延びて互いに均等な挟み角を有するN個の半平面とで、前記キャビティをN個の仮想的なキャビティ区分に区画したとき、前記各々の仮想的なキャビティ区分の容積が略等しくなるように、前記キャビティの内壁面の形状を設定し、前記フュエルインジェクタは内径が異なる複数の燃料噴射孔を備え、前記複数の燃料噴射孔は、高ペネトレーションを有するN個の大径燃料噴射孔と、前記大径燃料噴射孔よりも小径であって低ペネトレーションを有する少なくともN個の小径燃料噴射孔とからなり、ピストン中心軸方向に見て、各大径燃料噴射孔は対応する仮想的なキャビティ区分の前記挟み角の2等分線の方向を指向し、前記小径燃料噴射孔は円周方向に隣接する前記大径燃料噴射孔が指向する二つの方向の間を指向することを特徴とする燃料直噴エンジンが提案される。 In order to achieve the above object, according to the invention described in claim 1, a piston whose top surface in the direction of the central axis of the piston changes in the circumferential direction, and a concave portion in the center of the top surface of the piston. And a fuel injector for injecting fuel into the cavity, wherein N is a natural number of 2 or more, and the inner wall surface of the cavity extends radially from the piston central axis and has an equal sandwich angle between them. When the cavity is divided into N virtual cavity sections with N half planes, the shape of the inner wall surface of the cavity is set so that the volumes of the respective virtual cavity sections are substantially equal. set, the fuel injector comprises a plurality of fuel injection holes having different inner diameters, said plurality of fuel injection holes, and N large径燃fuel injection hole having a high penetration, the large-diameter At least consists of a N number of small-diameter fuel injection holes, when viewed in the piston central axis direction, the pinching of the virtual cavity sections each large径燃fuel injection holes corresponding with low penetration a smaller diameter than the fuel injection hole Direct fuel injection engine characterized in that it is directed in the direction of an angle bisector, and the small diameter fuel injection hole is directed between two directions in which the large diameter fuel injection holes adjacent in the circumferential direction are directed. Is proposed.

また請求項に記載された発明によれば、請求項1の構成に加えて、前記フュエルインジェクタは、円周方向に隣接する前記大径燃料噴射孔の中央位置に前記小径燃料噴射孔を1個ずつ備えることを特徴とする燃料直噴エンジンが提案される。 According to a second aspect of the present invention, in addition to the configuration of the first aspect , the fuel injector has the small-diameter fuel injection hole 1 at a central position of the large-diameter fuel injection hole adjacent in the circumferential direction. A fuel direct-injection engine characterized by comprising one by one is proposed.

また請求項に記載された発明によれば、請求項1の構成に加えて、前記フュエルインジェクタは、円周方向に隣接する前記大径燃料噴射孔の間に前記小径燃料噴射孔を複数個ずつ備えることを特徴とする燃料直噴エンジンが提案される。 According to the invention described in claim 3 , in addition to the configuration of claim 1 , the fuel injector includes a plurality of the small diameter fuel injection holes between the large diameter fuel injection holes adjacent in the circumferential direction. A fuel direct-injection engine characterized in that it is provided one by one is proposed.

また請求項に記載された発明によれば、請求項1〜請求項の何れか1項の構成に加えて、前記ピストンの頂面はペントルーフ状に形成されることを特徴とする燃料直噴エンジンが提案される。 According to a fourth aspect of the present invention, in addition to the structure of any one of the first to third aspects, the top surface of the piston is formed in a pent roof shape. A jet engine is proposed.

請求項1の構成によれば、ピストンの頂面の中央部に凹設したキャビティの内壁面と、ピストン中心軸から放射方向に延びて互いに均等な挟み角を有するN個の半平面とで、キャビティをN個の仮想的なキャビティ区分に区画したとき、各々の仮想的なキャビティ区分の容積が略等しくなるようにキャビティの内壁面の形状を設定したので、キャビティにおける燃料および空気の混合状態を円周方向に均一化してエンジンの出力向上および排気有害物質の低減を図ることができる。しかもフュエルインジェクタに設けられた内径が異なる複数の燃料噴射孔は、高ペネトレーションを有するN個の大径燃料噴射孔と、大径燃料噴射孔よりも小径であって低ペネトレーションを有する少なくともN個の小径燃料噴射孔とからなり、N個の大径燃料噴射孔は、ピストン中心軸方向に見て、各大径燃料噴射孔は対応する仮想的なキャビティ区分の前記挟み角の2等分線の方向を指向し、小径燃料噴射孔は円周方向に隣接する大径燃料噴射孔が指向する二つの方向の間を指向するので、大径燃料噴射孔から噴射された燃料の噴霧が行き渡らない空間に小径燃料噴射孔から噴射された燃料の噴霧を行き渡らせ、かつ大径燃料噴射孔から噴射された燃料の噴霧と小径燃料噴射孔から噴射された燃料の噴霧とが重ならないようにし、キャビティからの噴霧の吹きこぼれを防止しながら未利用空気を最小限に抑え、キャビティ区分の等容積化との相乗効果により、キャビティにおける燃料および空気の混合状態を更に均一化することができる。 According to the configuration of claim 1, the inner wall surface of the cavity recessed in the central portion of the top surface of the piston, and the N half planes extending radially from the piston central axis and having an equal sandwich angle with each other, When the cavity was partitioned into N virtual cavity sections, the shape of the inner wall surface of the cavity was set so that the volume of each virtual cavity section was approximately equal. Uniform in the circumferential direction can improve engine output and reduce exhaust harmful substances. Moreover, the plurality of fuel injection holes with different inner diameters provided in the fuel injector include N large-diameter fuel injection holes having high penetration, and at least N small-diameter fuel injection holes having a smaller diameter than the large-diameter fuel injection holes. N large- diameter fuel injection holes are viewed in the direction of the piston central axis, and each large-diameter fuel injection hole is a bisector of the sandwich angle of the corresponding virtual cavity section. Since the small-diameter fuel injection hole is directed between two directions directed by the large-diameter fuel injection hole adjacent in the circumferential direction, the space where the fuel spray injected from the large- diameter fuel injection hole does not spread The fuel spray injected from the small-diameter fuel injection holes is spread over and the fuel spray injected from the large-diameter fuel injection holes is not overlapped with the fuel spray injected from the small-diameter fuel injection holes. The unused air is minimized while preventing spray spilling from the tee, and the mixed state of the fuel and air in the cavity can be further uniformed by a synergistic effect with the equal volume of the cavity section.

また請求項の構成によれば、フュエルインジェクタの円周方向に隣接する大径燃料噴射孔の中央位置に小径燃料噴射孔を1個ずつ設けたので、大径燃料噴射孔から噴射された燃料の噴霧が行き渡らない空間に小径燃料噴射孔から噴射された燃料の噴霧を均等に行き渡らせることができる。 According to the second aspect of the present invention, since one small-diameter fuel injection hole is provided at the center position of the large-diameter fuel injection hole adjacent in the circumferential direction of the fuel injector, the fuel injected from the large-diameter fuel injection hole The spray of fuel injected from the small-diameter fuel injection holes can be evenly distributed in the space where the spray of the fuel does not spread.

また請求項の構成によれば、フュエルインジェクタの円周方向に隣接する大径燃料噴射孔の間に小径燃料噴射孔を複数個ずつ設けたので、大径燃料噴射孔から噴射された燃料の噴霧が行き渡らない空間に小径燃料噴射孔から噴射された燃料の噴霧を均等に行き渡らせることができる。 According to the third aspect of the present invention, since the plurality of small diameter fuel injection holes are provided between the large diameter fuel injection holes adjacent in the circumferential direction of the fuel injector, the fuel injected from the large diameter fuel injection holes The fuel spray injected from the small-diameter fuel injection holes can be evenly distributed in the space where the spray does not spread.

また請求項の構成によれば、ピストンの頂面をペントルーフ状に形成したので、バルブ孔の開口面積を拡大して吸排気効率を高めることができる。 According to the fourth aspect of the present invention, since the top surface of the piston is formed in a pent roof shape, the opening area of the valve hole can be enlarged to improve the intake / exhaust efficiency.

以下、本発明の実施の形態を添付の図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1〜図13は本発明の第1の実施の形態を示すもので、図1はディーゼルエンジンの要部縦断面図、図2は図1の2−2線矢視図、図3は図1の3−3線矢視図、図4は図1の4部拡大図、図5は図4の5−5線拡大断面図、図6はピストンの上部斜視図、図7は図3の7−7線断面図、図8は図3の8−8線断面図、図9は図3の9−9線断面図、図10は補正後のキャビティの断面形状を示す、前記図7に対応する図、図11は補正後のキャビティの断面形状を示す、前記図8に対応する図、図12は仮想的なキャビティ区分の説明図、図13はキャビティ区分の方向を円周方向に変化させたときの、該キャビティ区分の容積の変化率を示すグラフである。   1 to 13 show a first embodiment of the present invention. FIG. 1 is a longitudinal sectional view of an essential part of a diesel engine, FIG. 2 is a view taken along line 2-2 in FIG. 1, and FIG. 4 is an enlarged view of part 4 of FIG. 1, FIG. 5 is an enlarged sectional view of line 5-5 of FIG. 4, FIG. 6 is a top perspective view of the piston, and FIG. 7 is a sectional view taken along line 8-8 in FIG. 3, FIG. 9 is a sectional view taken along line 9-9 in FIG. 3, and FIG. 10 is a sectional view of the cavity after correction. FIG. 11 is a diagram corresponding to FIG. 8 showing the sectional shape of the cavity after correction, FIG. 12 is an explanatory diagram of a virtual cavity section, and FIG. 13 is changing the direction of the cavity section in the circumferential direction. It is a graph which shows the change rate of the volume of this cavity division when it is made to do.

図1〜図6に示すように、燃料直噴型のディーゼルエンジンは、シリンダブロック11に形成されたシリンダ12に摺動自在に嵌合するピストン13を備えており、ピストン13はピストンピン14およびコネクティングロッド15を介して図示せぬクランクシャフトに接続される。シリンダブロック11の上面に結合されるシリンダヘッド16の下面に、ピストン13の頂面に対向する2個の吸気バルブ孔17,17と、2個の排気バルブ孔18,18とが開口しており、吸気バルブ孔17,17に吸気ポ−ト19が連通し、排気バルブ孔18,18に排気ポート20が連通する。吸気バルブ孔17,17は吸気バルブ21,21で開閉され、排気バルブ孔18,18は排気バルブ22,22で開閉される。ピストン中心軸Lp上に位置するようにフュエルインジェクタ23が設けられるとともに、フュエルインジェクタ23に隣接するようにグロープラグ24が設けられる。   As shown in FIGS. 1 to 6, the direct fuel injection type diesel engine includes a piston 13 slidably fitted to a cylinder 12 formed in a cylinder block 11. The piston 13 includes a piston pin 14 and a piston 13. It is connected to a crankshaft (not shown) via a connecting rod 15. Two intake valve holes 17, 17 facing the top surface of the piston 13 and two exhaust valve holes 18, 18 are opened on the lower surface of the cylinder head 16 coupled to the upper surface of the cylinder block 11. The intake port 19 communicates with the intake valve holes 17, 17, and the exhaust port 20 communicates with the exhaust valve holes 18, 18. The intake valve holes 17 and 17 are opened and closed by intake valves 21 and 21, and the exhaust valve holes 18 and 18 are opened and closed by exhaust valves 22 and 22. A fuel injector 23 is provided so as to be positioned on the piston central axis Lp, and a glow plug 24 is provided adjacent to the fuel injector 23.

ピストン13の頂面と、そこに対向するシリンダヘッド16の下面とは平坦ではなく断面三角形のペントルーフ状に傾斜しており、この形状により、吸気ポ−ト19および排気ポート20の湾曲度を小さくするとともに吸気バルブ孔17,17および排気バルブ孔18,18の直径を確保し、吸気効率および排気効率を高めることができる。   The top surface of the piston 13 and the lower surface of the cylinder head 16 facing the piston 13 are not flat but inclined in a pent roof shape having a triangular cross section, and this shape reduces the curvature of the intake port 19 and the exhaust port 20. In addition, the diameters of the intake valve holes 17 and 17 and the exhaust valve holes 18 and 18 can be secured, and the intake efficiency and the exhaust efficiency can be increased.

ピストン13の頂面には、ピストン中心軸Lpを中心とするキャビティ25が凹設される。キャビティ25の径方向外側には、ピストンピン14と平行に直線状に延びる頂部13a,13aから吸気側および排気側に向かって下向きに傾斜する一対の傾斜面13b,13bと、傾斜面13b,13bの下端近傍に形成されてピストン中心軸Lpに直交する一対の平坦面13c,13cと、頂部13a,13aの両端を平坦に切り欠いた一対の切欠き部13d,13dとが形成される。   A cavity 25 centered on the piston center axis Lp is recessed in the top surface of the piston 13. On the radially outer side of the cavity 25, a pair of inclined surfaces 13 b, 13 b that incline downward from the top portions 13 a, 13 a extending linearly in parallel with the piston pin 14 toward the intake side and the exhaust side, and inclined surfaces 13 b, 13 b A pair of flat surfaces 13c, 13c that are formed in the vicinity of the lower end of the cylinder and orthogonal to the piston center axis Lp, and a pair of cutout portions 13d, 13d in which both ends of the top portions 13a, 13a are cut out flat are formed.

ピストン中心軸Lpに沿って配置されたフュエルインジェクタ23は、ピストン中心軸Lp上の仮想的な点である燃料噴射点Oinjを中心として円周方向に30°間隔で離間する12の方向に燃料を噴射する。12本の燃料噴射軸のうちの2本の第1燃料噴射軸Li1は、ピストン中心軸Lp方向に見てピストンピン14と重なっており、4本の第2燃料噴射軸Li2は、ピストンピン14の方向に対して60°の角度で交差しており、6本の第3燃料噴射軸Li3は合計6本の第1燃料噴射軸Li1および第2燃料噴射軸Li2の中央を指向する。またピストン中心軸Lpに直交する方向に見て、12本の第1、第2、第3燃料噴射軸Li1,Li2,Li3は斜め下向きに傾斜しており、その下向きの度合いは第1燃料噴射軸Li1から遠いものほど大きくなっている(図8および図9参照)。従って、ピストンピン軸線L2に直交する方向を指向する2本の第3燃料噴射軸Li3が最も下向きに傾斜している。   The fuel injector 23 arranged along the piston central axis Lp delivers the fuel in 12 directions spaced apart by 30 ° in the circumferential direction around the fuel injection point Oinj, which is a virtual point on the piston central axis Lp. Spray. Of the twelve fuel injection shafts, two first fuel injection shafts Li1 overlap the piston pin 14 when viewed in the direction of the piston central axis Lp, and the four second fuel injection shafts Li2 The six third fuel injection shafts Li3 are directed to the center of the six first fuel injection shafts Li1 and the second fuel injection shafts Li2. In addition, the twelve first, second, and third fuel injection shafts Li1, Li2, and Li3 are inclined obliquely downward as viewed in the direction orthogonal to the piston center axis Lp, and the degree of the downward direction is the first fuel injection. The distance from the axis Li1 increases (see FIGS. 8 and 9). Accordingly, the two third fuel injection shafts Li3 directed in the direction orthogonal to the piston pin axis L2 are inclined most downward.

尚、フュエルインジェクタ23が実際に燃料を噴射する噴射点はピストン中心軸Lpから径方向外側に僅かにずれているが、前記燃料噴射点Oinjは前記第1〜第3燃料噴射軸Li1,Li2,Li3がピストン中心軸Lpと交差する点として定義される。   The fuel injection point at which the fuel injector 23 actually injects fuel is slightly shifted radially outward from the piston center axis Lp, but the fuel injection point Oinj is the first to third fuel injection shafts Li1, Li2, and the like. Li3 is defined as a point where the piston central axis Lp intersects.

図4および図5に拡大して示すように、シリンダヘッド16の下面からピストン13側に突出するフュエルインジェクタ23の先端部23aに第1、第2燃料噴射軸Li1,Li2に対応する6個の大径燃料噴射孔23d…が60°間隔で形成され、それら6個の大径燃料噴射孔23d…の中間位置に6個の小径燃料噴射孔23e…が形成される。各燃料噴射孔23d…,23e…の断面形状は円形であるが、大径燃料噴射孔23d…の直径は小径燃料噴射孔23e…の直径よりも大きくなっており、大径燃料噴射孔23d…から噴射された燃料のペネトレーション(到達距離)は小径燃料噴射孔23e…から噴射された燃料のペネトレーション(到達距離)よりも大きくなる。   As shown in enlarged views in FIGS. 4 and 5, there are six pieces corresponding to the first and second fuel injection shafts Li <b> 1 and Li <b> 2 at the tip 23 a of the fuel injector 23 protruding from the lower surface of the cylinder head 16 toward the piston 13. The large diameter fuel injection holes 23d are formed at intervals of 60 °, and six small diameter fuel injection holes 23e are formed at an intermediate position between the six large diameter fuel injection holes 23d. The cross-sectional shape of each of the fuel injection holes 23d,..., 23e is circular, but the diameter of the large-diameter fuel injection hole 23d is larger than the diameter of the small-diameter fuel injection hole 23e. The penetration (reaching distance) of the fuel injected from the fuel becomes larger than the penetration (reaching distance) of the fuel injected from the small-diameter fuel injection holes 23e.

次に、図7〜図9を参照して先願発明(特願2006−175597号)のキャビティ25の断面形状を詳述する。先願発明のキャビティ25の断面形状を説明する理由は、先願発明のキャビティ25の断面形状を補正して本願発明のキャビティ25の断面形状を得るからである。図7はピストンピン14に対して直交する方向の断面であり、図8はピストンピン14に対して60°で交差する方向の断面(第2燃料噴射軸Li2を含む断面)であり、図9はピストンピン14に沿う方向の断面(第1燃料噴射軸Li1を含む断面)である。   Next, the sectional shape of the cavity 25 of the prior invention (Japanese Patent Application No. 2006-175597) will be described in detail with reference to FIGS. The reason for explaining the cross-sectional shape of the cavity 25 of the prior invention is that the cross-sectional shape of the cavity 25 of the present invention is obtained by correcting the cross-sectional shape of the cavity 25 of the prior invention. 7 is a cross section in a direction orthogonal to the piston pin 14, and FIG. 8 is a cross section (cross section including the second fuel injection axis Li2) in a direction intersecting the piston pin 14 at 60 °. Is a cross section in the direction along the piston pin 14 (cross section including the first fuel injection axis Li1).

先願発明は、ピストン中心軸Lpを通る任意の断面において、キャビティ25の形状を可及的に一致させることを狙ったものである。キャビティ25の断面形状はピストン中心軸Lpを挟んで左右二つの部分に分かれており、その二つの部分は図9のピストンピン14方向の断面では概ね直線状に繋がっているが、図7のピストンピン14直交方向の断面と、図8のピストンピン14に対して60°で交差する方向の断面とでは、ピストン13のペントルーフ形状に応じて山型に繋がっている。但し、キャビティ25の断面形状の主要部、つまり図7〜図9に網かけをして示す部分の形状は完全に一致している。   The invention of the prior application aims at matching the shape of the cavity 25 as much as possible in an arbitrary cross section passing through the piston central axis Lp. The cross-sectional shape of the cavity 25 is divided into two left and right parts with the piston central axis Lp in between, and the two parts are connected in a straight line in the cross section in the direction of the piston pin 14 in FIG. The cross section in the direction orthogonal to the pin 14 and the cross section in the direction intersecting with the piston pin 14 of FIG. 8 at 60 ° are connected in a mountain shape according to the pent roof shape of the piston 13. However, the shape of the main portion of the cross-sectional shape of the cavity 25, that is, the shape shown by shading in FIGS.

図7〜図9から明らかなように、ピストン中心軸Lpを中心として形成されたキャビティ25は、ピストン13の頂面から下向きに直線状に延びる周壁部25aと、周壁部25aの下端からピストン中心軸Lpに向かってコンケーブ状に湾曲する曲壁部25bと、曲壁部25bの径方向内端からピストン中心軸Lpに向かって斜め上方に直線状に延びる底壁部25cと、ピストン中心軸Lp上で底壁部25cの径方向内端に連なる頂部25dとで構成される。   As is apparent from FIGS. 7 to 9, the cavity 25 formed around the piston center axis Lp includes a peripheral wall portion 25 a extending linearly downward from the top surface of the piston 13, and a piston center from the lower end of the peripheral wall portion 25 a. A curved wall portion 25b that curves in a concave shape toward the axis Lp, a bottom wall portion 25c that linearly extends obliquely upward from the radial inner end of the curved wall portion 25b toward the piston central axis Lp, and a piston central axis Lp The top portion 25d is continuous with the radially inner end of the bottom wall portion 25c.

キャビティ25に対向するシリンダヘッド16の下面を示す線L−R1,L−R2から下方に距離Haだけ離れて平行に延びるラインをピストン頂面基本線L−a1,L−a2とする。同様にシリンダヘッド16の下面を示す線L−R1,L−R2から下方に距離Hbcだけ離れて平行に延びる線をキャビティ底面基本線L−bc1,L−bc2とし、シリンダヘッド16の下面を示す線L−R1,L−R2から下方に距離Hdだけ離れて平行に延びる線をキャビティ頂部基本線L−d1,L−d2とする。   Lines extending downward and parallel to each other by a distance Ha from lines L-R1 and L-R2 indicating the lower surface of the cylinder head 16 facing the cavity 25 are defined as piston top surface basic lines L-a1 and L-a2. Similarly, lines extending downward in parallel by a distance Hbc from the lines L-R1 and L-R2 indicating the lower surface of the cylinder head 16 are defined as cavity bottom basic lines L-bc1 and L-bc2, and the lower surface of the cylinder head 16 is illustrated. The lines extending downward in parallel from the lines L-R1 and L-R2 by a distance Hd are defined as cavity top basic lines L-d1 and L-d2.

燃料噴射点Oinjを中心とする半径Raの円弧と前記ピストン頂面基本線L−a1,L−a2との交点をa1,a2とする。同様に燃料噴射点Oinjを中心とする半径Rbの円弧と前記キャビティ底面基本線L−bc1,L−bc2との交点をb1,b2とし、燃料噴射点Oinjを中心とする半径Rcの円弧と前記キャビティ底面基本線L−bc1,L−bc2との交点をc1,c2とし、燃料噴射点Oinjを中心とする半径Rdの円弧と前記キャビティ頂部基本線L−d1,L−d2との交点をd1,d2とする。交点e1,e2は、前記交点d1,d2からピストン頂面基本線L−a1,L−a2に下ろした垂線が該ピストン頂面基本線L−a1,L−a2に交差する点である。   Intersections between an arc having a radius Ra centered on the fuel injection point Oinj and the piston top surface basic lines L-a1, L-a2 are defined as a1, a2. Similarly, the intersections of the arc of radius Rb centered on the fuel injection point Oinj and the cavity bottom surface basic lines L-bc1, L-bc2 are b1, b2, and the arc of radius Rc centered on the fuel injection point Oinj The intersections of the cavity bottom basic lines L-bc1 and L-bc2 are c1 and c2, and the intersection of the arc having a radius Rd centered on the fuel injection point Oinj and the cavity top basic lines Ld1 and Ld2 is d1. , D2. The intersections e1 and e2 are points where perpendiculars drawn from the intersections d1 and d2 to the piston top surface basic lines L-a1 and L-a2 intersect the piston top surface basic lines L-a1 and L-a2.

キャビティ25の周壁部25aは直線a1b1,a2b2の上にあり、キャビティ25の底壁部25cは直線c1d1,c2d2に一致し、キャビティ25の曲壁部25bは直線a1b1,a2b2および直線c1d1,c2d2を滑らかに接続する。   The peripheral wall portion 25a of the cavity 25 is above the straight lines a1b1 and a2b2, the bottom wall portion 25c of the cavity 25 is coincident with the straight lines c1d1 and c2d2, and the curved wall portion 25b of the cavity 25 is the straight lines a1b1 and a2b2 and the straight lines c1d1 and c2d2. Connect smoothly.

しかして、交点a1,c1,d1,e1あるいは交点a2,c2,d2,e2によって決まる網かけした断面形状が,ピストン中心軸Lpを通る任意の断面において等しくなるように、キャビティ25の形状が設定される。   Thus, the shape of the cavity 25 is set so that the shaded cross-sectional shape determined by the intersection points a1, c1, d1, e1 or the intersection points a2, c2, d2, e2 is equal in any cross-section passing through the piston central axis Lp. Is done.

前記交点a1,a2は本発明の第1特定点Anに対応し、前記交点e1,e2は本発明の第2特定点Bnに対応し、前記交点d1,d2は本発明の第3特定点Cnに対応するものである。   The intersection points a1 and a2 correspond to the first specific point An of the present invention, the intersection points e1 and e2 correspond to the second specific point Bn of the present invention, and the intersection points d1 and d2 correspond to the third specific point Cn of the present invention. It corresponds to.

図8および図9に示す第1、第2燃料噴射軸Li1,Li2を通る断面については、図9に示すピストンピン14方向の断面(燃料噴射断面S1)における網かけ部分と、図8に示すピストンピン14に対して60°で交差する方向の断面(燃料噴射断面S2)における網かけ部分とは同形になる。   8 and 9, the cross section passing through the first and second fuel injection shafts Li1 and Li2 is shown in FIG. 8 and the shaded portion in the cross section in the direction of the piston pin 14 (fuel injection cross section S1) shown in FIG. The shaded portion in the cross section (fuel injection cross section S2) in the direction intersecting with the piston pin 14 at 60 ° has the same shape.

図9に示すピストンピン14方向の断面において、第1燃料噴射軸Li1がキャビティ25と交差する点を燃料衝突点P1とし、図8に示すピストンピン14に対して60°で交差する方向の断面において、第2燃料噴射軸Li2がキャビティ25と交差する点を燃料衝突点P2とする。二つの燃料衝突点P1,P2は、網かけした同一形状の断面上の同じ位置に存在している。従って、燃料衝突点P2の位置は燃料衝突点P1の位置よりも低くなり、燃料噴射点Oinjから延びる第2燃料噴射軸Li2は第1燃料噴射軸Li1よりも更に下向きに燃料を噴射することになる。   In the cross section in the direction of the piston pin 14 shown in FIG. 9, the cross point in the direction crossing the piston pin 14 shown in FIG. 8 at 60 ° is defined as a fuel collision point P1 where the first fuel injection axis Li1 intersects the cavity 25. , A point where the second fuel injection axis Li2 intersects the cavity 25 is defined as a fuel collision point P2. The two fuel collision points P1 and P2 exist at the same position on the cross-section of the same shape shaded. Accordingly, the position of the fuel collision point P2 is lower than the position of the fuel collision point P1, and the second fuel injection shaft Li2 extending from the fuel injection point Oinj injects fuel further downward than the first fuel injection shaft Li1. Become.

燃料噴射点Oinjから燃料衝突点P1までの距離D1は、燃料噴射点Oinjから燃料衝突点P2までの距離D2に略一致する。また燃料衝突点P1におけるキャビティ25の接線と第1燃料噴射軸Li1とが成す燃料衝突角α1は、燃料衝突点P2におけるキャビティ25の接線と第2燃料噴射軸Li2とが成す燃料衝突角α2に略一致する。   A distance D1 from the fuel injection point Oinj to the fuel collision point P1 is substantially equal to a distance D2 from the fuel injection point Oinj to the fuel collision point P2. The fuel collision angle α1 formed by the tangent line of the cavity 25 at the fuel collision point P1 and the first fuel injection axis Li1 is the fuel collision angle α2 formed by the tangent line of the cavity 25 at the fuel collision point P2 and the second fuel injection axis Li2. It almost agrees.

以上のように先願発明によれば、ピストン中心軸Lpを通る任意の断面において、燃料噴射点Oinjの近傍のごく一部(交点e1,d1,d2,e2で囲まれた領域)を除いて、キャビティ25の断面形状が同一に形成されている。特に、第1、第2燃料噴射軸Li1,Li2を含む二つの断面(図8および図9参照)においてもキャビティ25の断面形状が同一に形成されており、しかも前記二つの断面において燃料噴射点Oinjから燃料衝突点P1,P2までの距離D1,D2が略等しく設定され、かつ燃料衝突点P1,P2における燃料衝突角α1,α2が略等しく設定されるので、キャビティ25の各部における空気および燃料の混合状態を円周方向に均一化し、混合気の燃焼状態を改善してエンジン出力の増加および排気有害物質の低減を図ることができる。   As described above, according to the invention of the prior application, in an arbitrary cross section passing through the piston center axis Lp, except for a very small part in the vicinity of the fuel injection point Oinj (a region surrounded by the intersections e1, d1, d2, and e2). The cross-sectional shapes of the cavities 25 are the same. In particular, the two cross sections including the first and second fuel injection shafts Li1 and Li2 (see FIGS. 8 and 9) have the same sectional shape of the cavity 25, and the fuel injection point in the two cross sections. Since the distances D1, D2 from Oinj to the fuel collision points P1, P2 are set to be approximately equal, and the fuel collision angles α1, α2 at the fuel collision points P1, P2 are set to be approximately equal, air and fuel in each part of the cavity 25 It is possible to make the mixed state uniform in the circumferential direction and improve the combustion state of the air-fuel mixture to increase the engine output and reduce harmful exhaust substances.

また図7および図8に示すピストン13の頂面が傾斜する断面においても、キャビティ25の開口のエッジ(交点a2の部分)が成す角度が、図9に示すピストン13の頂面が平坦な場合に比べて鋭角化することがないため、その部分の熱負荷を軽減して耐熱性を高めることができる。   Further, in the cross section where the top surface of the piston 13 shown in FIGS. 7 and 8 is inclined, the angle formed by the edge of the opening of the cavity 25 (the portion of the intersection point a2) is flat when the top surface of the piston 13 shown in FIG. Therefore, the heat load of the portion can be reduced and the heat resistance can be improved.

ところで先願発明は、図7〜図9におけるキャビティ25の断面形状が、網かけをして示す部分では完全に一致しているものの、燃料噴射点Oinjの近傍の交点e1,d1,d2,e2で囲まれた白抜きの領域で不一致になっている。その理由は、キャビティ25の断面形状のピストン中心軸Lpを挟む二つの部分が、図9のピストンピン14方向の断面では概ね直線状に繋がっているが、図7のピストンピン14直交方向の断面と、図8のピストンピン14に対して60°で交差する方向の断面とでは、ピストン13のペントルーフ形状に応じて山型に繋がっているため、交点e1,d1,d2,e2で囲まれた白抜きの領域の面積が、図9のピストンピン14方向の断面で最も大きく、図8のピストンピン14に対して60°で交差する方向の断面で減少し、図7のピストンピン14直交方向の断面で更に減少するためである。   In the prior invention, the cross-sectional shape of the cavity 25 in FIGS. 7 to 9 is completely the same in the shaded portion, but the intersections e1, d1, d2, e2 near the fuel injection point Oinj. There is a mismatch in the white area surrounded by. The reason is that the two sections sandwiching the piston central axis Lp of the cross-sectional shape of the cavity 25 are connected in a straight line in the cross section in the direction of the piston pin 14 in FIG. 8 and the cross section in the direction intersecting at 60 ° with respect to the piston pin 14 in FIG. 8 is connected in a mountain shape according to the pent roof shape of the piston 13, and is surrounded by intersections e1, d1, d2, and e2. The area of the white area is the largest in the cross section in the direction of the piston pin 14 in FIG. 9, decreases in the cross section in the direction crossing the piston pin 14 in FIG. 8 at 60 °, and the direction perpendicular to the piston pin 14 in FIG. This is because it further decreases in the cross section.

本実施の形態は、交点e1,d1,d2,e2で囲まれた白抜きの領域の面積が最大になるピストンピン14方向のキャビティ25の断面形状(図9参照)を基準とし、その他の方向の断面形状を拡大する方向(つまり、キャビティ25の深さを増加させる方向)に補正することで、前記交点e1,d1,d2,e2で囲まれた白抜きの領域の面積の差異を補償し、キャビティ25の全ての方向の断面で空気および燃料の混合状態の一層の均一化を図るものである。   This embodiment is based on the cross-sectional shape of the cavity 25 in the direction of the piston pin 14 (see FIG. 9) where the area of the white area surrounded by the intersections e1, d1, d2, and e2 is maximized, and the other directions. Is corrected in the direction of expanding the cross-sectional shape (that is, the direction in which the depth of the cavity 25 is increased) to compensate for the difference in the area of the white area surrounded by the intersections e1, d1, d2, and e2. In this way, the air and fuel are mixed more uniformly in the cross section of the cavity 25 in all directions.

図10は、図7のピストンピン14直交方向におけるキャビティ25の断面形状の補正手法を説明するものであり、鎖線の形状は先願発明のものを示し、実線の形状は本実施の形態のものを示している。   FIG. 10 illustrates a method of correcting the cross-sectional shape of the cavity 25 in the direction orthogonal to the piston pin 14 of FIG. 7, the shape of the chain line indicates that of the prior invention, and the shape of the solid line indicates that of the present embodiment. Is shown.

本実施の形態によるキャビティ25の断面形状の補正は、交点b1および交点c1の位置を、それぞれ交点b1′および交点c1′となるように下方に移動させることで、網かけ部分の面積を増加させることにより行われる。   The correction of the cross-sectional shape of the cavity 25 according to the present embodiment increases the area of the shaded portion by moving the positions of the intersection b1 and the intersection c1 downward so as to become the intersection b1 ′ and the intersection c1 ′, respectively. Is done.

先ずキャビティ底面基本線L−bc1と、直線e1d1の下方への延長線との交点をf1として決定する。続いて交点f1を通るキャビティ底面基本線L−bc1を、交点f1を中心として所定角度βだけ下方に回転させ、新たなキャビティ底面基本線L−bc1′を設定する。続いて燃料噴射点Oinjを中心とする半径Rbの円弧と新たなキャビティ底面基本線L−bc1′との交点を前記b1′として決定し、燃料噴射点Oinjを中心とする半径Rcの円弧と新たなキャビティ底面基本線L−bc1′との交点を前記c1′として決定する。   First, the intersection point between the cavity bottom surface basic line L-bc1 and the line extending downward from the straight line e1d1 is determined as f1. Subsequently, the cavity bottom surface basic line L-bc1 passing through the intersection point f1 is rotated downward by a predetermined angle β around the intersection point f1 to set a new cavity bottom surface basic line L-bc1 ′. Subsequently, an intersection point between the arc having the radius Rb centered on the fuel injection point Oinj and the new cavity bottom basic line L-bc1 ′ is determined as the b1 ′, and the arc having the radius Rc centered on the fuel injection point Oinj is newly determined. The intersection point with the cavity bottom surface basic line L-bc1 'is determined as c1'.

しかして、補正後のキャビティ25の断面形状では、キャビティ25の周壁部25aは直線a1b1′の上にあり、キャビティ25の底壁部25cは直線c1′d1に一致し、キャビティ25の曲壁部25bは直線a1b1′および直線c1′d1を滑らかに接続している。   Thus, in the cross-sectional shape of the cavity 25 after the correction, the peripheral wall portion 25a of the cavity 25 is on the straight line a1b1 ′, the bottom wall portion 25c of the cavity 25 coincides with the straight line c1′d1, and the curved wall portion of the cavity 25 is obtained. 25b smoothly connects the straight line a1b1 'and the straight line c1'd1.

尚、キャビティ底面基本線L−bc1とピストン中心軸Lpとの交点をfとし、この交点fを中心としてキャビティ底面基本線L−bc1を所定角度βだけ下方に回転させることで、新たなキャビティ底面基本線L−bc1′を設定しても良い。   An intersection between the cavity bottom surface basic line L-bc1 and the piston center axis Lp is defined as f, and the cavity bottom surface basic line L-bc1 is rotated downward by a predetermined angle β about the intersection point f to obtain a new cavity bottom surface. The basic line L-bc1 ′ may be set.

このように、キャビティ25の内壁面における経路AnCnのうち、経路AnCnの最下部から第3特定点Cnまでの区間は第2燃料噴射軸Li2と近接するが、その区間の形状を変化させることでキャビティ25の内壁面への燃料の付着を抑制して燃焼悪化を防止することができる。   Thus, of the path AnCn on the inner wall surface of the cavity 25, the section from the lowest part of the path AnCn to the third specific point Cn is close to the second fuel injection axis Li2, but by changing the shape of the section Combustion deterioration can be prevented by suppressing the adhesion of fuel to the inner wall surface of the cavity 25.

本実施の形態では、正味平均有効圧力NMEPが、煤が発生しない状態で、先願発明に対して2%程度向上した。   In the present embodiment, the net average effective pressure NMEP is improved by about 2% with respect to the prior application invention in a state where no soot is generated.

図10は、図8のピストンピン14に対して60°で交差する方向におけるキャビティ25の断面形状の補正手法を説明するものであり、鎖線の形状は先願発明のものを示し、実線の形状は本実施の形態のものを示している。   FIG. 10 illustrates a method for correcting the cross-sectional shape of the cavity 25 in a direction intersecting with the piston pin 14 of FIG. 8 at 60 °. The shape of the chain line indicates that of the prior invention, and the shape of the solid line. Indicates the present embodiment.

図9(ピストンピン14方向)および図7(ピストンピン14直交方向)における交点e1,d1,d2,e2で囲まれた白抜きの領域の面積の差異に比べ、図9(ピストンピン14方向)および図8(ピストンピン14に対して60°で交差する方向)の前記面積の差異は小さいため、図11(ピストンピン14に対して60°で交差する方向)におけるキャビティ25の断面形状の拡大量は、図10(ピストンピン14直交方向)におけるキャビティ25の断面形状の拡大量よりも小さなものとなる。   Compared to the difference in the area of the white area surrounded by the intersections e1, d1, d2, e2 in FIG. 9 (piston pin 14 direction) and FIG. 7 (piston pin 14 orthogonal direction), FIG. 9 (piston pin 14 direction). 8 and FIG. 8 (direction intersecting with the piston pin 14 at 60 °) is small, so that the sectional shape of the cavity 25 in FIG. 11 (direction intersecting with the piston pin 14 at 60 °) is enlarged. The amount is smaller than the amount of expansion of the cross-sectional shape of the cavity 25 in FIG. 10 (in the direction orthogonal to the piston pin 14).

以上、ピストン中心軸Lpの一側のキャビティ25の断面形状の補正について説明したが、ピストン中心軸Lpの他側のキャビティ25の断面形状の補正も全く同様にして行われる。   Although the correction of the cross-sectional shape of the cavity 25 on one side of the piston central axis Lp has been described above, the correction of the cross-sectional shape of the cavity 25 on the other side of the piston central axis Lp is performed in exactly the same manner.

以上のように、本実施の形態によれば、先願発明が有する問題点、つまり燃料噴射点Oinjの近傍の交点e1,d1,d2,e2で囲まれた領域におけるキャビティ25の各断面形状の不一致が補償されるので、キャビティ25の各部における空気および燃料の混合状態を円周方向に一層均一化し、混合気の燃焼状態を改善してエンジン出力の更なる増加および排気有害物質の更なる低減を図ることができる。   As described above, according to the present embodiment, the problems of the prior invention, that is, the cross-sectional shapes of the cavities 25 in the region surrounded by the intersections e1, d1, d2, e2 in the vicinity of the fuel injection point Oinj. Since the mismatch is compensated, the air and fuel mixing state in each part of the cavity 25 is made more uniform in the circumferential direction, and the combustion state of the air-fuel mixture is improved to further increase the engine output and further reduce exhaust harmful substances. Can be achieved.

図12は、本実施の形態によるキャビティ25の断面形状の補正を、別の視点で捕らえる説明図である。   FIG. 12 is an explanatory diagram that captures the correction of the cross-sectional shape of the cavity 25 according to the present embodiment from another viewpoint.

同図において、キャビティ25の中心を通るピストン中心軸Lpから、6個の半平面X1〜X6が放射状に延びている。隣接する2個の半平面X1〜X6が成す角度(挟み角)は全て60°であり、各半平面X1〜X6の間を2等分する6本の2等分線は、ピストン中心軸Lpの方向に見て第1、第2燃料噴射軸Li1,Li2と重なっている。キャビティ25は6個の半平面X1〜X6によって6個の仮想的なキャビティ区分25A〜25Fに分割されており、本実施の形態によれば、上述したキャビティ25の断面形状の補正により、6個のキャビティ区分25A〜25Fの容積を理論的には同一に設定することが可能である。   In the figure, six half planes X1 to X6 extend radially from a piston central axis Lp passing through the center of the cavity 25. The angles (sandwich angles) formed by two adjacent half-planes X1 to X6 are all 60 °, and the six bisectors that bisect each half-plane X1 to X6 are the piston center axis Lp. , The first and second fuel injection shafts Li1 and Li2 overlap. The cavity 25 is divided into six virtual cavity sections 25A to 25F by six half planes X1 to X6. According to this embodiment, six cavities 25 are corrected by correcting the cross-sectional shape of the cavity 25 described above. It is possible to theoretically set the volumes of the cavity sections 25A to 25F to be the same.

しかしながら、6個のキャビティ区分25A〜25Fの容積を完全に同一に設定する必要はなく、それを略同一に設定するだけでも、先願発明に比べて燃料の混合状態を円周方向により均一化することができる。具体的には、6個のキャビティ区分25A〜25Fの容積のばらつき、つまり最大容積のキャビティ区分と最小容積のキャビティ区分の容積との差分を先願発明に比べて小さくすれば、燃料の混合状態を円周方向により均一化することができる。   However, it is not necessary to set the volumes of the six cavity sections 25A to 25F to be completely the same, and even if they are set to be approximately the same, the fuel mixing state is made more uniform in the circumferential direction than in the prior invention. can do. Specifically, if the volume variation of the six cavity sections 25A to 25F, that is, the difference between the maximum volume cavity section and the minimum volume cavity section is made smaller than that of the prior invention, the fuel mixing state Can be made more uniform in the circumferential direction.

図13は、キャビティ区分の方向(つまり、キャビティ区分の挟み角の2等分線の方向)をピストンピン14の方向を基準(0°)としてピストン中心軸Lpまわりに左右に各60°の範囲で移動させたとき、そのキャビティ区分の容積の変化率を示すものである。破線は従来例に対応し、実線は本実施の形態に対応する。   FIG. 13 shows a range of 60 ° left and right around the piston center axis Lp, with the direction of the cavity section (that is, the direction of the bisector of the sandwich angle of the cavity section) as the direction of the piston pin 14 (0 °). It shows the rate of change of the volume of the cavity section when moved by. A broken line corresponds to the conventional example, and a solid line corresponds to the present embodiment.

何れのものも、キャビティ区分の挟み角の2等分線の方向がピストンピン14の方向に対して60°で交差するとき(図12のキャビティ区分25B,25C,25E,25F参照)を基準とし、そのときの変化率を0%としている。破線で示す従来例では、キャビティ区分の挟み角の2等分線の方向がピストンピン14の方向に一致するとき(図12のキャビティ区分25A,25D参照)、変化率は最大になって7%程度であるが、実線で示す実施の形態では、同じ位置で変化率は最大になるが、その値は大幅に減少して僅か0.5%に抑えられている。   In either case, the direction of the bisector of the sandwich angle of the cavity section intersects the direction of the piston pin 14 at 60 ° (see the cavity sections 25B, 25C, 25E, and 25F in FIG. 12). The rate of change at that time is 0%. In the conventional example shown by a broken line, when the direction of the bisector of the sandwich angle of the cavity section coincides with the direction of the piston pin 14 (see the cavity sections 25A and 25D in FIG. 12), the rate of change becomes 7% at the maximum. However, in the embodiment indicated by the solid line, the rate of change is maximized at the same position, but the value is greatly reduced to a value of only 0.5%.

従って、本願発明の一つの定義は、「各キャビティ区分25A〜25Fの容積のばらつきが、キャビティの深さを円周方向に均一にした従来例の各キャビティ区分25A〜25Fの容積のばらつきよりも小さいもの」とすることができる。   Accordingly, one definition of the present invention is that "the variation in volume of each cavity section 25A-25F is more than the variation in volume of each cavity section 25A-25F of the conventional example in which the cavity depth is uniform in the circumferential direction. Can be "small".

さて、図3から明らかなように、6個の大径燃料噴射孔23d…から第1、第2燃料噴射軸Li1,Li2に沿って噴射された燃料は、キャビティ25の内面に衝突して円周方向に広がるが、隣接する第1、第2燃料噴射軸Li1,Li2に沿って噴射された燃料がキャビティ25の内面に衝突した後に円周方向に重ならない程度にペネトレーションの大きさが設定される。また第1、第2燃料噴射軸Li1,Li2に沿って噴射された燃料は、キャビティ25の外周部を除く部分の全体には行き渡らず、6個の吹き残し領域が発生するが、この吹き残し領域を指向して6個の小径燃料噴射孔23e…から燃料を噴射することで、キャビティ25の全域に燃料の噴霧が行き渡らない部分がなく、かつ大径燃料噴射孔23d…から噴射された燃料の噴霧と小径燃料噴射孔23e…から噴射された燃料の噴霧とが重なる部分がないようにし、未利用空気を最小限に抑えてキャビティ25における燃料および空気の混合状態を更に均一化し、キャビティ区分25A〜25Fの等容積化との相乗効果により、エンジンの出力向上および排気有害物質の低減を図ることができる。   As is apparent from FIG. 3, the fuel injected along the first and second fuel injection axes Li1 and Li2 from the six large-diameter fuel injection holes 23d. Although spreading in the circumferential direction, the magnitude of penetration is set so that the fuel injected along the adjacent first and second fuel injection axes Li1 and Li2 does not overlap in the circumferential direction after colliding with the inner surface of the cavity 25. The Further, the fuel injected along the first and second fuel injection axes Li1 and Li2 does not reach the entire portion of the cavity 25 except for the outer peripheral portion, and six unblown areas are generated. By injecting fuel from the six small diameter fuel injection holes 23e in a region, there is no portion where the fuel spray does not spread throughout the cavity 25, and the fuel injected from the large diameter fuel injection holes 23d. And the spray of fuel injected from the small-diameter fuel injection holes 23e are overlapped, the unused air is minimized and the mixed state of the fuel and air in the cavity 25 is made more uniform, Due to a synergistic effect with the equal volume of 25A to 25F, it is possible to improve engine output and reduce exhaust harmful substances.

次に、図14に基づいて本発明の第2の実施の形態を説明する。   Next, a second embodiment of the present invention will be described with reference to FIG.

第1の実施の形態では仮想的なキャビティ区分25A〜25Fの数を6個に設定しているが(N=6)、第2の実施の形態は仮想的なキャビティ区分の数を4個に設定したものである(N=4)。従って4個の大径燃料噴射孔23d…に対応する4本の燃料噴射軸Li1(2)の数は90°間隔の4本になり、4個の小径燃料噴射孔23e…に対応する4本の燃料噴射軸Li3は、前記4本の燃料噴射軸Li1(2)の間に配置される。   In the first embodiment, the number of virtual cavity sections 25A to 25F is set to six (N = 6), but in the second embodiment, the number of virtual cavity sections is set to four. It is set (N = 4). Accordingly, the number of the four fuel injection shafts Li1 (2) corresponding to the four large-diameter fuel injection holes 23d is four at intervals of 90 °, and the four corresponding to the four small-diameter fuel injection holes 23e. The fuel injection shaft Li3 is disposed between the four fuel injection shafts Li1 (2).

次に、図15に基づいて本発明の第3の実施の形態を説明する。   Next, a third embodiment of the present invention will be described with reference to FIG.

第1の実施の形態では仮想的なキャビティ区分25A〜25Fの数を6個に設定しているが(N=6)、第3の実施の形態は仮想的なキャビティ区分の数を5個に設定したものである(N=5)。従って5個の大径燃料噴射孔23d…に対応する本の燃料噴射軸Li1(2)の数は72°間隔になり、5個の小径燃料噴射孔23e…に対応する本の燃料噴射軸Li3は、前記5本の燃料噴射軸Li1(2)の間に配置される。 In the first embodiment, the number of virtual cavity sections 25A to 25F is set to six (N = 6), but in the third embodiment, the number of virtual cavity sections is set to five. It is set (N = 5). Thus the number of five fuel injection axes Li1 (2) corresponding to the five major径燃fuel injection holes 23d ... becomes 72 ° interval, five of the five fuel corresponding to the small diameter fuel injection holes 23e ... The injection shaft Li3 is disposed between the five fuel injection shafts Li1 (2).

次に、図16に基づいて本発明の第4の実施の形態を説明する。   Next, a fourth embodiment of the present invention will be described with reference to FIG.

第4の実施の形態は前記第2の実施の形態の変形であり、第2の実施の形態では4個の大径燃料噴射孔23d…の間に各1個、合計4個の小径燃料噴射孔23e…が形成されているが、第4の実施の形態では4個の大径燃料噴射孔23d…の間に各2個、合計8個の小径燃料噴射孔23e…が形成されている。   The fourth embodiment is a modification of the second embodiment. In the second embodiment, a total of four small-diameter fuel injections, one each between four large-diameter fuel injection holes 23d. Although the holes 23e are formed, in the fourth embodiment, a total of eight small diameter fuel injection holes 23e are formed between the four large diameter fuel injection holes 23d.

これらの第2〜第4の実施の形態によっても、上述した第1の実施の形態と同様の作用効果を達成することができる。   According to these second to fourth embodiments, the same operational effects as those of the above-described first embodiment can be achieved.

以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、実施の形態では、仮想的なキャビティ区分の数を4個、5個あるいは6個に設定しているが(N=4、N=5またはN=6)、前記キャビティ区分の数は2個以上であれば良い(Nは2以上の自然数)。   For example, in the embodiment, the number of virtual cavity sections is set to 4, 5, or 6 (N = 4, N = 5 or N = 6), but the number of cavity sections is 2 It is sufficient that the number is greater than or equal to N (N is a natural number of 2 or more).

また実施の形態では、仮想的なキャビティ区分25A〜25Fの容積には、上死点にあるピストン13の頂面とシリンダヘッド16の下面とに挟まれた部分の容積を含めず、キャビティ25の開口端縁までの容積(即ち、ピストン頂面基本線L−a1,L−a2より下の容積)としたが、それを含めたものを仮想的なキャビティ区分25A〜25Fの容積として定義しても、同様の作用効果を奏することができる。   In the embodiment, the volume of the virtual cavity sections 25 </ b> A to 25 </ b> F does not include the volume of the portion sandwiched between the top surface of the piston 13 at the top dead center and the bottom surface of the cylinder head 16. The volume up to the opening edge (that is, the volume below the piston top surface basic line L-a1, L-a2) is defined as the volume of the virtual cavity sections 25A to 25F. The same operational effects can be achieved.

また実施の形態ではディーゼルエンジンについて説明したが、本願発明はディーゼルエンジンに限定されず、燃焼室内に燃料を直接噴射する任意の形式のエンジンに対して適用することができる。   Although the diesel engine has been described in the embodiment, the present invention is not limited to the diesel engine, and can be applied to any type of engine that directly injects fuel into the combustion chamber.

第1の実施の形態に係るディーゼルエンジンの要部縦断面図The principal part longitudinal cross-sectional view of the diesel engine which concerns on 1st Embodiment 図1の2−2線矢視図2-2 line view of FIG. 図1の3−3線矢視図3-3 line view of FIG. 図1の4部拡大図4 enlarged view of FIG. 図4の5−5線拡大断面図FIG. 4 is an enlarged sectional view taken along line 5-5. ピストンの上部斜視図Top perspective view of piston 図3の7−7線断面図Sectional view along line 7-7 in FIG. 図3の8−8線断面図Sectional view taken along line 8-8 in FIG. 図3の9−9線断面図Sectional view along line 9-9 in FIG. 補正後のキャビティの断面形状を示す、前記図7に対応する図The figure corresponding to FIG. 7 showing the cross-sectional shape of the cavity after correction 補正後のキャビティの断面形状を示す、前記図8に対応する図The figure corresponding to the above-mentioned Drawing 8 showing the section shape of the cavity after amendment 仮想的なキャビティ区分の説明図Illustration of virtual cavity division キャビティ区分の方向を円周方向に変化させたときの、該キャビティ区分の容積の変化率を示すグラフA graph showing the rate of change in volume of the cavity section when the direction of the cavity section is changed in the circumferential direction 第2の実施の形態に係る、前記図3に対応する図The figure corresponding to the said FIG. 3 based on 2nd Embodiment. 第3の実施の形態に係る、前記図3に対応する図The figure corresponding to the said FIG. 3 based on 3rd Embodiment. 第4の実施の形態に係る、前記図3に対応する図The figure corresponding to the said FIG. 3 based on 4th Embodiment 従来例の問題点を説明する図Diagram explaining the problems of the conventional example

13 ピストン
23 フュエルインジェクタ
23d 大径燃料噴射孔
23e 小径燃料噴射孔
25 キャビティ
25A〜25F キャビティ区分
Lp ピストン中心軸
X1〜X6 半平面
13 piston 23 fuel injector 23d large diameter fuel injection hole 23e small diameter fuel injection hole 25 cavity 25A-25F cavity section Lp piston central axis X1-X6 half plane

Claims (4)

頂面のピストン中心軸(Lp)方向の高さが円周方向に変化するピストン(13)と、前記ピストン(13)の頂面の中央部に凹設されたキャビティ(25)と、前記キャビティ(25)内に燃料を噴射するフュエルインジェクタ(23)とを備え、
Nを2以上の自然数とし、前記キャビティ(25)の内壁面と、ピストン中心軸(Lp)から放射方向に延びて互いに均等な挟み角を有するN個の半平面(X1〜X6)とで、前記キャビティ(25)をN個の仮想的なキャビティ区分(25A〜25F)に区画したとき、前記各々の仮想的なキャビティ区分(25A〜25F)の容積が略等しくなるように、前記キャビティ(25)の内壁面の形状を設定し、
前記フュエルインジェクタ(23)は内径が異なる複数の燃料噴射孔(23d,23e)を備え、前記複数の燃料噴射孔(23d,23e)は、高ペネトレーションを有するN個の大径燃料噴射孔(23d)と、前記大径燃料噴射孔(23d)よりも小径であって低ペネトレーションを有する少なくともN個の小径燃料噴射孔(23e)とからなり、ピストン中心軸(Lp)方向に見て、各大径燃料噴射孔(23d)は対応する仮想的なキャビティ区分(25A〜25F)の前記挟み角の2等分線の方向を指向し、前記小径燃料噴射孔(23e)は円周方向に隣接する前記大径燃料噴射孔(23d)が指向する二つの方向の間を指向することを特徴とする燃料直噴エンジン。
A piston (13) whose height in the piston central axis (Lp) direction of the top surface changes in the circumferential direction; a cavity (25) recessed in the center of the top surface of the piston (13); and the cavity (25) a fuel injector (23) for injecting fuel into the interior,
N is a natural number of 2 or more, and the inner wall surface of the cavity (25) and N half planes (X1 to X6) extending radially from the piston central axis (Lp) and having an equal sandwich angle with each other, When the cavity (25) is divided into N virtual cavity sections (25A to 25F), the volumes of the respective virtual cavity sections (25A to 25F) are substantially equal to each other. )
The fuel injector (23) includes a plurality of fuel injection holes (23d, 23e) having different inner diameters, and the plurality of fuel injection holes (23d, 23e) include N large-diameter fuel injection holes (23d) having high penetration. ) And at least N small-diameter fuel injection holes (23e) having a smaller diameter than the large-diameter fuel injection hole (23d) and having a low penetration , each of which is larger when viewed in the direction of the piston central axis (Lp). The diameter fuel injection hole (23d) points in the direction of the bisector of the included angle of the corresponding virtual cavity section (25A to 25F), and the small diameter fuel injection hole (23e) is adjacent in the circumferential direction. A direct fuel injection engine characterized by being directed between two directions in which the large-diameter fuel injection holes (23d) are directed .
前記フュエルインジェクタ(23)は、円周方向に隣接する前記大径燃料噴射孔(23d)の中央位置に前記小径燃料噴射孔(23e)を1個ずつ備えることを特徴とする、請求項1に記載の燃料直噴エンジン。 Said fuel injector (23) is characterized by comprising the circumferentially adjacent the small diameter fuel injection hole at the center of the large径燃fuel injection hole (23d) (23e) one by one, to claim 1 The fuel direct injection engine described. 前記フュエルインジェクタ(23)は、円周方向に隣接する前記大径燃料噴射孔(23d)の間に前記小径燃料噴射孔(23e)を複数個ずつ備えることを特徴とする、請求項1に記載の燃料直噴エンジン。 Said fuel injector (23), characterized in that it comprises one by a plurality of the small diameter fuel injection hole (23e) between said large径燃charge injection holes circumferentially adjacent (23d), according to claim 1 Direct fuel injection engine. 前記ピストン(13)の頂面はペントルーフ状に形成されることを特徴とする、請求項1〜請求項の何れか1項に記載の燃料直噴エンジン。 The direct fuel injection engine according to any one of claims 1 to 3 , wherein a top surface of the piston (13) is formed in a pent roof shape.
JP2008112449A 2008-04-23 2008-04-23 Direct fuel injection engine Expired - Fee Related JP4495766B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008112449A JP4495766B2 (en) 2008-04-23 2008-04-23 Direct fuel injection engine
AT09158482T ATE544939T1 (en) 2008-04-23 2009-04-22 DIRECT INJECTION ENGINE
EP09158482A EP2112348B1 (en) 2008-04-23 2009-04-22 Direct fuel injection engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008112449A JP4495766B2 (en) 2008-04-23 2008-04-23 Direct fuel injection engine

Publications (2)

Publication Number Publication Date
JP2009264169A JP2009264169A (en) 2009-11-12
JP4495766B2 true JP4495766B2 (en) 2010-07-07

Family

ID=41390327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008112449A Expired - Fee Related JP4495766B2 (en) 2008-04-23 2008-04-23 Direct fuel injection engine

Country Status (1)

Country Link
JP (1) JP4495766B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114592965B (en) * 2022-03-17 2023-10-27 中国第一汽车股份有限公司 Piston combustion chamber structure of gasoline engine and gasoline engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285844A (en) * 2001-03-23 2002-10-03 Nissan Motor Co Ltd Compression self-ignition type internal combustion engine
JP2002317734A (en) * 2001-04-23 2002-10-31 Nissan Motor Co Ltd Fuel injection device for diesel engine
JP2005120832A (en) * 2003-10-14 2005-05-12 Yoshinobu Shimoitani Fuel injection nozzle
JP2008038650A (en) * 2006-08-02 2008-02-21 Honda Motor Co Ltd Fuel direct injection diesel engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106442A (en) * 1991-10-15 1993-04-27 Yanmar Diesel Engine Co Ltd Direct injection type diesel engine
JPH07167016A (en) * 1993-10-09 1995-07-04 Hino Motors Ltd Fuel injection device
JPH10176632A (en) * 1996-12-17 1998-06-30 Mitsubishi Motors Corp Fuel injection nozzle
JPH10288131A (en) * 1997-04-11 1998-10-27 Yanmar Diesel Engine Co Ltd Injection nozzle of diesel engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285844A (en) * 2001-03-23 2002-10-03 Nissan Motor Co Ltd Compression self-ignition type internal combustion engine
JP2002317734A (en) * 2001-04-23 2002-10-31 Nissan Motor Co Ltd Fuel injection device for diesel engine
JP2005120832A (en) * 2003-10-14 2005-05-12 Yoshinobu Shimoitani Fuel injection nozzle
JP2008038650A (en) * 2006-08-02 2008-02-21 Honda Motor Co Ltd Fuel direct injection diesel engine

Also Published As

Publication number Publication date
JP2009264169A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP4757112B2 (en) Direct fuel injection diesel engine
JP4732505B2 (en) Direct fuel injection engine
JP2009215978A (en) Fuel direct injection engine
JP2008014177A (en) Fuel direct injection type diesel engine
JP4602292B2 (en) Direct fuel injection diesel engine
JP4879873B2 (en) Direct fuel injection engine
JP2010053710A (en) Fuel injection engine
EP2112348B1 (en) Direct fuel injection engine
JP4929013B2 (en) Direct fuel injection engine
JP4495766B2 (en) Direct fuel injection engine
JP4495765B2 (en) Direct fuel injection engine
US20100108022A1 (en) Direct fuel-injected engine
JP4929012B2 (en) Direct fuel injection engine
JP4922213B2 (en) Direct fuel injection engine
JP4013300B2 (en) Direct-injection engine intake system
JP2009222000A (en) Fuel direct injection engine
JP2009264167A (en) Direct fuel injection engine
JP2010048229A (en) Fuel direct-injection type engine
JP4801826B2 (en) Direct fuel injection engine
JP2010144593A (en) Fuel direct-injection engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees