JP4494670B2 - Icebreaker - Google Patents

Icebreaker Download PDF

Info

Publication number
JP4494670B2
JP4494670B2 JP2001146071A JP2001146071A JP4494670B2 JP 4494670 B2 JP4494670 B2 JP 4494670B2 JP 2001146071 A JP2001146071 A JP 2001146071A JP 2001146071 A JP2001146071 A JP 2001146071A JP 4494670 B2 JP4494670 B2 JP 4494670B2
Authority
JP
Japan
Prior art keywords
bow
region
angle
snow
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001146071A
Other languages
Japanese (ja)
Other versions
JP2002337785A (en
Inventor
進 岸
豊 山内
洋孝 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Shipbuilding Corp
Original Assignee
Universal Shipbuilding Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Shipbuilding Corp filed Critical Universal Shipbuilding Corp
Priority to JP2001146071A priority Critical patent/JP4494670B2/en
Publication of JP2002337785A publication Critical patent/JP2002337785A/en
Application granted granted Critical
Publication of JP4494670B2 publication Critical patent/JP4494670B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/08Ice-breakers or other vessels or floating structures for operation in ice-infested waters; Ice-breakers, or other vessels or floating structures having equipment specially adapted therefor
    • B63B35/083Ice-breakers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Auxiliary Methods And Devices For Loading And Unloading (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、砕氷船の技術分野に属し、特にラミングが可能な砕氷船に関する。
【0002】
【従来の技術】
ラミング砕氷とは、図8のように氷盤上の雪の厚さ(以下、「冠雪深」という。)が比較的大きく、砕氷船が連続的に砕氷することができなくなった場合に、適当な距離だけ後退してから助走して、氷に対して勢い良く船首を衝突させて氷盤を割り、進出距離を得る砕氷方法である。南極や北極等では、氷盤は厚く、その厚さや分布は不規則であり、氷盤上には雪が堆積しており(以下、「冠雪」という。)、予想できない厳しい氷況に遭遇する場合が多い。最近、冠雪を伴う氷盤については、冠雪深が大きくなる(数十cm〜1m程度)と、抵抗が急激に増大することが実船で確かめられており、そのような場合はラミング砕氷が行われる。
【0003】
砕氷船の船型は、従来、連続砕氷を目的として最適設計されているので、氷盤に乗り上げ易いように、図8に示すごとく、船首が著しく前方へ傾斜している。また、船首部を進行方向に直角な断面で輪切りにした外形線(フレームライン)を見れば、喫水線付近のフレームライン形状は、図9に示されるごとく、氷を割り易いようにV型の形状をしている。さらに、ラミング砕氷したときに、過度に氷に乗り上げ無いように、船底付近に板状の小さなバウストッパ52が前方に突出して取り付けられている。
【0004】
【発明が解決しようとする課題】
ラミング砕氷性能が優れた船型としては、次のような船型であることが要求される。
【0005】
・ラミング砕氷時の抵抗が小さく、進出距離が大きい船型であること。
【0006】
・ラミング砕氷終了時(船体停止時)に、船体が膠着状態(ビセット状態)にならない船型であること。
【0007】
しかしながら、図8、図9に示されるような従来船型の砕氷船によって冠雪が存在する氷盤をラミング砕氷しようとすると、以下に述べる問題が発生する。
【0008】
▲1▼ 冠雪を船首で圧縮する(圧密する)際には、圧縮により生じる抵抗及び冠雪と船体の間に摩擦力が作用し、砕氷抵抗が増大して進出距離が小さくなる。これを簡単に図10で説明する。図10は従来船型が冠雪の有する氷盤を砕氷する状況を示したものである。
【0009】
氷盤P上に存在する冠雪Qは、主に砕氷船の喫水線Rより上の部分(図中の領域A)に接触して圧密される。冠雪Qは圧密された後は喫水線Rの下へ潜り込むが、冠雪Qの抵抗は殆ど領域Aで発生するので、領域Aでの抵抗のみを考える。また砕氷船の船首は鉛直方向(喫水線に直角な方向)にも運動するが、説明を簡単にするためにこれは考えないことにする。砕氷船の船型は氷盤に乗り上げ易くするために前方に傾斜した前縁53を有しており、喫水線より上の領域Aについても、その傾向を保っている。この冠雪とその圧密の様子を、DD’断面(バトックライン)において喫水線より上の部分を取り出し図11に示す。
【0010】
なお、図11において、船首の図示の速度Vは、冠雪Qに対する相対移動方向であり、正確には、船体の進行方向速度そのものではなく、船体外板に直角方向な速度、換言すれば、船体の進行方向速度と舷側方向の広がり速度との合成速度である。したがって、図11はその合成速度方向での冠雪の圧密経過を示している。
【0011】
冠雪は従来船型(船首)によって図11(A)の状態から、図11(B)の状態へ圧密される。船首がL1だけ進んだとき、冠雪は船首からL2の部分まで圧密され、雪の密度は船首に近いところが大きく、船首から離れるにしたがって小さくなり、DCの位置で圧密されていない密度に漸近する(図にて圧密された冠雪をQAとして示す)。冠雪Qの圧密による抵抗は、船首の運動方向により生じた圧密長さL0に応じた抵抗FPが働く。また砕氷船の船首には、図12に示すように、冠雪による摩擦力μFNが働き、この力の船の進行方向成分が抵抗となる。従来型船型では、このような雪の圧密及び摩擦による2つの抵抗が生じ、全抵抗が増えて進出距離が小さくなる。
【0012】
▲2▼ 次に生じる問題としては、船首が氷盤に乗り上げたときに、バウストッパが効かずに過度に乗り上げビセット状態に陥ることである。従来船型は、乗り上げ防止のために図8に示すように、バウストッパ52が船首船底部付近に設けられているが、その大きさが比較的小さいために氷盤に接触せず、その結果、船首が大きく乗り上げて進出距離が過大となり、船体と氷盤及び冠雪との接触面積が大きくなって摩擦抵抗が増え、船がビセット状態に陥る。ビセット状態に陥ると、砕氷船の最大推力を持ってしても後進することができなくなり、最悪の場合、他の砕氷船に助けを求めねばならない。実際には、これを避けるために、ラミング砕氷を行う際に衝突船速を抑えたり、船体が完全に停止する前に後進をかけたりして、オペレーション技術でビセット状態となるのを防いでいる。
【0013】
本発明は、このような事態に鑑み、ビセット状態に陥らずにラミング砕氷に優れた砕氷船を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明によれば、上記目的は、ラミング砕氷が可能な砕氷船において、船体の高さ方向範囲を、最大喫水線から氷盤上の想定冠雪高さの位置までの領域H3、最大喫水線から氷盤の厚さ相当の深さまでの領域をH2、領域H2より下方で船底位置までの領域をH1とし、各領域H3,H2,H1での船首のフレームラインと鉛直線とのなす角をそれぞれβ3,β2,β1としたときに、角β3<角β2かつ角β1<角β2の関係を満足していることにより達成される。
【0015】
このような構成の本発明の砕氷船にあっては、連続砕氷時には領域H2における角β2をもつ部分で砕氷を行い、ラミング時には冠雪の圧密による抵抗を、上記角β2より小さい角β3をもつ領域H3で低減せしめる。また、領域H2より下方の領域H1では、砕氷は行われずに氷を左右に押し分けるので、角β2より小さい角β1をもって、小さな接触面積で抵抗も小さくなる。こうして、全領域H3,H2,H1での抵抗が小さくなり、ビセット状態に陥ることなく、砕氷能力を確保する。
【0016】
かかる本発明において、船首は、領域H1で、該船首の前縁ラインから前方へ突出する板状のバウストッパが設けられていることが好ましい。このバウストッパにより氷盤への過度の乗り上げが防止される。
【0017】
上記バウストッパは、該バウストッパの前縁の水平面に対する角が、該バウストッパの下部にて約90°であって、上方に向け段階的に小さくなり、上部では、領域H2での船首の前縁ラインが水平面となす角に近づく角となっていることが望ましい。こうすることにより、急激な船速の減少と船体に働く衝撃力を緩和できる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面にもとづき説明する。
【0019】
本発明の一実施形態として、図1そして図2にラミング砕氷性能が優れた船型を示す。ここで、図1は船体の進行方向に直角な面での断面における船首の外形線たるフレームラインそして図2は船首の前縁ラインを示している。図において、砕氷船の船首部分での高さ方向領域が、喫水線より上で冠雪深相当までの領域H3、喫水線下の連続砕氷可能な氷厚相当深さまでの領域H2、領域H2より下で船底までの領域H1に区分されている。これら各領域に区分して、本発明の船型を説明する。
【0020】
<領域H3
船首が冠雪と接触する領域H3では、船体の各フレームラインと鉛直線のなす角度β3は、図1のごとく、氷盤が船首と接触する領域H2での各フレームラインと垂線のなす角度β2よりも小さい(β3<β2)。これは、図2のような船首の前縁ラインのプロファイルで見ると、水平面に対する領域H3での船首角度Ф3が、領域H2の角度との間ではФ2で、Ф3>Ф2の関係を満足することを意味する。このような船型を採用することによって、冠雪による抵抗を従来船型よりも減少させることができるようになる。その理由は以下のごとくである。
【0021】
図2のDD’断面で喫水線より上の部分を示す図3から理解できるように、速度Vで進行する船体の船首と接触する平行四辺形ABCDの冠雪Qは平行四辺形EFCDで示される圧密冠雪QAとされる。圧密抵抗は圧密された冠雪Qの体積に比例するので、図4や図5のような角度の異なる船型(船首)の場合にもBF,FCが図3と同一長であれば、圧密される体積は等しくなるので、船の進行にもとづく圧密抵抗は従来船型も本発明による船型も同一となる。
【0022】
一方、冠雪の摩擦による抵抗は船首角度が小さいほど大きくなる。図6に示されるように、摩擦力は、船首の傾斜面EFに働き、その大きさは法線方向の力FNに摩擦係数μを乗じた力となる。摩擦による抵抗はこのμFNの船の進行方向成分となる。FNは冠雪の圧密による抵抗と砕氷船の船首が冠雪に与える自重の反力によって生じる。船首角度が小さいほどμFNは大きくなるので、冠雪の摩擦による抵抗μFNは船首角度が小さいほど大きい。図6は(A)に船首角度が小さい場合、(B)に船首角度が大きい場合を示している。
【0023】
また、図7に示すように、冠雪は前方に圧密されると、冠雪表面より上へ盛り上がる。船首は、船首角度が小さいほどこの盛り上がりを上から押え込むので、この押え込み力及びそれによって生じる摩擦力がそれだけ大きくなる。
【0024】
したがって、以上述べた理由により、図1に示すように領域H3における角度β3をβ2より小さくし(β3<β2)、すなわち、Ф3をФ2より大きくする(Ф3>Ф2)ことによって、冠雪が接触する領域の船体外板の傾きを、喫水線より下の船体外板の傾きより、鉛直方向へ立てることになり、冠雪による抵抗を従来船型より小さくすることが可能となる。β3については、特に0度(Ф3=90度)にしても良いが、実際に氷盤では、氷が盛り上がって喫水線より上に起伏が生じていることがあり、船体外板が垂直に立っていると、船首に大きな荷重が作用して船首を損傷する虞れがあるので、β3=0とせず、適当な値を設けておくことが実用的である。
【0025】
<領域H2
領域H2では、連続砕氷可能な比較的薄い氷盤、またはラミング砕氷の場合は連続砕氷不可能な厚い氷盤の固結層が接触する領域である。故に、領域H2ではフレームラインはできるだけ傾斜させて(β2は大きく)砕氷抵抗が小さくなるようにし、連続砕氷できない氷盤の場合は乗り上げ易いようにする。したがってこの領域のフレームラインは基本的には従来船型と同一の傾斜をもつようにしておく。
【0026】
<領域H1
領域H1は連続砕氷不可能な厚い氷の固結層及び非固結層が船体に接触する部分であり、もはやこの領域では船首が氷盤上に乗り上げてこの氷盤を曲げによって砕氷することは行われず、圧壊(クラッシング破壊)及び非固結層を左右に押し分ける状況が主体となる。クラッシング破壊による抵抗は氷盤との接触面積が大きいほど大きくなるので、フレームラインと鉛直線のなす角度β1はできるだけ小さくして、乗り上げを防ぐと共に氷盤との接触面積を小さくし抵抗を軽減できるようにする。もしβ1を領域H2のβ2と同一にした場合は、船首が過度に乗り上げてビセットする可能性が高くなってしまう。
【0027】
また、領域H1の上部の船首先端部には図2に示すように、過度の乗り上げを防止するために、従来船型よりも大きなバウストッパ11を設けることが望ましい。バウストッパ11についての重要なことは、図2に示すように、Ф2<Ф1<Ф0≦90度という関係のもとで段階的にバウストッパ前縁の傾斜角度を変化させて急激な船速の減少を緩和していくことである。Ф1=90度とすると、ラミング砕氷時の衝突船速が瞬時に0となり非常に過大な負の加速度が生じるので、船体及び船上機器に障害を及ぼす可能性が高い。
【0028】
このような船型を採用することによって、領域H1では砕氷抵抗を軽減すると共に過度の乗り上げを防ぐことが可能となる。
【0029】
本発明による領域H1,H2,H3での船型はSS.7付近よりも船首方向寄りの部分に適用する効果が大きい(図2参照)。SS.7付近より船体中央寄りでは全体的に船体外板が立ってくる(β1,β2,β3→0)ので、その効果は低い。
【0030】
【発明の効果】
以上のように、本発明は、ラミング砕氷が可能な砕氷船において、船体の高さ方向範囲を、最大喫水線から氷盤上の想定冠雪高さの位置までの領域H3、最大喫水線から氷盤の厚さ相当の深さまでの領域をH2、領域H2より下方で船底位置までの領域をH1とし、各領域H3,H2,H1での船首のフレームラインと鉛直線とのなす角をそれぞれβ3,β2,β1としたときに、角β3<角β2かつ角β1<角β2の関係を満足しているようにしたので、領域H2における連続砕氷を従来船と同様に行えると共に、領域H3でのラミング砕氷時の抵抗を小さくしてその性能を向上させ、さらに、領域H1での圧壊層そして非固結層の押し分け進行時の抵抗を減少せしめ、ラミング砕氷性能に優れた砕氷船を得る。
【図面の簡単な説明】
【図1】本発明の一実施形態としての砕氷船のフレームラインを示す図である。
【図2】図1の船体の船首の前縁ラインを示す図である。
【図3】冠雪の圧密抵抗の様子を示し、船首が領域H3において適切な角度をもっている場合である。
【図4】冠雪の圧密抵抗の様子を示し、船首が領域H3において垂直となっている場合である。
【図5】冠雪の圧密抵抗の様子を示し、船首が領域H3において小さい角度をもっている場合である。
【図6】冠雪の摩擦抵抗の様子を示し、(A)は角度が小さいとき、(B)は角度が大きいときである。
【図7】冠雪の盛り上がりによる摩擦抵抗の様子を示す図である。
【図8】従来の砕氷船が船首の前縁ラインを示す図である。
【図9】図1の船体のフレームラインを示す図である。
【図10】図1の船体の船首が冠雪を圧密するときの様子を示す図である。
【図11】冠雪の圧密抵抗の発生原理を示す図である。
【図12】冠雪の摩擦抵抗の発生原理を示す図である。
【符号の説明】
11 バウストッパ
1 領域
2 領域
3 領域
β1 フレームラインの鉛直線に対する角
β2 フレームラインの鉛直線に対する角
β3 フレームラインの鉛直線に対する角
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of icebreakers, and particularly relates to an icebreaker capable of ramming.
[0002]
[Prior art]
Ramming ice breaks when the thickness of snow on the ice plate (hereinafter referred to as “snow depth”) as shown in FIG. 8 is relatively large and the icebreaker can no longer continuously break the ice. This is an ice breaking method in which an advance distance is obtained by retreating a suitable distance and then making a forcible collision with the ice to break the ice plate. In Antarctica, Arctic, etc., the ice sheet is thick, its thickness and distribution are irregular, and snow is deposited on the ice sheet (hereinafter referred to as “crown snow”), and you will encounter unforeseen severe ice conditions. There are many cases. Recently, it has been confirmed on actual vessels that ice depths with snow cover increase as the snow depth increases (several tens of centimeters to 1 meter). Is done.
[0003]
Conventionally, the shape of the icebreaker has been optimally designed for the purpose of continuous icebreaking. Therefore, as shown in FIG. Also, if you look at the outline (frame line) with the bow section cut in a cross section perpendicular to the direction of travel, the shape of the frame line near the waterline is V-shaped so that it is easy to break ice as shown in FIG. I am doing. Furthermore, a small plate-like bow stopper 52 is attached to the front of the ship so as not to ride over the ice excessively when ramming ice breaks.
[0004]
[Problems to be solved by the invention]
The hull form with excellent ramming ice breaking performance is required to have the following hull form.
[0005]
-The ship must have a small resistance during ramming ice breaking and a large advancing distance.
[0006]
・ Hull form that does not cause the hull to become stuck (bist set) at the end of ramming ice breaking (when the hull stops).
[0007]
However, the following problems occur when trying to ram ice crust where snow is present with a conventional icebreaker as shown in FIGS. 8 and 9.
[0008]
(1) When the snow cap is compressed (consolidated) at the bow, the resistance caused by the compression and the frictional force acts between the snow cap and the hull, increasing the ice breaking resistance and reducing the advancing distance. This will be briefly described with reference to FIG. FIG. 10 shows a situation in which a conventional ship crushes ice sheets having snow covered with snow.
[0009]
The snow cover Q present on the ice plate P is mainly brought into contact with the portion above the draft line R of the icebreaker (region A in the figure) and consolidated. After the snow cap Q is consolidated, it sinks under the draft line R. However, since the resistance of the snow cap Q occurs almost in the region A, only the resistance in the region A is considered. The icebreaker's bow also moves in the vertical direction (perpendicular to the waterline), but this is not considered for the sake of simplicity. The hull form of the icebreaker has a front edge 53 that is inclined forward in order to make it easier to ride on the ice board, and this tendency is maintained in the region A above the water line. FIG. 11 shows the snow covered and the state of consolidation thereof by taking out the portion above the water line in the DD ′ cross section (buttock line).
[0010]
In FIG. 11, the illustrated speed V of the bow is a relative moving direction with respect to the snow cap Q, and more precisely, the speed in the direction perpendicular to the hull outer plate, not the speed in the traveling direction of the hull itself, in other words, This is the combined speed of the speed of the hull in the direction of travel and the speed of spreading in the flank direction. Accordingly, FIG. 11 shows the consolidation process of snow cover in the direction of the combined speed.
[0011]
The snow cap is consolidated from the state shown in FIG. 11A to the state shown in FIG. When the bow advances by L 1 , the snow canopy is consolidated from the bow to L 2 , and the snow density is large near the bow, decreases as it moves away from the bow, and is not consolidated at the DC position. Asymptotic (consolidated snow cover is shown as Q A in the figure). Resistance by compaction Snow-Covered Q, the resistance F P acts in accordance with the consolidation length L 0 caused by the bow in the direction of movement. Furthermore the bow of the icebreaker, as shown in FIG. 12, the frictional force .mu.F N acts by snowcapped, travel direction component of the force of the boat is resistance. In the conventional ship type, two resistances are generated by such snow compaction and friction, and the total resistance increases and the advance distance decreases.
[0012]
{Circle around (2)} The next problem that arises is that when the bow rides on the ice, the bow stopper does not work and the rider goes over and falls into a biset state. In the conventional hull form, as shown in FIG. 8, a bow stopper 52 is provided in the vicinity of the bow bottom of the bow as shown in FIG. 8. However, since its size is relatively small, it does not come into contact with the ice plate. As a result, the advancing distance becomes excessive, the contact area between the hull, the ice board and the snow covered snow increases, the frictional resistance increases, and the ship falls into a biset state. Once in the biset condition, it is impossible to move backwards even with the maximum thrust of the icebreaker, and in the worst case, other icebreakers must seek help. In fact, to avoid this, the speed of the collision ship is reduced when the ramming ice breaks, or the reverse of the hull is stopped before the hull is completely stopped to prevent the operation technology from becoming a biset state. .
[0013]
In view of such circumstances, an object of the present invention is to provide an icebreaker excellent in ramming icebreaking without falling into a biset state.
[0014]
[Means for Solving the Problems]
According to the present invention, in the icebreaker capable of ramming icebreaking, the above object is achieved by determining the range in the height direction of the hull from the maximum waterline to the area H 3 from the maximum waterline to the position of the estimated snow height on the ice plate, the maximum waterline. The area up to the depth corresponding to the thickness of the ice plate is H 2 , the area below the area H 2 and to the ship bottom position is H 1, and the bow frame line and vertical line in each area H 3 , H 2 , H 1 This is achieved by satisfying the relationship of angle β 3 <angle β 2 and angle β 1 <angle β 2 , where β 3 , β 2 , and β 1 are respectively formed.
[0015]
In the icebreaker of the present invention having such a structure, ice breaking is performed at a portion having the angle β 2 in the region H 2 during continuous ice breaking, and resistance due to snow-capped compaction during ramming is smaller than the angle β 2. allowed to reduce the region H 3 with beta 3. Further, in the lower region H 1 from the region H 2, because the push aside ice to the left and right without crushed ice is made, with the angle beta 2 is less than angle beta 1, the resistance is also reduced with a small contact area. Thus, the resistance in all the regions H 3 , H 2 and H 1 is reduced, and the ice breaking ability is ensured without falling into a biset state.
[0016]
In such present invention, the bow is in the area H 1, it is preferable that the plate-shaped Bausutoppa projecting forward from ship neck leading edge line is provided. This bow stopper prevents excessive riding on the ice plate.
[0017]
In the bow stopper, the angle of the front edge of the bow stopper with respect to the horizontal plane is about 90 ° at the lower part of the bow stopper and gradually decreases upward, and at the upper part, the front edge line of the bow in the region H 2 It is desirable that the angle be close to the angle formed by the horizontal plane. By doing so, the drastic decrease in ship speed and the impact force acting on the hull can be mitigated.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0019]
As an embodiment of the present invention, FIGS. 1 and 2 show a hull form having excellent ramming ice breaking performance. Here, FIG. 1 shows a frame line as an outline of the bow in a cross section in a plane perpendicular to the traveling direction of the hull, and FIG. 2 shows a leading edge line of the bow. In the figure, the height direction area in the bow portion of the icebreaker, the region H 3 up crown snow depth corresponds above the waterline, the area of H 2 until successive icebreaking possible ice thickness corresponding depth below the waterline, region H 2 It is divided into a region H 1 below and to the bottom of the ship. The hull form of the present invention will be described in each of these areas.
[0020]
<Region H 3 >
In the region H 3 where the bow is in contact with the snow cover, the angle β 3 formed between each frame line of the hull and the vertical line is as shown in FIG. 1 between the frame line and the perpendicular line in the region H 2 where the ice plate is in contact with the bow. The angle formed is smaller than β 232 ). In the profile of the front edge line of the bow as shown in FIG. 2, the bow angle Ф 3 in the region H 3 with respect to the horizontal plane is Ф 2 between the angle of the region H 2 and Ф 3 > Ф 2 Means satisfying the relationship. By adopting such a hull form, resistance due to snow can be reduced as compared with the conventional hull form. The reason is as follows.
[0021]
As can be understood from FIG. 3, which shows the portion above the waterline in the DD ′ cross section of FIG. 2, the snow cover Q of the parallelogram ABCD that contacts the bow of the hull traveling at the speed V is the consolidation shown by the parallelogram EFCD. It is said to be snow-capped Q A. Since the consolidation resistance is proportional to the volume of the consolidated snow canopy Q, even in the case of a ship type (head) with different angles as shown in FIGS. 4 and 5, if the BF and FC are the same length as in FIG. Therefore, the consolidation resistance based on the progress of the ship is the same for both the conventional hull form and the hull form according to the present invention.
[0022]
On the other hand, the resistance due to snow-covered friction increases as the bow angle decreases. As shown in FIG. 6, the friction force acts on the inclined surface EF of the bow, and the magnitude thereof is a force obtained by multiplying the normal direction force F N by the friction coefficient μ. Resistance due to friction is the acceleration component of the ship of this .mu.F N. F N is caused by the reaction force of its own weight bow resistor and icebreaker according compaction Snow-Covered gives the crown snow. More so .mu.F N becomes larger bow angle small, resistance .mu.F N due to friction Snow-Covered is larger for the bow angle small. FIG. 6 shows a case where the bow angle is small in (A), and a case where the bow angle is large in (B).
[0023]
Moreover, as shown in FIG. 7, when the snow cap is consolidated forward, it rises above the surface of the snow cap. The bow suppresses the bulge from above as the bow angle is smaller, so that the pressing force and the frictional force generated thereby increase accordingly.
[0024]
Accordingly, for the reasons mentioned above, the angle beta 3 in the region H 3 as shown in FIG. 1 and smaller than β 2 (β 3 <β 2 ), i.e., to increase the .PHI 3 from Ф 23> Ф 2 ) By this, the inclination of the hull skin plate in the area where the snow can touch will be set in the vertical direction from the inclination of the hull skin plate below the waterline, and the resistance due to snow can be reduced compared to the conventional hull form. It becomes. β 3 may be set to 0 ° (Ф 3 = 90 °), but the ice plate may actually swell and undulate above the waterline, so that the hull skin is vertical. When standing, a large load may act on the bow and damage the bow, so it is practical to set an appropriate value without setting β 3 = 0.
[0025]
<Region H 2 >
In the region H 2 , a relatively thin ice plate capable of continuous ice breaking, or a thick ice plate solidified layer capable of continuous ice breaking in the case of ramming ice breaks, is in contact with the region H 2 . Therefore, in the region H 2 , the frame line is inclined as much as possible (β 2 is large) so that the ice breaking resistance becomes small, and in the case of an ice plate that cannot continuously break ice, it is easy to ride. Therefore, the frame line in this area is basically set to have the same inclination as that of the conventional hull form.
[0026]
<Region H 1 >
Area H 1 is the part where the thick ice solidified layer and non-consolidated layer that cannot be continuously broken are in contact with the hull. In this area, the bow rides on the ice plate and breaks the ice plate by bending. It is not carried out, and the main situation is that the crushing (crushing fracture) and the unconsolidated layer are pushed to the left and right. Since the resistance due to crushing failure increases as the contact area with the ice plate increases, the angle β 1 between the frame line and the vertical line is made as small as possible to prevent the ride and reduce the contact area with the ice plate to reduce the resistance. Be able to mitigate. If β 1 is made the same as β 2 in the region H 2 , there is a high possibility that the bow will ride over and be set.
[0027]
Further, as shown in FIG. 2, it is desirable to provide a bow stopper 11 larger than the conventional hull form at the tip of the bow at the top of the region H 1 in order to prevent excessive climbing. The important thing about the bow stopper 11 is that, as shown in FIG. 2, the abrupt ship speed is changed by gradually changing the inclination angle of the bow stopper leading edge under the relationship 関係210 ≦ 90 degrees. This is to mitigate the decline. If Ф 1 = 90 degrees, the collision ship speed at the time of ramming ice breaks will be instantly 0 and a very excessive negative acceleration will occur, so there is a high possibility that the hull and onboard equipment will be damaged.
[0028]
By adopting such a hull form, it is possible to reduce ice resistance in the region H 1 and to prevent excessive riding.
[0029]
The hull form in the regions H 1 , H 2 , and H 3 according to the present invention is more effective when applied to a portion closer to the bow direction than in the vicinity of SS.7 (see FIG. 2). Since the hull skin plate generally stands near the center of the hull from near SS.7 (β 1 , β 2 , β 3 → 0), the effect is low.
[0030]
【The invention's effect】
As described above, according to the present invention, in an icebreaker capable of ramming icebreaking, the range in the height direction of the hull is the region H 3 from the maximum water line to the position of the assumed snow height on the ice plate, and the ice from the maximum waterline. the region up to a thickness equivalent to the depth of the panel H 2, a region from the region H 2 to a ship bottom position beneath the H 1, and the bow of the frame line and the vertical line in each region H 3, H 2, H 1 angle of each beta 3 of, beta 2, when the beta 1, since as satisfies the angular beta 3 <corner beta 2 and angle beta 1 <corner beta 2 relationship, continuous in the region H 2 Breaking ice can be performed in the same way as a conventional ship, and the resistance during ramming ice breaking in area H 3 is reduced to improve its performance. Furthermore, the resistance during crushing and unconsolidated layer push-in progress in area H 1 To obtain an icebreaker with excellent ramming icebreaking performance.
[Brief description of the drawings]
FIG. 1 is a diagram showing a frame line of an icebreaker as an embodiment of the present invention.
2 is a view showing a front edge line of a bow of the hull of FIG. 1;
FIG. 3 shows a state of consolidation resistance of snow cover, in which the bow has an appropriate angle in a region H 3 .
FIG. 4 shows a state of consolidation resistance of snow-capped snow, where the bow is vertical in a region H 3 .
FIG. 5 shows the state of consolidation resistance of snow cover, where the bow has a small angle in the region H 3 .
FIGS. 6A and 6B show the state of frictional resistance of snow snow. FIG. 6A shows a case where the angle is small, and FIG. 6B shows a case where the angle is large.
FIG. 7 is a diagram showing a state of frictional resistance due to the rising snow.
FIG. 8 is a view showing a leading edge line of a bow of a conventional icebreaker.
9 is a view showing a frame line of the hull of FIG. 1. FIG.
10 is a view showing a state where the bow of the hull of FIG. 1 compacts the snow cap.
FIG. 11 is a diagram showing the principle of generation of consolidation resistance of snow cover.
FIG. 12 is a diagram showing a principle of generation of frictional resistance of snow snow.
[Explanation of symbols]
11 Bow stopper H 1 region H 2 region H 3 region β 1 angle with respect to vertical line of frame 1 β 2 angle with respect to vertical line of frame line β 3 angle with respect to vertical line of frame line

Claims (3)

ラミング砕氷が可能な砕氷船において、船体の高さ方向範囲を、最大喫水線から氷盤上の想定冠雪高さの位置までの領域H3、最大喫水線から氷盤の厚さ相当の深さまでの領域をH2、領域H2より下方で船底位置までの領域をH1とし、各領域H3,H2,H1での船首のフレームラインと鉛直線とのなす角をそれぞれβ3,β2,β1としたときに、角β3<角β2かつ角β1<角β2の関係を満足していることを特徴とする砕氷船。In an icebreaker capable of ramming icebreaking, the hull height direction range is from the maximum waterline to the area of the assumed snow height on the iceboard, H 3 , from the maximum waterline to the depth corresponding to the iceboard thickness. the region H 2, a region from the region H 2 to a ship bottom position beneath the H 1, the regions H 3, H 2, H 1 respectively beta 3 the angle between the bow of the frame line and the vertical line at, beta 2, when the beta 1, angular beta 3 <icebreaker characterized in that it satisfies the angular beta 2 and angle beta 1 <corner beta 2 relationship. 船首は、領域H1で、該船首の前縁ラインから前方へ突出する板状のバウストッパが設けられていることとする請求項1に記載の砕氷船。Bow is an area H 1, icebreaker according to claim 1, characterized in that plate-shaped Bausutoppa projecting forward from ship neck leading edge line is provided. バウストッパは、該バウストッパの前縁の水平面に対する角が、該バウストッパの下部にて約90°であって、上方に向け段階的に小さくなり、上部では、領域H2での船首の前縁ラインが水平面となす角に近づく角となっていることとする請求項2に記載の砕氷船。In the bow stopper, the angle of the front edge of the bow stopper with respect to the horizontal plane is about 90 ° at the lower part of the bow stopper and gradually decreases upward, and at the upper part, the front edge line of the bow in the region H 2 is reduced. The icebreaker according to claim 2, wherein the icebreaker has an angle close to an angle formed with a horizontal plane.
JP2001146071A 2001-05-16 2001-05-16 Icebreaker Expired - Lifetime JP4494670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001146071A JP4494670B2 (en) 2001-05-16 2001-05-16 Icebreaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001146071A JP4494670B2 (en) 2001-05-16 2001-05-16 Icebreaker

Publications (2)

Publication Number Publication Date
JP2002337785A JP2002337785A (en) 2002-11-27
JP4494670B2 true JP4494670B2 (en) 2010-06-30

Family

ID=18991782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001146071A Expired - Lifetime JP4494670B2 (en) 2001-05-16 2001-05-16 Icebreaker

Country Status (1)

Country Link
JP (1) JP4494670B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4722072B2 (en) * 2007-03-22 2011-07-13 三井造船株式会社 Ship
JP6578614B2 (en) * 2015-08-24 2019-09-25 三井E&S造船株式会社 Ship

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515796A (en) * 1974-07-02 1976-01-17 Waas Heinrich Saihyosen
JPS5116393U (en) * 1974-07-23 1976-02-05
JPS5133488A (en) * 1974-07-12 1976-03-22 Waertsilae Oy Ab
JPS5467991A (en) * 1977-11-10 1979-05-31 Nippon Kokan Kk <Nkk> Cylindrical bow tip of ice breaker
JPS5493580A (en) * 1977-12-30 1979-07-24 Mitsui Eng & Shipbuild Co Ltd Shipping for frozen sea
JPS588694U (en) * 1981-07-08 1983-01-20 川崎重工業株式会社 Ice ship with ice chip ejector
JPS588693U (en) * 1981-07-08 1983-01-20 川崎重工業株式会社 Ice-water vessel with a bulge
JPS5843887A (en) * 1981-09-11 1983-03-14 Hitachi Zosen Corp Ice breaker
JPS60206798A (en) * 1984-03-12 1985-10-18 オーワイ ワルトシラ アクチーボラグ Hull or ship with hull
JPH0478689A (en) * 1990-07-13 1992-03-12 Nkk Corp Ice breaker
JP2002127985A (en) * 2000-10-23 2002-05-09 Nkk Corp Ice breaker, and method of improving vessel type

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA855485A (en) * 1967-08-15 1970-11-10 Alexbow Limited Ship's bow construction

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515796A (en) * 1974-07-02 1976-01-17 Waas Heinrich Saihyosen
JPS5133488A (en) * 1974-07-12 1976-03-22 Waertsilae Oy Ab
JPS5116393U (en) * 1974-07-23 1976-02-05
JPS5467991A (en) * 1977-11-10 1979-05-31 Nippon Kokan Kk <Nkk> Cylindrical bow tip of ice breaker
JPS5493580A (en) * 1977-12-30 1979-07-24 Mitsui Eng & Shipbuild Co Ltd Shipping for frozen sea
JPS588694U (en) * 1981-07-08 1983-01-20 川崎重工業株式会社 Ice ship with ice chip ejector
JPS588693U (en) * 1981-07-08 1983-01-20 川崎重工業株式会社 Ice-water vessel with a bulge
JPS5843887A (en) * 1981-09-11 1983-03-14 Hitachi Zosen Corp Ice breaker
JPS60206798A (en) * 1984-03-12 1985-10-18 オーワイ ワルトシラ アクチーボラグ Hull or ship with hull
JPH0478689A (en) * 1990-07-13 1992-03-12 Nkk Corp Ice breaker
JP2002127985A (en) * 2000-10-23 2002-05-09 Nkk Corp Ice breaker, and method of improving vessel type

Also Published As

Publication number Publication date
JP2002337785A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
US3521590A (en) Ship&#39;s bow construction
US7779771B2 (en) Method for breaking ice, motor-driven watercraft and its use
CN105667703B (en) A kind of ice breaker stem structure
CA1187342A (en) Ship
KR101871885B1 (en) Icebreaker for operation in shallow freezing water
EP3107801B1 (en) Ship for navigating in icy waters having improved propulsion performances
CN105173017A (en) Ice-prying type icebreaker
JP4494670B2 (en) Icebreaker
JPH0723112B2 (en) Icebreaker hull
CN205469645U (en) Icebreaker stem structure
KR101800073B1 (en) Ship hull structure comprising wave resistance increase minimizing steps
EP3086998B1 (en) Ship for navigating in icy waters with improved propulsive performance
US3690281A (en) Stern construction for icebreaking vessels
KR101567854B1 (en) Ice breaking bow of ship
JPS6018598B2 (en) icebreaker
RU2612343C9 (en) Semi-submersible icebreaker
WO2019187699A1 (en) Ship
KR20140072376A (en) Ice protecting structure of offshore and vessel
Zuev et al. Influence of different components on resistance of ships movement in ice
JP4711294B2 (en) Deck plate
JP2825631B2 (en) ship
CN214392331U (en) Ladle bottom structure
CN211368601U (en) Ship wharf berthing buffer device
US11479325B1 (en) Serrated keel
JPS5889484A (en) Ship

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

R150 Certificate of patent or registration of utility model

Ref document number: 4494670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term