JP4493238B2 - Solar cell modularization method - Google Patents

Solar cell modularization method Download PDF

Info

Publication number
JP4493238B2
JP4493238B2 JP2001171473A JP2001171473A JP4493238B2 JP 4493238 B2 JP4493238 B2 JP 4493238B2 JP 2001171473 A JP2001171473 A JP 2001171473A JP 2001171473 A JP2001171473 A JP 2001171473A JP 4493238 B2 JP4493238 B2 JP 4493238B2
Authority
JP
Japan
Prior art keywords
ribbon
solar cells
solder dip
solar cell
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001171473A
Other languages
Japanese (ja)
Other versions
JP2002368241A (en
Inventor
寿 植田
宏 酒井
諭 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001171473A priority Critical patent/JP4493238B2/en
Publication of JP2002368241A publication Critical patent/JP2002368241A/en
Application granted granted Critical
Publication of JP4493238B2 publication Critical patent/JP4493238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の太陽電池セルを電気的に接続してモジュール化する方法に関する。
【0002】
【従来の技術】
太陽電池のモジュール化は、耐熱性基材をはんだ浴に浸漬して形成したはんだディップリボンを配線基材として用い、整列配置した複数の太陽電池セルを各太陽電池セルに形成した端部電極においてはんだディップリボンを介して相互に接続することにより行われている。そして、従来は、ランプ加熱やオーブン加熱や温風加熱によりはんだディップリボンを太陽電池セルの端部電極に融着している。
【0003】
【発明が解決しようとする課題】
上記従来例の如くランプ加熱やオーブン加熱や温風加熱を行うと、太陽電池セル全体が高温に加熱され、熱により太陽電池セルの性能が劣化することがある。また、はんだ鏝を使用して、はんだディップリボンを各太陽電池セルの端部電極に個別に接続することも考えられるが、これでは手間がかかり、製造コストが高くなる。
【0004】
そこで本発明は、上記の問題点に鑑み、太陽電池セルの性能劣化を生ずること無く低コストで太陽電池のモジュール化を行い得られるようにした方法を提供することを課題とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために本発明は、複数の太陽電池セルを各太陽電池セルに形成した端部電極においてはんだディップリボンを介して相互に接続することによりモジュール化する方法において、パレット上に複数の太陽電池セルを整列配置する工程と、これら太陽電池セルの端部電極に接するようにはんだディップリボンをセットする工程と、ヒータを内蔵するはんだディップリボンの長手方向に長手の加熱ヘッドにより該ヘッドに取り付けた耐熱弾性体を介してはんだディップリボンを加圧加熱し、前記複数の太陽電池セルの端部電極にはんだディップリボンを融着する工程とを備えることを特徴とする。尚、耐熱弾性体としては、はんだが付着しにくいシリコーンゴムを用いることが望ましい
本発明によれば、加熱ヘッドではんだディップリボンを加熱するため、太陽電池セル全体が高温に加熱されることはなく、熱による太陽電池セルの性能劣化が防止され、更に、複数の太陽電池セルの端部電極に対するはんだディップリボンの融着作業を同時に能率良く行うことができ、製造コストの低廉化を図れる。また、耐熱弾性体を介してはんだディップリボンを加圧するため、複数の太陽電池セルの夫々の端部電極に対するはんだディップリボンの追従性が確保され、これら端部電極にはんだディップリボンが確実に融着する。更に、太陽電池セルに対する機械的衝撃が耐熱弾性体により緩和され、太陽電池セルの機械的衝撃による破損も防止される。
【0006】
ところで、はんだディップリボンを加熱すると、太陽電池セルの温度が端部電極の部分で局部的に上昇し、他の部分との温度差が大きいと、ヒートショックによる太陽電池セルの破損を生ずる。この場合、パッレトにヒータを埋設し、加熱ヘッドによりはんだディップリボンを加熱する前に、パレット上の複数の太陽電池セルを性能劣化を生じない温度範囲で予熱しておけば、太陽電池セルの端部電極の部分と他の部分との温度差が過度に大きくならず、ヒートショックによる太陽電池セルの破損を防止できる。
【0007】
【発明の実施の形態】
図1及び図2を参照して、1は太陽電池セルであり、太陽電池セル1の複数個を電気的に接続してモジュール化している。
【0008】
各太陽電池セル1は、ガラス基板1a上に、Mo製の裏面電極1bと,CIGS(銅・インジウム・ガリウム・セレンを含有するカルコパイライト半導体)製の光吸収層1cと、ZnS製のバッファ層1dと、ZnO製の半絶縁層1eと、Al製の表面電極1dとを積層したCIGS系のものである。本実施形態では、ガラス基板1d上に、裏面電極1bを前後複数列に形成すると共に、光吸収層1cとバッファ層1dと半絶縁層1eと表面電極1fとから成る光起電力部を裏面電極1bに跨るように前後複数列形成し、各光起電力部の表面電極1bを後側の光起電力部に接する裏面電極1bに接続して、複数の光起電力部が直列に接続されるようにしている。そして、前端の裏面電極1b上に第1端部電極1gと、後端の光起電力部の表面電極1f上に第2端部電極1hとを形成し、横1列に整列させた複数個(図示例では4個)の太陽電池セル1の第1端部電極1g同士と第2端部電極1h同士とを夫々はんだディップリボン2を介して接続し、複数の太陽電池セル1を並列接続して成る単位モジュールを製造する。尚、図示しないが、このようにして製造した単位モジュールを前後方向に複数個並べて単位モジュール同士を直列接続することにより太陽電池モジュールを構成する。
【0009】
ここで、光起電力部の厚さは2〜3μm程度であり、また、各端部電極1g,1hの材料はAlペーストであって、その厚さは30μm以上にする。はんだディップリボン2は、耐熱性基材2aをはんだ浴に浸漬して形成されるもので、基材2aの外面がはんだ2bで被覆されている。はんだの材料としては、銀含有通常鉛はんだ(Sn42%・Pb36%・Ag2%,融点179℃)、銀含有低温鉛フリーはんだ(Sn42%・Bi57%・Ag1%,融点138℃)、鉛フリーはんだ(Cu0.5%・Ag3%・Sn96.5%,融点217℃)等の種種のものを用いることができる
図3は、複数の太陽電池セル1から成る単位モジュールを製造するための設備を示してる。この設備は、複数の太陽電池セル1を載置するパッレト10と、はんだディップリボン2用の前後一対のセット装置111,112 と、はんだディップリボン2用の前後一対の加熱ヘッド121 ,122 とを備えている。パレット10の上面には、各太陽電池セル1の位置決め用ガイド突起10aが形成されており、パレット10上に複数の太陽電池セル1を横1列に整列配置できるようにしている。
【0010】
尚、パレット10にガイド突起10aを形成せずに、複数の太陽電池セル1を脱着自在な治具を用いてパレット10上に横1列に整列配置させることも可能である。この場合、パレット10に、各太陽電池セル1の載置部に開口するエア孔を形成し、エア孔を介しての真空引きにより各太陽電池セル1をパレット10に吸着させて、治具を取り外しても太陽電池セル1が位置ずれしないようにする。また、ガイド突起10a付きのパレット10でもエア孔を形成しておけば、複数の太陽電池セル1を並列接続して製造した単位モジュールのパレット10からの取り出しをエア孔からのエア吹き出しで容易にすることができる。
【0011】
前記各セット装置111 ,112 は、上下方向に揺動自在な1対の可動アーム11a,11aで構成されており、各可動アーム11aの先端にはんだディップリボン2を把持するクランプ部11bを設けている。そして、前側の第1セット装置111 の両可動アーム11a,11aの下方への揺動により、パレット10上に横1列に整列配置された複数の太陽電池セル1の第1端部電極1gに接するように1本のはんだディップリボン2をセットし、後側の第2セット装置112の両可動アーム11a,11aの下方への揺動により、上記太陽電池セル1の第2端部電極1gに接するように別の1本のはんだディップリボン2をセットする。
【0012】
前記両加熱ヘッド121 ,122 は、前後1対の支柱13,13間に両支柱13,13に沿って上下動するように設けた昇降枠14に取り付けられている。各加熱ヘッド121 ,122 は、各はんだディップリボン2の長手方向に長手であり、即ち、横方向に長手であり、昇降枠14の下降により、前側の第1加熱ヘッド121 が第1セット装置111 でセットされたはんだディップリボン2に当接し、後側の第2加熱ヘッド 122が第2セット装置 112でセットされたはんだディップリボン2に当接する。各加熱ヘッド121 ,122 は、ヒータ12aを内蔵しており、また、各加熱ヘッド121 ,122 のはんだディップリボン2に対する当接面、即ち、下面には、耐熱弾性体12bが取り付けられている。尚、耐熱弾性体12bとしては、はんだが付着しにくいシリコーンゴムを用いることが好ましい。
【0013】
単位モジュールの製造に際しては、先ず、パレット10上に複数の太陽電池セル1を整列配置し、次に、第1と第2の各セット装置111 ,112 により上記複数の太陽電池セル1の第1と第2の各端部電極1g,1hに接するように各はんだディップリボン2をセットする。尚、はんだディップリボン2には予めフラックスを塗布しておく。また、パレット10は、ヒータ10bへの通電により、太陽電池セル1の熱による性能劣化を生じない所定温度(80〜100℃)に予め加熱されており、はんだディップリボン2のセット後、一定時間待って太陽電池セル1を上記所定温度に予熱する。そして、予熱完了後、昇降枠14を下降する。これによれば、第1と第2の各加熱ヘッド121 ,122 によりその下面の耐熱弾性体12bを介して各はんだディップリボン2が加圧される。そのため、耐熱弾性体12bの弾力により、各はんだディップリボン2が複数の太陽電池セル1の第1と第2の各端部電極1g,1hに追従性良く密着し、また、加圧時に太陽電池セル1に加えられる機械的衝撃が耐熱弾性体12bにより緩和され、太陽電池セル1の破損が防止される。ここで、各加熱ヘッド121 、122 は、ヒータ12aへの通電により、予めはんだ材料の融点よりも50℃程度高い温度に加熱されており、耐熱弾性体12bを介しての熱伝導により各はんだディップリボン2が複数の太陽電池セル1の第1と第2の各端部電極1g,1hに融着され複数の太陽電池セル1が並列接続される。
【0014】
ここで、はんだディップリボン2の融着時、太陽電池セル1は各端部電極1g,1hの部分で局部的に加熱されるが、太陽電池セル1を上記の如く予熱しているため、各端部電極1g,1hの部分と他の部分との温度差は左程大きくならず、ヒートショックによる太陽電池セル1の破損は生じない。そして、はんだディップリボン2の融着後、昇降枠14の上昇で第1と第2の各加熱ヘッド121 ,122 を各はんだディップリボン2の上方に離脱させると共に、第1と第2の各セット装置111 ,112 の可動アーム11aを上方に揺動させ、次に、並列接続された複数の太陽電池セル1から成る単位モジュールをパレット10から取り出して、1回の作業を完了する。
【0015】
尚、各セット装置111 ,112 の可動アーム11aの長さを調整自在にすると共に、昇降枠14に対する各加熱ヘッド121 ,122 の取り付け位置を調整自在にしておけば、大きさの異なる太陽電池セル1にも対処でき、汎用性が得られる。
【0016】
【発明の効果】
以上の説明から明らかなように、本発明によれば、太陽電池セルの破損や性能劣化を生ずることなく、複数の太陽電池セルの端部電極にはんだディップリボンを同時に能率良く、且つ、確実に融着でき、製造コストの低廉化を図れる。
【図面の簡単な説明】
【図1】本発明方法で製造した太陽電池の単位モジュールを示す斜視図
【図2】図1のII−II線拡大切断面図
【図3】本発明方法の実施に用いる設備の概略斜視図
【符号の説明】
1 太陽電池セル 1g、1h 端部電極
2 はんだディップリボン 10 パレット
10b ヒータ 121 、122 加熱ヘッド
12a ヒータ 12b 耐熱弾性体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of electrically connecting a plurality of solar cells to form a module.
[0002]
[Prior art]
The modularization of solar cells uses a solder dip ribbon formed by immersing a heat-resistant substrate in a solder bath as a wiring substrate, and an end electrode in which a plurality of aligned solar cells are formed in each solar cell. This is done by connecting to each other via a solder dip ribbon. Conventionally, the solder dip ribbon is fused to the end electrode of the solar battery cell by lamp heating, oven heating or hot air heating.
[0003]
[Problems to be solved by the invention]
When lamp heating, oven heating, or warm air heating is performed as in the above-described conventional example, the entire solar cell is heated to a high temperature, and the performance of the solar cell may be deteriorated by the heat. In addition, it is conceivable to individually connect the solder dip ribbon to the end electrode of each solar battery cell using a soldering iron, but this takes time and increases the manufacturing cost.
[0004]
In view of the above problems, an object of the present invention is to provide a method that can be obtained by modularizing a solar cell at low cost without causing deterioration of the performance of the solar cell.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a method for modularizing a plurality of solar cells by connecting them to each other via solder dip ribbons at end electrodes formed on each solar cell. A step of arranging the solar cells in a line, a step of setting a solder dip ribbon so as to be in contact with the end electrodes of the solar cells, and a heating head long in the longitudinal direction of the solder dip ribbon incorporating the heater. And a step of pressurizing and heating the solder dip ribbon through the heat-resistant elastic body attached to the end of the plurality of solar cells and fusing the solder dip ribbon to the end electrodes of the plurality of solar cells. According to the present invention, it is desirable to use a silicone rubber to which the solder is difficult to adhere as the heat-resistant elastic body. Since the heating dip ribbon is heated by the heating head, the entire solar battery cell is not heated to a high temperature. Moreover, the performance deterioration of the solar battery cell due to heat can be prevented, and the solder dip ribbon can be fused efficiently to the end electrodes of the plurality of solar battery cells at the same time, and the manufacturing cost can be reduced. In addition, since the solder dip ribbon is pressed through the heat-resistant elastic body, the followability of the solder dip ribbon to each end electrode of the plurality of solar cells is ensured, and the solder dip ribbon is securely melted to these end electrodes. To wear. Furthermore, the mechanical impact on the solar battery cell is alleviated by the heat-resistant elastic body, and the solar battery cell is prevented from being damaged by the mechanical impact.
[0006]
By the way, when the solder dip ribbon is heated, the temperature of the solar cell rises locally at the end electrode portion, and if the temperature difference from other portions is large, the solar cell is damaged by heat shock. In this case, if a heater is embedded in the pallet and the solder dip ribbon is heated by the heating head, a plurality of solar cells on the pallet are preheated in a temperature range that does not cause performance deterioration. The temperature difference between the partial electrode portion and the other portion is not excessively large, and damage to the solar battery cell due to heat shock can be prevented.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
With reference to FIG.1 and FIG.2, 1 is a photovoltaic cell, The plurality of photovoltaic cells 1 are electrically connected and modularized.
[0008]
Each solar cell 1 has a glass substrate 1a, a back electrode 1b made of Mo, a light absorption layer 1c made of CIGS (chalcopyrite semiconductor containing copper, indium, gallium, selenium), and a buffer layer made of ZnS. This is a CIGS system in which 1d, a semi-insulating layer 1e made of ZnO, and a surface electrode 1d made of Al are laminated. In the present embodiment, a back surface electrode 1b is formed in a plurality of front and rear rows on a glass substrate 1d, and a photovoltaic part composed of a light absorption layer 1c, a buffer layer 1d, a semi-insulating layer 1e, and a surface electrode 1f is used as a back surface electrode. A plurality of photovoltaic units are connected in series by forming a plurality of front and rear rows so as to extend over 1b, connecting the surface electrode 1b of each photovoltaic unit to the back electrode 1b in contact with the photovoltaic unit on the rear side. I am doing so. Then, a plurality of first end electrodes 1g formed on the back electrode 1b at the front end and second end electrodes 1h formed on the surface electrode 1f of the photovoltaic section at the rear end are aligned in a horizontal row. The first end electrodes 1g and the second end electrodes 1h of the solar cells 1 (four in the illustrated example) are connected to each other via the solder dip ribbon 2, and a plurality of solar cells 1 are connected in parallel. A unit module is manufactured. In addition, although not shown in figure, a solar cell module is comprised by arranging the unit modules manufactured in this way in the front-back direction, and connecting unit modules in series.
[0009]
Here, the thickness of the photovoltaic portion is about 2 to 3 μm, and the material of the end electrodes 1g and 1h is Al paste, and the thickness thereof is set to 30 μm or more. The solder dip ribbon 2 is formed by immersing the heat-resistant substrate 2a in a solder bath, and the outer surface of the substrate 2a is covered with the solder 2b. Solder materials include silver-containing normal lead solder (Sn42%, Pb36%, Ag2%, melting point 179 ° C), silver-containing low-temperature lead-free solder (Sn42%, Bi57%, Ag1%, melting point 138 ° C), lead-free solder 3 (Cu 0.5%, Ag 3%, Sn 96.5%, melting point 217 ° C.) can be used. FIG. 3 shows an installation for manufacturing a unit module composed of a plurality of solar cells 1. I'm. This equipment includes a pallet 10 on which a plurality of solar cells 1 are placed, a pair of front and rear set devices 11 1 and 11 2 for the solder dip ribbon 2, and a pair of front and rear heating heads 12 1 and 2 for the solder dip ribbon 2. 12 2 . On the upper surface of the pallet 10, positioning guide protrusions 10 a for the solar cells 1 are formed so that the plurality of solar cells 1 can be arranged in a horizontal row on the pallet 10.
[0010]
In addition, without forming the guide protrusion 10a on the pallet 10, it is also possible to arrange a plurality of solar cells 1 in a horizontal row on the pallet 10 using a detachable jig. In this case, the pallet 10 is formed with air holes that open to the placement portions of the solar cells 1, and the solar cells 1 are attracted to the pallet 10 by evacuation through the air holes, and the jig is attached. The solar battery cell 1 is prevented from being displaced even if it is removed. Further, if air holes are formed in the pallet 10 with the guide protrusions 10a, unit modules manufactured by connecting a plurality of solar cells 1 in parallel can be easily taken out from the pallet 10 by air blowing from the air holes. can do.
[0011]
Each of the set devices 11 1 and 11 2 is composed of a pair of movable arms 11a and 11a that are swingable in the vertical direction. A clamp portion 11b that holds the solder dip ribbon 2 is provided at the tip of each movable arm 11a. Provided. The front side of the first setting device 11 1 of the two movable arms 11a, by rocking the downward 11a, first end electrode 1g of the plurality of solar cells 1 aligned in a horizontal row on the pallet 10 It sets one solder dip ribbon 2 so as to be in contact with the second setting device 11 2 for the two movable arms 11a of rear by swinging the downward 11a, second end electrodes of the solar cell 1 Another solder dip ribbon 2 is set so as to be in contact with 1 g.
[0012]
Both the heating heads 12 1 , 12 2 are attached to a lifting frame 14 provided so as to move up and down along the support columns 13, 13 between a pair of front and rear support columns 13, 13. Each of the heating heads 12 1 , 12 2 is long in the longitudinal direction of each solder dip ribbon 2, that is, is long in the lateral direction, and the first heating head 12 1 on the front side becomes the first by the lowering of the lifting frame 14. setting device 11 1 the set in contact with the solder dipping ribbon 2, the second heating head 12 2 of the rear side comes into contact with the solder dipping ribbon 2 which is set by the second setting device 11 2. Each of the heating heads 12 1 and 12 2 includes a heater 12a, and a heat-resistant elastic body 12b is attached to a contact surface, that is, a lower surface of the heating heads 12 1 and 12 2 with respect to the solder dip ribbon 2. It has been. In addition, as the heat resistant elastic body 12b, it is preferable to use a silicone rubber to which solder does not easily adhere.
[0013]
In manufacturing the unit module, first, a plurality of solar cells 1 are arranged on the pallet 10 and then the first and second set devices 11 1 , 11 2 are used to form the plurality of solar cells 1. Each solder dip ribbon 2 is set so as to be in contact with the first and second end electrodes 1g and 1h. Note that flux is applied to the solder dip ribbon 2 in advance. In addition, the pallet 10 is preheated to a predetermined temperature (80 to 100 ° C.) that does not cause performance deterioration due to the heat of the solar battery cell 1 by energization of the heater 10b. It waits and the solar cell 1 is preheated to the said predetermined temperature. And after completion of preheating, the elevating frame 14 is lowered. According to this, each solder dip ribbon 2 is pressurized by the first and second heating heads 12 1 and 12 2 via the heat-resistant elastic body 12b on the lower surface thereof. Therefore, due to the elasticity of the heat-resistant elastic body 12b, each solder dip ribbon 2 is in close contact with the first and second end electrodes 1g, 1h of the plurality of solar cells 1, and the solar cell is pressed when pressed. The mechanical impact applied to the cell 1 is alleviated by the heat-resistant elastic body 12b, and the solar cell 1 is prevented from being damaged. Here, each of the heating heads 12 1 and 12 2 is heated to a temperature about 50 ° C. higher than the melting point of the solder material in advance by energization of the heater 12a, and each of the heating heads 12 1 and 12 2 is heated by heat conduction through the heat-resistant elastic body 12b. The solder dip ribbon 2 is fused to the first and second end electrodes 1g, 1h of the plurality of solar cells 1, and the plurality of solar cells 1 are connected in parallel.
[0014]
Here, when the solder dip ribbon 2 is fused, the solar battery cell 1 is locally heated at the end electrodes 1g and 1h. However, since the solar battery cell 1 is preheated as described above, The temperature difference between the end electrodes 1g, 1h and other portions does not increase as much as the left, and the solar cell 1 is not damaged by heat shock. Then, after the solder dip ribbon 2 is fused, the first and second heating heads 12 1 and 12 2 are separated above the solder dip ribbons 2 by raising the elevating frame 14, and the first and second heating heads 12 1 and 12 2 are separated. The movable arms 11a of the set devices 11 1 and 11 2 are swung upward, and then a unit module composed of a plurality of solar cells 1 connected in parallel is taken out from the pallet 10 to complete one operation. .
[0015]
The length of the movable arm 11a of each set device 11 1 , 11 2 can be adjusted, and the mounting position of each heating head 12 1 , 12 2 relative to the lifting frame 14 can be adjusted. Different solar cells 1 can be dealt with and versatility is obtained.
[0016]
【The invention's effect】
As is clear from the above description, according to the present invention, the solder dip ribbons can be efficiently and reliably applied to the end electrodes of the plurality of solar cells at the same time without causing damage or performance deterioration of the solar cells. It can be fused and the manufacturing cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a unit module of a solar cell manufactured by the method of the present invention. FIG. 2 is an enlarged sectional view taken along line II-II in FIG. 1. FIG. 3 is a schematic perspective view of equipment used for carrying out the method of the present invention. [Explanation of symbols]
1 the solar cell 1 g, 1h end electrodes 2 solder dipping ribbon 10 pallet 10b heater 12 1, 12 2 heated heads 12a heater 12b heat-resistant elastic member

Claims (3)

複数の太陽電池セルを各太陽電池セルに形成した端部電極においてはんだディップリボンを介して相互に接続することによりモジュール化する方法において、
パレット上に複数の太陽電池セルを整列配置する工程と、
これら太陽電池セルの端部電極に接するようにはんだディップリボンをセットする工程と、
ヒータを内蔵するはんだディップリボンの長手方向に長手の加熱ヘッドにより該ヘッドに取り付けた耐熱弾性体を介してはんだディップリボンを加圧加熱し、前記複数の太陽電池セルの端部電極にはんだディップリボンを融着する工程とを備える、
ことを特徴とする太陽電池のモジュール化方法。
In a method of modularizing by connecting a plurality of solar cells to each other via solder dip ribbons at the end electrodes formed in each solar cell,
Arranging a plurality of solar cells on a pallet;
A step of setting a solder dip ribbon so as to be in contact with the end electrodes of these solar cells;
A solder dip ribbon is heated by a heat-resistant elastic body attached to the head by a heating head long in the longitudinal direction of the solder dip ribbon with a built-in heater, and solder dip ribbons are attached to the end electrodes of the plurality of solar cells. A step of fusing
A method for modularizing a solar cell.
前記耐熱弾性体としてシリコーンゴムを用いることを特徴とする請求項1に記載の太陽電池のモジュール化方法 。The method for modularizing a solar cell according to claim 1, wherein silicone rubber is used as the heat-resistant elastic body. 前記パレットにヒータを埋設し、前記加熱ヘッドにより前記はんだディップリボンを加圧加熱する前に、前記複数の太陽電池セルを予熱することを特徴とする請求項1又は2に記載の太陽電池のモジュール化方法 。The solar cell module according to claim 1 or 2, wherein a heater is embedded in the pallet, and the plurality of solar cells are preheated before the solder dip ribbon is heated under pressure by the heating head. Method of conversion.
JP2001171473A 2001-06-06 2001-06-06 Solar cell modularization method Expired - Fee Related JP4493238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001171473A JP4493238B2 (en) 2001-06-06 2001-06-06 Solar cell modularization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001171473A JP4493238B2 (en) 2001-06-06 2001-06-06 Solar cell modularization method

Publications (2)

Publication Number Publication Date
JP2002368241A JP2002368241A (en) 2002-12-20
JP4493238B2 true JP4493238B2 (en) 2010-06-30

Family

ID=19013240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001171473A Expired - Fee Related JP4493238B2 (en) 2001-06-06 2001-06-06 Solar cell modularization method

Country Status (1)

Country Link
JP (1) JP4493238B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4993916B2 (en) * 2006-01-31 2012-08-08 昭和シェル石油株式会社 In solder-coated copper foil ribbon conductor and connection method thereof
JP5064107B2 (en) * 2007-05-09 2012-10-31 昭和シェル石油株式会社 Ribbon wire connection method for electronic component module or CIS thin film solar cell module
JP4838787B2 (en) * 2007-12-19 2011-12-14 有限会社エコ&エンジニアリング Solar cell element connection method and solar cell element connection device
WO2010060646A1 (en) * 2008-11-28 2010-06-03 Volker Probst Method for producing semiconductor layers and coated substrates treated with elemental selenium and/or sulfur, in particular flat substrates
KR100913208B1 (en) 2009-03-09 2009-08-24 주식회사 아론 Bonding device for ribbon on solar cell module
KR100934384B1 (en) 2009-05-18 2009-12-30 지.티.에스 (주) Apparatus soldering ribbon for a solar cell module
KR101028310B1 (en) * 2009-06-30 2011-04-11 엘지이노텍 주식회사 Solar cell and method of fabricating the same
JP5459841B2 (en) * 2009-12-11 2014-04-02 日本アビオニクス株式会社 Method and apparatus for joining solar cell modules
KR101134675B1 (en) 2010-02-01 2012-04-09 주식회사 인라인메카닉스 Pallet moving system for solar battery module manufacturing apparatus
KR100990079B1 (en) 2010-04-21 2010-10-29 주식회사 인맥 System and method of manufacturing solar cell module matrix
KR101182879B1 (en) 2010-09-30 2012-09-13 건국대학교 산학협력단 Apparatus and Process of Sola Cell Ribbon Soldering
JP2012109423A (en) * 2010-11-18 2012-06-07 Nippon Avionics Co Ltd Soldering method and soldering device of interconnector of thin film solar cell module
CN102248246B (en) * 2011-07-11 2014-02-26 无锡市斯威克光伏自动化设备有限公司 Welding tractor for solar cell panel tin-coated strip welding machine
JP2013219118A (en) * 2012-04-05 2013-10-24 Mitsubishi Electric Corp Solar battery and manufacturing method of the same
CN108091938A (en) * 2017-12-29 2018-05-29 嘉兴君屹工程有限公司 A kind of battery modules heat pressuring machine
CN110265513B (en) * 2019-06-10 2021-03-26 上海空间电源研究所 High-precision automatic solar cell module laying equipment and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250493A (en) * 1991-01-10 1992-09-07 Fuji Electric Co Ltd External connecting method for display panel
JPH09509013A (en) * 1994-12-01 1997-09-09 アンゲヴァンテ・ゾラールエネアギー−アーエスエー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for interconnecting solar cells
JPH1187756A (en) * 1997-09-05 1999-03-30 Mec:Kk Method and tool for soldering metallic tab to surface of solar battery cell in superposing state
JPH11220152A (en) * 1998-02-04 1999-08-10 Fuji Electric Co Ltd Manufacture of photoelectric conversion module and manufacturing apparatus thereof
JP2000022188A (en) * 1998-07-03 2000-01-21 Npc:Kk Soldering system for tab lead
JP2001102610A (en) * 1999-09-29 2001-04-13 Kanegafuchi Chem Ind Co Ltd Lead wire with solder bump, lead wire-mounting device for solar cell, and method for manufacturing solar cell
JP2001135842A (en) * 1999-11-02 2001-05-18 Kanegafuchi Chem Ind Co Ltd Solar cell lead wire fixing method and device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250493A (en) * 1991-01-10 1992-09-07 Fuji Electric Co Ltd External connecting method for display panel
JPH09509013A (en) * 1994-12-01 1997-09-09 アンゲヴァンテ・ゾラールエネアギー−アーエスエー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for interconnecting solar cells
JPH1187756A (en) * 1997-09-05 1999-03-30 Mec:Kk Method and tool for soldering metallic tab to surface of solar battery cell in superposing state
JPH11220152A (en) * 1998-02-04 1999-08-10 Fuji Electric Co Ltd Manufacture of photoelectric conversion module and manufacturing apparatus thereof
JP2000022188A (en) * 1998-07-03 2000-01-21 Npc:Kk Soldering system for tab lead
JP2001102610A (en) * 1999-09-29 2001-04-13 Kanegafuchi Chem Ind Co Ltd Lead wire with solder bump, lead wire-mounting device for solar cell, and method for manufacturing solar cell
JP2001135842A (en) * 1999-11-02 2001-05-18 Kanegafuchi Chem Ind Co Ltd Solar cell lead wire fixing method and device

Also Published As

Publication number Publication date
JP2002368241A (en) 2002-12-20

Similar Documents

Publication Publication Date Title
JP4493238B2 (en) Solar cell modularization method
JP6018078B2 (en) Method for manufacturing a solar panel and interconnect processing assembly
KR101589789B1 (en) Method and device for producing a solar panel using a carrier
JP3088017B2 (en) Method and apparatus for interconnecting solar cells
CN100426533C (en) Solar cell assembly manufacturing process
WO2011049187A1 (en) Soldering device and soldering method
TWI474496B (en) Method and arrangement for fitting contact wires to a surface of a photovoltaic cell, photovoltaic cell, and photovoltaic module
JPWO2005096396A1 (en) Manufacturing method of solar cell
JP2013139044A (en) Soldering device of tab lead for solar cell
JP2007273830A (en) Method for manufacturing solar battery device
WO2005117140A1 (en) Solar battery cell manufacturing apparatus
EP2546890A2 (en) Solar module and electrode soldering method therefor
WO2024040987A1 (en) Busbar-free solar photovoltaic module and manufacturing method therefor
EP3211676B1 (en) Method for producing solar cell module
CN111958084A (en) Processing equipment and processing method of solar cell module
JP5274326B2 (en) Manufacturing method of solar cell module
JP2014036177A (en) Welding device for lead
CN107552911B (en) Series welding machine with double welding stations and series welding method for battery pieces
JP2004273914A (en) Apparatus for manufacturing solar battery cell
JP2005347703A (en) Tab lead fitting equipment for solar battery cell
JP2008251979A (en) Manufacturing method and apparatus for electronic circuit
CN219786885U (en) Back contact battery welding equipment
JP2012114318A (en) Device and method of soldering tab lead to solar cell
KR101123444B1 (en) Method for manufacturing of Solar Cell Module
JP5455809B2 (en) Method and apparatus for connecting solar cell connecting member

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees