JP4495000B2 - Insulation resistance measuring device - Google Patents

Insulation resistance measuring device Download PDF

Info

Publication number
JP4495000B2
JP4495000B2 JP2005040846A JP2005040846A JP4495000B2 JP 4495000 B2 JP4495000 B2 JP 4495000B2 JP 2005040846 A JP2005040846 A JP 2005040846A JP 2005040846 A JP2005040846 A JP 2005040846A JP 4495000 B2 JP4495000 B2 JP 4495000B2
Authority
JP
Japan
Prior art keywords
voltage
insulation resistance
measurement
measurement object
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005040846A
Other languages
Japanese (ja)
Other versions
JP2006226827A (en
Inventor
竜太 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2005040846A priority Critical patent/JP4495000B2/en
Publication of JP2006226827A publication Critical patent/JP2006226827A/en
Application granted granted Critical
Publication of JP4495000B2 publication Critical patent/JP4495000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、測定対象体の絶縁抵抗を測定する絶縁抵抗測定装置に関するものである。   The present invention relates to an insulation resistance measuring apparatus for measuring an insulation resistance of a measurement object.

この種の絶縁抵抗測定装置として、特許第3391310号公報に開示された種々の絶縁抵抗測定装置が知られている。これらの絶縁抵抗測定装置のうちの同公報における図7に開示された絶縁抵抗測定装置によれば、被測定コンデンサから電流計に至る経路の途中に介装された抵抗と、この抵抗に並列に接続された第1ダイオードと、この抵抗に第1ダイオードと向きが逆になるようにして並列に接続された第2ダイオードとを備えたことにより、介装された抵抗によってハムノイズなどに起因して発生するノイズ電流を低減させつつ、順方向に流れるノイズ電流と逆方向に流れるノイズ電流とを第1および第2ダイオードによってほぼ同じ大きさにして互いに相殺させることができる。したがって、測定している電流値をフィルタリングしたり、平均化するなどのディジタル処理を行ったときに、より真値に近い漏れ電流を求めることができる結果、より真値に近い絶縁抵抗を測定することができる。   As this type of insulation resistance measurement device, various insulation resistance measurement devices disclosed in Japanese Patent No. 3391310 are known. Of these insulation resistance measuring devices, according to the insulation resistance measuring device disclosed in FIG. 7 of the same publication, a resistance interposed in the middle of the path from the capacitor to be measured to the ammeter, and this resistance are connected in parallel. Due to the provision of the connected first diode and the second diode connected in parallel to the resistor so that the direction of the first diode is opposite to that of the first diode, it is caused by hum noise due to the interposed resistor. While reducing the generated noise current, the noise current flowing in the forward direction and the noise current flowing in the reverse direction can be made substantially equal by the first and second diodes to cancel each other. Therefore, when digital processing such as filtering or averaging the measured current value is performed, the leakage current closer to the true value can be obtained, and as a result, the insulation resistance closer to the true value is measured. be able to.

一方、出願人は、図2に示す構成の絶縁抵抗測定装置51を既に開発している。この絶縁抵抗測定装置51は、測定対象体2に測定用電圧V1を印加する電圧生成部3と、測定用電圧V1の印加時に測定対象体2を流れる電流I1に比例した電圧V2を出力するI/V変換部54とを少なくとも備え、測定対象体2が容量性負荷のときであってもその絶縁抵抗を正確に測定し得るように構成されている。この場合、I/V変換部54は、演算増幅器11、フィードバック抵抗12、コンデンサ13、およびダイオード14,15を備えて構成されている。この絶縁抵抗測定装置51では、コンデンサ13が、測定用電圧V1に重畳するノイズ成分(交流成分)を測定対象体2の静電容量と分圧することによって電圧V2に発生するふらつきを低減させる。また、各ダイオード14,15が、順方向電流の小さいときには順方向抵抗が大きくなり、かつ順方向電流の大きいときには順方向抵抗が小さくなるというダイオードの固有の電流−電圧特性により、測定対象体2の静電容量とフィードバック抵抗12とによって絶縁抵抗測定装置51が微分回路として作動するのを防止して、電圧V2のふらつきを低減させる。したがって、この絶縁抵抗測定装置51によれば、測定対象体2が容量性負荷であるときにおいても、電圧V2の安定度を高めることができるため、測定対象体2の絶縁抵抗を高精度で測定することができる。
特許第3391310号公報(第3−4頁、第7図)
On the other hand, the applicant has already developed an insulation resistance measuring device 51 having the configuration shown in FIG. The insulation resistance measuring device 51 includes a voltage generator 3 that applies a measurement voltage V1 to the measurement object 2, and a voltage V2 that is proportional to the current I1 that flows through the measurement object 2 when the measurement voltage V1 is applied. / V conversion section 54, and is configured so that the insulation resistance can be accurately measured even when the measurement object 2 is a capacitive load. In this case, the I / V conversion unit 54 includes an operational amplifier 11, a feedback resistor 12, a capacitor 13, and diodes 14 and 15. In this insulation resistance measuring device 51, the capacitor 13 reduces the fluctuation generated in the voltage V <b> 2 by dividing the noise component (AC component) superimposed on the measurement voltage V <b> 1 with the capacitance of the measurement object 2. Further, each diode 14 and 15 has a forward current resistance that is large when the forward current is small, and a current-voltage characteristic of the diode that the forward resistance is small when the forward current is large. The insulation resistance measuring device 51 is prevented from operating as a differentiating circuit by the electrostatic capacity and the feedback resistor 12, and the fluctuation of the voltage V2 is reduced. Therefore, according to this insulation resistance measuring device 51, the stability of the voltage V2 can be increased even when the measurement object 2 is a capacitive load, and therefore the insulation resistance of the measurement object 2 can be measured with high accuracy. can do.
Japanese Patent No. 3391310 (page 3-4, FIG. 7)

しかしながら、上記の絶縁抵抗測定装置51では、コンデンサ13を配設したことにより、測定対象体2に対して測定用電圧V1の印加が電圧生成部3によって開始されたとしても、コンデンサ13が充電されるまで、測定対象体2を流れる電流I1がフィードバック抵抗12を流れない結果、測定対象体2の絶縁抵抗を算出し得る電圧V2がI/V変換部54から出力されないこととなる。この場合、コンデンサ13への充電時間は測定対象体2の絶縁抵抗、ダイオード14(または15)の順方向抵抗、およびコンデンサ13の静電容量とによって決定されるため、測定対象体2の絶縁抵抗が非常に大きいときには、I/V変換部54から電圧V2が出力されるまでにある程度の時間を要することとなる。したがって、この絶縁抵抗測定装置51には、電圧V2に基づく測定対象体2の絶縁抵抗の算出(測定)が遅くなるという解決すべき課題が存在する。   However, in the above-described insulation resistance measuring device 51, the capacitor 13 is charged, even if the voltage generator 3 starts applying the measurement voltage V <b> 1 to the measurement object 2. Until the current I1 flowing through the measurement object 2 does not flow through the feedback resistor 12, the voltage V2 that can calculate the insulation resistance of the measurement object 2 is not output from the I / V conversion unit 54. In this case, since the charging time for the capacitor 13 is determined by the insulation resistance of the measurement object 2, the forward resistance of the diode 14 (or 15), and the capacitance of the capacitor 13, the insulation resistance of the measurement object 2 When is very large, a certain amount of time is required until the voltage V2 is output from the I / V converter 54. Therefore, the insulation resistance measuring apparatus 51 has a problem to be solved that the calculation (measurement) of the insulation resistance of the measurement object 2 based on the voltage V2 is delayed.

また、電流I1がコンデンサ13を充電している間では、フィードバック抵抗12に電流I1が流れずに、その後において、コンデンサ13の充電が進むに従って電流I1の一部が徐々にフィードバック抵抗12を流れ始める。そして、コンデンサ13の充電を完了した後に、すべての電流I1がフィードバック抵抗12を流れて、測定対象体2の絶縁抵抗を算出し得る状態となる。このため、I/V変換部54から出力される電圧V2は、測定対象体2への測定用電圧V1の印加直後に、まず、ゼロボルトになり、その後において、コンデンサ13の充電が進むに従い、測定対象体2の絶縁抵抗を算出し得る電圧値に移行する。つまり、電圧V2(言い換えれば電流I1)に基づいて算出される測定対象体2の絶縁抵抗は、測定対象体2への測定用電圧V1の印加直後において、まず無限大になり、その後においては、実際の値に向けて徐々に移行する。したがって、例えば、正常時における絶縁抵抗が大きい絶縁抵抗体を測定対象体2として、その絶縁抵抗を測定するときに、上記の絶縁抵抗測定装置51では、最初に無限大に近い極めて大きな抵抗値が測定される。このため、この絶縁抵抗測定装置51には、絶縁抵抗が低下して不良品となっている測定対象体2のその絶縁抵抗を測定するときに、測定開始直後に大きな抵抗値が測定されるため、測定者によって正常(良品)であると誤って検査するおそれがあるという課題も存在する。   Further, while the current I1 is charging the capacitor 13, the current I1 does not flow through the feedback resistor 12, and thereafter, a part of the current I1 gradually begins to flow through the feedback resistor 12 as the capacitor 13 is charged. . Then, after the charging of the capacitor 13 is completed, all the current I1 flows through the feedback resistor 12, and the insulation resistance of the measurement object 2 can be calculated. For this reason, the voltage V2 output from the I / V conversion unit 54 becomes zero volts immediately after application of the measurement voltage V1 to the measurement object 2, and thereafter, as the charging of the capacitor 13 proceeds, the measurement is performed. The voltage shifts to a voltage value at which the insulation resistance of the object 2 can be calculated. That is, the insulation resistance of the measurement object 2 calculated based on the voltage V2 (in other words, the current I1) is first infinite immediately after application of the measurement voltage V1 to the measurement object 2, and thereafter, Gradually move towards the actual value. Therefore, for example, when measuring an insulation resistance having a large insulation resistance at normal time as an object 2 to be measured, the insulation resistance measuring device 51 first has an extremely large resistance value close to infinity. Measured. For this reason, in this insulation resistance measuring device 51, when measuring the insulation resistance of the measurement object 2 that is a defective product due to a decrease in insulation resistance, a large resistance value is measured immediately after the start of measurement. There is also a problem that there is a possibility that the measurer erroneously inspects the product as normal (good product).

本発明は、かかる解決すべき課題に鑑みてなされたものであり、絶縁抵抗が大きい測定対象体についても、検査を誤る事態を回避しつつ、この絶縁抵抗をより短時間で測定し得る絶縁抵抗測定装置を提供することを主目的とする。   The present invention has been made in view of such a problem to be solved, and an insulation resistance capable of measuring the insulation resistance in a shorter time while avoiding a situation in which a measurement object having a large insulation resistance is erroneously inspected. The main purpose is to provide a measuring device.

上記目的を達成すべく請求項1記載の絶縁抵抗測定装置は、測定対象体の一端に測定用電圧を印加する電圧生成部と、前記測定用電圧の印加時に前記測定対象体を流れる電流を電圧に変換して出力するI/V変換部とを備え、前記I/V変換部は、演算増幅器と、フィードバック抵抗と、前記演算増幅器の入力端子および前記測定対象体の他端の間に接続されるダイオード相補回路と、前記測定対象体の前記他端および基準電位の間に接続されるコンデンサとを含んで構成され、前記I/V変換部から出力される前記電圧に基づいて前記測定対象体の絶縁抵抗を測定する絶縁抵抗測定装置であって、充電部と、前記演算増幅器の出力端子および前記フィードバック抵抗の間に介装されると共に当該出力端子および前記充電部の一方を前記フィードバック抵抗に選択的に接続させる切替部とを備えている。   In order to achieve the above object, an insulation resistance measuring apparatus according to claim 1, wherein a voltage generating unit that applies a measurement voltage to one end of a measurement object and a current flowing through the measurement object when the measurement voltage is applied An I / V converter that converts the output into an output, and the I / V converter is connected between an operational amplifier, a feedback resistor, an input terminal of the operational amplifier, and the other end of the measurement object. And a capacitor connected between the other end of the measurement object and a reference potential, and the measurement object based on the voltage output from the I / V conversion unit. An insulation resistance measuring device for measuring an insulation resistance of the operational amplifier, wherein the insulation part is interposed between a charging unit, an output terminal of the operational amplifier and the feedback resistor, and one of the output terminal and the charging unit is connected to the filter. And a switching unit for selectively connecting the Dobakku resistance.

また、請求項2記載の絶縁抵抗測定装置は、請求項1記載の絶縁抵抗測定装置において、前記電圧生成部による前記測定電圧の印加に先立って、前記切替部を制御して前記充電部を前記フィードバック抵抗に接続させると共に、当該充電部を作動させて当該フィードバック抵抗および前記ダイオード相補回路を介して前記コンデンサを充電させる制御部を備えている。   Further, the insulation resistance measuring device according to claim 2 is the insulation resistance measuring device according to claim 1, wherein the charging unit is controlled by controlling the switching unit prior to application of the measurement voltage by the voltage generating unit. A control unit is connected to the feedback resistor, and the charging unit is operated to charge the capacitor via the feedback resistor and the diode complementary circuit.

請求項1記載の絶縁抵抗測定装置によれば、電圧生成部による測定用電圧の印加に先立って切替部によって充電部をフィードバック抵抗に選択的に接続させて、充電部に対してダイオード相補回路を介して電流を供給させてコンデンサを充電させることにより、電圧生成部による測定用電圧の印加時に測定対象体を流れる電流が充電用電流としてコンデンサに流れるのを回避することができる結果、電圧生成部による測定用電圧の測定対象体への印加開始直後から測定対象体を流れる電流をフィードバック抵抗側に供給することができる。このため、I/V変換部は、電圧生成部による測定用電圧の測定対象体への印加開始から殆ど遅れることなく、電流に比例する電圧を出力することができる。したがって、この絶縁抵抗測定装置によれば、絶縁抵抗が大きい測定対象体についても、I/V変換部から出力される電圧に基づいて測定対象体の絶縁抵抗を短時間で算出することができる。   According to the insulation resistance measuring apparatus of claim 1, the charging unit is selectively connected to the feedback resistor by the switching unit prior to the application of the measurement voltage by the voltage generating unit, and the diode complementary circuit is connected to the charging unit. As a result of charging the capacitor by supplying the current through the voltage generator, it is possible to avoid the current flowing through the measurement object when the measurement voltage is applied by the voltage generator from flowing to the capacitor as the charging current. The current flowing through the measurement object immediately after the start of application of the measurement voltage to the measurement object can be supplied to the feedback resistor side. For this reason, the I / V converter can output a voltage proportional to the current with almost no delay from the start of application of the measurement voltage to the measurement object by the voltage generator. Therefore, according to this insulation resistance measuring apparatus, the insulation resistance of the measurement object can be calculated in a short time based on the voltage output from the I / V converter even for the measurement object having a large insulation resistance.

また、この絶縁抵抗測定装置によれば、測定対象体を流れる電流がコンデンサを充電することなくフィードバック抵抗に直ちに流れるため、従来の絶縁抵抗測定装置とは異なり、測定対象体への測定用電圧の印加直後において、算出される測定対象体の絶縁抵抗が無限大になることを回避することができる。したがって、例えば、正常時における絶縁抵抗が極めて大きい絶縁抵抗体を測定対象体として、その絶縁抵抗を測定するときであっても、測定開始直後に無限大の抵抗値が測定されることに起因して測定対象体が正常であると測定者が誤認識して検査を誤る事態を確実に回避することができる。   Also, according to this insulation resistance measuring device, the current flowing through the measurement object immediately flows to the feedback resistor without charging the capacitor, so that unlike the conventional insulation resistance measurement device, the measurement voltage applied to the measurement object is Immediately after the application, it is possible to avoid the calculated insulation resistance of the measurement object from becoming infinite. Therefore, for example, an infinite resistance value is measured immediately after the start of measurement, even when measuring the insulation resistance of an insulation resistor having a very large insulation resistance at the normal time as a measurement object. Thus, it is possible to reliably avoid a situation in which the measurement person misrecognizes that the measurement object is normal and erroneously performs the inspection.

請求項2記載の絶縁抵抗測定装置によれば、制御部が、電圧生成部による測定用電圧の印加に先立って、切替部を制御して充電部をフィードバック抵抗に接続させると共に、充電部を作動させてフィードバック抵抗およびダイオード相補回路を介してコンデンサを充電させることにより、電圧生成部による測定用電圧の印加に先立ってコンデンサを自動的に充電することができる。したがって、コンデンサが未充電の状態のまま絶縁抵抗の測定を実施する事態を確実に回避することができるため、測定対象体の絶縁抵抗を常に短時間で測定することができる。   According to the insulation resistance measuring apparatus of claim 2, the control unit controls the switching unit to connect the charging unit to the feedback resistor and activates the charging unit prior to the application of the measurement voltage by the voltage generating unit. By charging the capacitor via the feedback resistor and the diode complementary circuit, the capacitor can be automatically charged prior to the application of the measurement voltage by the voltage generator. Therefore, since it is possible to reliably avoid the situation in which the insulation resistance is measured while the capacitor is not charged, the insulation resistance of the measurement object can always be measured in a short time.

以下、添付図面を参照して、本発明に係る絶縁抵抗測定装置の最良の形態について説明する。   The best mode of an insulation resistance measuring apparatus according to the present invention will be described below with reference to the accompanying drawings.

最初に、絶縁抵抗測定装置1の構成について説明する。   First, the configuration of the insulation resistance measuring apparatus 1 will be described.

絶縁抵抗測定装置1は、図1に示すように、電圧生成部3、I/V変換部4、A/D変換部5、充電部6、演算制御部7および表示部8を備え、測定対象体2の絶縁抵抗Rを測定可能に構成されている。この場合、電圧生成部3は、演算制御部7に制御されて、測定対象体2の一方の端子(本発明における一端)2aに測定用電圧V1(既知の値。例えば5000V)を印加する。   As shown in FIG. 1, the insulation resistance measuring device 1 includes a voltage generation unit 3, an I / V conversion unit 4, an A / D conversion unit 5, a charging unit 6, an arithmetic control unit 7, and a display unit 8, and is a measurement target The insulation resistance R of the body 2 can be measured. In this case, the voltage generation unit 3 is controlled by the calculation control unit 7 to apply the measurement voltage V1 (known value, for example, 5000V) to one terminal (one end in the present invention) 2a of the measurement object 2.

I/V変換部4は、電流−電圧変換回路であって、測定用電圧V1の印加時に測定対象体2を流れる電流I1を測定対象体2の他方の端子(本発明における他端)2bを介して入力すると共に、電流I1に比例する電圧V2(電流I1と後述するフィードバック抵抗12の抵抗値との乗算値)に変換して出力する。具体的には、I/V変換部4は、演算増幅器11、フィードバック抵抗12、測定対象体2の他方の端子2bとグランド(本発明における基準電位)との間に接続されたコンデンサ13(例えば、10nF)、演算増幅器11の反転入力端子(本発明における演算増幅器の入力端子)と測定対象体2の他方の端子2bとの間に介装されて他方の端子2bからフィードバック抵抗12への電流の流れを許容して一方向性素子として機能する第1のダイオード14(本発明におけるダイオード相補回路を構成する一方のダイオードであって、以下、「ダイオード14」ともいう)、ダイオード14に対して逆向きで並列接続されてフィードバック抵抗12から他方の端子2bへの電流の流れを許容して一方向性素子として機能する第2のダイオード15(本発明におけるダイオード相補回路を構成する他方のダイオードであって、以下、「ダイオード15」ともいう)、および演算増幅器11の出力端子とフィードバック抵抗12との間に介装された切替部16とを備えている。この場合、ダイオード14,15で本発明におけるダイオード相補回路が構成される。切替部16は、例えばリレーで構成されると共に、演算制御部7によって制御されて、演算増幅器11の出力端子および充電部6の一方をフィードバック抵抗12に選択的に接続する。なお、I/V変換部4は、切替部16によって演算増幅器11の出力端子とフィードバック抵抗12とが接続されているときに演算増幅器11が反転増幅器として作動して電圧V2を出力する。また、演算増幅器11のフィードバックループ内にフィードバック抵抗12と共に切替部16が含まれる構成のため、本例では、切替部16をI/V変換部4に含める構成を採用したが、これに限らない。例えば、I/V変換部4の外部に切替部16を配設する構成を採用することもできる。   The I / V conversion unit 4 is a current-voltage conversion circuit, and the current I1 flowing through the measurement object 2 when the measurement voltage V1 is applied is supplied to the other terminal (the other end in the present invention) 2b of the measurement object 2. And is converted into a voltage V2 proportional to the current I1 (multiplied value of the current I1 and the resistance value of the feedback resistor 12 described later) and output. Specifically, the I / V conversion unit 4 includes an operational amplifier 11, a feedback resistor 12, a capacitor 13 (for example, connected between the other terminal 2 b of the measurement object 2 and the ground (reference potential in the present invention)). 10 nF), the current flowing from the other terminal 2 b to the feedback resistor 12 between the inverting input terminal of the operational amplifier 11 (the input terminal of the operational amplifier in the present invention) and the other terminal 2 b of the measurement object 2. A first diode 14 that functions as a unidirectional element (which is one diode constituting a diode complementary circuit in the present invention, hereinafter also referred to as “diode 14”), A second diode functioning as a unidirectional element that is connected in parallel in the reverse direction and allows current flow from the feedback resistor 12 to the other terminal 2b. 15 (the other diode constituting the diode complementary circuit in the present invention, hereinafter also referred to as “diode 15”), and a switching unit 16 interposed between the output terminal of the operational amplifier 11 and the feedback resistor 12 And. In this case, the diodes 14 and 15 constitute a diode complementary circuit according to the present invention. The switching unit 16 is configured by a relay, for example, and is controlled by the arithmetic control unit 7 to selectively connect one of the output terminal of the operational amplifier 11 and the charging unit 6 to the feedback resistor 12. In the I / V conversion unit 4, when the output terminal of the operational amplifier 11 and the feedback resistor 12 are connected by the switching unit 16, the operational amplifier 11 operates as an inverting amplifier and outputs the voltage V2. In addition, since the switching unit 16 is included in the feedback loop of the operational amplifier 11 together with the feedback resistor 12, in this example, the configuration in which the switching unit 16 is included in the I / V conversion unit 4 is employed. . For example, a configuration in which the switching unit 16 is disposed outside the I / V conversion unit 4 may be employed.

A/D変換部5は、I/V変換部4から出力される電圧V2の値をディジタルデータD1に変換して演算制御部7に出力する。充電部6は、演算制御部7によって制御されて、充電用電圧V3(既知の電圧値)を切替部16に出力する。演算制御部7は、電圧生成部3、充電部6および切替部16の動作を制御する。また、演算制御部7は、本発明における制御部に相当し、A/D変換部5から出力されるディジタルデータD1に基づいて電流I1の値を算出すると共に、算出した電流I1の値と測定用電圧V1とに基づいて測定対象体2の絶縁抵抗Rの値を算出する算出処理を実行する。表示部8は、液晶パネル等で構成されている。   The A / D conversion unit 5 converts the value of the voltage V2 output from the I / V conversion unit 4 into digital data D1, and outputs the digital data D1 to the arithmetic control unit 7. The charging unit 6 is controlled by the calculation control unit 7 and outputs the charging voltage V <b> 3 (known voltage value) to the switching unit 16. The arithmetic control unit 7 controls operations of the voltage generation unit 3, the charging unit 6, and the switching unit 16. The arithmetic control unit 7 corresponds to the control unit in the present invention, calculates the value of the current I1 based on the digital data D1 output from the A / D conversion unit 5, and measures and calculates the value of the calculated current I1. A calculation process for calculating the value of the insulation resistance R of the measurement object 2 based on the working voltage V1 is executed. The display unit 8 is composed of a liquid crystal panel or the like.

次に、絶縁抵抗測定装置1による測定対象体2の絶縁抵抗の測定動作について説明する。   Next, the measurement operation of the insulation resistance of the measurement object 2 by the insulation resistance measurement device 1 will be described.

まず、不図示のプローブを使用して、図1に示すように、電圧生成部3を測定対象体2の一方の端子2aに接続すると共に、I/V変換部4を測定対象体2の他方の端子2bに接続し、次いで、絶縁抵抗測定装置1を作動させる。   First, using a probe (not shown), as shown in FIG. 1, the voltage generator 3 is connected to one terminal 2 a of the measurement object 2, and the I / V conversion unit 4 is connected to the other of the measurement object 2. Then, the insulation resistance measuring device 1 is operated.

この際に、まず、演算制御部7が、切替部16を制御して接点16aと接点16cとを接続することにより、演算増幅器11の出力端子とフィードバック抵抗12とを切り離すと共にフィードバック抵抗12に充電部6を接続させる。次いで、演算制御部7は、充電部6を制御して、充電部6に充電用電圧V3を出力させる。これにより、充電用電圧V3に基づく充電電流が、切替部16の接点16c、切替部16の接点16a、フィードバック抵抗12およびダイオード15を介してコンデンサ13に供給されて、コンデンサ13に対する充電が開始される。演算制御部7は、この充電の開始から所定時間経過した後に、充電部6による充電用電圧V3の出力を停止させる。この場合、この所定時間は、フィードバック抵抗12の抵抗値およびダイオード15の順方向抵抗値の加算値、充電用電圧V3の電圧値、およびコンデンサ13の静電容量値などに基づいて、過不足のない状態でコンデンサ13が充電されるように予め設定されている。この場合、フィードバック抵抗12の抵抗値は測定対象体2の絶縁抵抗Rと比較して十分に小さいため、充電部6によるコンデンサ13の充電は、測定対象体2を介して電圧生成部3から充電されるのと比較して極めて短時間で完了する。したがって、この所定時間は、絶縁抵抗測定装置1による絶縁抵抗Rの全測定時間に対して殆ど影響を与えないような極めて短い時間に設定することができる。次いで、演算制御部7は、切替部16を制御して接点16aと接点16bとを接続することにより、充電部6とフィードバック抵抗12とを切り離すと共に演算増幅器11の出力端子をフィードバック抵抗12に接続させる。これにより、I/V変換部4では、フィードバックループが形成された演算増幅器11が反転増幅動作を開始する。   At this time, first, the arithmetic control unit 7 controls the switching unit 16 to connect the contact 16a and the contact 16c, thereby disconnecting the output terminal of the operational amplifier 11 and the feedback resistor 12 and charging the feedback resistor 12. The part 6 is connected. Next, the arithmetic control unit 7 controls the charging unit 6 to cause the charging unit 6 to output the charging voltage V3. As a result, the charging current based on the charging voltage V3 is supplied to the capacitor 13 via the contact 16c of the switching unit 16, the contact 16a of the switching unit 16, the feedback resistor 12, and the diode 15, and charging of the capacitor 13 is started. The The arithmetic control unit 7 stops the output of the charging voltage V3 by the charging unit 6 after a predetermined time has elapsed from the start of the charging. In this case, the predetermined time is based on the added value of the resistance value of the feedback resistor 12 and the forward resistance value of the diode 15, the voltage value of the charging voltage V3, the capacitance value of the capacitor 13, and the like. It is preset so that the capacitor 13 is charged in the absence. In this case, since the resistance value of the feedback resistor 12 is sufficiently smaller than the insulation resistance R of the measuring object 2, the charging of the capacitor 13 by the charging unit 6 is charged from the voltage generating unit 3 via the measuring object 2. Compared to being completed, it is completed in a very short time. Therefore, this predetermined time can be set to an extremely short time that hardly affects the total measurement time of the insulation resistance R by the insulation resistance measuring apparatus 1. Next, the arithmetic control unit 7 controls the switching unit 16 to connect the contact 16a and the contact 16b, thereby disconnecting the charging unit 6 and the feedback resistor 12 and connecting the output terminal of the operational amplifier 11 to the feedback resistor 12. Let As a result, in the I / V conversion unit 4, the operational amplifier 11 in which the feedback loop is formed starts the inverting amplification operation.

続いて、演算制御部7は、電圧生成部3を制御して、測定対象体2に対する測定用電圧V1の印加を開始させる。この場合、コンデンサ13が充電部6によって既に充電されているため、測定用電圧V1の印加に起因して測定対象体2を流れる電流I1は、コンデンサ13を充電しないため、ダイオード14およびフィードバック抵抗12を介して演算増幅器11の出力端子側に直ちに流れ始める。また、I/V変換部4では、上記したように演算増幅器11が、既に反転増幅動作を開始している。したがって、I/V変換部4は、フィードバック抵抗12の抵抗値に電流I1を乗算して得られる電圧値と等しい電圧値の電圧V2を直ちに生成して出力する。次いで、A/D変換部5が、入力した電圧V2の電圧値を示すディジタルデータD1を生成して演算制御部7に出力する。演算制御部7は、入力したディジタルデータD1で示される電圧V2に基づいて、測定対象体2の絶縁抵抗Rを算出する算出処理を実行する。具体的には、演算制御部7は、電圧V2の電圧値をフィードバック抵抗12の抵抗値で除算することによって電流I1の電流値を算出し、算出した電流I1の電流値と測定用電圧V1とに基づいて、測定対象体2の絶縁抵抗Rを算出する。次いで、演算制御部7は、算出した絶縁抵抗Rを表示部8に表示させる。演算制御部7は、以上の算出処理を所定時間おきに繰り返し実行する。これにより、絶縁抵抗測定装置1では、演算制御部7によって算出された絶縁抵抗Rが表示部8にリアルタイムで表示される。   Subsequently, the arithmetic control unit 7 controls the voltage generation unit 3 to start application of the measurement voltage V <b> 1 to the measurement object 2. In this case, since the capacitor 13 is already charged by the charging unit 6, the current I1 flowing through the measurement object 2 due to the application of the measurement voltage V1 does not charge the capacitor 13, and therefore the diode 14 and the feedback resistor 12 Immediately begins to flow to the output terminal side of the operational amplifier 11. In the I / V conversion unit 4, the operational amplifier 11 has already started the inverting amplification operation as described above. Therefore, the I / V converter 4 immediately generates and outputs a voltage V2 having a voltage value equal to the voltage value obtained by multiplying the resistance value of the feedback resistor 12 by the current I1. Next, the A / D conversion unit 5 generates digital data D1 indicating the voltage value of the input voltage V2 and outputs it to the arithmetic control unit 7. The arithmetic control unit 7 executes a calculation process for calculating the insulation resistance R of the measurement object 2 based on the voltage V2 indicated by the input digital data D1. Specifically, the arithmetic control unit 7 calculates the current value of the current I1 by dividing the voltage value of the voltage V2 by the resistance value of the feedback resistor 12, and calculates the current value of the current I1 and the measurement voltage V1. Based on the above, the insulation resistance R of the measuring object 2 is calculated. Next, the arithmetic control unit 7 causes the display unit 8 to display the calculated insulation resistance R. The arithmetic control unit 7 repeatedly executes the above calculation process every predetermined time. Thereby, in the insulation resistance measuring apparatus 1, the insulation resistance R calculated by the arithmetic control unit 7 is displayed on the display unit 8 in real time.

このように、この絶縁抵抗測定装置1によれば、電圧生成部3による測定用電圧V1の印加に先立って切替部16によって充電部6をフィードバック抵抗12に選択的に接続させて、充電部6に対して第2のダイオードを介して電流を供給させてコンデンサ13を充電させることにより、電圧生成部3による測定用電圧V1の印加時に測定対象体2を流れる電流I1が充電用電流としてコンデンサ13に流れるのを回避することができる結果、電圧生成部3による測定用電圧V1の測定対象体2への印加開始直後から測定対象体2を流れる電流I1をフィードバック抵抗12側に供給することができる。このため、I/V変換部4は、電圧生成部3による測定用電圧V1の測定対象体2への印加開始から殆ど遅れることなく、電流I1に比例する電圧V2を出力することができる。したがって、この絶縁抵抗測定装置1によれば、測定対象体2の絶縁抵抗Rが非常に大きいときであっても、この電圧V2に基づいて測定対象体2の絶縁抵抗Rを短時間で算出することができる。また、この絶縁抵抗測定装置1によれば、測定用電圧V1の測定対象体2への印加開始から殆ど遅れることなく、演算制御部7が、電圧V2の電圧値を示すディジタルデータD1と既知の測定用電圧V1とに基づいて測定対象体2の絶縁抵抗Rを自動的に算出するため、正確かつ簡易に絶縁抵抗Rを測定することができる。   As described above, according to the insulation resistance measuring apparatus 1, the charging unit 6 is selectively connected to the feedback resistor 12 by the switching unit 16 prior to the application of the measurement voltage V1 by the voltage generating unit 3. In contrast, when the capacitor 13 is charged by supplying a current via the second diode, the current I1 flowing through the measurement object 2 when the voltage generator 3 applies the measurement voltage V1 is used as the charging current. As a result, the current I1 flowing through the measurement object 2 can be supplied to the feedback resistor 12 immediately after the voltage generator 3 starts applying the measurement voltage V1 to the measurement object 2. . For this reason, the I / V conversion unit 4 can output the voltage V2 proportional to the current I1 with almost no delay from the start of application of the measurement voltage V1 to the measurement object 2 by the voltage generation unit 3. Therefore, according to the insulation resistance measuring apparatus 1, even when the insulation resistance R of the measurement object 2 is very large, the insulation resistance R of the measurement object 2 is calculated in a short time based on the voltage V2. be able to. Further, according to the insulation resistance measuring apparatus 1, the arithmetic control unit 7 can detect the digital data D1 indicating the voltage value of the voltage V2 and the known value without almost delaying from the start of application of the measurement voltage V1 to the measurement object 2. Since the insulation resistance R of the measurement object 2 is automatically calculated based on the measurement voltage V1, the insulation resistance R can be measured accurately and easily.

また、この絶縁抵抗測定装置1によれば、測定対象体2を流れる電流I1がコンデンサ13を充電することなくフィードバック抵抗12に直ちに流れるため、従来の絶縁抵抗測定装置51とは異なり、測定対象体2への測定用電圧V1の印加直後において、演算制御部7において算出される測定対象体2の絶縁抵抗Rが無限大になることを回避することができる。したがって、例えば、正常時における絶縁抵抗Rが極めて大きい絶縁抵抗体を測定対象体2として、その絶縁抵抗Rを測定するときであっても、測定開始直後に無限大の抵抗値が測定されることに起因して測定対象体2が正常であると測定者が誤認識して検査を誤る事態を確実に回避することができる。   In addition, according to the insulation resistance measuring apparatus 1, the current I1 flowing through the measurement object 2 immediately flows to the feedback resistor 12 without charging the capacitor 13, so that the measurement object is different from the conventional insulation resistance measurement apparatus 51. Immediately after application of the measurement voltage V1 to 2, it is possible to avoid the insulative resistance R of the measurement object 2 calculated by the arithmetic control unit 7 from becoming infinite. Therefore, for example, an infinite resistance value is measured immediately after the start of measurement even when the insulation resistance R is measured with the insulation resistance R having a very large insulation resistance R as a measurement object 2. Thus, it is possible to reliably avoid a situation in which the measurement person misrecognizes that the measurement object 2 is normal due to the error and the inspection is erroneous.

また、この絶縁抵抗測定装置1によれば、演算制御部7が、電圧生成部3による測定用電圧V1の印加に先立って、切替部16を制御して充電部6をフィードバック抵抗12に接続させると共に、充電部6を作動させてフィードバック抵抗12および第2のダイオード15を介してコンデンサ13を充電させることにより、電圧生成部3による測定用電圧V1の印加に先立ってコンデンサ13を自動的に充電することができる。したがって、コンデンサ13が未充電の状態のまま絶縁抵抗Rの測定を実施する事態を確実に回避することができるため、測定対象体2の絶縁抵抗Rを常に短時間で測定することができる。   Further, according to the insulation resistance measuring apparatus 1, the calculation control unit 7 controls the switching unit 16 to connect the charging unit 6 to the feedback resistor 12 prior to the application of the measurement voltage V <b> 1 by the voltage generation unit 3. At the same time, by operating the charging unit 6 to charge the capacitor 13 via the feedback resistor 12 and the second diode 15, the capacitor 13 is automatically charged prior to the voltage generation unit 3 applying the measurement voltage V 1. can do. Therefore, the situation in which the measurement of the insulation resistance R is performed while the capacitor 13 is not charged can be avoided reliably, so that the insulation resistance R of the measurement object 2 can always be measured in a short time.

さらに、本発明におけるダイオード相補回路を構成する一対のダイオードとしては、トランジスタのダイオード特性を利用して、一対のバイポーラトランジスタで構成したり、ダイオード相補回路を構成する一方のダイオードとして内部の寄生ダイオードを用いると共にダイオード相補回路を構成する他方のダイオードとして電界効果型トランジスタ本体を用いて1つの電界効果型トランジスタで構成したりすることもできる。   Furthermore, as a pair of diodes constituting the diode complementary circuit according to the present invention, a pair of bipolar transistors can be used by utilizing the diode characteristics of the transistor, or an internal parasitic diode can be used as one diode constituting the diode complementary circuit. It is also possible to use a field effect transistor body as the other diode constituting the diode complementary circuit and to form a single field effect transistor.

なお、本発明は、上記の構成に限定されない。例えば、絶縁抵抗測定装置1では、演算制御部7が電圧V2の電圧値を示すディジタルデータD1と既知の測定用電圧V1とに基づいて測定対象体2の絶縁抵抗を算出して液晶パネル等の表示部8に表示させる構成が採用されているが、表示部8をアナログメータで構成すると共に電圧V2でこのアナログメータの針を直接駆動して絶縁抵抗Rを表示させる構成を採用することもできる。この構成によれば、A/D変換部5を省くことができ、また演算制御部7において絶縁抵抗Rの算出を行う必要がなくなるために演算制御部7の構成を簡略化できる結果、絶縁抵抗測定装置をより簡易かつ安価に構成することができる。また、演算制御部7が電圧生成部3、充電部6および切替部16に対する制御を自動的に実施する構成を採用したが、切替部16の切り替えや、電圧生成部3および充電部6による所定の電圧の発生を手動操作で行う構成を採用することもできる。また、演算制御部7が測定対象体2の絶縁抵抗Rを自動的に算出する構成を採用したが、電圧V2に基づいて手計算で測定対象体2の絶縁抵抗Rを算出することもできる。   In addition, this invention is not limited to said structure. For example, in the insulation resistance measuring apparatus 1, the arithmetic control unit 7 calculates the insulation resistance of the measurement object 2 based on the digital data D1 indicating the voltage value of the voltage V2 and the known measurement voltage V1, and the liquid crystal panel or the like. A configuration for displaying on the display unit 8 is employed, but a configuration in which the display unit 8 is configured with an analog meter and the needle of the analog meter is directly driven with the voltage V2 to display the insulation resistance R may be employed. . According to this configuration, the A / D conversion unit 5 can be omitted, and since the calculation control unit 7 does not need to calculate the insulation resistance R, the configuration of the calculation control unit 7 can be simplified. As a result, the insulation resistance The measuring apparatus can be configured more simply and inexpensively. Moreover, although the calculation control part 7 employ | adopted the structure which implements control with respect to the voltage generation part 3, the charging part 6, and the switching part 16 automatically, switching of the switching part 16 and the predetermined by the voltage generation part 3 and the charging part 6 were employ | adopted. It is also possible to adopt a configuration in which the voltage is generated manually. Moreover, although the calculation control part 7 employ | adopted the structure which calculates the insulation resistance R of the measuring object 2 automatically, the insulation resistance R of the measuring object 2 can also be calculated by manual calculation based on the voltage V2.

絶縁抵抗測定装置1の構成を示すブロック図である。1 is a block diagram showing a configuration of an insulation resistance measuring device 1. FIG. 絶縁抵抗測定装置51の構成を示すブロック図である。2 is a block diagram showing a configuration of an insulation resistance measuring device 51. FIG.

符号の説明Explanation of symbols

1 絶縁抵抗測定装置
2 測定対象体
2a 一方の端子
2b 他方の端子
3 電圧生成部
4 I/V変換部
6 充電部
7 演算制御部
11 演算増幅器
12 フィードバック抵抗
13 コンデンサ
14,15 ダイオード
16 切替部
I1 電流
V1 測定用電圧
V2 I/V変換部から出力される電圧
DESCRIPTION OF SYMBOLS 1 Insulation resistance measuring apparatus 2 Measuring object 2a One terminal 2b The other terminal 3 Voltage generation part 4 I / V conversion part 6 Charging part 7 Operation control part 11 Operational amplifier 12 Feedback resistance 13 Capacitor 14, 15 Diode 16 Switching part I1 Current V1 Measurement voltage V2 Voltage output from the I / V converter

Claims (2)

測定対象体の一端に測定用電圧を印加する電圧生成部と、
前記測定用電圧の印加時に前記測定対象体を流れる電流を電圧に変換して出力するI/V変換部とを備え、
前記I/V変換部は、演算増幅器と、フィードバック抵抗と、前記演算増幅器の入力端子および前記測定対象体の他端の間に接続されるダイオード相補回路と、前記測定対象体の前記他端および基準電位の間に接続されるコンデンサとを含んで構成され、
前記I/V変換部から出力される前記電圧に基づいて前記測定対象体の絶縁抵抗を測定する絶縁抵抗測定装置であって、
充電部と、前記演算増幅器の出力端子および前記フィードバック抵抗の間に介装されると共に当該出力端子および前記充電部の一方を前記フィードバック抵抗に選択的に接続させる切替部とを備えている絶縁抵抗測定装置。
A voltage generator for applying a measurement voltage to one end of the measurement object;
An I / V conversion unit that converts the current flowing through the measurement object into a voltage when the measurement voltage is applied, and outputs the voltage.
The I / V conversion unit includes an operational amplifier, a feedback resistor, a diode complementary circuit connected between an input terminal of the operational amplifier and the other end of the measurement object, the other end of the measurement object, and Including a capacitor connected between reference potentials,
An insulation resistance measuring device that measures an insulation resistance of the measurement object based on the voltage output from the I / V conversion unit,
Insulation resistance having a charging unit and a switching unit that is interposed between the output terminal of the operational amplifier and the feedback resistor and selectively connects one of the output terminal and the charging unit to the feedback resistor measuring device.
前記電圧生成部による前記測定電圧の印加に先立って、前記切替部を制御して前記充電部を前記フィードバック抵抗に接続させると共に、当該充電部を作動させて当該フィードバック抵抗および前記ダイオード相補回路を介して前記コンデンサを充電させる制御部を備えている請求項1記載の絶縁抵抗測定装置。   Prior to application of the measurement voltage by the voltage generation unit, the switching unit is controlled to connect the charging unit to the feedback resistor, and the charging unit is operated via the feedback resistor and the diode complementary circuit. The insulation resistance measuring device according to claim 1, further comprising a controller that charges the capacitor.
JP2005040846A 2005-02-17 2005-02-17 Insulation resistance measuring device Active JP4495000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005040846A JP4495000B2 (en) 2005-02-17 2005-02-17 Insulation resistance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005040846A JP4495000B2 (en) 2005-02-17 2005-02-17 Insulation resistance measuring device

Publications (2)

Publication Number Publication Date
JP2006226827A JP2006226827A (en) 2006-08-31
JP4495000B2 true JP4495000B2 (en) 2010-06-30

Family

ID=36988334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005040846A Active JP4495000B2 (en) 2005-02-17 2005-02-17 Insulation resistance measuring device

Country Status (1)

Country Link
JP (1) JP4495000B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016144120A1 (en) * 2015-03-10 2016-09-15 주식회사 엘지화학 Insulation resistance measuring device and method
KR101746141B1 (en) 2015-03-10 2017-06-13 주식회사 엘지화학 Insulation resistance measurement apparatus and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956575U (en) * 1982-10-06 1984-04-13 株式会社村田製作所 Insulation resistance screening device for capacitive elements
JPH05126864A (en) * 1991-10-30 1993-05-21 Yokogawa Hewlett Packard Ltd Current/voltage conversion circuit
JPH0564782U (en) * 1992-02-06 1993-08-27 横河・ヒューレット・パッカード株式会社 Insulation resistance / voltage converter
JP3391310B2 (en) * 1999-09-22 2003-03-31 株式会社村田製作所 Insulation resistance measuring device for capacitive electronic components

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956575U (en) * 1982-10-06 1984-04-13 株式会社村田製作所 Insulation resistance screening device for capacitive elements
JPH05126864A (en) * 1991-10-30 1993-05-21 Yokogawa Hewlett Packard Ltd Current/voltage conversion circuit
JPH0564782U (en) * 1992-02-06 1993-08-27 横河・ヒューレット・パッカード株式会社 Insulation resistance / voltage converter
JP3391310B2 (en) * 1999-09-22 2003-03-31 株式会社村田製作所 Insulation resistance measuring device for capacitive electronic components

Also Published As

Publication number Publication date
JP2006226827A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
US6683462B2 (en) Apparatus for and method of measuring capacitance with high accuracy
US8866467B1 (en) Systems and methods to perform integrated power measurement and RDSon measurement
TW201339783A (en) Power supply controlling circuit and loop analyzer using same
JP2009265079A (en) Liquid concentration measurement apparatus
US9696352B2 (en) Current sense circuit with offset calibration
CN101189796A (en) Circuit and method for determining current in a load
WO2015045267A1 (en) Sensor signal detection device
JP3901698B2 (en) Semiconductor integrated circuit with current detection function and power supply device using the same
JP4495000B2 (en) Insulation resistance measuring device
JP5563734B2 (en) Electronic load device and battery internal resistance measuring device
JP5057950B2 (en) Insulation resistance tester
US7043957B2 (en) Element impedance detection apparatus and method for oxygen sensor
US11668733B2 (en) Multi-stage current measurement architecture
JP4671768B2 (en) Impedance measuring device
US20200003720A1 (en) Sensor arrangement for voltammetry
JP2007315981A (en) Measuring device and inspection device
JP4456584B2 (en) Method and system for measuring DC internal resistance value of electric double layer capacitor
TWI596348B (en) Measuring device
CN213210409U (en) Electronic load and evaluation system for quality evaluation of power supply to be tested
JP5558251B2 (en) Integration circuit and voltage detection device
JP4154414B2 (en) Current measurement circuit
JP6134226B2 (en) Four-terminal resistance measuring device
JP4280915B2 (en) Current-voltage conversion circuit
WO2021020404A1 (en) Torque detector, motor unit, and electromotive bicycle
JP4861126B2 (en) Space charge balance control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

R150 Certificate of patent or registration of utility model

Ref document number: 4495000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150416

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250