JP4493889B2 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP4493889B2
JP4493889B2 JP2001255593A JP2001255593A JP4493889B2 JP 4493889 B2 JP4493889 B2 JP 4493889B2 JP 2001255593 A JP2001255593 A JP 2001255593A JP 2001255593 A JP2001255593 A JP 2001255593A JP 4493889 B2 JP4493889 B2 JP 4493889B2
Authority
JP
Japan
Prior art keywords
heating
temperature
heat source
water supply
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001255593A
Other languages
Japanese (ja)
Other versions
JP2003065585A (en
Inventor
英司 坂谷
直樹 森下
裕 田村
則幸 高須
晴之 平澤
次郎 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Hokkaido Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Hokkaido Electric Power Co Inc
Priority to JP2001255593A priority Critical patent/JP4493889B2/en
Publication of JP2003065585A publication Critical patent/JP2003065585A/en
Application granted granted Critical
Publication of JP4493889B2 publication Critical patent/JP4493889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプサイクルの冷媒を熱交換器を介して水熱媒に熱交換させ、冷・温水を生成して搬送する熱源機によって供給される水熱媒によって冷暖房を行う冷暖房システムに関するものである。
【0002】
【従来の技術】
ヒートポンプサイクルにより採熱した熱で冷暖房に使う水熱媒を生成し、室内放熱器に送水して冷暖房を行うヒートポンプチラー冷暖房システムとも称される冷暖房システムにおいては、ヒートポンプサイクルで採熱できる熱量が外気温度に左右されることから、外気温度が低いときには暖房能力が低下し、必要とする暖房雰囲気が得がたくなる。こうした問題を、例えば特開昭55―20315号公報に示されているヒートポンプ式の空調技術では、室内熱交換器に正特性サーミスタ加熱器を配置して、水熱媒温度低下時の暖房能力低下を正特性サーミスタ加熱器で補うことで解決している。この技術では、室内熱交換器の水熱媒温度をモニターしていて、水熱媒温度が設定温度以下になったときには補助熱源として正特性サーミスタ加熱器を動作させ、暖房能力の不足を補っている。
【0003】
【発明が解決しようとする課題】
上記した従来のヒートポンプ式の空調技術においては、暖房運転の場合で室内暖房負荷が小さい場合でも、除霜運転時などでは水熱媒温度が低下するため正特性サーミスタ加熱器による不必要な熱補給が行われることになり、非経済的であるといった問題点がある。また、室内熱交換器の水熱媒温度により正特性サーミスタ加熱器の運転の可否を決定しているため、例えば暖房起動時、冷たい室内を急速に暖房したいような場合でも補助的にしか正特性サーミスタ加熱器が働かず暖房の立上がりが悪いといった問題点もある。
【0004】
本発明は、係る従来の問題点を解決するためになされたものであって、その課題とするところは、省エネルギー性を備え快適な暖房を実現できるヒートポンプ式の冷暖房システムを開発することである。
【0005】
【課題を解決するための手段】
前記課題を達成するために請求項1の発明は、ヒートポンプサイクルの冷媒を熱交換器を介して水熱媒と熱交換させ、水熱媒を加熱する補助熱源用加熱手段と送水手段を備えた熱源機と、熱源機に接続され熱源機から搬送されてくる水熱媒により冷暖房を行う室内放熱器とから構成される冷暖房システムについて、暖房時においてその室内放熱器で設定される設定温度と室内放熱器で検知される室内温度との温度差に応じて算出された目標送水温度と、検知された外気温度に応じて算出された目標送水温度下限値および目標送水温度上限値と、のいずれかを採用し、採用された目標送水温度と現在の送水温度との差に応じて、補助熱源用加熱手段の運転の可否を判定する手段を採用する。
【0006】
前記課題を達成するために請求項2の発明は、ヒートポンプサイクルの冷媒を熱交換器を介して水熱媒に熱交換させ、水熱媒を加熱する補助熱源用加熱手段と送水手段を備えた熱源機と、熱源機に接続され熱源機から搬送されてくる水熱媒により冷暖房を行う室内放熱器とから構成される冷暖房システムについて、検知された外気温度が所定の設定値以下の場合には圧縮機を停止し、補助熱源用加熱手段を運転する手段を採用する。
【0008】
前記課題を達成するために請求項の発明は、請求項1または請求項に係る前記手段における室内放熱器に、急速暖房設定手段を設け、この急速暖房設定手段により急速暖房の設定がなされた場合、補助熱源用加熱手段を連続運転させ、通常の温度より高い温度の水熱媒を生成するようにする手段を採用する。
【0009】
前記課題を達成するために請求項の発明は、請求項1〜請求項までのいずれかに係る前記手段における熱交換器の下流側に、補助熱源用加熱手段を設ける手段を採用する。
【0010】
【発明の実施の形態】
実施の形態1.
図1〜図5によって示す本実施の形態は、不凍液等による水熱媒を生成して搬送する熱源機で構成される熱源側熱媒サイクルと、これによって供給される水熱媒によって冷暖房を行う室内放熱器で構成される利用側サイクルとにより構成される冷暖房システムに関するものである。熱源機は、図1に示すように水熱媒を貯留するバッファタンク1と、バッファタンク1の水熱媒を循環させる送水手段としての循環ポンプ2と、水熱媒を熱交換器3を介して加熱又は冷却するヒートポンプ方式の冷凍サイクルとによって構成されている。
【0011】
バッファタンク1には往き側接続口と、戻り側接続口がそれぞれ設けられていて、往き側接続口は、循環ポンプ2の吸込側に配管接続され、戻り側接続口は、採熱用の熱交換器3の二次流路に直列に接続された補助熱源用加熱手段4の出口側が配管接続されている。循環ポンプ2の吐出側には利用側サイクルの往き側配管が接続され、熱交換器3の二次流路の入口側には利用側サイクルの戻り側配管が接続されている。ヒートポンプによる冷凍サイクルは、室外熱交換器5と四方切換弁6と圧縮機7及び流量調節弁8並びに熱交換器3の一次流路で構成された熱媒循環閉路であり、冷凍サイクルの冷媒と水熱媒とは相互に独立し、混じり合うことはないが熱交換器3により熱的には接続している。上記構成の熱源機は、熱交換ユニット9として単一のケーシングに収められ、室外に設置される。
【0012】
利用側サイクルは、往き側配管と戻り側配管とに接続された室内放熱器10により水熱媒の循環系として構成されている。室内放熱器10としては、室内空気を循環させながら冷却或いは加熱することで冷暖房機能を果す一機又は複数機のファンコイルユニットや、輻射による冷暖房機能を果す床暖房パネル等による一組又は複数組の輻射パネルが接続される。
【0013】
熱交換ユニット9には、図2に示すように循環ポンプ2や圧縮機7及び補助熱源用加熱手段4等を制御するマイコンを含む制御手段11が搭載されており、この制御手段11に冷房モードや暖房モードの設定を行う設定スイッチや、LEDや液晶等により運転状態等を表示する表示手段を備えたコントローラが信号線又は赤外線信号により信号のやりとりを可能に接続されている。制御手段11にはバッファタンク1の出口の水熱媒温度を検知する熱媒温度検知手段12の出力、及び室外の温度を検知する外気温度検知手段13の出力がそれぞれ制御情報として取込まれる。
【0014】
また、室内放熱器10にはコントローラ14及び室温を検知する室温検知手段15が備えられ、コントローラ14の操作によって水熱媒の流量をそれ自体に設けられた流量調節弁を動かして、室温が設定温度になるようにフィードバック制御を行うとともに、熱交換ユニット9の制御手段11に運転情報や設定温度及び室内温度を制御情報として送信する。
【0015】
熱交換ユニット9のコントローラにより、暖房モードが設定されると、制御手段11はヒートポンプの冷凍サイクルを暖房のサイクルに切換え、室内放熱器10のコントローラ14からの運転情報の取込みを行う。室内放熱器10のいずれかから運転要求の信号が入ると、利用側サイクルに送る水熱媒の温度を暖房できる温度になるように、熱交換ユニット9を制御する。室内放熱器10側からの運転要求の信号が一つもない場合には、循環ポンプ2は停止状態におかれる。
【0016】
一方、熱交換ユニット9のコントローラにより、冷房モードが設定されると、制御手段11はヒートポンプの冷凍サイクルを冷房のサイクルに切換え、室内放熱器10のコントローラ14からの運転情報の取込みを行う。室内放熱器10のいずれかから運転要求の信号が入ると、室内放熱器10に送る水熱媒の温度を冷房できる、例えば7℃になるように、熱交換ユニット9を制御する。室内放熱器10側からの運転要求の信号が一つもない場合には、循環ポンプ2は停止状態におかれる。
【0017】
本実施の形態の冷暖房システムは、暖房運転における省エネルギー性と快適性の実現をテーマとしており、制御手段11は暖房モードでは図3のフローチャートによって示すような制御動作を行う。即ち、図3におけるステップ♯1で暖房運転が開始されると、ステップ♯2において室内放熱器10のコントローラ14から設定温度T1を読込み、ステップ♯3に進む。ステップ♯3では外気温度検知手段13の出力から外気温度T0を検知してステップ♯4で外気温度T0が所定の温度、例えば−15℃以上かどうかの判定を行い、−15℃以上であればステップ♯8の処理に進み、そうでなければステップ♯5の処理に進む。
【0018】
ステップ♯5では、外気温度が低温で圧縮機7を保護する必要があり、ヒートポンプサイクルでの採熱を断念して圧縮機7を停止し、補助熱源用加熱手段4を動作させる処理をして、ステップ♯6において目標の熱媒温度を、例えば50℃に固定する処理を行い、ステップ♯7へ進む。ステップ♯7では、外気温度T0の検知から所定時間(例えば5分)経過したかどうかの判定を行い、経過していればステップ♯2の処理に戻り、経過していなければステップ♯7の処理を繰り返す。
【0019】
ステップ♯4で、外気温度T0≧−15℃であれば、圧縮機7の運転が可能であるとしてステップ♯8〜ステップ♯15の一連の処理により、外気温度T0、設定温度T1、室内温度Tsの関係から、室内暖房負荷に応じた最適ないくつかの目標送水温度Tm、β、αが算出される。これらの送水温度算出のためにまず、ステップ♯8において外気温度検知手段13の出力による外気温度T0により、送水温度下限値αと、送水温度上限値βを算出する。送水温度下限値αと送水温度上限値βでは、対象となる暖房空間の断熱性能の幅を考慮した値であり、ある外気温度T0について設定温度T1を達成するために最低限必要な水熱媒温度と、設定温度T1を達成するために必要な最大限の水熱媒温度であり、例えば、図4に示すように予め割付けした外気温度T0の条件によって算出される。
【0020】
ステップ♯9では、バッファタンク1の下流に設けられた熱媒温度検知手段12による出力から現在の送水温度Twを読取り、ステップ♯10で室温検知手段15の出力から現在の室内温度Tsを読取り、ステップ♯11へ進む。ステップ♯11では設定温度T1と現在の室内温度Tsとの比較を行い、設定温度T1と現在の室内温度Tsの温度差ΔT1を算出し、ステップ♯12へ進み、算出した温度差ΔT1により送水温度の変化率ΔGを算出し、ステップ♯13へ進む。温度差ΔT1と送水温度の変化率ΔGとは例えば、図5に示すような関係にある。
【0021】
ステップ♯13では、前回の目標送水温度Tm0、現在の送水温度Tw、送水温度の変化率ΔGから、算出式Tm=Tm0+Tw×ΔGを使って目標送水温度Tmを算出し、ステップ♯14へ進む。ステップ♯14とステップ♯15において、前の処理で算出した目標送水温度Tmと、外気温度T0により算出した送水温度下限値αと送水温度上限値βとの比較を行う。そして、送水温度下限値α<目標送水温度Tm<送水温度上限値βであれば、目標送水温度Tmをステップ♯16で採用する処理をし、目標送水温度Tm≦送水温度下限値αであれば目標送水温度αをステップ♯18で採用する処理を行い、目標送水温度Tm≧送水温度上限値βであれば目標送水温度βをステップ♯17で採用する処理を行ってそれぞれステップ♯19へ進む。
【0022】
ステップ♯19では、採用した目標送水温度Tm或いはβ又はαと現在の送水温度Twとの温度差ΔT2を算出し、ステップ♯20〜ステップ♯22において、補助熱源用加熱手段4の運転の可否を判定する。即ち、ステップ♯20では、温度差ΔT2が所定の値(例えば8℃)より大きいかどうかを判定し、大きければ補助熱源が必要であるとして補助熱源用加熱手段4を運転させる処理をステップ♯23で行う。ステップ♯21では、温度差ΔT2が例えば3℃より小さいかどうかの判定を行い、温度差ΔT2が3℃以上であればステップ♯22へ進み、前の時刻に補助熱源用加熱手段4が運転していたかどうかを判定し、温度差ΔT2が3℃未満であればステップ♯24へ進み、補助熱源の必要はないとして補助熱源用加熱手段4を運転しない処理を行う。ステップ♯22で前の時刻に補助熱源用加熱手段4が運転していた場合には、ステップ♯23の処理に進み補助熱源用加熱手段4を運転させる処理を行う。この処理は、補助熱源用加熱手段4をチャタリングさせないためのものである。
【0023】
ステップ♯23で補助熱源用加熱手段4を運転させる処理をした場合には、ステップ♯25で所定時間(例えば5分)が経過したかどうかの判定を行い、経過していればステップ♯2の処理に戻り、経過していなければステップ♯25の処理を繰り返す。また、ステップ♯24で補助熱源用加熱手段4を運転させない処理をした場合も、ステップ♯26で所定時間(例えば5分)が経過したかどうかの判定を行い、経過していればステップ♯2の処理に戻り、経過していなければステップ♯26の処理を繰り返す。
【0024】
このような運転動作により、ヒートポンプサイクルの除霜運転時でも利用側サイクルに流れる水熱媒温度は低下せず、快適な暖房雰囲気を形成することができ、室内暖房負荷が小さい場合の除霜運転時などに不必要な補助熱源の運転が回避されるので省エネルギー性も備わる。また、外気温度が極めて低く、ヒートポンプによる採熱が有効でないばかりでなく、運転により圧縮機7が破損するような状況では、補助熱源用加熱手段4を有効に使って圧縮機7の破損を回避したうえで、補助熱源による快適な暖房を行うことができる。補助熱源用加熱手段4を熱交換器3の二次流路の後流側に設ける構成を採ることにより、ヒートポンプの効率の悪化を招くことなく暖房能力を向上させることができる。なお、補助熱源用加熱手段4については電気によるものの方が制御が容易であるが、ガスや灯油を燃焼させる方式のものでも構わない。
【0025】
実施の形態2.
図6と図7に示す本実施の形態は、実施の形態1で示した冷暖房システムに急速暖房機能を付加したもので、この機能に係る構成以外は実施の形態1のものと同じである。従って、実施の形態1のものと同じ部分については実施の形態1のものと同じ符号を用い、それらについての説明は省略する。
【0026】
本実施の形態の冷暖房システムの室内放熱器10には図6に示すようにコントローラ14及び室温を検知する室温検知手段15が備えられ、コントローラ14には急速暖房設定手段16が設けられている。この急速暖房設定手段16の設定は、熱交換ユニット9の制御手段11に制御情報として送信される。暖房モードで急速暖房設定手段16により急速暖房が設定されると、熱交換ユニット9の制御手段11は、設定温度T1と室内温度Tsの関係がT1=Ts+γとなるまで補助熱源用加熱手段4を運転させ急速暖房運転を行う。そして、T1=Ts+γとなった時点で急速暖房運転を終了し、実施の形態1の図3によって示した制御動作に移行する。これによって、起動時に急速暖房の設定を行うことにより速やかな暖房が可能になる。これ以外の機能は実施の形態1のものと同じである。
【0027】
【発明の効果】
請求項1の発明によれば、省エネルギー性を備え快適な暖房を実現できるヒートポンプ式の暖房システムが得られる。
【0028】
請求項2の発明によれば、省エネルギー性を備えるとともに、外気温度が低くても圧縮機の保護を図りながら快適な暖房ができるようになる。
【0030】
請求項の発明によれば、請求項1または請求項に係る前記効果とともに立上がりの速い急速暖房運転が可能になる。
【0031】
請求項の発明によれば、請求項1〜請求項までのいずれかに係る前記効果とともにヒートポンプの効率を落すことなく暖房能力を向上させることができる。
【図面の簡単な説明】
【図1】 実施の形態1の冷暖房システムを示すシステム構成図である。
【図2】 実施の形態1の冷暖房システムにおける制御系のブロック構成図である。
【図3】 実施の形態1の冷暖房システムにおける制御手段の制御動作を示すフローチャートである。
【図4】 実施の形態1の冷暖房システムの制御手段における制御動作に関する外気温度と送水温度の上限・下限の関係を示す説明図である。
【図5】 実施の形態1の冷暖房システムの制御手段における制御動作に関する設定温度と室内温度の温度差と、送水温度の変化率の関係を示す説明図である。
【図6】 実施の形態2の冷暖房システムにおける制御手段の制御動作を示すフローチャートである。
【図7】 実施の形態2の冷暖房システムを示すシステム構成図である。
【符号の説明】
3 熱交換器、 4 補助熱源用加熱手段、 7 圧縮機、 9 熱交換ユニット、 10 室内放熱器、 11 制御手段、 12 熱媒温度検知手段、 13 外気温度検知手段、 15 室温検知手段、 16 急速暖房設定手段。
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to an air conditioning system that heats and cools a refrigerant of a heat pump cycle to a hydrothermal medium via a heat exchanger, and performs cooling and heating with a hydrothermal medium supplied by a heat source device that generates and conveys cold / hot water. is there.
[0002]
[Prior art]
In a cooling / heating system, also called a heat pump chiller cooling / heating system, which generates a water heat medium used for cooling / heating with the heat collected by the heat pump cycle and sends it to an indoor radiator to cool / heat the air, the amount of heat that can be collected in the heat pump cycle is outside air. Since it depends on the temperature, when the outside air temperature is low, the heating capacity is lowered, and the required heating atmosphere is difficult to obtain. For example, in the heat pump type air conditioning technique disclosed in Japanese Patent Application Laid-Open No. 55-20315, a positive temperature coefficient thermistor heater is disposed in the indoor heat exchanger, and the heating capacity decreases when the temperature of the water heating medium decreases. Is solved by supplementing with a positive temperature coefficient thermistor heater. In this technology, the water heat medium temperature of the indoor heat exchanger is monitored, and when the water heat medium temperature falls below the set temperature, a positive temperature coefficient thermistor heater is operated as an auxiliary heat source to compensate for the lack of heating capacity. Yes.
[0003]
[Problems to be solved by the invention]
In the conventional heat pump type air conditioning technology described above, even if the indoor heating load is small in the case of heating operation, the temperature of the water heating medium decreases during the defrosting operation, etc., so unnecessary heat supply by the positive temperature coefficient thermistor heater is performed. There is a problem of being uneconomical. In addition, since whether or not to operate the positive temperature coefficient thermistor heater is determined depending on the temperature of the water heat medium in the indoor heat exchanger, for example, when heating is started, the positive temperature characteristic is only supplementarily even when it is desired to rapidly heat a cold room. There is also a problem that the thermistor heater does not work and the rise of heating is bad.
[0004]
The present invention has been made in order to solve the conventional problems, and an object of the present invention is to develop a heat pump type air conditioning system that is energy saving and can realize comfortable heating.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is provided with heating means for auxiliary heat source and water supply means for heat exchange of the refrigerant of the heat pump cycle with the hydrothermal medium via the heat exchanger, and heating the hydrothermal medium. About an air conditioning system composed of a heat source device and an indoor radiator that is connected to the heat source device and that is cooled and heated by a water heat medium conveyed from the heat source device, the set temperature set by the indoor radiator during heating and the indoor temperature Either the target water supply temperature calculated according to the temperature difference from the indoor temperature detected by the radiator, or the target water supply temperature lower limit value and the target water supply temperature upper limit value calculated according to the detected outside air temperature And means for determining whether or not the auxiliary heat source heating means can be operated according to the difference between the adopted target water supply temperature and the current water supply temperature .
[0006]
In order to achieve the above object, the invention of claim 2 is provided with a heating means for auxiliary heat source and a water supply means for heating the water heat medium by exchanging heat of the refrigerant of the heat pump cycle with the water heat medium via the heat exchanger. When the detected outside air temperature is equal to or lower than a predetermined set value for an air- conditioning system comprising a heat source unit and an indoor radiator that is connected to the heat source unit and is cooled and heated by a water heat medium conveyed from the heat source unit A means for stopping the compressor and operating the heating means for the auxiliary heat source is adopted.
[0008]
In order to achieve the above object, according to a third aspect of the present invention, rapid heating setting means is provided in the indoor radiator of the means according to claim 1 or claim 2 , and rapid heating is set by the rapid heating setting means. In this case, a means for continuously operating the auxiliary heat source heating means to generate a hydrothermal medium having a temperature higher than the normal temperature is employed.
[0009]
In order to achieve the above object, the invention of claim 4 employs means for providing auxiliary heat source heating means on the downstream side of the heat exchanger in the means according to any of claims 1 to 3 .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
The present embodiment shown in FIGS. 1 to 5 performs cooling and heating with a heat source side heat medium cycle configured by a heat source machine that generates and conveys a water heat medium such as an antifreeze liquid and the water heat medium supplied thereby. The present invention relates to a cooling / heating system including a use-side cycle including an indoor radiator. As shown in FIG. 1, the heat source machine includes a buffer tank 1 that stores a water heat medium, a circulation pump 2 that serves as a water supply means for circulating the water heat medium in the buffer tank 1, and a water heat medium that passes through the heat exchanger 3 And a heat pump type refrigeration cycle for heating or cooling.
[0011]
The buffer tank 1 is provided with a forward connection port and a return connection port. The forward connection port is connected to the suction side of the circulation pump 2, and the return connection port is used for heat collection. The outlet side of the heating means 4 for auxiliary heat source connected in series to the secondary flow path of the exchanger 3 is connected by piping. On the discharge side of the circulation pump 2, a forward side piping of the usage side cycle is connected, and on the inlet side of the secondary flow path of the heat exchanger 3, a return side piping of the usage side cycle is connected. The refrigeration cycle by the heat pump is a heat medium circulation closed circuit constituted by the outdoor heat exchanger 5, the four-way switching valve 6, the compressor 7, the flow control valve 8, and the primary flow path of the heat exchanger 3. They are independent from each other and do not mix with each other, but are thermally connected by the heat exchanger 3. The heat source apparatus having the above-described configuration is housed in a single casing as the heat exchange unit 9 and is installed outdoors.
[0012]
The usage-side cycle is configured as a hydrothermal medium circulation system by the indoor radiator 10 connected to the forward piping and the return piping. As the indoor radiator 10, one or a plurality of sets of one or a plurality of fan coil units that perform an air conditioning function by cooling or heating while circulating indoor air, a floor heating panel that performs an air conditioning function by radiation, or the like. The radiant panel is connected.
[0013]
As shown in FIG. 2, the heat exchanging unit 9 is equipped with a control means 11 including a microcomputer for controlling the circulation pump 2, the compressor 7, the auxiliary heat source heating means 4 and the like. The control means 11 includes a cooling mode. And a controller having a setting switch for setting the heating mode and a display means for displaying an operation state or the like by an LED, a liquid crystal or the like is connected to be able to exchange signals by a signal line or an infrared signal. The control means 11 takes in the output of the heat medium temperature detecting means 12 for detecting the temperature of the hydrothermal medium at the outlet of the buffer tank 1 and the output of the outside air temperature detecting means 13 for detecting the outdoor temperature as control information.
[0014]
Further, the indoor radiator 10 is provided with a controller 14 and a room temperature detecting means 15 for detecting the room temperature. By operating the controller 14, the flow rate of the hydrothermal medium is moved to adjust the room temperature. The feedback control is performed so that the temperature is reached, and the operation information, the set temperature, and the room temperature are transmitted as control information to the control means 11 of the heat exchange unit 9.
[0015]
When the heating mode is set by the controller of the heat exchange unit 9, the control means 11 switches the refrigeration cycle of the heat pump to the heating cycle, and takes in the operation information from the controller 14 of the indoor radiator 10. When an operation request signal is input from any of the indoor radiators 10, the heat exchange unit 9 is controlled so that the temperature of the hydrothermal medium sent to the use-side cycle becomes a temperature at which heating is possible. When there is no operation request signal from the indoor radiator 10 side, the circulation pump 2 is stopped.
[0016]
On the other hand, when the cooling mode is set by the controller of the heat exchange unit 9, the control means 11 switches the refrigeration cycle of the heat pump to the cooling cycle, and takes in the operation information from the controller 14 of the indoor radiator 10. When an operation request signal is input from any of the indoor radiators 10, the heat exchange unit 9 is controlled so that the temperature of the hydrothermal medium sent to the indoor radiator 10 can be cooled, for example, 7 ° C. When there is no operation request signal from the indoor radiator 10 side, the circulation pump 2 is stopped.
[0017]
The cooling / heating system of the present embodiment has the theme of realizing energy saving and comfort in heating operation, and the control means 11 performs a control operation as shown in the flowchart of FIG. 3 in the heating mode. That is, when the heating operation is started in step # 1 in FIG. 3, the set temperature T1 is read from the controller 14 of the indoor radiator 10 in step # 2, and the process proceeds to step # 3. In step # 3, the outside air temperature T0 is detected from the output of the outside air temperature detecting means 13, and in step # 4, it is determined whether or not the outside air temperature T0 is a predetermined temperature, for example, −15 ° C. or more. The process proceeds to step # 8, and if not, the process proceeds to step # 5.
[0018]
In step # 5, it is necessary to protect the compressor 7 when the outside air temperature is low, and the compressor 7 is stopped after abandoning the heat collection in the heat pump cycle, and the auxiliary heat source heating means 4 is operated. In step # 6, a process of fixing the target heat medium temperature to, for example, 50 ° C. is performed, and the process proceeds to step # 7. In step # 7, it is determined whether or not a predetermined time (for example, 5 minutes) has elapsed since the detection of the outside air temperature T0. If it has elapsed, the process returns to step # 2, and if not, the process of step # 7 is performed. repeat.
[0019]
If the outside air temperature T0 ≧ −15 ° C. in step # 4, it is determined that the compressor 7 can be operated, and the outside air temperature T0, the set temperature T1, the indoor temperature Ts is obtained by a series of processes in steps # 8 to # 15. From these relationships, several optimum target water supply temperatures Tm, β, α are calculated according to the indoor heating load. In order to calculate these water supply temperatures, first, in step # 8, the water supply temperature lower limit value α and the water supply temperature upper limit value β are calculated from the outside air temperature T0 output from the outside air temperature detecting means 13. The water supply temperature lower limit value α and the water supply temperature upper limit value β are values in consideration of the range of the heat insulation performance of the target heating space, and the minimum required water heat medium to achieve the set temperature T1 for a certain outside air temperature T0. This is the maximum hydrothermal fluid temperature necessary to achieve the temperature and the set temperature T1, and is calculated, for example, according to the condition of the outdoor air temperature T0 assigned in advance as shown in FIG.
[0020]
In step # 9, the current water supply temperature Tw is read from the output of the heat medium temperature detection means 12 provided downstream of the buffer tank 1, and in step # 10, the current indoor temperature Ts is read from the output of the room temperature detection means 15. Proceed to step # 11. In step # 11, the set temperature T1 is compared with the current room temperature Ts to calculate a temperature difference ΔT1 between the set temperature T1 and the current room temperature Ts. The process proceeds to step # 12, and the water supply temperature is calculated based on the calculated temperature difference ΔT1. Change rate ΔG is calculated, and the process proceeds to step # 13. For example, the temperature difference ΔT1 and the change rate ΔG of the water supply temperature have a relationship as shown in FIG.
[0021]
In step # 13, the target water supply temperature Tm is calculated using the calculation formula Tm = Tm0 + Tw × ΔG from the previous target water supply temperature Tm0, the current water supply temperature Tw, and the water supply temperature change rate ΔG, and the process proceeds to step # 14. In Step # 14 and Step # 15, the target water supply temperature Tm calculated in the previous process is compared with the water supply temperature lower limit value α calculated based on the outside air temperature T0 and the water supply temperature upper limit value β. If water supply temperature lower limit value α <target water supply temperature Tm <water supply temperature upper limit value β, the target water supply temperature Tm is processed in step # 16. If target water supply temperature Tm ≦ water supply temperature lower limit value α, The process of adopting the target water supply temperature α is performed in step # 18. If the target water supply temperature Tm ≧ the water supply temperature upper limit value β, the process of adopting the target water supply temperature β in step # 17 is performed, and the process proceeds to step # 19.
[0022]
In step # 19, a temperature difference ΔT2 between the adopted target water supply temperature Tm or β or α and the current water supply temperature Tw is calculated, and in step # 20 to step # 22, whether or not the auxiliary heat source heating means 4 can be operated is determined. judge. That is, in step # 20, it is determined whether or not the temperature difference ΔT2 is larger than a predetermined value (for example, 8 ° C.), and if it is larger, a process of operating the auxiliary heat source heating means 4 is performed assuming that an auxiliary heat source is required. To do. In step # 21, it is determined whether or not the temperature difference ΔT2 is smaller than 3 ° C., for example. If the temperature difference ΔT2 is 3 ° C. or more, the process proceeds to step # 22, and the auxiliary heat source heating means 4 operates at the previous time. If the temperature difference ΔT2 is less than 3 ° C., the process proceeds to step # 24, and the auxiliary heat source heating means 4 is not operated because the auxiliary heat source is not necessary. If the auxiliary heat source heating means 4 was operating at the previous time in step # 22, the process proceeds to step # 23, and the auxiliary heat source heating means 4 is operated. This process is to prevent the auxiliary heat source heating means 4 from chattering.
[0023]
When the process for operating the auxiliary heat source heating means 4 is performed in step # 23, it is determined in step # 25 whether a predetermined time (for example, 5 minutes) has elapsed. Returning to the process, if the time has not elapsed, the process of step # 25 is repeated. Also, in the case where the process for not operating the auxiliary heat source heating means 4 is performed in step # 24, it is determined in step # 26 whether a predetermined time (for example, 5 minutes) has elapsed. If the time has not elapsed, the process of step # 26 is repeated.
[0024]
With such an operation, the temperature of the water heating medium flowing in the use-side cycle does not decrease even during the defrosting operation of the heat pump cycle, a comfortable heating atmosphere can be formed, and the defrosting operation when the indoor heating load is small Since unnecessary auxiliary heat source operation is avoided at times, energy conservation is also provided. Further, in the situation where the outside air temperature is extremely low and heat collection by the heat pump is not effective, and the compressor 7 is damaged by operation, the auxiliary heat source heating means 4 is effectively used to avoid the compressor 7 from being damaged. In addition, comfortable heating with an auxiliary heat source can be performed. By adopting a configuration in which the auxiliary heat source heating means 4 is provided on the downstream side of the secondary flow path of the heat exchanger 3, the heating capacity can be improved without deteriorating the efficiency of the heat pump. The auxiliary heat source heating means 4 is more easily controlled by electricity, but may be of a type that burns gas or kerosene.
[0025]
Embodiment 2. FIG.
The present embodiment shown in FIGS. 6 and 7 is obtained by adding a rapid heating function to the air conditioning system shown in the first embodiment, and is the same as that of the first embodiment except for the configuration related to this function. Therefore, the same parts as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof will be omitted.
[0026]
As shown in FIG. 6, the indoor radiator 10 of the cooling and heating system of the present embodiment is provided with a controller 14 and a room temperature detecting means 15 for detecting the room temperature, and the controller 14 is provided with a rapid heating setting means 16. The setting of the rapid heating setting means 16 is transmitted as control information to the control means 11 of the heat exchange unit 9. When the rapid heating is set by the rapid heating setting means 16 in the heating mode, the control means 11 of the heat exchange unit 9 changes the auxiliary heat source heating means 4 until the relationship between the set temperature T1 and the room temperature Ts becomes T1 = Ts + γ. Operate and perform rapid heating operation. And rapid heating operation is complete | finished when it becomes T1 = Ts + gamma, and it transfers to the control operation | movement shown by FIG. 3 of Embodiment 1. FIG. Accordingly, quick heating can be performed by setting rapid heating at the time of startup. Other functions are the same as those of the first embodiment.
[0027]
【The invention's effect】
According to the first aspect of the present invention, a heat pump heating system capable of realizing energy-saving and comfortable heating can be obtained.
[0028]
According to the invention of claim 2, Rutotomoni equipped with energy-saving, so that it is comfortable heating while even outside air temperature is low aims to protect the compressor.
[0030]
According to invention of Claim 3 , rapid heating operation with a quick rise | rising with the said effect which concerns on Claim 1 or Claim 2 is attained.
[0031]
According to the invention of claim 4, the heating capacity can be improved without reducing the efficiency of the heat pump together with the effect according to any one of claims 1 to 3 .
[Brief description of the drawings]
FIG. 1 is a system configuration diagram showing an air conditioning system according to a first embodiment.
FIG. 2 is a block configuration diagram of a control system in the air conditioning system according to the first embodiment.
FIG. 3 is a flowchart showing a control operation of a control unit in the air conditioning system according to the first embodiment.
FIG. 4 is an explanatory diagram showing the relationship between the outside air temperature and the upper and lower limits of the water supply temperature related to the control operation in the control means of the air conditioning system of the first embodiment.
FIG. 5 is an explanatory diagram showing a relationship between a temperature difference between a set temperature and a room temperature related to a control operation in the control unit of the air-conditioning system according to Embodiment 1, and a rate of change in water supply temperature.
FIG. 6 is a flowchart showing the control operation of the control means in the air conditioning system according to the second embodiment.
FIG. 7 is a system configuration diagram showing an air conditioning system according to a second embodiment.
[Explanation of symbols]
3 Heat exchanger, 4 Heating means for auxiliary heat source, 7 Compressor, 9 Heat exchange unit, 10 Indoor radiator, 11 Control means, 12 Heat medium temperature detecting means, 13 Outside air temperature detecting means, 15 Room temperature detecting means, 16 Rapid Heating setting means.

Claims (4)

ヒートポンプサイクルの冷媒を熱交換器を介して水熱媒と熱交換させ、この水熱媒を加熱する補助熱源用加熱手段と送水手段を備えた熱源機と、この熱源機に接続され同熱源機から搬送されてくる水熱媒により冷暖房を行う室内放熱器とから構成される冷暖房システムであって、暖房時において前記室内放熱器で設定される設定温度と同室内放熱器で検知される室内温度との温度差に応じて算出された目標送水温度と、検知された外気温度に応じて算出された目標送水温度下限値および目標送水温度上限値と、のいずれかを採用し、採用された目標送水温度と現在の送水温度との差に応じて、補助熱源用加熱手段の運転の可否を判定することを特徴とする冷暖房システム。The heat pump cycle refrigerant exchanges heat with a hydrothermal medium via a heat exchanger, and the heat source machine having auxiliary heating source heating means and water supply means for heating the hydrothermal medium, and the same heat source machine connected to the heat source machine An air conditioner system comprising an indoor radiator that cools and heats with a hydrothermal medium conveyed from the room, and a set temperature that is set by the indoor radiator during heating and an indoor temperature that is detected by the indoor radiator Either the target water supply temperature calculated according to the temperature difference between the target water temperature, the target water supply temperature lower limit value or the target water supply temperature upper limit value calculated according to the detected outside air temperature, and the adopted target. An air conditioning system characterized by determining whether or not the auxiliary heat source heating means can be operated according to a difference between a water supply temperature and a current water supply temperature . ヒートポンプサイクルの冷媒を熱交換器を介して水熱媒と熱交換させ、この水熱媒を加熱する補助熱源用加熱手段と送水手段を備えた熱源機と、この熱源機に接続され同熱源機から搬送されてくる水熱媒により冷暖房を行う室内放熱器とから構成される冷暖房システムであって、検知された外気温度が所定の設定値以下の場合には圧縮機を停止し、補助熱源用加熱手段を運転することを特徴とする冷暖房システム。The heat pump cycle refrigerant exchanges heat with a hydrothermal medium via a heat exchanger, and the heat source machine having auxiliary heating source heating means and water supply means for heating the hydrothermal medium, and the same heat source machine connected to the heat source machine Air conditioning system comprising an indoor radiator that cools and heats with a water heating medium conveyed from the compressor, stops the compressor when the detected outside air temperature is below a predetermined set value, and is used for an auxiliary heat source An air conditioning system characterized by operating a heating means . 請求項1または請求項に記載の冷暖房システムであって、室内放熱器に急速暖房設定手段を設け、この急速暖房設定手段により急速暖房の設定がなされた場合、補助熱源用加熱手段を連続運転させ、通常の温度より高い温度の水熱媒を生成するようにした冷暖房システム。 3. The cooling / heating system according to claim 1 or 2 , wherein a rapid heating setting means is provided in the indoor radiator, and when the rapid heating is set by the rapid heating setting means, the auxiliary heat source heating means is continuously operated. A cooling and heating system that generates a water heating medium with a temperature higher than the normal temperature. 請求項1〜請求項までのいずれかに記載の冷暖房システムであって、熱交換器の下流側に補助熱源用加熱手段を設けた冷暖房システム。The air conditioning system according to any one of claims 1 to 3 , wherein an auxiliary heat source heating means is provided on the downstream side of the heat exchanger.
JP2001255593A 2001-08-27 2001-08-27 Air conditioning system Expired - Fee Related JP4493889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001255593A JP4493889B2 (en) 2001-08-27 2001-08-27 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001255593A JP4493889B2 (en) 2001-08-27 2001-08-27 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2003065585A JP2003065585A (en) 2003-03-05
JP4493889B2 true JP4493889B2 (en) 2010-06-30

Family

ID=19083539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001255593A Expired - Fee Related JP4493889B2 (en) 2001-08-27 2001-08-27 Air conditioning system

Country Status (1)

Country Link
JP (1) JP4493889B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104279658A (en) * 2013-07-11 2015-01-14 东莞市微电环保科技有限公司 Air-conditioning system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4969998B2 (en) * 2006-11-08 2012-07-04 ミサワホーム株式会社 Partition wall structure
JP5285925B2 (en) * 2008-02-19 2013-09-11 高砂熱学工業株式会社 Air conditioning system
EP2530406B1 (en) * 2010-01-29 2017-03-22 Daikin Industries, Ltd. Heat pump system
CN102770718B (en) * 2010-02-24 2015-02-18 三菱电机株式会社 Air conditioning system and method of controlling air conditioning system
JP5465633B2 (en) * 2010-08-03 2014-04-09 東邦瓦斯株式会社 Heating system
JP5675266B2 (en) * 2010-10-20 2015-02-25 東邦瓦斯株式会社 Heating system
JP5501279B2 (en) * 2011-03-31 2014-05-21 三菱電機株式会社 HEAT PUMP SYSTEM AND HEAT PUMP SYSTEM CONTROL METHOD
WO2012147367A1 (en) * 2011-04-28 2012-11-01 パナソニック株式会社 Refrigeration device
US9676483B2 (en) * 2013-07-03 2017-06-13 B/E Aerospace, Inc. Aircraft galley air chiller system
JP6471672B2 (en) * 2015-10-02 2019-02-20 三菱電機株式会社 Hot water heating system
CN111043769A (en) * 2019-12-30 2020-04-21 珠海格力电器股份有限公司 Water tank power supply control method and device of air energy water heater and air energy water heater
CN113864914B (en) * 2020-06-30 2023-03-31 广东美的制冷设备有限公司 Heating control method and device, air conditioner and storage medium
WO2022157918A1 (en) * 2021-01-22 2022-07-28 三菱電機株式会社 Chiller system and air conditioning apparatus having chiller system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284246A (en) * 1985-10-09 1987-04-17 Matsushita Refrig Co Air conditioner with auxiliary heater-attached heat pump
JPH01277158A (en) * 1988-04-28 1989-11-07 Daikin Ind Ltd Airconditioner
JPH04187944A (en) * 1990-11-21 1992-07-06 Matsushita Electric Ind Co Ltd Refrigerant heating type air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284246A (en) * 1985-10-09 1987-04-17 Matsushita Refrig Co Air conditioner with auxiliary heater-attached heat pump
JPH01277158A (en) * 1988-04-28 1989-11-07 Daikin Ind Ltd Airconditioner
JPH04187944A (en) * 1990-11-21 1992-07-06 Matsushita Electric Ind Co Ltd Refrigerant heating type air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104279658A (en) * 2013-07-11 2015-01-14 东莞市微电环保科技有限公司 Air-conditioning system

Also Published As

Publication number Publication date
JP2003065585A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
JP4493889B2 (en) Air conditioning system
JP5657110B2 (en) Temperature control system and air conditioning system
JP2017150778A (en) Dehumidifying/reheating air-conditioning system utilizing ground thermal energy
JP2004132612A (en) Heating and air conditioning system, and dwelling house with heating and air conditioning system
JP2001248937A (en) Heat pump hot water supply air conditioner
JP3770223B2 (en) Heating system and housing with heating system
JP2014190645A (en) Air conditioner
JP2004317093A (en) Heat pump hot water supply and heating apparatus
JP2000018671A (en) Heat pump type heating apparatus
KR100354065B1 (en) Control method for a heat pump type multi air-conditioner
JP2524817B2 (en) Air conditioning system
JP4421783B2 (en) Water type air conditioning system
CN113203221A (en) Heat pump and operation method thereof
JP2006017440A (en) Heat pump air conditioner
JP4828299B2 (en) Air conditioning system
JP3565138B2 (en) Air conditioner
JP6363538B2 (en) Air conditioning system
JP4169454B2 (en) Hot water storage hot water source
JP3003832B2 (en) Multi-room air conditioner
JP7399321B2 (en) Chiller system and air conditioner with chiller system
KR20110091390A (en) Chiller
JPH08285393A (en) Air conditioner for multi-room
JPH0618122A (en) Hot water feeding, cooling and heating system
JP3960912B2 (en) Hot water storage hot water source
JP2004232947A (en) Heat pump type water heater

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041012

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

R150 Certificate of patent or registration of utility model

Ref document number: 4493889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees