JP4493290B2 - Artificial biomaterial and method for producing the same - Google Patents

Artificial biomaterial and method for producing the same Download PDF

Info

Publication number
JP4493290B2
JP4493290B2 JP2003178162A JP2003178162A JP4493290B2 JP 4493290 B2 JP4493290 B2 JP 4493290B2 JP 2003178162 A JP2003178162 A JP 2003178162A JP 2003178162 A JP2003178162 A JP 2003178162A JP 4493290 B2 JP4493290 B2 JP 4493290B2
Authority
JP
Japan
Prior art keywords
colloidal silica
artificial
artificial biomaterial
titanium
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003178162A
Other languages
Japanese (ja)
Other versions
JP2005013261A (en
Inventor
菊治 山下
武久 岩間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP2003178162A priority Critical patent/JP4493290B2/en
Publication of JP2005013261A publication Critical patent/JP2005013261A/en
Application granted granted Critical
Publication of JP4493290B2 publication Critical patent/JP4493290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、生体内に埋め込まれて使用される人工生体材料(インプラント材料)に関する。
詳しくは人工骨、人工関節、人工歯根等の人工生体材料として、有用なコロイダルシリカ粒子付着型人工生体材料とその製造法に関する。
【0002】
【従来の技術】
従来、骨の欠損部分の代替などでチタン製の人工生体材料が使われている。チタンは人体内においてその表面にリン酸カルシウムが形成(以下石灰化という)されるため、骨組織との親和性が良いことが知られている。
石灰化を促進する手段としては、チタン金属表面のアルカリ処理が知られている。また、チタン金属表面をサンドペーパーにて研磨する方法もある。促進の原因は、ケイ素(Si)がチタン表層に移行し、緻密な結晶を形成することによって石灰化が促進されると考えられている。他方、ケイ素またはチタンのアルコキシドを強酸などの処理をして、チタン表面にシリカゲル被膜層などを形成させることにより石灰化が促進されることが知られ、その改良方法が提案されている(例えば、特許文献1〜4参照。)。
しかしながら、この処理では、シリカゲルの被膜層の形成において、高温加熱(400〜1000℃)処理を行うため、シリカゲル被膜層の収縮・剥離が促進される。そのため、石灰化能が弱くなり、再現性に乏しく、煩雑な処理となる問題がある。
【0003】
【特許文献1】
特開平10−052484号公報(特許請求の範囲、発明の詳細な説明)
【特許文献2】
特開平10−052483号公報(特許請求の範囲、発明の詳細な説明)
【特許文献3】
特開平06−169981号公報(特許請求の範囲、発明の詳細な説明)
【特許文献4】
特開平06−023030公報(特許請求の範囲、発明の詳細な説明)
【0004】
【発明が解決しようとする課題】
本発明は、石灰化能に優れ、かつ、チタン表面に対して研磨、熱、アルカリ、強酸などの煩雑な処理を必要とせずに製造し得る人工生体材料及びその製造方法を提供することを課題とする。
【0005】
【課題を解決するための手段】
本発明者等は鋭意努力した結果、コロイダルシリカ粒子が、研磨、熱、アルカリ、強酸などの処理をせずにチタン表面に効率的に付着し、その結果得られる人工生体材料が優れた石灰化促進能を有することを見出し、本発明を完成させた。
即ち、本発明の人工生体材料は、材料表面にコロイダルシリカ粒子を有することを特徴とする。本発明を以下に述べる。
発明の第一観点は、生体内に埋め込まれて使用される材料であって、その材料、好ましくはチタン又はチタン合金の表面にコロイダルシリカ粒子、好ましくは平均粒径が4〜100nmであるコロイダルシリカ粒子を付着させた人工生体材料である。
発明の第二観点は、第一観点に記載された人工生体材料からなる、歯科治療に使用される歯欠損部用充填材料である。
発明の第三観点は、第一観点に記載された人工生体材料からなる、整形外科治療に使用される人工骨又は人工関節である。
発明の第四観点は、材料を、コロイダルシリカ粒子の懸濁液に、好ましくはシリカ濃度が0.01〜40質量%であるコロイダルシリカ粒子の懸濁液に接触させ、温度1〜115℃にて乾燥させることからなる第一観点に記載された人工生体材料の製造方法である。
【0006】
本発明で使用されるコロイダルシリカ粒子は、4〜100nmの平均粒径を有するシリカ粒子である。
【0007】
一般にコロイダルシリカと称される、コロイダルシリカ粒子の安定な懸濁液が販売されている。ここではコロイダルシリカ粒子は、市販のコロイダルシリカを用いるとコロイダルシリカ粒子のパウダーを分散させずに使用できて好ましい。
【0008】
コロイダルシリカは、平均粒径により任意に選択することができる。また、安定な水性懸濁液の形態として、ナトリウム安定型コロイダルシリカ、アンモニア安定型コロイダルシリカ、酸性安定型コロイダルシリカが知られている。
【0009】
例えば、ナトリウム安定型コロイダルシリカとしては、スノーテックス(登録商標) XS(日産化学工業(株)製):平均粒径4nm、スノーテックス(登録商標) S(日産化学工業(株)製):平均粒径9nm、スノーテックス(登録商標) 30(日産化学工業(株)製):平均粒径12nm、スノーテックス(登録商標) 50(日産化学工業(株)製):平均粒径21nm、スノーテックス(登録商標) XL(日産化学工業(株)製):平均粒径45nm、スノーテックス(登録商標) YL(日産化学工業(株)製):平均粒径65nm、スノーテックス(登録商標) ZL(日産化学工業(株)製):平均粒径85nmなどが挙げられる。
【0010】
同じく、アンモニア安定型コロイダルシリカとしては、スノーテックス(登録商標) NXS(日産化学工業(株)製):平均粒径4nm、スノーテックス(登録商標) NS(日産化学工業(株)製):平均粒径9nm、スノーテックス(登録商標) N(日産化学工業(株)製):平均粒径12nm、スノーテックス(登録商標) N−40(日産化学工業(株)製):平均粒径21nmなどが挙げられる。
【0011】
そして、酸性安定型コロイダルシリカとしては、スノーテックス(登録商標)OXS(日産化学工業(株)製):平均粒径4nm、スノーテックス(登録商標) OS(日産化学工業(株)製):平均粒径9nm、スノーテックス(登録商標) O(日産化学工業(株)製):平均粒径12nm、スノーテックス(登録商標) O−40(日産化学工業(株)製):平均粒径21nmなどが挙げられる。
【0012】
また、コロイダルシリカの安定な有機溶媒の懸濁液もあり使用することができる。有機溶媒型コロイダルシリカとしては、メタノール溶媒型としてMA−ST(日産化学工業(株)製):平均粒径12nm、イソプロパノール溶媒型IPA−ST(日産化学工業(株)製):平均粒径12nmなどが挙げられる。
【0013】
このコロイダルシリカ粒子(コロイダルシリカ)の平均粒径は、通常窒素吸着法により測定された比表面積より球状粒子に換算して得られる、窒素吸着法粒子径が採用されている。その平均粒径(Dnm)は、比表面積Sm2/gと真比重dg/cm3とから、D=6000/(S×d)の式によって与えられる。
【0014】
コロイダルシリカ粒子の平均粒径としては、4〜100nmである。コロイダルシリカ粒子の粒子径が小さい方がより付着力が強くなり好ましい。よって、好ましくは4〜50nm、より好ましくは4〜20nmである。
【0015】
本発明における生体内に埋め込まれて使用される材料としては、アルミナ、ジルコニア、ステンレス合金、Ni−Cr合金、Co−Cr合金、チタン、チタン合金などから選択することができる。なかでもチタン又はチタン合金が好ましい。
チタン合金としては、チタン(Ti)を主成分とするが、Al、Sn、Zr、Mo、Ni、Pd、Ta、Nb、V、Ptなどを添加した合金を使用することができる。好ましくはTi−6Al−4V合金が挙げられる。
【0016】
次に、人工生体材料の製造方法について述べる。
形状として、線状、網状、斑点状、もしくはこれらの形状を組み合わせた種々のパターンを有する材料を用意する。
【0017】
次いで、材料をコロイダルシリカ粒子の懸濁液(コロイダルシリカ)に接触させる。ここで、接触方法として、浸漬、塗布など公知の方法を用いることができる。
【0018】
高濃度のコロイダルシリカでの接触処理後は、適宜水洗などで、過剰の付着コロイダルシリカ粒子を除くことが好ましい。
【0019】
ここで、コロイダルシリカのシリカ(SiO2)濃度としては、10〜40質量%のものが市販品より入手することができる。コロイダルシリカのシリカ濃度は、0.01〜40質量%に濃度調製して使用することができる。
【0020】
ここで、接触処理後における水洗工程を入れる場合は、シリカ濃度10〜40質量%であり、接触処理後における水洗工程を除くことを希望する場合は、シリカ濃度0.01〜10質量%が挙げられる。
【0021】
接触処理後の材料は、温度1〜115℃にて乾燥させることにより、容易に材料表面にコロイダルシリカ粒子を付着させることができる。乾燥においては、コロイダルシリカ粒子の付着水が除去される。
【0022】
大気中での乾燥では、日本薬局方で室温と称される温度1〜30℃、同様に常温と称される温度15〜25℃で行うことができる。恒温乾燥機を用いる乾燥では、30〜115℃で行うことができる。
【0023】
かように得られた本発明の人工生体材料は、歯科治療における歯欠損部用充填材料として、又は整形外科治療における人工骨又は人工関節器具として有益である。
【0024】
【実施例】
実施例
JIS2種純チタン板(10mm×10mm×1mm)を35mm径のプラスティックシャーレに入れコロイダルシリカ粒子の懸濁液(シリカ濃度20質量%:スノーテックス(登録商標) O、日産化学工業(株)製)2mlを加えた。24時間後、チタン板を取り出して水洗後乾燥させて本発明の人工生体材料となした。
比較例1〜4
コロイダルシリカにより処理されたチタン板(本発明の人工生体材料)の比較として、JIS2種純チタン板(10mm×10mm×1mm)を、無処理(比較例1)、耐水研磨紙(#800)(比較例2)及びアルミナ研磨紙(#800)(比較例3)の自動研磨装置による約20分の研磨、並びに60℃で24時間の5M水酸化ナトリウム(NaOH)水溶液処理(アルカリ処理)(比較例4)して比較例1ないし4の人工生体材料をそれぞれ作製した。
【0025】
試験例1:石灰化量の定量試験
上述の実施例で得られた本発明の人工生体材料を35mm径のプラスティックシャーレに入れ、これに0.5μCi/mlの45Caを含有したMEM液(シグマ・アルドリッチ社製)2mlを加えて37℃、5%CO2条件下に置いた。7日後、人工生体材料を取り出して温度20℃で乾燥後、表面の45Ca量を測定した。その結果を図1に示す。
一方で、比較例1ないし4の人工生体材料を35mm径のプラスティックシャーレにそれぞれ入れ、0.5μCi/mlの45Caを含有したMEM液(シグマ・アルドリッチ社製)2mlを加えて37℃、5%CO2条件下に置いた。7日後、人工生体材料を取り出して温度20℃で乾燥後、表面の45Ca量を測定した。その結果を図1に示す。
結 果
チタン板の無処理(比較例1)においては、石灰化が殆ど認められなかった。また、チタン板の耐水研磨紙による研磨(比較例2)、アルミナ研磨紙による研磨(比較例3)およびアルカリ処理(比較例4)により得られた人工生体材料においては石灰化は認められるものの、十分ではなかった。これに対して、チタン板のコロイダルシリカ処理により得られた本発明の人工生体材料(実施例)では、強力な石灰化作用が認められ、アルカリ処理のおよそ3倍のカルシウム形成がみられた。
【0026】
試験例2:チタン表面粒子の電子顕微鏡観察および結合状態
JIS 2種純チタン板(10mm×10mm×1mm)を35mm径のプラスティックシャーレに入れコロイダルシリカ(シリカ濃度20質量%:スノーテックス(登録商標) O、日産化学工業(株)製)2mlを加えた。24時間後、チタン板を取り出して水洗後乾燥させて本発明の人工生体材料となした後、該人工生体材料を35mm径のプラスティックシャーレに入れ、これに0.5μCi/mlの45Caを含有したMEM液(シグマ・アルドリッチ社製)2mlを加えて37℃、5%CO2条件下で培養した。7日後、人工生体材料を取り出して温度20℃で乾燥させ、その表面を電解放射型走査型電子顕微鏡(FE−SEM)にて観察した。その撮影写真を図2に示す。次に、コロイダルシリカ粒子のチタン板への結合状態を確認する為に、人工生体材料を超音波洗浄処理した後、FE−SEMで観察した。
(1)チタン表面粒子の電子顕微鏡観察
コロイダルシリカ処理後のチタン表層には、コロイダルシリカ粒子の表面付着が認められた。さらに、大きさ数μm程度の顆粒状石灰化物が高密度に認められた(図2参照。)。
(2)チタン表面粒子の結合状態
このチタン表層に結合したコロイダルシリカ粒子は、超音波洗浄処理によっても剥がれるなどの影響は見られなかった。
【0027】
試験例3:コロイダルシリカによる石灰化作用の処理時間の検討
JIS2種純チタン板(10mm×10mm×1mm)を35mm径のプラスティックシャーレに入れコロイダルシリカ(シリカ濃度20質量%:スノーテックス(登録商標) O、日産化学工業(株)製)2mlを加えた。6時間後及び24時間後においてそれぞれ、チタン板を取り出して水洗後乾燥させ、0.5μCi/mlの45Caを含有したMEM液(シグマ・アルドリッチ社製)2mlを加えて37℃、5%CO2条件下で培養した。24時間後、チタン板を取り出して温度20℃で乾燥後、その表面の45Ca量を測定した。結果を図3に示す。
図3から、チタン板をコロイダルシリカにより6時間の短時間処理をしても、24時間の処理をしたと同様の石灰化効果が認められた(図3参照。)。
【0028】
【発明の効果】
本発明の人工生体材料は、生体内に埋没すると速やかにリン酸カルシウムの付着が起こる。ここでチタン板等へのコロイダルシリカ粒子の結合様式が付着によるため、従来のシリカゲル被覆層と比較して、骨組織との結合時にずれや剥離などが生じず、強固な生体融和が起こる。
よって、本発明の人工生体材料は、骨組織と短期間でかつ再現性よく結合することができるため、患者の負担を軽減する人工骨、人工関節、人工歯根等の人工生体材料として有用である。また、本発明の方法によれば、これらの人工生体材料を容易に作製することができる。
【図面の簡単な説明】
【図1】各々、無処理、耐水研磨紙、アルミナ研磨紙、アルカリ処理及びコロイダルシリカ処理されたチタン表面に付着したカルシウム量を示したグラフである。
【図2】コロイダルシリカが付着され、及び石灰化物が形成されたチタン表面を電子顕微鏡にて撮影した写真である。
【図3】コロイダルシリカによる処理を6時間及び24時間行った後のチタン板に付着したカルシウム量を示したグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an artificial biomaterial (implant material) used by being implanted in a living body.
More specifically, the present invention relates to a colloidal silica particle-attached artificial biomaterial useful as an artificial biomaterial such as an artificial bone, an artificial joint, or an artificial tooth root, and a method for producing the same.
[0002]
[Prior art]
Conventionally, titanium artificial biomaterials have been used to replace bone defects. Titanium is known to have good affinity with bone tissue because calcium phosphate is formed on its surface (hereinafter referred to as calcification) in the human body.
As means for promoting calcification, alkali treatment of the titanium metal surface is known. There is also a method of polishing the titanium metal surface with sandpaper. The cause of the promotion is considered to be that calcification is promoted by silicon (Si) moving to the titanium surface layer and forming dense crystals. On the other hand, it is known that calcification is promoted by treating a silicon or titanium alkoxide with a strong acid to form a silica gel film layer on the titanium surface, and an improved method has been proposed (for example, See Patent Documents 1 to 4.)
However, in this treatment, since the high-temperature heating (400 to 1000 ° C.) treatment is performed in the formation of the silica gel coating layer, shrinkage and peeling of the silica gel coating layer are promoted. Therefore, there is a problem that the calcification ability becomes weak, the reproducibility is poor, and the process becomes complicated.
[0003]
[Patent Document 1]
JP-A-10-052484 (Claims and Detailed Description of the Invention)
[Patent Document 2]
Japanese Patent Laid-Open No. 10-052483 (Claims, Detailed Description of the Invention)
[Patent Document 3]
Japanese Unexamined Patent Publication No. 06-169981 (Claims, Detailed Description of the Invention)
[Patent Document 4]
JP 06-023030 A (Claims, Detailed Description of the Invention)
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide an artificial biomaterial that is excellent in calcification ability and can be manufactured without requiring complicated treatments such as polishing, heat, alkali, strong acid and the like on the titanium surface, and a method for manufacturing the same. And
[0005]
[Means for Solving the Problems]
As a result of diligent efforts, the present inventors have successfully colloidal silica particles adhered to the titanium surface without any treatment such as polishing, heat, alkali, strong acid, and the resulting artificial biomaterial has excellent calcification The present invention was completed by finding that it has a promoting ability.
That is, the artificial biomaterial of the present invention is characterized by having colloidal silica particles on the material surface. The present invention is described below.
A first aspect of the invention is a material used by being implanted in a living body, and preferably colloidal silica particles, preferably an average particle diameter of 4 to 100 nm on the surface of the material, preferably titanium or a titanium alloy. It is an artificial biomaterial with particles attached.
A second aspect of the invention is a filling material for a tooth defect portion used for dental treatment, which is made of the artificial biomaterial described in the first aspect.
A third aspect of the invention is an artificial bone or joint used for orthopedic treatment, comprising the artificial biomaterial described in the first aspect.
According to a fourth aspect of the invention, the material is brought into contact with a suspension of colloidal silica particles, preferably a suspension of colloidal silica particles having a silica concentration of 0.01 to 40% by mass, and the temperature is set to 1 to 115 ° C. It is a manufacturing method of the artificial biomaterial described in the first aspect consisting of drying.
[0006]
The colloidal silica particles used in the present invention are silica particles having an average particle diameter of 4 to 100 nm.
[0007]
A stable suspension of colloidal silica particles, commonly referred to as colloidal silica, is on the market. Here, as the colloidal silica particles, it is preferable to use commercially available colloidal silica because the colloidal silica particles can be used without being dispersed.
[0008]
Colloidal silica can be arbitrarily selected depending on the average particle diameter. Further, sodium stable colloidal silica, ammonia stable colloidal silica, and acidic stable colloidal silica are known as stable aqueous suspension forms.
[0009]
For example, as sodium-stable colloidal silica, Snowtex (registered trademark) XS (manufactured by Nissan Chemical Industries, Ltd.): average particle size 4 nm, Snowtex (registered trademark) S (manufactured by Nissan Chemical Industries, Ltd.): average Particle size 9 nm, Snowtex (registered trademark) 30 (Nissan Chemical Industry Co., Ltd.): Average particle size 12 nm, Snowtex (registered trademark) 50 (Nissan Chemical Industry Co., Ltd.): Average particle size 21 nm, Snowtex (Registered trademark) XL (manufactured by Nissan Chemical Industries, Ltd.): average particle size 45 nm, Snowtex (registered trademark) YL (manufactured by Nissan Chemical Industries, Ltd.): average particle size 65 nm, Snowtex (registered trademark) ZL ( (Manufactured by Nissan Chemical Industries, Ltd.): An average particle diameter of 85 nm and the like can be mentioned.
[0010]
Similarly, as the ammonia stable colloidal silica, Snowtex (registered trademark) NXS (manufactured by Nissan Chemical Industries, Ltd.): average particle size 4 nm, Snowtex (registered trademark) NS (manufactured by Nissan Chemical Industries, Ltd.): average Particle size 9 nm, Snowtex (registered trademark) N (manufactured by Nissan Chemical Industries, Ltd.): Average particle size 12 nm, Snowtex (registered trademark) N-40 (manufactured by Nissan Chemical Industries, Ltd.): average particle size 21 nm, etc. Is mentioned.
[0011]
As the acid-stable colloidal silica, Snowtex (registered trademark) OXS (manufactured by Nissan Chemical Industries, Ltd.): average particle size 4 nm, Snowtex (registered trademark) OS (manufactured by Nissan Chemical Industries, Ltd.): average Particle size 9 nm, Snowtex (registered trademark) O (Nissan Chemical Industry Co., Ltd.): Average particle size 12 nm, Snowtex (registered trademark) O-40 (Nissan Chemical Industry Co., Ltd.): Average particle size 21 nm, etc. Is mentioned.
[0012]
In addition, a suspension of colloidal silica in a stable organic solvent can be used. As the organic solvent type colloidal silica, MA-ST (manufactured by Nissan Chemical Industries, Ltd.): average particle size 12 nm, isopropanol solvent type IPA-ST (manufactured by Nissan Chemical Industries, Ltd.): average particle size 12 nm as methanol solvent type Etc.
[0013]
As the average particle diameter of the colloidal silica particles (colloidal silica), a nitrogen adsorption method particle diameter obtained by converting to a spherical particle from a specific surface area usually measured by a nitrogen adsorption method is adopted. The average particle diameter (Dnm) is given by the formula D = 6000 / (S × d) from the specific surface area Sm 2 / g and the true specific gravity dg / cm 3 .
[0014]
The average particle size of the colloidal silica particles is 4 to 100 nm. It is preferable that the colloidal silica particles have a smaller particle size because the adhesion is stronger. Therefore, it is preferably 4 to 50 nm, more preferably 4 to 20 nm.
[0015]
The material used by being implanted in the living body in the present invention can be selected from alumina, zirconia, stainless alloy, Ni—Cr alloy, Co—Cr alloy, titanium, titanium alloy, and the like. Of these, titanium or a titanium alloy is preferable.
As a titanium alloy, although titanium (Ti) is a main component, an alloy to which Al, Sn, Zr, Mo, Ni, Pd, Ta, Nb, V, Pt, or the like is added can be used. A Ti-6Al-4V alloy is preferable.
[0016]
Next, a method for manufacturing an artificial biomaterial will be described.
As the shape, materials having a linear shape, a net shape, a spot shape, or various patterns obtained by combining these shapes are prepared.
[0017]
The material is then contacted with a suspension of colloidal silica particles (colloidal silica). Here, a known method such as dipping or coating can be used as the contact method.
[0018]
After the contact treatment with high-concentration colloidal silica, it is preferable to remove excess adhered colloidal silica particles by washing with water as appropriate.
[0019]
Here, the silica (SiO 2) concentration of the colloidal silica can be obtained from commercial products include the 10 to 40% by weight. The silica concentration of colloidal silica can be adjusted to 0.01 to 40% by mass and used.
[0020]
Here, when the water washing step after the contact treatment is added, the silica concentration is 10 to 40% by mass, and when it is desired to exclude the water washing step after the contact treatment, the silica concentration is 0.01 to 10% by mass. It is done.
[0021]
By drying the material after the contact treatment at a temperature of 1 to 115 ° C., the colloidal silica particles can be easily attached to the material surface. In drying, the adhering water of the colloidal silica particles is removed.
[0022]
Drying in the air can be performed at a temperature of 1 to 30 ° C., which is called room temperature in the Japanese Pharmacopoeia, and at a temperature of 15 to 25 ° C. which is also called normal temperature. Drying using a thermostatic dryer can be performed at 30 to 115 ° C.
[0023]
The artificial biomaterial of the present invention thus obtained is useful as a dental defect filling material in dental treatment or as an artificial bone or artificial joint device in orthopedic treatment.
[0024]
【Example】
Example JIS type 2 pure titanium plate (10 mm × 10 mm × 1 mm) was placed in a 35 mm diameter plastic petri dish and a suspension of colloidal silica particles (silica concentration 20% by mass: Snowtex (registered trademark) O, Nissan Chemical Industries, Ltd. 2 ml) was added. After 24 hours, the titanium plate was taken out, washed with water and dried to obtain the artificial biomaterial of the present invention.
Comparative Examples 1-4
As a comparison of a titanium plate treated with colloidal silica (artificial biomaterial of the present invention), a JIS type 2 pure titanium plate (10 mm × 10 mm × 1 mm) was not treated (Comparative Example 1), water-resistant abrasive paper (# 800) ( Comparative Example 2) and alumina polishing paper (# 800) (Comparative Example 3) polished by an automatic polishing apparatus for about 20 minutes, and treated with 5M sodium hydroxide (NaOH) aqueous solution (alkali treatment) at 60 ° C. for 24 hours (comparison) Example 4) and artificial biomaterials of Comparative Examples 1 to 4 were produced.
[0025]
Test Example 1: Quantitative test of calcification amount The artificial biomaterial of the present invention obtained in the above-mentioned Examples was placed in a 35 mm diameter plastic petri dish, and contained 0.5 μCi / ml of 45 Ca. 2 ml of MEM solution (manufactured by Sigma-Aldrich) was added and placed under conditions of 37 ° C. and 5% CO 2 . Seven days later, the artificial biomaterial was taken out and dried at a temperature of 20 ° C., and the amount of 45 Ca on the surface was measured. The result is shown in FIG.
On the other hand, each of the artificial biomaterials of Comparative Examples 1 to 4 was put into a 35 mm diameter plastic petri dish, and 2 ml of MEM solution (manufactured by Sigma-Aldrich) containing 0.5 μCi / ml of 45 Ca was added at 37 ° C., 5 Placed in% CO 2 conditions. Seven days later, the artificial biomaterial was taken out and dried at a temperature of 20 ° C., and the amount of 45 Ca on the surface was measured. The result is shown in FIG.
Results Almost no calcification was observed in the untreated titanium plate (Comparative Example 1). In addition, although calcification is observed in the artificial biomaterial obtained by polishing the titanium plate with water-resistant polishing paper (Comparative Example 2), polishing with alumina polishing paper (Comparative Example 3) and alkali treatment (Comparative Example 4), It was not enough. On the other hand, in the artificial biomaterial (Example) of the present invention obtained by the colloidal silica treatment of the titanium plate, a strong calcification action was observed, and calcium formation about three times that of the alkali treatment was observed.
[0026]
Test Example 2: Electron microscope observation and bonding state of titanium surface particles JIS type 2 pure titanium plate (10 mm × 10 mm × 1 mm) was placed in a 35 mm diameter plastic petri dish and colloidal silica (silica concentration 20 mass%: Snowtex (registered trademark)) O, 2 ml of Nissan Chemical Industries, Ltd.) was added. After 24 hours, the titanium plate was taken out, washed with water and dried to obtain the artificial biomaterial of the present invention. Then, the artificial biomaterial was put into a 35 mm diameter plastic petri dish, which contained 0.5 μCi / ml of 45 Ca. 2 ml of the prepared MEM solution (manufactured by Sigma-Aldrich) was added and cultured under conditions of 37 ° C. and 5% CO 2 . Seven days later, the artificial biomaterial was taken out and dried at a temperature of 20 ° C., and the surface thereof was observed with an electrolytic emission scanning electron microscope (FE-SEM). The photograph taken is shown in FIG. Next, in order to confirm the bonding state of the colloidal silica particles to the titanium plate, the artificial biomaterial was subjected to ultrasonic cleaning treatment and then observed with an FE-SEM.
(1) Electron microscope observation of titanium surface particles The surface adhesion of colloidal silica particles was observed on the titanium surface layer after the treatment with colloidal silica. Furthermore, granular calcifications having a size of several μm were observed at a high density (see FIG. 2).
(2) Bonding state of titanium surface particles The colloidal silica particles bonded to the titanium surface layer were not affected by peeling off even by ultrasonic cleaning treatment.
[0027]
Test Example 3: Examination of treatment time for calcification by colloidal silica JIS type 2 pure titanium plate (10 mm × 10 mm × 1 mm) was placed in a 35 mm diameter plastic petri dish and colloidal silica (silica concentration 20% by mass: Snowtex (registered trademark)) O, 2 ml of Nissan Chemical Industries, Ltd.) was added. After 6 hours and 24 hours, respectively, the titanium plate was taken out, washed with water and dried, and 2 ml of MEM solution (manufactured by Sigma-Aldrich) containing 0.5 μCi / ml of 45 Ca was added thereto at 37 ° C., 5% CO Cultured under 2 conditions. After 24 hours, the titanium plate was taken out and dried at a temperature of 20 ° C., and the amount of 45 Ca on the surface was measured. The results are shown in FIG.
From FIG. 3, even if the titanium plate was treated with colloidal silica for a short time of 6 hours, the same calcification effect as that of the treatment for 24 hours was observed (see FIG. 3).
[0028]
【The invention's effect】
When the artificial biomaterial of the present invention is embedded in a living body, calcium phosphate adheres quickly. Here, since the bonding mode of the colloidal silica particles to the titanium plate or the like is due to adhesion, compared to the conventional silica gel coating layer, there is no displacement or peeling at the time of bonding with the bone tissue, and strong biocompatibility occurs.
Therefore, since the artificial biomaterial of the present invention can be combined with bone tissue in a short period of time and with high reproducibility, it is useful as an artificial biomaterial such as an artificial bone, an artificial joint, or an artificial tooth root that reduces the burden on the patient. . Further, according to the method of the present invention, these artificial biomaterials can be easily produced.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a graph showing the amount of calcium adhering to a titanium surface treated with no treatment, water-resistant abrasive paper, alumina abrasive paper, alkali treatment and colloidal silica.
FIG. 2 is a photograph taken with an electron microscope of a titanium surface on which colloidal silica is adhered and calcified substances are formed.
FIG. 3 is a graph showing the amount of calcium adhering to a titanium plate after treatment with colloidal silica for 6 hours and 24 hours.

Claims (6)

生体内に埋め込まれて使用される材料であって、該材料表面にシリカゲル被覆層を形成せずに、コロイダルシリカ粒子のみを点在して付着させた人工生体材料。  An artificial biomaterial that is used by being embedded in a living body, in which only a colloidal silica particle is scattered and adhered without forming a silica gel coating layer on the surface of the material. 前記コロイダルシリカ粒子の平均粒径が、4〜100nmである請求項1に記載の人工生体材料。  The artificial biomaterial according to claim 1, wherein the colloidal silica particles have an average particle size of 4 to 100 nm. 前記材料が、チタン又はチタン合金である請求項1に記載の人工生体材料。  The artificial biomaterial according to claim 1, wherein the material is titanium or a titanium alloy. 請求項1に記載の人工生体材料からなる、歯科治療に使用される歯欠損部用充填材料。  A filling material for a tooth defect portion used for dental treatment, comprising the artificial biomaterial according to claim 1. 請求項1に記載の人工生体材料からなる、整形外科治療に使用される人工骨又は人工関節。  An artificial bone or joint used for orthopedic treatment comprising the artificial biomaterial according to claim 1. 生体内に埋め込まれて使用される材料を、シリカ濃度が10〜40質量%であるコロイダルシリカ粒子の懸濁液に接触させ、水洗後、温度1〜115℃にて乾燥させることからなる請求項1に記載された人工生体材料の製造方法。  A material used by being embedded in a living body is brought into contact with a suspension of colloidal silica particles having a silica concentration of 10 to 40% by mass, washed with water, and dried at a temperature of 1 to 115 ° C. 1. A method for producing an artificial biomaterial described in 1.
JP2003178162A 2003-06-23 2003-06-23 Artificial biomaterial and method for producing the same Expired - Fee Related JP4493290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003178162A JP4493290B2 (en) 2003-06-23 2003-06-23 Artificial biomaterial and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003178162A JP4493290B2 (en) 2003-06-23 2003-06-23 Artificial biomaterial and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005013261A JP2005013261A (en) 2005-01-20
JP4493290B2 true JP4493290B2 (en) 2010-06-30

Family

ID=34179873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178162A Expired - Fee Related JP4493290B2 (en) 2003-06-23 2003-06-23 Artificial biomaterial and method for producing the same

Country Status (1)

Country Link
JP (1) JP4493290B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100876529B1 (en) * 2004-09-15 2008-12-31 주식회사 엘지화학 Film or building exterior material using self-cleaning coating composition and method for producing same
JPWO2007043149A1 (en) * 2005-10-05 2009-04-16 株式会社ホムズ技研 Implant for osteosynthesis and method for producing the same
CN102131489A (en) 2008-08-20 2011-07-20 株式会社器官再生工学 Method for restoring missing tooth and method for producing restorative material
JP5892547B2 (en) * 2012-05-31 2016-03-23 カーリットホールディングス株式会社 Conductive polymer dispersion for production of solid electrolytic capacitor and solid electrolytic capacitor produced using the same
CN105105859A (en) * 2015-09-01 2015-12-02 深圳市义和平有限公司 Improved artificial dental implant with porous lamina and production method of improved artificial dental implant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10512227A (en) * 1995-01-13 1998-11-24 ブリンク,マリア New bioactive glasses and their use
WO2001015751A1 (en) * 1999-09-01 2001-03-08 Bioxid Oy Novel multilayered material bearing a biologically active agent and the preparation thereof
WO2002085542A1 (en) * 2001-04-23 2002-10-31 Massachusetts Institute Of Technology Antimicrobial polymeric surfaces
WO2002087648A1 (en) * 2001-04-27 2002-11-07 Vivoxid Oy Method for improvement of soft tissue attachment and implants making use of said method
JP2005519186A (en) * 2001-12-15 2005-06-30 ドット ゲーエムベーハー Method for coating calcium phosphate on substrate and coated substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484057A3 (en) * 1990-11-02 1993-04-21 The Dow Chemical Company Antithrombogenic surfaces, their preparation, and materials therefore
JP3063013B2 (en) * 1991-10-04 2000-07-12 三金工業株式会社 Hydration-reactive calcium phosphate-based biomaterial with room-temperature setting ability
JP3062969B2 (en) * 1991-10-14 2000-07-12 科学技術振興事業団 Bioactive layer coating method
JPH09231821A (en) * 1995-12-22 1997-09-05 Toto Ltd Luminaire and method for maintaining illuminance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10512227A (en) * 1995-01-13 1998-11-24 ブリンク,マリア New bioactive glasses and their use
WO2001015751A1 (en) * 1999-09-01 2001-03-08 Bioxid Oy Novel multilayered material bearing a biologically active agent and the preparation thereof
WO2002085542A1 (en) * 2001-04-23 2002-10-31 Massachusetts Institute Of Technology Antimicrobial polymeric surfaces
WO2002087648A1 (en) * 2001-04-27 2002-11-07 Vivoxid Oy Method for improvement of soft tissue attachment and implants making use of said method
JP2005519186A (en) * 2001-12-15 2005-06-30 ドット ゲーエムベーハー Method for coating calcium phosphate on substrate and coated substrate

Also Published As

Publication number Publication date
JP2005013261A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP3220150B2 (en) Novel bioactive coatings and their manufacture and use
US5855612A (en) Biocompatible titanium implant
Swain et al. Effect of surface roughness on titanium medical implants
JP2004528109A (en) Method for improving soft tissue attachment and use of the method for preparing an implant
Rodriguez y Baena et al. Nanofeatured titanium surfaces for dental implantology: Biological effects, biocompatibility, and safety
JP2014534882A (en) Metal material having calcium phosphate layer and method for producing the same
JP3803140B2 (en) Dental implant and method for manufacturing dental implant
Sridhar Nanobioceramic coatings for biomedical applications
KR101972122B1 (en) Method for Preparing Dental Implants with Improved Surface Morphology and Osseointegration
WO1999058447A1 (en) Hydroxyapatite, composite, processes for producing these, and use of these
JP4493290B2 (en) Artificial biomaterial and method for producing the same
JP5186376B2 (en) Method for regenerating hydrophilic and bone-compatible surface of implant
JP2008500094A (en) Implantable biomaterial and method for its preparation
KR101686300B1 (en) A method for preparation of titanium-based implant using eco-friendly etching composition
JP2004183017A (en) Surface treatment method for metal titanium based base material and metal titanium based medical material
JP3853881B2 (en) Surface treatment method for medical implant material and biocompatible implant
JP5728321B2 (en) Manufacturing method of biological implant
KR101134977B1 (en) Implant surface treatment method and implant treated by the method
KR20180078620A (en) Method for Preparing Implants Having Hydrophilic Surface
JP4606813B2 (en) Calcium phosphate complex, method for producing the same, and artificial biomaterial using the same.
US11280006B2 (en) Method for preparing titanium-containing implant by using environmentally-friendly etching composition
KR102486628B1 (en) Surface Treatment Composition for Dental Implant and Surface Treatment Methods Using Thereof
JP2021109010A (en) Base material for endosseous implant material, endosseous implant material and method for producing base material for endosseous implant material
KR102178123B1 (en) Method for treating nano surface
JP4625943B2 (en) Bone substitute material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100406

R150 Certificate of patent or registration of utility model

Ref document number: 4493290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees