JP4493432B2 - Inverter control device - Google Patents

Inverter control device Download PDF

Info

Publication number
JP4493432B2
JP4493432B2 JP2004217830A JP2004217830A JP4493432B2 JP 4493432 B2 JP4493432 B2 JP 4493432B2 JP 2004217830 A JP2004217830 A JP 2004217830A JP 2004217830 A JP2004217830 A JP 2004217830A JP 4493432 B2 JP4493432 B2 JP 4493432B2
Authority
JP
Japan
Prior art keywords
phase
dead time
voltage
inverter control
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004217830A
Other languages
Japanese (ja)
Other versions
JP2006042480A (en
Inventor
博光 秋月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Elevator and Building Systems Corp
Original Assignee
Toshiba Elevator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Elevator Co Ltd filed Critical Toshiba Elevator Co Ltd
Priority to JP2004217830A priority Critical patent/JP4493432B2/en
Publication of JP2006042480A publication Critical patent/JP2006042480A/en
Application granted granted Critical
Publication of JP4493432B2 publication Critical patent/JP4493432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本発明は、インバータを二相PWM(パルス幅変調)制御するインバータ制御装置に関する。   The present invention relates to an inverter control device that performs two-phase PWM (pulse width modulation) control of an inverter.

従来の一般的なインバータ制御装置は図4に示すように構成されている。このインバータ制御装置の制御対象はインバータ1である。インバータ1は、商用交流電源からコンバータを通して得られる直流電源又は電池による直流電源2の直流電力を交流電力に変換し、この変換された交流電力を3相交流電動機3(例えば永久磁石同期電動機)に供給し駆動する。このインバータ1は、3相交流電動機3である負荷の相数に応じた対数の例えばIGBT等の大電力用スイッチング素子からなり、インバータ制御装置10によってスイッチング制御される。   A conventional general inverter control device is configured as shown in FIG. The control target of this inverter control device is the inverter 1. The inverter 1 converts a DC power obtained from a commercial AC power supply through a converter or a DC power 2 from a battery DC power 2 into AC power, and the converted AC power is converted into a three-phase AC motor 3 (for example, a permanent magnet synchronous motor). Supply and drive. The inverter 1 is composed of a high-power switching element such as an IGBT having a logarithm corresponding to the number of phases of the load that is the three-phase AC motor 3, and is switching-controlled by the inverter control device 10.

インバータ制御装置10は、電動機3の回転速度を検出する速度検出器11と、この速度検出器11により検出される速度と速度指令との偏差に基づいてd−q2相の座標系で表した電流指令Id、Iqを発生する電流指令発生部13と、インバータ1の出力各相のうち、U相出力及びW相出力側に設けられたU相電流検出器14u及びW相電流検出器14wで検出される電流Iu,Iwが入力され、d−q2相の座標系に変換した測定電流Id,Iqを取り出すUVW/dq変換部15とを有する。 The inverter control device 10 includes a speed detector 11 that detects the rotational speed of the electric motor 3, and a current expressed in a dq2-phase coordinate system based on the deviation between the speed detected by the speed detector 11 and the speed command. A current command generator 13 for generating commands Id * and Iq * , and a U-phase current detector 14u and a W-phase current detector 14w provided on the U-phase output and W-phase output side of the output phases of the inverter 1 And a UVW / dq converter 15 for taking out the measured currents Id and Iq converted into the d-q2 phase coordinate system.

また、インバータ制御装置10には、電流指令発生部13からの電流指令Id、IqとUVW/dq変換部15からの測定電流Id,Iqとの偏差をそれぞれ取り出し、この偏差電流に応じたdq軸電圧指令Vd、Vqに変換する電流制御部16d,16qと、これらdq軸電圧指令Vd、Vqを入力とし、U相電圧指令Vu,V相電圧指令Vv及びW相電圧指令Vwに変換して出力するdq/UVW変換部17と、PWM変換部18とが設けられている。 Further, the inverter control device 10 takes out the deviations between the current commands Id * and Iq * from the current command generator 13 and the measured currents Id and Iq from the UVW / dq converter 15, respectively. Current controller 16d, 16q for converting to dq-axis voltage commands Vd * , Vq * , and these dq-axis voltage commands Vd * , Vq * as inputs, U-phase voltage command Vu, V-phase voltage command Vv and W-phase voltage command A dq / UVW converter 17 for converting to Vw and outputting, and a PWM converter 18 are provided.

このPWM変換部18は、図5に示すごとくU相電圧指令Vuと三角波等の所定の波形を有する搬送波esとを比較し、パルス幅変調されたU相PWM信号Su(+),Su(−)を取り出し、インバータ1のU相対応の対となるスイッチング素子例えばUN,UPを駆動制御する。また、V相電圧指令Vv,W相電圧指令Vwについても、図示されていないが同様な処理を行ってV相PWM信号Sv(+),Sv(−)、W相PWM信号Sw(+),Sw(−)を取り出している。従って、各相の電圧指令Vu,Vv,Vwのレベルを可変すれば、PWM信号のパルス幅を可変することができる。   As shown in FIG. 5, the PWM converter 18 compares the U-phase voltage command Vu with a carrier wave es having a predetermined waveform such as a triangular wave, and U-phase PWM signals Su (+), Su (- ), And the drive of the switching elements, eg, UN and UP, which form a pair corresponding to the U phase of the inverter 1 is controlled. The V-phase voltage command Vv and the W-phase voltage command Vw are not shown in the figure, but the same processing is performed to obtain the V-phase PWM signals Sv (+), Sv (−), the W-phase PWM signals Sw (+), Sw (−) is taken out. Therefore, if the level of the voltage command Vu, Vv, Vw of each phase is varied, the pulse width of the PWM signal can be varied.

ところで、このようなPWM制御においては、両スイッチング素子UP,UNの同時オン動作の問題がある。   By the way, in such PWM control, there is a problem of simultaneous ON operation of both switching elements UP and UN.

一般に、インバータ1の1つの相の構成は、直流電源2の電源ライン間にスイッチング素子UNとスイッチング素子UPとが直列に接続され、図5に示すように交互にオン・オフ制御が行なわれている。つまり、直列接続されたスイッチング素子UN,UPは同時にオンしないのが前提となっている。しかし、インバータ制御装置10においては、各スイッチング素子UN,UPの切替えの遅れにより、両スイッチング素子UN,UPが同時にオンすることがある。同時にオンすると、両スイッチング素子UN,UPを通って短絡電流が流れるので、両スイッチング素子UN,UPが破壊してしまう問題がある[問題1]。   In general, the configuration of one phase of the inverter 1 is such that the switching element UN and the switching element UP are connected in series between the power supply lines of the DC power supply 2, and the on / off control is performed alternately as shown in FIG. Yes. That is, it is assumed that the switching elements UN and UP connected in series do not turn on at the same time. However, in the inverter control device 10, both switching elements UN and UP may be simultaneously turned on due to a delay in switching between the switching elements UN and UP. When the switches are turned on at the same time, a short-circuit current flows through both switching elements UN and UP, which causes a problem that both switching elements UN and UP are destroyed [Problem 1].

一方、電磁波ノイズ及びスイッチングロスの低減、電力変換の効率を図る観点から、図6に示すように電圧位相の60°位相毎に各相のスイッチング休止相へ切替える、二相PWM制御という方式が考えられている。この方式は、電流指令とPWM変換部18に印加される電圧指令との間に位相差が生じている場合、各相の電圧指令Vu,Vv,Vwの不連続性等に基づき、スイッチング休止相以外の相の電圧指令がインバータ1の電源電圧を越える値となり、電動機3の電流波形が歪み、制御性が悪化するといった問題がある[問題2]。   On the other hand, from the viewpoint of reducing electromagnetic wave noise and switching loss and improving the efficiency of power conversion, a method called two-phase PWM control is considered in which switching is made to the switching pause phase of each phase every 60 ° of the voltage phase as shown in FIG. It has been. In this method, when there is a phase difference between the current command and the voltage command applied to the PWM converter 18, the switching pause phase is based on the discontinuity of the voltage commands Vu, Vv, Vw of each phase. There is a problem that the voltage command of the other phase exceeds the power supply voltage of the inverter 1, the current waveform of the electric motor 3 is distorted, and the controllability is deteriorated [Problem 2].

そこで、従来、以上のような問題を解決するために、図7に示すような二相PWM制御によるインバータ制御装置10が開発されている。このインバータ制御装置10は、前者の問題を解決するためにデッドタイム補償手段を設け、一方、後者の問題を解決するために電圧位相の60°位相ごとに順次スイッチング休止相を切替える。   Therefore, in order to solve the above problems, an inverter control device 10 based on two-phase PWM control as shown in FIG. 7 has been developed. This inverter control device 10 is provided with dead time compensation means for solving the former problem, while switching the switching pause phase sequentially every 60 ° phase of the voltage phase in order to solve the latter problem.

前者のデッドタイム補償手段は、図5から派生する図8に示すごとく、PWM変換部18の出力であるスイッチング素子UP,UNをオンするための切替えタイミングを所定時間(以下、デッドタイムと呼ぶ)Dtずらし、両スイッチング素子UP,UNが同時にオンさせないようにした結果、デッドタイムDtによるオン時の電圧出力不足が生じることから、その不足分電圧を補償することにある。   In the former dead time compensation means, as shown in FIG. 8 derived from FIG. 5, the switching timing for turning on the switching elements UP and UN which are the outputs of the PWM converter 18 is a predetermined time (hereinafter referred to as dead time). As a result of shifting Dt and preventing both switching elements UP and UN from being turned on at the same time, a shortage of voltage output at the time of ON due to the dead time Dt occurs, so that the shortage voltage is compensated.

そこで、インバータ1のU相出力側及びW相出力側に電流検出器14u,14wによって検出される検出電流Iu,Iwの他、Iu+Iv+Iw=0の電流条件から電流演算部21を通してIv=−Iu−Iwsを取り出してデッドタイム補償部22に供給し、ここで各相のデッドタイム電圧補償量DtCmpU,DtCmpV,DtCmpWを生成し、dq/UVW変換部17の各相電圧指令Vu,Vv,Vwに与えて補償する。   Therefore, in addition to the detection currents Iu and Iw detected by the current detectors 14u and 14w on the U-phase output side and the W-phase output side of the inverter 1, Iv = −Iu− through the current calculation unit 21 from the current condition of Iu + Iv + Iw = 0. Iws is extracted and supplied to the dead time compensator 22 where the dead time voltage compensation amounts DtCmpU, DtCmpV, and DtCmpW for each phase are generated and given to the phase voltage commands Vu, Vv, and Vw of the dq / UVW converter 17. Compensate.

デッドタイム補償部22は、具体的には図9に示す通りであり、各相の検出電流Iu,Iv,Iwの正負を判断し、その正負に応じてステップ状に変化して所定の上下限リミット電流値Irで制限する各相リミッタ機能22−1u,22−1v,22−1w及び所定の電流値Irで除算する各相除算機能22−2u,22−2v,22−2wを通した後、各相ゲイン調整機能22−3u,22−3v,22−3wによってゲイン調整し、デッドタイム電圧補償量DtCmpU,DtCmpV,DtCmpWを取り出している(特許文献1)。   The dead time compensation unit 22 is specifically as shown in FIG. 9, and determines the positive / negative of the detection currents Iu, Iv, Iw of each phase, and changes in a step shape according to the positive / negative, and has predetermined upper and lower limits. After passing through each phase limiter function 22-1u, 22-1v, 22-1w for limiting by the limit current value Ir and each phase division function 22-2u, 22-2v, 22-2w for dividing by the predetermined current value Ir The gain adjustment is performed by the phase gain adjustment functions 22-3u, 22-3v, and 22-3w, and dead time voltage compensation amounts DtCmpU, DtCmpV, and DtCmpW are extracted (Patent Document 1).

従って、U相について述べると、図10(a)に示す検出電流Iuの入力に対し、同図(b)に示すようなU相デッドタイム電圧補償量DtCmpUを取り出すことができる。同図(c)はdq/UVW変換部17から出力される電圧指令Vuを表している。   Therefore, in the case of the U phase, the U phase dead time voltage compensation amount DtCmpU as shown in FIG. 10B can be extracted with respect to the input of the detection current Iu shown in FIG. FIG. 4C shows the voltage command Vu output from the dq / UVW conversion unit 17.

一方、後者のオフセット電圧補償手段は、dq/UVW変換部17とPWM変換部18との間に二相PWM変換部23を設け、かつレゾルバなどの電流位相検出器24で検出される電流位相Qiと、電流ずれ量演算部25がd軸電圧指令Vdとq軸電圧指令Vqとからtan-1(Vd/Vq)なる演算式で求める電流位相Qiからの電流ずれ量とを用いて、位相検出部26から図10(d)に示す電圧位相Qvを取り出して二相PWM変換部23に供給する。二相PWM変換部23は、電圧位相Qvの60°位相ごとに順次スイッチング休止相に切替えながら、例えばU相のスイッチング休止相に対応するスイッチング休止区間の電圧指令Vuに最高電圧指令レベル、スイッチング休止相以外のV相,W相の電圧指令Vv,Vwにも補正電圧等のオフセット電圧を与え、U相のスイッチング休止相に最高電圧指令レベルを設定したことによって二相PWM変換部23から出力されるV相電圧指令Vv**及びW相電圧指令Wv**がインバータ1の電源電圧を越えないように補償する(特許文献2)。 On the other hand, the latter offset voltage compensation means includes a two-phase PWM conversion unit 23 between the dq / UVW conversion unit 17 and the PWM conversion unit 18, and a current phase Qi detected by a current phase detector 24 such as a resolver. And the current deviation amount from the current phase Qi obtained by the current deviation amount calculation unit 25 from the d-axis voltage command Vd * and the q-axis voltage command Vq * by the calculation formula tan −1 (Vd * / Vq * ). Then, the voltage phase Qv shown in FIG. 10D is extracted from the phase detector 26 and supplied to the two-phase PWM converter 23. The two-phase PWM conversion unit 23 sequentially switches to the switching pause phase every 60 ° phase of the voltage phase Qv, for example, the maximum voltage command level and switching to the voltage command Vu * of the switching pause interval corresponding to the U phase switching pause phase. An offset voltage such as a correction voltage is also applied to the voltage commands Vv * and Vw * for the V phase and W phase other than the idle phase, and the maximum voltage command level is set for the U phase switching idle phase. Is compensated so that the V-phase voltage command Vv ** and the W-phase voltage command Wv ** output from the inverter 1 do not exceed the power supply voltage of the inverter 1 (Patent Document 2).

(特許文献1)
特開平10−4690号 (特許文献2) 特開平8−340691号
(Patent Document 1)
Japanese Patent Laid-Open No. 10-4690 (Patent Document 2) JP-A-8-340691

ところで、以上のような二相PWM制御では、各相120°のずれをもった電圧指令Vu,Vv,Vwに対し、図10(d)に示すように電圧位相の60°位相毎に各相のスイッチング休止相を切替え、そのスイッチング休止区間を最高電圧指令レベルに設定するとともに、スイッチング休止相の切替え時に他の相の電圧指令Vu,Vv,Vwを補正電圧を用いて補正し、所望の電圧指令Vu**,Vv**,Vw**を取り出している。 By the way, in the two-phase PWM control as described above, for each voltage command Vu, Vv, Vw having a deviation of 120 ° for each phase, as shown in FIG. The switching pause phase is switched, the switching pause interval is set to the maximum voltage command level, and the voltage commands Vu, Vv, Vw of the other phases are corrected using the correction voltage when switching the switching pause phase, and the desired voltage is set. The commands Vu ** , Vv ** and Vw ** are taken out.

従って、スイッチング休止相の切替えを電圧位相の60°位相毎に行っているが、同時にデッドタイムDtに相当する不足電圧に対しても電圧補償を正確に行われなければならない。
しかし、以上のようなデッドタイム補償部22の各相リミッタ機能22−1u,22−1v,22−1wは、各相の検出電流Iu,Iv,Iwの正負を判断してステップ状に変化して制限させていることから、図10(b)に示すような方形波状のデッドタイム電圧補償量DtCmpU,DtCmpV,DtCmpWを生成し、各相電圧指令Vu,Vv,Vwに与えている。その結果、デッドタイム電圧補償量DtCmpU,DtCmpV,DtCmpWの方形波状の変化のほか、意図する補償電圧レベルを出力できなかったり、切替えタイミングがずれる等の要因により、電流位相検出器24で検出される電流位相Qiが不連続に変化し、その結果、各相のデッドタイム電圧補償量DtCmpU,DtCmpV,DtCmpWにより、図10(d)に示すように電圧位相Qvが60°ごとに不連続に変化し、またdq/UVW変換部17の各相電圧指令Vu,Vv,Vwも60°ごとに不連続に変化する。このことは、電圧位相Qvに歪みが生じ、正常にスイッチング休止相を切替えできない問題がある。
Therefore, the switching pause phase is switched every 60 ° of the voltage phase, but at the same time, voltage compensation must be accurately performed for an undervoltage corresponding to the dead time Dt.
However, the phase limiter functions 22-1u, 22-1v, 22-1w of the dead time compensation unit 22 as described above change stepwise by determining whether the detected currents Iu, Iv, Iw of each phase are positive or negative. Therefore, square wave dead time voltage compensation amounts DtCmpU, DtCmpV, and DtCmpW as shown in FIG. 10B are generated and given to the phase voltage commands Vu, Vv, and Vw. As a result, it is detected by the current phase detector 24 due to square wave changes in the dead time voltage compensation amounts DtCmpU, DtCmpV, and DtCmpW, as well as the fact that the intended compensation voltage level cannot be output or the switching timing is shifted. The current phase Qi changes discontinuously, and as a result, the voltage phase Qv changes discontinuously every 60 ° as shown in FIG. 10D due to the dead time voltage compensation amounts DtCmpU, DtCmpV, and DtCmpW of each phase. Further, the phase voltage commands Vu, Vv, Vw of the dq / UVW converter 17 also change discontinuously every 60 °. This causes a problem that the voltage phase Qv is distorted and the switching pause phase cannot be normally switched.

本発明は以上のような事情に鑑みてなされたもので、過度変化のないデッドタイム電圧補償量を生成するとともに、デッドタイムによる電圧不足分を正確、かつ安定に補償するインバータ制御装置を提供することを目的とする。   The present invention has been made in view of the circumstances as described above, and provides an inverter control device that generates a dead time voltage compensation amount that does not change excessively and compensates for a voltage shortage due to dead time accurately and stably. For the purpose.

上記課題を解決するために、本発明は、入力される各相の電圧指令に対し、電圧位相の60°ごとに順次スイッチング休止相に切替えて休止区間を生成しPWM変換手段に入力するとともに、このPWM変換手段でインバータを構成する各相対をなすスイッチング素子のオン時にデッドタイムを形成し、このデッドタイムによる電圧不足分をデッドタイム補償部で各相デッドタイム電圧補償量を生成し、前記各相の電圧指令に与えるインバータ制御装置において、前記デッドタイム補償部は、
各相電流指令値の入力に対し、当該各相電流指令値の正負変化に同期させて緩傾斜で変化させて所定の上下限リミット電流値で制限し出力するリミッタ機能と、この各相リミッタ機能の出力をそれぞれ前記リミット電流値の絶対値で除算する第1の除算要素と、この各相の第1の除算要素の出力を所定のゲイン係数で調整し、各相のデッドタイム電圧補償量を取り出すゲイン調整機能とを備えた構成である。
In order to solve the above-described problem, the present invention sequentially switches to a switching pause phase every 60 ° of the voltage phase with respect to the input voltage command of each phase, generates a pause section and inputs it to the PWM conversion means. A dead time is formed when each relative switching element constituting the inverter by the PWM conversion means is turned on, and a voltage shortage due to the dead time is generated by the dead time compensation unit for each phase dead time voltage compensation amount. In the inverter control device for giving a phase voltage command, the dead time compensation unit is:
A limiter function that changes the output of each phase current command value in a gentle slope in synchronization with the positive / negative change of each phase current command value and limits and outputs it with a predetermined upper / lower limit current value, and this phase limiter function The first division element that divides each output by the absolute value of the limit current value and the output of the first division element of each phase are adjusted by a predetermined gain coefficient, and the dead time voltage compensation amount of each phase is calculated. And a gain adjustment function to be taken out.

本発明によれば、デッドタイムによる電圧不足分を正確に補償することができ、過度変化のないデッドタイム電圧補償量を生成することにより、電圧位相を安定化でき、二相PWM制御のスイッチング休止相の切替えを正確に実行できる。   According to the present invention, the voltage shortage due to dead time can be accurately compensated, the voltage phase can be stabilized by generating a dead time voltage compensation amount without excessive change, and switching suspension of two-phase PWM control Phase switching can be performed accurately.

以下、本発明の実施の形態について図面を参照して説明する。
図1は本発明に係るインバータ制御装置の全体構成を示す図、図2は本発明に係るインバータ制御装置の要部の一実施の形態を示す構成図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing an overall configuration of an inverter control device according to the present invention, and FIG. 2 is a configuration diagram showing an embodiment of a main part of the inverter control device according to the present invention.

インバータ1を含むインバータ制御装置は、図7とほぼ同様な構成であるので、同一構成部分については同一符号を付するとともに、重複部分については図7の説明に譲る。   Since the inverter control apparatus including the inverter 1 has substantially the same configuration as that in FIG. 7, the same components are denoted by the same reference numerals, and overlapping portions are left to the description of FIG. 7.

このインバータ制御装置は、図1に示すように例えば速度制御部12から各相の電流指令値Iu,Iv,Iwを取り出し、本発明の要部となるデッドタイム補償部30に供給する。
デッドタイム補償部30には、図2に示すように各相の電流指令値Iu,Iv,Iwに対応してリミッタ機能31u,31v,31wが設けられている。リミッタ機能31u,31v,31wは、入力される各相の電流指令値Iu,Iv,Iwに対し、当該各相の電流指令値Iu,Iv,Iwの正負変化に同期させて緩傾斜で変化させて所定の上下限リミット電流値±Irで制限する機能をもっている。このリミッタ機能31u,31v,31wの出力はそれぞれ対応する1/Ir除算要素32u,32v,32wに入力される。各1/Ir除算要素32u,32v,32wは、各リミッタ機能31u,31v,31wの出力である上下限リミット電流値±Irに対してリミット電流値Irで除算して±1を出力し、かつ上限リミット電流値+Irと下限リミット電流値−Irとの間の緩傾斜の変化部分は、+1から−1、−1から+1に緩傾斜で変化する出力を生成し、各相に対応するゲイン調整機能33u,33v,33wに入力する。これらゲイン調整機能33u,33v,33wは、各1/Ir除算要素32u,32v,32wの出力に所望のゲイン係数を掛けて調整し、加算要素34a,34b及び各相に対応する減算要素35u,35v,35w入力する。
As shown in FIG. 1, this inverter control device takes out current command values Iu * , Iv * , and Iw * for each phase from, for example, the speed control unit 12 and supplies them to the dead time compensation unit 30 that is the main part of the present invention. .
As shown in FIG. 2, the dead time compensation unit 30 is provided with limiter functions 31u, 31v, 31w corresponding to the current command values Iu * , Iv * , Iw * of each phase. The limiter functions 31u, 31v, 31w synchronize the current command values Iu * , Iv * , Iw * of each phase with the positive / negative changes of the current command values Iu * , Iv * , Iw * of each phase. And has a function of limiting with a predetermined upper / lower limit current value ± Ir by changing at a gentle slope. The outputs of the limiter functions 31u, 31v, 31w are input to the corresponding 1 / Ir division elements 32u, 32v, 32w, respectively. Each 1 / Ir division element 32u, 32v, 32w divides the upper / lower limit current value ± Ir, which is the output of each limiter function 31u, 31v, 31w, by the limit current value Ir and outputs ± 1; and The change portion of the gentle slope between the upper limit current value + Ir and the lower limit current value -Ir generates an output that changes with a gentle slope from +1 to -1, and from -1 to +1, and gain adjustment corresponding to each phase Input to the functions 33u, 33v, 33w. These gain adjustment functions 33u, 33v, and 33w adjust the outputs of the 1 / Ir division elements 32u, 32v, and 32w by a desired gain coefficient, and add elements 34a and 34b and subtraction elements 35u, Input 35v, 35w.

これら加算要素34a,34bは各相ゲイン調整機能33u,33v,33wの出力全部を加算し、この加算出力を1/3除算要素36で除算し、各相ゲイン調整機能33u,33v,33w出力の平均値を取り出し、各相対応の減算要素35u,35v,35wに入力する。これら減算要素35u,35v,35wは、対応する相のゲイン調整機能33u,33v,33wの出力から1/3除算要素36で得られた平均値で減算し、各相のデッドタイム電圧補償量DtCmpU,DtCmpV,DtCmpWを生成し、dq/UVW変換部17の各相電圧指令Vu,Vv,Vwに加えることにより、デッドタイム補償を行う。   These addition elements 34a and 34b add all the outputs of the phase gain adjustment functions 33u, 33v, and 33w, and divide the addition output by the 1/3 division element 36 to output the outputs of the phase gain adjustment functions 33u, 33v, and 33w. The average value is taken out and input to the subtraction elements 35u, 35v, 35w corresponding to each phase. These subtraction elements 35u, 35v, and 35w subtract the average value obtained by the 1/3 division element 36 from the output of the corresponding phase gain adjustment function 33u, 33v, 33w, and the dead time voltage compensation amount DtCmpU for each phase. , DtCmpV, DtCmpW are generated and added to the phase voltage commands Vu, Vv, Vw of the dq / UVW converter 17 to compensate for dead time.

従って、以上のような実施の形態によれば、デッドタイム補償部30に入力電流として、各相の電流指令値Iu,Iv,Iwを用いることにより、インバータ1の出力電流変化に影響されない状態で各相のデッドタイム電圧補償量DtCmpU,DtCmpV,DtCmpWを生成することができる。 Therefore, according to the embodiment as described above, by using the current command values Iu * , Iv * , Iw * of each phase as the input current to the dead time compensation unit 30, the change in the output current of the inverter 1 is affected. In such a state, the dead time voltage compensation amounts DtCmpU, DtCmpV, and DtCmpW for each phase can be generated.

また、デッドタイム補償部30の各相リミッタ機能31u,31v,31wは、各相の電流指令値Iu,Iv,Iwの電流変化に同期して緩傾斜で変化させつつデッドタイム電圧補償量DtCmpU,DtCmpV,DtCmpWの正負切替えを行っている。その結果、図3(d)に示すように電圧位相Qvの60°位相ごとに歪むという現象がなくなる。このことは、二相PWM制御のスイッチング休止相の切替えが正確に実行でき、同時にdq/UVW変換部17の各相電圧指令Vu,Vv,Vwも安定化する(図3(c)参照)。 Further, each phase limiter function 31u, 31v, 31w of the dead time compensation unit 30 performs dead time voltage compensation while changing the current command values Iu * , Iv * , Iw * of each phase with a slow slope in synchronization with the current change of the current command values Iu * , Iv * , Iw *. Positive and negative switching of the quantities DtCmpU, DtCmpV, and DtCmpW is performed. As a result, the phenomenon of distortion every 60 ° phase of the voltage phase Qv as shown in FIG. This means that the switching pause phase of the two-phase PWM control can be accurately executed, and at the same time, the respective phase voltage commands Vu, Vv, Vw of the dq / UVW converter 17 are stabilized (see FIG. 3C).

また、各相電流指令値Iu,Iv,Iwは120°ずつ位相ずれをもってデッドタイム補償部30に入力されているので、各相ゲイン調整機能33u,33v,33wの出力を全部加算し、1/3除算要素36で除算し、この除算出力を各相ゲイン調整機能33u,33v,3の出力から減算すると、図3(b)に示すような緩傾斜を伴う階段状のU相デッドタイム電圧補償量DtCmpUを生成でき、デッドタイムによるU相の電圧不足分を正確に補償できる。V相及びW相のデッドタイム電圧補償量DtCmpV,DtCmpWも同様に生成でき、結局、各相のデッドタイムによるU相の電圧不足分を正確に補償できる。 Further, since each phase current command value Iu * , Iv * , Iw * is input to the dead time compensation unit 30 with a phase shift of 120 °, all outputs of the phase gain adjustment functions 33u, 33v, 33w are added. When the output is divided by the 1/3 division element 36 and this division output is subtracted from the output of each phase gain adjustment function 33u, 33v, 3, a stepped U-phase dead with a gentle slope as shown in FIG. The time voltage compensation amount DtCmpU can be generated, and the U phase voltage shortage due to the dead time can be accurately compensated. The V-phase and W-phase dead time voltage compensation amounts DtCmpV and DtCmpW can be generated in the same manner, and eventually the U-phase voltage shortage due to the dead time of each phase can be accurately compensated.

なお、本発明は、上記実施の形態に限定されるものでなく、その要旨を逸脱しない範囲で種々変形して実施できる。上記実施の形態は、各相電流指令値Iu,Iv,Iwを電動機3の検出速度から取得するようにしたが、従来からこの種のインバータ制御や電動機制御に種々の各相電流指令値Iu,Iv,Iwを取得する方法があるので、それらの周知の技術を用いて各相電流指令値Iu,Iv,Iwを取得してもよい。また、実施の形態である図2の構成のうち、加算要素34a,34b、減算要素35u,35v,35w、除算要素36を省略し、各ゲイン調整機能33u,33v,33wの出力をそのままデッドタイム電圧補償量DtCmpU,DtCmpV,DtCmpWとしてもよい。 In addition, this invention is not limited to the said embodiment, In the range which does not deviate from the summary, various deformation | transformation can be implemented. In the above embodiment, each phase current command value Iu * , Iv * , Iw * is obtained from the detection speed of the motor 3. However, various types of phase current commands are conventionally used for this kind of inverter control and motor control. Since there are methods for acquiring the values Iu * , Iv * , and Iw * , the phase current command values Iu * , Iv * , and Iw * may be acquired using those well-known techniques. Further, in the configuration of FIG. 2 which is the embodiment, the addition elements 34a and 34b, the subtraction elements 35u, 35v and 35w, and the division element 36 are omitted, and the outputs of the gain adjustment functions 33u, 33v and 33w are directly used as dead time. The voltage compensation amounts may be DtCmpU, DtCmpV, and DtCmpW.

さらに、スイッチング素子を休止する相に相当するゲイン調整機能33u又は33v,33wのゲイン係数を零とし、各相電圧指令にデッドタイム電圧補償量をバイパスする構成であってもよい。その理由は、スイッチング休止相に相当する各相電圧指令が最高電圧指令レベルに設定されるため、デッドタイムが発生せず、スイッチング休止相にはデッドタイム電圧補償を行う必要がないからである。また、位相が低速で変化する領域では、微小な電流検出ノイズを考慮して各相電流指令値Iu,Iv,Iwをデッドタイム補償部30に入力し、位相が高速で変化する領域では、電流制御の遅れを考慮し、各相検出電流Iu,Iv,Iwをデッドタイム補償部30に入力し、デッドタイム電圧補償量DtCmpU,DtCmpV,DtCmpWを生成する構成であってもよい。 Further, the gain adjustment function 33u or 33v, 33w corresponding to the phase in which the switching element is stopped may be set to zero, and the dead time voltage compensation amount may be bypassed in each phase voltage command. The reason is that each phase voltage command corresponding to the switching pause phase is set to the highest voltage command level, so that no dead time occurs and it is not necessary to perform dead time voltage compensation in the switching pause phase. In a region where the phase changes at a low speed, each phase current command value Iu * , Iv * , Iw * is input to the dead time compensation unit 30 in consideration of a minute current detection noise, and the phase changes at a high speed. Then, in consideration of a delay in current control, each phase detection current Iu, Iv, Iw may be input to the dead time compensation unit 30 to generate the dead time voltage compensation amounts DtCmpU, DtCmpV, DtCmpW.

その他、各実施の形態は組み合わせて実施することが可能であり、その場合には組み合わせによる効果が得られる。   In addition, each embodiment can be implemented in combination, and in that case, the effect of the combination can be obtained.

本発明に係るインバータ制御装置の一実施の形態を示す構成図。The block diagram which shows one Embodiment of the inverter control apparatus which concerns on this invention. 本発明に係るインバータ制御装置の要部の一実施の形態を示す構成図。The block diagram which shows one Embodiment of the principal part of the inverter control apparatus which concerns on this invention. インバータ制御装置の各必要構成部分の波形図。The wave form diagram of each required component part of an inverter control apparatus. 従来の一般的なインバータ制御装置の構成図。The block diagram of the conventional general inverter control apparatus. PWM変換の原理を説明する波形図。The wave form diagram explaining the principle of PWM conversion. 各相の電圧指令のピーク時点に±30°のスイッチング休止区間を設けるために最高電圧指令のレベルに設定した図。The figure set to the level of the highest voltage command in order to provide the switching pause section of ± 30 degrees at the peak time of the voltage command of each phase. dq/UVW変換部とPWM変換部との間に二相PWM変換部を設け、かつデッドタイム補償手段を設けた従来のもう1つのインバータ制御装置の構成図。The block diagram of another conventional inverter control apparatus which provided the two-phase PWM conversion part between the dq / UVW conversion part and the PWM conversion part, and provided the dead time compensation means. デッドタイムを生成する理由を説明する図。The figure explaining the reason which produces | generates a dead time. 従来のデッドタイム補償部の構成を示す図。The figure which shows the structure of the conventional dead time compensation part. 従来のデッドタイム補償部を用いた時の各各必要構成部分の波形図。The wave form diagram of each required component when the conventional dead time compensation part is used.

符号の説明Explanation of symbols

1…インバータ、3…電動機、10…インバータ制御装置、11…速度検出器、12…速度制御部、13…電流指令発生部、14u,14w…電流検出器、15…UVW/dq変換部、16d,16q…電流制御部、17…dq/UVW変換部、18…PWM変換部、23…二相PWM変換部、24…電流位相検出器、25…電流ずれ量演算部、26…位相検出部、30…デッドタイム補償部、31u,31v,31w…リミッタ機能、32u,32v,32w…1/Ir除算要素、34a,34b…加算要素、35u,35v,35w…減算要素、36…1/3除算要素。   DESCRIPTION OF SYMBOLS 1 ... Inverter, 3 ... Electric motor, 10 ... Inverter control apparatus, 11 ... Speed detector, 12 ... Speed control part, 13 ... Current command generation part, 14u, 14w ... Current detector, 15 ... UVW / dq conversion part, 16d , 16q ... current control unit, 17 ... dq / UVW conversion unit, 18 ... PWM conversion unit, 23 ... two-phase PWM conversion unit, 24 ... current phase detector, 25 ... current deviation amount calculation unit, 26 ... phase detection unit, 30 ... Dead time compensation unit, 31u, 31v, 31w ... Limiter function, 32u, 32v, 32w ... 1 / Ir division element, 34a, 34b ... Addition element, 35u, 35v, 35w ... Subtraction element, 36 ... 1/3 division element.

Claims (4)

入力される各相の電圧指令に対し、電圧位相の60°ごとに順次スイッチング休止相に切替えて休止区間を生成しPWM変換手段に入力するとともに、このPWM変換手段でインバータを構成する各相対をなすスイッチング素子のオン時にデッドタイムを形成し、このデッドタイムによる電圧不足分をデッドタイム補償部で各相デッドタイム電圧補償量を生成し、前記各相の電圧指令に与えるインバータ制御装置であって、
前記デッドタイム補償部は、
各相電流指令値の入力に対し、当該各相電流指令値の正負変化に同期させて緩傾斜で変化させて所定の上下限リミット電流値で制限し出力するリミッタ機能と、
この各相リミッタ機能の出力をそれぞれ前記リミット電流値の絶対値で除算する第1の除算要素と、
この各相の第1の除算要素の出力を所定のゲイン係数で調整し、各相のデッドタイム電圧補償量を取り出すゲイン調整機能とを備えたことを特徴とするインバータ制御装置。
In response to the voltage command of each phase that is input, the switching phase is sequentially switched to the switching pause phase every 60 ° of the voltage phase, and a pause interval is generated and input to the PWM conversion means. An inverter control device that forms a dead time when the switching element is turned on, generates a dead time voltage compensation amount for each phase by a dead time compensation unit, and provides the voltage command for each phase to the voltage shortage due to the dead time. ,
The dead time compensation unit is
A limiter function for changing the input current of each phase current command value in a gentle slope in synchronization with the positive / negative change of each phase current command value, and limiting and outputting with a predetermined upper / lower limit current value,
A first division element for dividing the output of each phase limiter function by the absolute value of the limit current value;
An inverter control device comprising: a gain adjustment function for adjusting an output of the first division element of each phase by a predetermined gain coefficient and extracting a dead time voltage compensation amount of each phase.
請求項1に記載のインバータ制御装置において、
前記デッドタイム補償部は、
前記各相のゲイン調整機能の出力を加算し平均化する演算手段と、
前記各相のゲイン調整機能の出力を前記演算手段で得られた平均値で減算し、各相のデッドタイム電圧補償量を取り出す手段とを設けたことを特徴とするインバータ制御装置。
The inverter control device according to claim 1,
The dead time compensation unit is
Arithmetic means for adding and averaging the outputs of the gain adjustment functions of the respective phases;
An inverter control apparatus comprising: means for subtracting the output of the gain adjustment function for each phase by the average value obtained by the computing means to extract a dead time voltage compensation amount for each phase.
請求項1又は請求項2に記載のインバータ制御装置において、
前記スイッチング素子を休止する相に対応する前記ゲイン調整機能のゲイン係数を零に設定することを特徴とするインバータ制御装置。
In the inverter control device according to claim 1 or 2,
An inverter control device, wherein a gain coefficient of the gain adjustment function corresponding to a phase in which the switching element is suspended is set to zero.
請求項1ないし請求項3の何れか一項に記載のインバータ制御装置において、
位相が高速で変化する領域に限り、前記デッドタイム補償部に入力する各相電流指令値に代えて、前記インバータの出力の検出電流を前記デッドタイム補償部に入力することを特徴とするインバータ制御装置。
In the inverter control device according to any one of claims 1 to 3,
Inverter control, wherein the detected current of the output of the inverter is input to the dead time compensation unit instead of each phase current command value input to the dead time compensation unit only in a region where the phase changes at high speed apparatus.
JP2004217830A 2004-07-26 2004-07-26 Inverter control device Active JP4493432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004217830A JP4493432B2 (en) 2004-07-26 2004-07-26 Inverter control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004217830A JP4493432B2 (en) 2004-07-26 2004-07-26 Inverter control device

Publications (2)

Publication Number Publication Date
JP2006042480A JP2006042480A (en) 2006-02-09
JP4493432B2 true JP4493432B2 (en) 2010-06-30

Family

ID=35906849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004217830A Active JP4493432B2 (en) 2004-07-26 2004-07-26 Inverter control device

Country Status (1)

Country Link
JP (1) JP4493432B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967767B2 (en) * 2007-04-06 2012-07-04 日本精工株式会社 Electric power steering control device
JP5338160B2 (en) * 2008-07-07 2013-11-13 三菱電機株式会社 Voltage control device for power converter
JP5471498B2 (en) * 2010-01-22 2014-04-16 ダイキン工業株式会社 Power converter
CN102931902B (en) * 2012-10-15 2014-08-06 苏州汇川技术有限公司 Dead-time compensation system and method
JP2014166081A (en) * 2013-02-27 2014-09-08 Hitachi Appliances Inc Motor control device and air conditioner using the same
JP6173003B2 (en) * 2013-04-18 2017-08-02 三菱電機株式会社 Power converter
JP6201613B2 (en) * 2013-10-11 2017-09-27 オムロン株式会社 INVERTER DEVICE, POWER CONDITIONER, POWER GENERATION SYSTEM, AND INVERTER DEVICE CONTROL METHOD
JP6361178B2 (en) 2014-03-07 2018-07-25 株式会社ジェイテクト Motor control device and electric power steering device
US10608572B2 (en) * 2017-10-31 2020-03-31 Nidec Corporation Motor drive control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662580A (en) * 1992-08-06 1994-03-04 Hitachi Ltd Inverter
JPH104690A (en) * 1996-06-13 1998-01-06 Shinko Electric Co Ltd Controller for pwm current-controlled type inverter
JP2000175491A (en) * 1998-12-04 2000-06-23 Yaskawa Electric Corp Ac motor drive
JP2003180083A (en) * 2001-12-10 2003-06-27 Meidensha Corp Voltage-type pwm inverter device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662580A (en) * 1992-08-06 1994-03-04 Hitachi Ltd Inverter
JPH104690A (en) * 1996-06-13 1998-01-06 Shinko Electric Co Ltd Controller for pwm current-controlled type inverter
JP2000175491A (en) * 1998-12-04 2000-06-23 Yaskawa Electric Corp Ac motor drive
JP2003180083A (en) * 2001-12-10 2003-06-27 Meidensha Corp Voltage-type pwm inverter device

Also Published As

Publication number Publication date
JP2006042480A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
CA2624254C (en) Power converting apparatus
US7969106B2 (en) Vector controller for permanent-magnet synchronous electric motor
US8310197B2 (en) Control device for electric motor drive device
US8710781B2 (en) Power conversion device and method for controlling thereof
US8035334B2 (en) Electric power converter
US8917050B2 (en) Power inverter and electric power steering controller
EP2866338B1 (en) Matrix converter
US20130169206A1 (en) Control device and control method for power control unit
WO2017221339A1 (en) Power conversion device
WO2019008676A1 (en) Inverter device and electric power steering device
US20180159458A1 (en) Control apparatus and control method
US9871482B2 (en) Power conversion device
JP6302770B2 (en) A motor control device and an electric power steering system using the motor drive circuit.
CN111886790B (en) Power conversion device and rotary machine driving system
JP4493432B2 (en) Inverter control device
JP2004201440A (en) Method and apparatus for pulse width modulation, power conversion method, and power converter
JP2005065439A (en) Control method for voltage-type inverter
JP7415579B2 (en) Vehicle drive control system
US11942876B2 (en) Power conversion device
JP7211097B2 (en) Power control method and power control device
WO2017122490A1 (en) Motor control system
JP2011072103A (en) Control device of ac electric motor
JP2000060137A (en) Power converting equipment
JP6772844B2 (en) AC motor control device
JP4493431B2 (en) Inverter control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100406

R150 Certificate of patent or registration of utility model

Ref document number: 4493432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350