JP4490557B2 - 水素急速充填方法 - Google Patents

水素急速充填方法 Download PDF

Info

Publication number
JP4490557B2
JP4490557B2 JP2000174503A JP2000174503A JP4490557B2 JP 4490557 B2 JP4490557 B2 JP 4490557B2 JP 2000174503 A JP2000174503 A JP 2000174503A JP 2000174503 A JP2000174503 A JP 2000174503A JP 4490557 B2 JP4490557 B2 JP 4490557B2
Authority
JP
Japan
Prior art keywords
hydrogen
filling
tank
pressure
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000174503A
Other languages
English (en)
Other versions
JP2001355795A (ja
JP2001355795A5 (ja
Inventor
秀一 斗ヶ沢
彰文 大高
晃一 高久
山田  晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000174503A priority Critical patent/JP4490557B2/ja
Priority to US09/878,812 priority patent/US6598624B2/en
Publication of JP2001355795A publication Critical patent/JP2001355795A/ja
Publication of JP2001355795A5 publication Critical patent/JP2001355795A5/ja
Application granted granted Critical
Publication of JP4490557B2 publication Critical patent/JP4490557B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/002Automated filling apparatus
    • F17C5/007Automated filling apparatus for individual gas tanks or containers, e.g. in vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/20Excess-flow valves
    • F16K17/22Excess-flow valves actuated by the difference of pressure between two places in the flow line
    • F16K17/24Excess-flow valves actuated by the difference of pressure between two places in the flow line acting directly on the cutting-off member
    • F16K17/28Excess-flow valves actuated by the difference of pressure between two places in the flow line acting directly on the cutting-off member operating in one direction only
    • F16K17/30Excess-flow valves actuated by the difference of pressure between two places in the flow line acting directly on the cutting-off member operating in one direction only spring-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0326Valves electrically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0382Constructional details of valves, regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0636Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/025Reducing transfer time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/065Fluid distribution for refueling vehicle fuel tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素タンクに水素を急速に充填する際の発熱を抑制した水素急速充填方法に関する。
【0002】
【従来の技術】
近年、二酸化炭素の排出量を抑制するなどの環境面から、燃料電池電気自動車や水素自動車など、水素(H2)を燃料とする自動車が注目されている。かかる自動車は、水素タンクを搭載しており、水素タンクに充填されている水素を燃料電池やエンジンに供給してモータやエンジンによる駆動力を発生させる。
【0003】
水素タンクには、20MPa程度の圧力で水素(純水素)が充填されているが、燃料電池などで水素を消費すると水素タンクの圧力が減ってくる。水素タンクの圧力が減ると水素タンク内の水素の残量も減り、燃料電池などに水素を供給することができなくなる。したがって、水素タンクに水素の充填(再充填)が行われる。例えば、燃料電池電気自動車や水素自動車は、ガソリンスタンドのような水素ステーションに立ち寄り、該自動車に搭載する水素タンクに水素の充填を行う。
【0004】
ところで、天然ガス(CH4)を燃料とする天然ガス自動車(CNG自動車ともいう)が知られている。天然ガス自動車が搭載する天然ガスタンクへの天然ガスの充填は、例えば、天然ガス充填所に設置された天然ガス供給源と天然ガスタンクとを接続し、両者の圧力差により行っている。当然、天然ガス供給源の圧力が高いほど天然ガスを急速に充填することができるので、一般に天然ガス供給源の圧力を高く維持する工夫がなされている。
【0005】
例えば、実開平4−64699号公報には、天然ガスを繰り返して急速充填することができるように、天然ガス供給源である高圧蓄圧器(充填後期に使用)と可変圧蓄圧器(充填初期に使用)を切り替えて使用し、天然ガスの充填を行う「圧縮天然ガスを燃料とする自動車への燃料供給装置」が開示されている。この実施例では、蓄圧器(高圧蓄圧器及び可変圧蓄圧器)の最高蓄圧圧力が共に略25Mpa、燃料ボンベ(天然ガスタンク)の最高充填圧力が略20MPaであり、最初(充填初期)、25MPaの可変圧蓄圧器で略10MPaまで燃料ボンベに天然ガスを充填し、その後(充填後期)、25MPaの高圧蓄圧器で20MPaまで燃料ボンベに天然ガスを充填する旨が記載されている。このようにすることで、天然ガス供給源の圧力を高く維持することができ、天然ガスを繰り返して急速充填することが可能になる。
【0006】
なお、天然ガスタンク(燃料ボンベ)に天然ガスを充填する際には、天然ガスタンク内では、ジュール−トムソン効果による吸熱と断熱圧縮による発熱が同時に起こるので、吸熱と発熱がほぼ相殺され、若干天然ガスの温度が下がる。したがって、天然ガスの急速充填を行うに際して、充填時の発熱は何ら問題になることはない。
【0007】
【発明が解決しようとする課題】
しかしながら、水素は天然ガスと異なり、ジュール−トムソン効果における逆転温度が常温以下の202K(約−71℃)であるので、圧縮された常温程度の水素を膨張すると、発熱して水素の温度が上昇してしまう。したがって、水素タンクへの水素の充填の際には、(a)水素タンク内の圧力を断熱的に高めることによる発熱、及び(b)水素タンクよりも圧力の高い水素供給源から水素タンク内に水素を膨張させることによる発熱(発熱量としては断熱圧縮のそれよりもかなり小さい)が同時に生じ、充填された水素の温度及び水素タンク自体の温度が高くなってしまう。つまり、天然ガスなどと異なり、水素の場合、水素タンク内に水素を膨張させることによる冷却効果が生じず、そのため、充填された水素の温度及び水素タンク自体の温度が断熱圧縮により高くなってしまう。水素の温度及び水素タンク自体の温度が高くなると、水素タンクに備えられるPRD(プレッシャーリリーフデバイス)やタンクライナなどの故障や劣化、水素の充填効率が低下するなどという問題がある。また、軽量化して燃費を改善するため、水素タンクを繊維強化プラスチック(C−FRP,G−FRP)から構成する場合は、熱がプラスチックの劣化を早めることになる。したがって、水素タンクの温度上昇を抑制して水素を充填することが課題としてあげられる。
【0008】
また、燃料電池自動車などの取り扱いをよくするには、水素タンクへの水素の充填速度を速めて水素の急速充填を行うことが重要である。したがって、充填速度を落とすことなく、水素の急速充填を行うことが課題としてあげられる。
【0009】
そこで、本発明は、前記課題を解決した水素急速充填方法を提供することを主たる課題とする。
【0010】
前記課題に鑑み本発明者らは鋭意研究を行い、水素タンク内の水素の温度は、水素の充填を開始した極初期に最高値に達し、その後は横這いないし低下していくこと、つまり、水素タンク内の水素の温度(水素タンクの温度)は、水素の充填を開始した極初期に決定されることなどに着目し、本発明を完成するに至った。即ち、前記課題を解決した請求項1に記載の発明は、水素タンクへの水素急速充填方法であって、水素供給源と前記水素タンクとを結ぶ流路上に備えられた充填速度可変手段により前記水素タンク内の圧力に応じて水素の充填速度を変更する充填工程を有する水素急速充填方法であって、前記充填速度可変手段は、前記水素タンク内の圧力を受圧する受圧面を有する弁体、前記弁体の上流側に位置する弁座、前記弁体を上流側に押圧する押圧部材、前記弁体と前記弁座との位置関係にかかわらず上流側と下流側とを常に連通するパイロット通路を有し、前記水素タンク内の圧力が前記押圧部材の押圧力よりも低いときに、前記パイロット通路のみから水素を通流させ、前記水素タンク内の圧力が前記押圧部材の押圧力よりも高くなったときに、前記弁体と弁座との隙間および前記パイロット通路の双方から水素を通流させることを特徴とする。
請求項2に記載の発明は、水素タンクへの水素急速充填方法であって、水素供給源と前記水素タンクとを結ぶ流路上に備えられた充填速度可変手段により前記水素タンク内の圧力に応じて水素の充填速度を変更する充填工程を有する水素急速充填方法であって、前記充填速度可変手段は、弁体、前記弁体の下流側に位置する弁座、前記弁体を上流側に押圧する押圧部材、前記弁体と前記弁座との位置関係にかかわらず上流側と下流側とを常に連通するパイロット通路を有し、前記水素供給源からの水素の流れによって前記弁体に印加する風圧が前記押圧部材の押圧力よりも高いときに、前記パイロット通路のみから水素を通流させ、前記水素供給源からの水素の流れによって前記弁体に印加する風圧が前記押圧部材の押圧力よりも低いときに、前記弁体と弁座との隙間および前記パイロット通路の双方から水素を通流させることを特徴とする。
【0011】
水素の充填速度を速めると発熱量が大きくなるので、水素タンク内の水素の温度上昇幅が大きくなる。逆に、水素の充填速度を遅くすると発熱量が小さくなるので、水素タンク内の水素の温度上昇幅が小さくなる。また、水素の充填が進み、水素タンク内の圧力が高くなってくると断熱圧縮による発熱が小さくなってくる。
本発明は、発熱量の大きい充填初期に充填速度を遅くし、発熱量が小さくなると充填速度を早くするものである。このようにすることで、温度上昇しやすい充填初期における発熱を抑制して水素を急速に充填することができる。また、水素タンク内の圧力に応じて水素の充填速度を早くするので、充填初期に水素タンク内の圧力を高めるのに時間を要しても、途中でこの遅れを挽回することができ、水素の急速充填を達成する。しかも、発熱(温度上昇)を抑制することができる。
【0012】
また、請求項における「充填速度を変更する」とは、水素タンク内の昇圧速度を早くすることの他、充填の際に流量制限や圧力制限を行っていた場合はこの流量制限や圧力制限を解除すること、などを含んで意味する。
なお、請求項における「水素タンク内の圧力に応じて充填速度を変更する」とは、充填速度を圧力に連動して連続的に早くする場合のほか、所定圧力までは充填速度を遅くして所定圧力を超えると充填速度を早くするような場合も含んで意味する
【0014】
この構成によれば、水素の流路は水素タンクの内圧に応じて広くなる(つまり、内圧が低いと流路が狭くなり、内圧が高いと流路が広くなる)。したがって、水素タンクへの充填初期には水素の充填速度が制限され、水素タンクの内圧が高まる充填後期には水素の充填速度の制限がなくなる。このため、充填初期における水素タンク内の温度上昇が確実に抑制される。
【0017】
【発明の実施の形態】
以下、本発明の水素急速充填方法の実施の形態を、図面を参照して詳細に説明する。なお、以下に示す説明では、水素急速充填方法に適用される充填速度可変手段1(参考例)に替えて充填速度可変手段1A,1B,1Dを適用したものが本実施形態に相当する。また、充填速度可変手段1Cは参考例である。また、充填速度可変手段1B,1Dが、請求項1に記載の発明に対応するものであり、充填速度可変手段1Aが、請求項2に記載の発明に相当するものである。
【0018】
〔水素急速充填方法〕
先ず、水素急速充填方法を実施するための装置の構成を説明する。
図1は、水素急速充填方法を実施するための装置の構成を示すブロック図である。以下、この図1を参照して装置の構成を説明する。
【0019】
図1に示す水素供給源Sは、高圧コンプレッサ及び蓄圧タンクから構成され、25MPa〜40MPaの高圧に圧縮した水素を、後述するタンク3に供給する。なお、水素供給源Sにおける水素は純水素である。また、水素供給源Sには、水素を燃料とする自動車Cに水素を供給するため、先端に自動車Cに備えられた充填口2に接続される口金Hmが付いた高圧ホースHを有する。
【0020】
図1に示す自動車Cは、充填速度可変手段1、充填口2、水素タンク(以下「タンク」という)3、フィルタ4、減圧弁5、燃料電池又はエンジン(以下「燃料電池」という)6などを備える。
【0021】
充填速度可変手段1は、充填口2とタンク3の間に設けられ、タンク3の内圧が所定圧力以下の場合にタンク3への水素の充填速度を遅くし、タンク3の内圧が所定圧力を超える場合に該充填速度を早くする。この充填速度可変手段1は、1.3mm以下の口径(直径)を有するオリフィス、このオリフィスに対して並列に設けられた電磁弁、充填速度可変手段1の下流側の圧力(タンク3の内圧〔タンク内圧力〕)を検出する圧力センサ、及び圧力センサの検出信号を入力して検出信号が所定値(所定圧力)を超えると電磁弁を遮断位置から連通位置に切り替える制御手段などから構成される。なお、電磁弁は、オリフィスに対するバイパス弁の役割を有し、電磁弁が連通位置に切り換わると、充填速度が速められる。
【0022】
充填口2は、ガソリンエンジン自動車におけるガソリン注入口に相当し、高圧ホースHの口金Hmと耐圧気密接続される。なお、充填口2には逆止弁が設けられると共に、口金Hmとワンタッチで接続できるようにしてある。
【0023】
タンク3は、ガソリンエンジン自動車におけるガソリンタンクに相当し、水素供給源Sから供給される水素を25MPa程度の高圧で貯蔵し、燃料電池6に供給する。タンク3は、例えばアルミニウム及び樹脂ライナー製の複合耐圧容器であり、常圧に換算して最大約25立方メートルの水素を貯蔵する。
【0024】
フィルタ4は、タンク3から燃料電池6に供給される水素中のゴミなどを取り除くものである。減圧弁5は、タンク3からの水素を減圧して燃料電池6に供給するものである。
【0025】
燃料電池6は、タンク3から供給される水素と空気中の酸素とを利用して発電を行う発電機である。なお、発電した電気は、図示しないモータに供給され駆動力を発生する。
【0026】
次に、水素急速充填方法を、図1〜図3を参照して説明する。水素の急速充填は、前記した装置の構成で行う。
なお、図2は、水素急速充填方法のフローチャートである。図3は、水素急速充填方法による充填時のタンク内圧力及びタンク内温度の変化を示すタイムチャートである。この図3において、実線は本発明を示し、破線は従来技術である比較例を示す。比較例は、充填速度を略一定にしての充填である。
【0027】
先ず、自動車Cに水素を充填しようとすると、水素ステーションに立ち寄り水素供給源Sと自動車Cとを接続する(口金Hmと充填口2とを耐圧気密接続する)。なお、タンク3は、ほぼ空(0MPa)になっている(図3参照)。また、充填速度可変手段1の電磁弁は、遮断位置になっている。また、水素供給源Sは、タンク3の充填終了圧力に比べ、充分に高い圧力(充填元圧)で水素の充填を行うことができる。また、水素供給源Sは、充填中も充填元圧がほとんど変化することがない。
【0028】
先ず、充填を開始する(S1)。電磁弁は遮断位置になっているので、タンク3への充填はオリフィスを通じて行われ、水素の充填速度が制限される。充填速度が制限されると、断熱圧縮による発熱が小さくなるので、充填速度の制限を行わない従来例に比べて、タンク内温度の上昇が顕著に少なくなっている(図3参照)。なお、タンク内温度は、タンク3に充填された水素の温度である(ガスタンク3の中心部分の温度)。ちなみに、温度上昇は、水素の充填を開始した極初期に一気に起こる。
【0029】
次に、ステップS2でタンク内圧力を検出し、タンク内圧力と所定圧力(例えば5MPa)を比較し(S3)、タンク内圧力の方が低ければ、電磁弁を遮断位置にしたまま、水素の充填を継続する。
なお、水素の充填を継続すると更なる発熱が生じ、タンク内温度が上昇するのではないかとの疑念が生じる。しかし、断熱圧縮における圧縮前後の圧力比は、充填の進行と共に小さくなっていく(タンク内圧が高まるため)。このため、発熱も徐々に少なくなっていく。また、発生した熱はタンク3に伝熱し、タンク3から放熱される。したがって、充填速度制限を行っている状況の下では更なる急激な温度上昇はなく、タンク内温度のピークは、水素の充填を開始した極初期に現れる(図3参照)。さらに、タンク内圧力が高まると(水素がある程度充填されると)、発生する熱は、既に充填してある水素に移るので断熱圧縮による温度上昇は大きく生じない(既に充填してある水素により発熱が希釈される)。しかも、断熱圧縮による発熱が小さくなると、水素が温度上昇しないままタンク3の中に入り込んでくる。したがって、タンク内温度は逆に低下して行く。
【0030】
充填を継続するとタンク内圧力が上昇する。ステップ3でタンク内圧力と所定圧力を比較し、タンク内圧力が所定圧力を超えると電磁弁を連通位置にする(S4)。すると、水素は、オリフィスに加えて電磁弁(バイパス弁)からも充填されるので、充填速度が速まる。なお、この時点では比較例に比べてタンク内圧力は低い(図3参照)。ちなみに、充填速度を早くすると、一時的に断熱圧縮による発熱が大きくなるのでタンク内温度が高くなる。
【0031】
電磁弁を連通位置にして充填速度を速めると、比較例との圧力差が縮まってくる。このように、充填速度を速めても、断熱圧縮による発熱はタンク内圧力が高まっている状況では大きくない。したがって、タンク内温度が上昇することなく、水素を急速充填することができる。
【0032】
ステップS5でタンク内圧力を検出し、タンク内圧力と充填終了圧力(例えば25MPa)を比較し(S6)、タンク内圧力の方が低ければ、電磁弁を遮断位置にしたまま、水素の充填を継続する。充填速度が速いままで充填を継続しても、前記した通り温度上昇することなく、水素が充填される。むしろ、断熱圧縮が充填初期のように起こらないため、温度上昇しない相対的に冷えた水素がタンク3の中に入り込んでくるので、タンク内温度は低下して行く。
【0033】
そして、ステップS6でタンク内圧力が充填終了圧力を超えると充填を終了する(S7)。充填を終了した時点では、比較例との時間差を挽回し、比較例よりもタンク内圧力が高くなっている。このように時間差を挽回することができるのは、充填初期における大きな発熱を抑制することができるからである(比較例の場合は充填初期における発熱を考慮して全体としての充填速度を速めることができない)。なお、この場合は、比較例よりもタンク内温度が低くなっているので、その後の温度低下による圧力低下が小さい。したがって、この場合は、充填効率がよい。
【0034】
このような水素急速充填方法によれば、簡単な構成で水素の急速充填を行うことができる。
【0035】
なお、充填速度とタンク内温度上昇幅の関係を、図4を参照して説明する。
図4は、充填速度とタンク内温度上昇幅の関係を示すグラフである。図4の横軸は充填速度であり単位はMPa/分である。図4の縦軸はタンク内温度上昇幅であり単位は℃である。
【0036】
図4の両曲線は、いずれも充填速度とタンク内温度の上昇幅を示すが、上の曲線の方のタンク内温度上昇幅は、充填開始前のタンク内温度と最高温度を記録するピーク時のタンク内温度における上昇幅である(上昇幅=ピーク時のタンク内温度−充填開始前のタンク内温度)。下の曲線の方のタンク内温度上昇幅は、充填開始前のタンク内温度と充填終了時のタンク内温度における上昇幅である(上昇幅=充填終了時のタンク内温度−充填開始前のタンク内温度)。
【0037】
上の曲線から、充填速度が速いほど、ピーク時のタンク内温度上昇幅が大きくなることがわかる。一方、下の曲線から、充填速度が速いほど、充填終了時のタンク内温度上昇幅が大きくなることがわかる。また、両曲線から、充填終了時のタンク内温度上昇幅がピーク時のタンク内温度上昇幅を超えることがないのがわかる(つまり、ピーク時よりも充填終了時の方がタンク内温度は低い)。更に、ピーク時は、充填開始の極初期であることから(ピーク時=充填開始の極初期)、充填開始の極初期における温度制御を行えばよいことがわかる。
【0038】
〔充填速度可変手段の第1変形例〕
次に、充填速度可変手段の前記実施形態とは異なる第1変形例を、図5及び図6を参照して説明する。この第1変形例の充填速度可変手段は、電磁弁などのごとく能動的に動作するものではなく、受動的に動作するものである。
ここで、図5は、第1変形例の充填速度可変手段の具体的構成を示す断面図である。図6は、図5の弁体の斜視図である。
【0039】
図5に示すように充填速度可変手段1Aは、弁体11、パイロット通路12、押圧部材13、弁座14、筐体15、入側ジョイント16、出側ジョイント17などから構成される。なお、図5(a)の符号cは、弁体11と入側ジョイント16の間にできるクリアランス(間隙)である。
【0040】
図5(a)及び(b)に示すように、弁体11は、その外周に該弁体11の軸線に沿った溝11aと内側に中空部11bを有するカップ状の中空部材である。なお、溝11aは略90deg置きに4つある。この溝11aは、弁体11が上流側に押圧され、図5(b)に示すように、図5(a)におけるクリアランスcがなくなっても、水素の通流を許容するように、弁体11の上流側の端面部分にも形成されている(つまり溝11aはL字型をしている)。また、図5(a)などに示すように、中空部11bは、無駄な圧損が生じないように、下流側の口径がすぼまり、該弁体11に形成されたパイロット通路12につながるような形状をしている。また、弁体11の下流側の外形は、弁座14の開口部を塞ぐようなテーパ形状になっている。なお、後述するように、溝11aには、タンク3の圧力(タンク内圧力)が高くなると、水素が通流するようになる。ちなみに、弁体11は、水素の流れによる風圧を強く受けると、該弁体11の全体が下流側(出側)に移動して弁座14と密着し、弁体11と弁座14の間を通流する水素の流れを遮断するようになっている。
【0041】
パイロット通路12は、弁体11と弁座14が密着したときにも該パイロット通路12が塞がれないような位置、つまり弁体11の下流側(図6(b)参照)のテーパ形状部分の略中央に、小さな連通穴として形成されている。したがって、パイロット通路12は、弁体11と弁座14の位置関係にかかわらず、充填速度可変手段1Aの入側(上流側)と出側(下流側)を常に連通する。なお、パイロット通路12の口径(断面積)は、パイロット通路12のみから水素を充填した場合に、溝11a及びパイロット通路12の双方から水素を充填した場合よりも、充填速度を確実に遅くできるようなものになっている。
【0042】
図5に示すように、押圧部材13は、例えばバネなどから構成される。第1変形例では、押圧部材13は、出側ジョイント17の弁座14が形成されている部分の外周に配設されたバネである。この押圧部材13は、弁体11を上流側(出側)に押圧する。なお、押圧部材13が発生する押圧力は、前記した弁体11を下流側に移動させる風圧との関係で、タンク内圧力が低いとき(つまり風圧が大きいとき)は弁体11を下流側に移動して弁体11を弁座14に密着させ、タンク内圧力が高まると(つまり風圧が小さくなると)弁体11を上流側に移動して弁体11と弁座14を離間させる(クリアランスcがなくなるまで離間させる)ものである。
【0043】
弁座14は、第1変形例では、出側ジョイント17の上流側に形成され、弁体11が下流側に移動したときに、弁体11の下流側のテーパ形状と密着するような形状をしている。
【0044】
筐体15は、中空筒状の部材から構成され、弁体11及び押圧部材13を収容すると共に、その上流側に入側ジョイント16がはめ込まれ、下流側に出側ジョイント17がはめ込まれている。
【0045】
入側ジョイント16は、水素の通流を許容する中空通路を有し、充填速度可変手段1を水素配管の上流側と耐圧気密接続する際の継ぎ手としての役割を果たす。出側ジョイント17も、水素の通流を許容する中空通路を有し、充填速度可変手段1を水素配管の下流側と耐圧気密接続する際の継ぎ手としての役割を果たす
【0046】
次に、第1変形例の充填速度可変手段1Aの動作及び作用を説明する(図1、図5及び図6参照)。
【0047】
先ず、前記実施形態のように、水素供給源Sと自動車Cとを接続する(口金Hmと充填口2とを耐圧気密接続する)。そして、水素供給源Sからの水素の充填を開始する。なお、タンク3は、ほぼ空(0MPa)になっているとする。また、図1の充填速度可変手段1は、図5の充填速度可変手段1Aである。
【0048】
充填を開始すると、充填初期は、タンク3の圧力(タンク内圧力)が低いので、水素供給源Sとの大きな圧力差に起因した速い水素の流れが充填速度可変手段1Aを通流する。すると、図5(a)に示すように、水素の流れが弁体11に風圧として印加され、弁体11が押圧部材13の押圧力に抗して下流側に移動する(風圧>押圧力)。そして、弁体11が弁座14に密着する。
【0049】
したがって、弁体11と弁座14の間に隙間(水素の流路)がなくなり(一方弁体11の上流側にはクリアランスcが生じる)、水素の通流が阻止される。このため、タンク3には、細いパイロット通路12を通してのみ水素が通流する。よって、水素の充填速度が制限される。充填速度が制限されると、断熱圧縮による発熱が小さくなり、タンク内温度の上昇が顕著に小さくなる。
【0050】
一方、充填中期になると、タンク内圧力が高くなってくるので、水素供給源Sとの圧力差が小さくなってくる。このため、弁体11に印加される風圧が小さくなり、弁体11が押圧部材13に押圧されて上流側に押し戻される(風圧<押圧力)。すると、弁体11と弁座14の間に隙間が生じる(図5(b)参照)。かかる隙間が生じると、パイロット通路12に加えて、溝11aからも水素が通流するようになる。このため、水素の充填速度が速くなる。
【0051】
ところで、充填速度が速くなっても、前記した通り、断熱圧縮における圧縮前後の圧力比が充填初期よりも小さくなってくるので、発熱も充填初期ほど大きくはない。
【0052】
充填終期には、水素供給源Sとタンク内圧力の圧力差が更に小さくなるので、一層、押圧部材13の押圧力が強くなり、弁体11が上流側一杯にまで押し戻される。このため、弁体11と弁座14の間の隙間が大きく開き、水素の通流は更に容易になる。なお、この状況では、図5(a)で大きく生じていたクリアランスcは、図5(b)に示すように消滅する。したがって、充填終期にも急速な水素の充填を行うことができる。
【0053】
〔充填速度可変手段の第2変形例〕
充填速度可変手段の前記実施形態とは異なる第2変形例を、図7を参照して説明する。この第2変形例の充填速度可変手段も、電磁弁などのごとく能動的に動作するものではなく、受動的に動作するものである。
ここで、図7は、第2変形例の充填速度可変手段の具体的構成を示す断面図である。
【0054】
図7に示すように、充填速度可変手段1Bは、弁体21、パイロット通路22、押圧部材23、弁座24、筐体25、入側ジョイント26、出側ジョイント27などから構成される。なお、符号oは、気密のためのオーリングである。また、符号pは、弁体21がタンク内圧力を受圧する受圧面である。
【0055】
図7(a)及び(b)に示すように、弁体21は、凸型をした部材である。通常時は、弁体21の凸状部の先端面が、後述する弁座24に密着して水素の通流を遮断するようになっている。なお、この弁体21は、凸状部の後端部分の周囲にオーリングoがはめられ、気密を保持できるようになっている(漏洩防止及び均圧化防止)。この弁体21は、タンク内圧力が大きくなると、受圧面pが押され、図7(b)に示すように右側に移動し、弁体21と弁座24の間に水素を通流する隙間(水素の流路)を確保するようになっている。
【0056】
パイロット通路22は、弁体21と弁座24が密着したときにも該パイロット通路22が塞がれないように、弁体21の内部に設けられている。したがって、パイロット通路22は、弁体21と弁座24の位置関係にかかわらず、充填速度可変手段1Bの入側(上流側)と出側(下流側)を常に連通する。なお、パイロット通路22の口径(断面積)は、パイロット通路22のみから水素を充填した場合に、弁体21と弁座24の隙間及びパイロット通路22の双方から水素を充填した場合よりも、充填速度を確実に遅くできるようなものになっている。
【0057】
押圧部材23は、例えばバネなどから構成される。第2変形例では、押圧部材23は、入側ジョイント26を基準にして弁体21の後端側に配設されたバネである。この押圧部材23は、弁体21を上流側(入側)に押圧する。なお、押圧部材23が発生する押圧力は、前記した弁体21を後端側に移動させるタンク内圧力との関係で、タンク内圧力が低いときは、弁体21を上流側に移動して弁体21を弁座14に密着させ、タンク内圧力が高まると、弁体21を後端側に移動して弁体21と弁座24を離間させる(クリアランスcが生じる)ものである。
【0058】
弁座24は、第2変形例では、入側ジョイント26の下流側に形成され、弁体21が上流側に移動したときに、弁体21の先端面と密着する。
【0059】
筐体25は、中空筒状の部材から構成され、弁体21及び押圧部材23を収容すると共に、その上流側に入側ジョイント26が形成され、90deg角度を変えて下面側に出側ジョイント27が形成されている。
【0060】
入側ジョイント26及び出側ジョイント27は、充填速度可変手段1Bを、水素配管に耐圧気密接続する際の継ぎ手としての役割を果たす
【0061】
次に、第2変形例の充填速度可変手段1Bの動作及び作用を説明する(図1、図7参照)。
【0062】
先ず、前記実施形態のように、水素供給源Sと自動車Cとを接続する(口金Hmと充填口2とを耐圧気密接続する)。そして、水素供給源Sからの水素の充填を開始する。なお、タンク3は、ほぼ空(0MPa)になっているとする。また、図1の充填速度可変手段1は、図7の充填速度可変手段1Bである。
【0063】
充填を開始すると、充填初期は、タンク3の圧力(タンク内圧力)が低いので、水素供給源Sとの大きな圧力差に起因した速い水素の流れが充填速度可変手段1を通流する。しかし、図7(a)に示す押圧部材23の押圧力がタンク内圧力よりも大きいので、弁体21は弁座24に密着している(タンク内圧力<押圧力)。
【0064】
したがって、弁体21と弁座24の間に隙間がなく、水素の通流が阻止される。このため、タンク3には、細いパイロット通路22を通してのみ水素が通流する。よって、水素の充填速度が制限される。充填速度が制限されると、断熱圧縮による発熱が小さくなり、タンク内温度の上昇が顕著に小さくなる。
【0065】
一方、充填中期になると、タンク内圧力が高くなってくる。このため、弁体21の受圧面pに印加されるタンク内圧力が大きくなり、弁体21が押圧部材23の押圧力に抗して後端側に移動する(タンク内圧力>押圧力)。すると、弁体21と弁座24の間に隙間(クリアランスc)が生じる(図7(b)参照)。かかる隙間が生じると、パイロット通路22に加えて、該隙間からも水素が通流するようになる。このため、水素の充填速度が速くなる。
【0066】
ところで、充填速度が速くなっても、前記した通り、断熱圧縮における圧縮前後の圧力比が充填初期よりも小さくなってくるので、発熱も充填初期ほど大きくはない。
【0067】
充填終期には、タンク内圧力が更に大きくなるので、一層、弁体21の受圧面pに印加されるタンク内圧力が大きくなる。したがって、押圧部材23の押圧力に更に抗して、弁体21が後端側の一杯にまで移動する。このため、弁体21と弁座24の間の隙間が大きく開き、水素の通流は更に容易になる。よって、充填終期にも急速な水素の充填を行うことができる。
【0068】
〔充填速度可変手段の参考例
充填速度可変手段の前記実施形態とは異なる参考例を、図8を参照して説明する。この参考例の充填速度可変手段も、電磁弁などのごとく能動的に動作するものではなく、受動的に動作するものである。
ここで、図8は、参考例の充填速度可変手段の具体的構成を示す断面図である。
【0069】
図8に示すように、充填速度可変手段1Cは、弁体31、パイロット通路32、弁座34、筐体35、入側ジョイント36、出側ジョイント37などから構成される。なお、符号vは、弁体31を固定するボルトである。
【0070】
図8に示す弁体31は、板バネのごとき弾性力を有する板状部材から構成され、通常時は、後述する弁座34との間に隙間(水素の流路)を生じている。一方、この弁体21は、水素の充填時に水素の流れによる風圧を強く受けると、風圧に弁体31が下流側に押されて弁座34と密着し、弁体31と弁座34の間を通流する水素の流れを遮断するようになっている。また、風圧が弱くなると弁体31が有する弾性力により、弁体31と弁座34の隙間が広がるようになっている。
【0071】
パイロット通路32は、弁体31と弁座34が密着したときにも該パイロット通路32が塞がれないように、弁体31を貫通する穴として形成されている。したがって、パイロット通路32は、弁体31と弁座34の位置関係にかかわらず、充填速度可変手段1Cの入側(上流側)と出側(下流側)を常に連通する。なお、パイロット通路32の口径(断面積)は、パイロット通路32のみから水素を充填した場合に、弁体31と弁座34の隙間及びパイロット通路32の双方から水素を充填した場合よりも、充填速度を確実に遅くできるようなものになっている。
【0072】
弁座34は、入側ジョイント36の下流側に形成され、弁体31が下流側に移動したときに、弁体31の下流側の面と密着する。
【0073】
筐体35は、中空筒状の部材から構成され、弁体31を収容すると共に、その上流側に入側ジョイント36が形成され、下流側に出側ジョイント37が形成されている。
【0074】
入側ジョイント36及び出側ジョイント37は、充填速度可変手段1Cを、水素配管に耐圧気密接続する際の継ぎ手としての役割を果たす
【0075】
次に、参考例としての充填速度可変手段1Cの動作及び作用を説明する(図1、図8参照)。
【0076】
先ず、前記実施形態のように、水素供給源Sと自動車Cとを接続する(口金Hmと充填口2とを耐圧気密接続する)。そして、水素供給源3からの水素の充填を開始する。なお、タンク3は、ほぼ空(0MPa)になっているとする。また、図1の充填速度可変手段1は、図8の充填速度可変手段1Cである。
【0077】
充填を開始すると、充填初期は、タンク3の圧力(タンク内圧力)が低いので、水素供給源Sとの大きな圧力差に起因した速い水素の流れが充填速度可変手段1Cを通流する。すると、水素の流れが弁体31に風圧として印加され、弁体31が風圧により弾性的に下流側に移動する(風圧>弾性力)。そして、弁体31が弁座34に密着する。
【0078】
したがって、弁体31と弁座34の間に隙間がなくなり、弁体31と弁座34の隙間を通しての水素の通流が阻止される。このため、タンク3には、細いパイロット通路32を通してのみ水素が通流する。よって、水素の充填速度が制限される。充填速度が制限されると、断熱圧縮による発熱が小さくなり、タンク内温度の上昇が顕著に小さくなる。
【0079】
一方、充填中期になると、タンク内圧力が高くなってくるので、水素供給源Sとの圧力差が小さくなってくる。このため、弁体31に印加される風圧が小さくなり、弁体31が弾性的に上流側に移動する(風圧<弾性力)。すると、弁体31と弁座34の間に隙間が生じる。かかる隙間が生じると、パイロット通路32に加えて、弁体31と弁座34の隙間からも水素が通流するようになる。このため、水素の充填速度が速くなる。
【0080】
充填速度が速くなっても、前記した通り、断熱圧縮における圧縮前後の圧力比が充填初期よりも小さくなってくるので、発熱も充填初期ほど大きくはない。
【0081】
充填終期には、水素供給源Sとタンク内圧力の圧力差が更に小さくなるので(風圧が弱まるので)、一層、弁体31が弾性力により上流側一杯にまで移動する。このため、弁体31と弁座34の間の隙間が大きく開き、水素の通流は更に容易になる。したがって、充填終期にも急速な水素の充填を行うことができる。
【0082】
〔充填速度可変手段の第変形例〕
充填速度可変手段の前記実施形態とは異なる第変形例を、図9を参照して説明する。この第変形例の充填速度可変手段も、電磁弁などのごとく能動的に動作するものではなく、受動的に動作するものである。
ここで、図9は、第変形例の充填速度可変手段の具体的構成を示す断面図である。
【0083】
図9に示すように、充填速度可変手段1Dは、弁体41、パイロット通路42、押圧部材43、弁座44、筐体45、入側ジョイント46、出側ジョイント47などから構成される。なお、符号oは、気密のためのオーリングである。また、符号pは、弁体41がタンク内圧力を受圧する受圧面である。
【0084】
図9(a)及び(b)に示すように、弁体41は、T字型をした部材である。通常時は、弁体41のT字の脚部先端が、後述する弁座44に密着して水素の通流を遮断するようになっている。なお、この弁体41は、T字の脚部略中央にオーリングoがはめられ、気密を保持できるようになっている(漏洩防止及び均圧化防止)。この弁体41は、タンク内圧力が大きくなると、受圧面pが押され、図9(b)に示すように右側に移動し、弁体41と弁座44の間に水素を通流する隙間(水素の流路)を確保するようになっている。
【0085】
パイロット通路42は、弁体41と弁座44が密着したときにも該パイロット通路42が塞がれないように、弁座44の内部に設けられている(図9参照)。したがって、パイロット通路42は、弁体41と弁座44の位置関係にかかわらず、充填速度可変手段1Cの入側(上流側)と出側(下流側)を常に連通する。なお、パイロット通路42の口径(断面積)は、パイロット通路42のみから水素を充填した場合に、弁体41と弁座44の隙間及びパイロット通路42の双方から水素を充填した場合よりも、充填速度を確実に遅くできるようなものになっている。
【0086】
押圧部材43は、例えばバネなどから構成される。第変形例では、押圧部材43は、入側ジョイント46を基準にして弁体41の後端側に配設されたバネである。この押圧部材43は、弁体41を上流側(入側)に押圧する。なお、押圧部材43が発生する押圧力は、前記した弁体41を後端側に移動させるタンク内圧力との関係で、タンク内圧力が低いときは、弁体41を上流側に移動して弁体41を弁座44に密着させ、タンク内圧力が高まると、弁体41を後端側に移動して弁体41と弁座44を離間させる(クリアランスcが生じる)ものである。
【0087】
弁座44は、第変形例では、入側ジョイント46の下流側に形成され、弁体41が上流側に移動したときに、弁体41の先端面(脚部先端)と密着する。
【0088】
筐体45は、中空筒状の部材から構成され、弁体41及び押圧部材43を収容すると共に、その上流側に入側ジョイント46が形成され、90deg角度を変えて下面側に出側ジョイント47が形成されている。
【0089】
入側ジョイント46及び出側ジョイント47は、充填速度可変手段1Dを、水素配管に耐圧気密接続する際の継ぎ手としての役割を果たす
【0090】
次に、第変形例の充填速度可変手段1Dの動作及び作用を説明する(図1及び図9参照)。
【0091】
先ず、前記実施形態のように、水素供給源Sと自動車Cとを接続する(口金Hmと充填口2とを耐圧気密接続する)。そして、水素供給源Sからの水素の充填を開始する。なお、タンク3は、ほぼ空(0MPa)になっているとする。また、図1の充填速度可変手段1は、図9の充填速度可変手段1Dである。
【0092】
充填を開始すると、充填初期は、タンク3の圧力(タンク内圧力)が低いので、水素供給源Sとの大きな圧力差に起因した速い水素の流れが充填速度可変手段1を通流する。しかし、図9(a)に示す押圧部材43の押圧力がタンク内圧力よりも大きいので、弁体41は弁座44に密着している(タンク内圧力<押圧力)。
【0093】
したがって、弁体41と弁座44の間に隙間がなく、水素の通流が阻止される。このため、タンク3には、細いパイロット通路42を通してのみ水素が通流する。よって、水素の充填速度が制限される。充填速度が制限されると、断熱圧縮による発熱が小さくなり、タンク内温度の上昇が顕著に小さくなる。
【0094】
一方、充填中期になると、タンク内圧力が高くなってくる。このため、弁体41の受圧面pに印加されるタンク内圧力が大きくなり、弁体41が押圧部材43の押圧力に抗して後端側に移動する(タンク内圧力>押圧力)。すると、弁体41と弁座44の間に隙間が生じる(図9(b)参照)。かかる隙間が生じると、パイロット通路42に加えて、該隙間からも水素が通流するようになる。このため、水素の充填速度が速くなる。
【0095】
充填速度が速くなっても、前記した通り、断熱圧縮における圧縮前後の圧力比が充填初期よりも小さくなってくるので、発熱も充填初期ほど大きくはない。
【0096】
充填終期には、タンク内圧力が更に大きくなるので、一層、弁体41の受圧面pに印加されるタンク内圧力が大きくなる。したがって、押圧部材43の押圧力に更に抗して、弁体41が後端側の一杯にまで移動する。このため、弁体41と弁座44の間の隙間が大きく開き、水素の通流は更に容易になる。よって、充填終期にも急速な水素の充填を行うことができる。
【0097】
このように、各変形例の充填速度可変手段1A,1B,1Dによっても、水素の発熱を抑制しつつ、急速な充填を行うことができる。
【0098】
〔充填速度可変手段を用いない急速水素充填方法〕
次に、前記したような充填速度可変手段を用いない急速水素充填方法を説明する。
図10は、水素供給源の圧力(充填元圧)とオリフイス径及び充填速度の関係を示すグラフである。
【0099】
前記実施形態では、オリフィスと電磁弁を用いて水素を充填したが、この実施形態では、電磁弁(バイパス弁)を用いないで、オリフィス(絞り手段)のみから水素を充填する。
【0100】
ここで図10に基づいて水素供給源の圧力(充填元圧)とオリフィス径が充填速度に与える影響を説明する。図10の横軸は充填元圧(MPa)であり、縦軸はオリフィス径(mm、直径)である。
【0101】
この図より、例えば、充填元圧が40MPaの時に6MPa/分の充填速度を得たい場合は、オリフィス径を約0.7mmにすればよいことがわかる。また、オリフィス径を約0.75mmにすれば、充填速度が7MPa/分で充填を行うことができる。また、オリフィス径を約0.8mmにすれば充填速度が8MPa/分で充填を行うことができる。
【0102】
また、例えば、充填元圧が25MPaの時に6MPa/分の充填速度を得たい場合は、オリフイス径を約0.85mmにすればよいことがわかる。また、オリフィス径を約0.9mmにすれば、充填速度が7MPa/分で充填を行うことができる。また、オリフィス径を約0.95mmにすれば充填速度が8MPa/分で充填を行うことができる。
【0103】
他の充填元圧についても、この図から充填速度がわかる。つまり、充填元圧とオリフィス径を選択することで(タンク3の幾何容積は一定)、充填速度を任意の値とすることができる。したがって、充填開始時の温度上昇を抑制した充填を行うことができる。前記した通り、充填開始時の温度上昇を抑制すれば充填効率が高まるので、水素の急速充填が達成される。
【0104】
なお、図10から、充填元圧が15MPa以上の場合、オリフィス径を1.3mm以下にすると、略8MPa/分以下の充填速度を得ることができることがわかる。8MPa/分の充填速度の場合、ピーク時のタンク内温度における温度上昇幅は、略75℃である(図4参照)。つまり、タンク3の温度が40℃の場合、タンク内温度は120℃近くまで上昇する。このことより、タンク3は、120℃の耐熱性を有するものであれば良いことがわかる。ちなみに、120℃という温度は、アルミニウム及び樹脂ライナー製の複合耐圧容器における耐熱許容温度以下である。この複合耐圧容器を使用することができればタンク3の軽量化を図ることができる。したがって、充填元圧が15MPa以上の水素供給源Sから水素の充填を行うときは、1.3mm以下のオリフィス径が好ましい。
【0105】
また、図10から、オリフィス径を1mm以下にすると、25MPa以上の充填元圧の水素供給源3から水素を供給しても充填速度を8MPa以下にすることができることがわかる。つまり、温度上昇幅を略75℃以下として、タンク内温度を120℃以下にすることができる。したがって、充填元圧が25MPa以上の水素供給源Sから水素の充填を行うときは、1mm以下のオリフィス径が好ましい。
【0106】
以上、本発明を説明したが、本発明は前記した実施形態及び変形例に限定されることなく、様々な態様で実施することができる。
例えば、自動車を例にして水素急速充填方法などを説明したが、本発明は、自動車に限定されることはない。
また、充填速度可変手段は、水素供給源と水素タンクを結ぶ流路のいずれかに設ければよく、必ずしも自動車に備える必要はない。当然、水素供給源の内部に備える構成としてもよい。
【0107】
また、電磁弁は、ステッピングモータなどにより作動して、弁の開度を変更できるものであってもよい。
また、充填速度可変手段について、パイロット通路を弁体の内部に設けたが、弁体と弁座の当接面(密着面)に設けることもできる(両者が密着していても水素の通流を許可するように設ける)。例えば、弁体又は弁座のうちのいずれか一方の表面に溝を形成することで、パイロット通路を設けることができる。この場合、弁体や弁座の表面を削ったり凹ませたりするだけの加工ですむので、作製が非常にしやすくなる。また、ゴミが詰まった際にも、ゴミの除去が極めて容易になる。例えば、弁体を移動させることで(弁をON・OFFすることで)、詰まりを除去することができる。なお、オリフィスと電磁弁を用いる構成の場合も、電磁弁の弁体及び/又は弁座の少なくとも一方にバイパス通路たる溝を設けることで、オリフィスと電磁弁を一体にすることができるので、機器の設置スペースを低減できる。
【0108】
【発明の効果】
以上説明した本発明のうち請求項1に記載の発明によれば、水素タンク内の温度上昇を抑制して水素を急速充填することが可能である。また、水素タンクなどの劣化防止、及び充填効率を高めることができる。また、充填初期に水素タンク内の圧力を上昇するのに要した時間(時間的遅れ)を、水素タンク内の圧力に応じて充填速度を速めることで該時間的遅れを挽回することが可能になる。このように、途中から充填速度を速めても、タンク内圧が高まってくると発熱が小さいので、水素が温度上昇しないで水素タンク内に入ってくる。したがって、温度上昇が抑制される(逆に水素タンク内の温度が低下する)。したがって、水素の急速充填を行うことができる。
また、本発明によれば、簡単な構成で、確実に水素タンクの内圧に応じて水素の流路を広くすることができる。したがって、温度上昇を抑制しつつ急速充填を行うことができる。
【図面の簡単な説明】
【図1】 本実施形態の水素充填方法を実施するための装置の構成を示すブロック図である。
【図2】 本実施形態の水素急速充填方法のフローチャートである。
【図3】 本実施形態の水素急速充填方法による充填時のタンク内圧力及びタンク内温度の変化を示すタイムチャートである。
【図4】 充填速度とタンク内温度の関係を示すグラフである。
【図5】 第1変形例の充填速度可変手段の具体的構成を示す断面図であり、(a)は弁体が弁座に密着している場合、(b)は弁体が弁座から離間している場合を示す。
【図6】 図5の弁体の、(a)は上流側から見た斜視図であり、(b)は下流側から見た斜視図である。
【図7】 第2変形例の充填速度可変手段の具体的構成を示す断面図であり、(a)は弁体が弁座に密着している場合、(b)は弁体が弁座から離間している場合を示す。
【図8】 参考例としての充填速度可変手段の具体的構成を示す断面図である。
【図9】 第変形例の充填速度可変手段の具体的構成を示す断面図であり、(a)は弁体が弁座に密着している場合、(b)は弁体が弁座から離間している場合を示す。
【図10】 水素供給源の圧力(充填元圧)とオリフイス径及び充填速度の関係を示すグラフである。
【符号の説明】
A,1B,1D … 充填速度可変手段
11,21,41 … 弁体
12,22,42 … パイロット通路(連通路)
14,24,44 … 弁座
3 … タンク(水素タンク)
S … 水素供給源

Claims (2)

  1. 水素タンクへの水素急速充填方法であって、水素供給源と前記水素タンクとを結ぶ流路上に備えられた充填速度可変手段により前記水素タンク内の圧力に応じて水素の充填速度を変更する充填工程を有する水素急速充填方法であって、
    前記充填速度可変手段は、前記水素タンク内の圧力を受圧する受圧面を有する弁体、前記弁体の上流側に位置する弁座、前記弁体を上流側に押圧する押圧部材、前記弁体と前記弁座との位置関係にかかわらず上流側と下流側とを常に連通するパイロット通路を有し、
    前記水素タンク内の圧力が前記押圧部材の押圧力よりも低いときに、前記パイロット通路のみから水素を通流させ、前記水素タンク内の圧力が前記押圧部材の押圧力よりも高くなったときに、前記弁体と弁座との隙間および前記パイロット通路の双方から水素を通流させることを特徴とする水素急速充填方法。
  2. 水素タンクへの水素急速充填方法であって、水素供給源と前記水素タンクとを結ぶ流路上に備えられた充填速度可変手段により前記水素タンク内の圧力に応じて水素の充填速度を変更する充填工程を有する水素急速充填方法であって、
    前記充填速度可変手段は、弁体、前記弁体の下流側に位置する弁座、前記弁体を上流側に押圧する押圧部材、前記弁体と前記弁座との位置関係にかかわらず上流側と下流側とを常に連通するパイロット通路を有し、
    前記水素供給源からの水素の流れによって前記弁体に印加する風圧が前記押圧部材の押圧力よりも高いときに、前記パイロット通路のみから水素を通流させ、前記水素供給源からの水素の流れによって前記弁体に印加する風圧が前記押圧部材の押圧力よりも低いときに、前記弁体と弁座との隙間および前記パイロット通路の双方から水素を通流させることを特徴とする水素急速充填方法。
JP2000174503A 2000-06-09 2000-06-09 水素急速充填方法 Expired - Fee Related JP4490557B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000174503A JP4490557B2 (ja) 2000-06-09 2000-06-09 水素急速充填方法
US09/878,812 US6598624B2 (en) 2000-06-09 2001-06-11 Apparatus and process for rapidly filling with hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000174503A JP4490557B2 (ja) 2000-06-09 2000-06-09 水素急速充填方法

Publications (3)

Publication Number Publication Date
JP2001355795A JP2001355795A (ja) 2001-12-26
JP2001355795A5 JP2001355795A5 (ja) 2006-12-14
JP4490557B2 true JP4490557B2 (ja) 2010-06-30

Family

ID=18676532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000174503A Expired - Fee Related JP4490557B2 (ja) 2000-06-09 2000-06-09 水素急速充填方法

Country Status (2)

Country Link
US (1) US6598624B2 (ja)
JP (1) JP4490557B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102682188B1 (ko) * 2023-06-09 2024-07-05 주식회사 동화엔텍 차량용 수소 가스 충전 시스템

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6810925B2 (en) * 2002-01-10 2004-11-02 General Hydrogen Corporation Hydrogen fueling station
US20050221136A1 (en) * 2002-04-05 2005-10-06 Canon Kabushiki Kaisha Charger, fuel cell system, and method of charring fuel cell system
JP2004127747A (ja) * 2002-10-03 2004-04-22 Toyota Motor Corp 燃料電池搭載車両
US6786245B1 (en) 2003-02-21 2004-09-07 Air Products And Chemicals, Inc. Self-contained mobile fueling station
US7323043B2 (en) 2003-07-28 2008-01-29 Deere & Company Storage container associated with a thermal energy management system
ITBS20030065U1 (it) * 2003-11-18 2005-05-19 Emer S R L Ora Emer S P A Valvola di eccesso di flusso
US7350604B2 (en) * 2004-03-04 2008-04-01 Ford Global Technologies, Llc Gaseous fuel system for automotive vehicle
JP2005291411A (ja) * 2004-04-01 2005-10-20 Toyoda Mach Works Ltd 過流防止弁
JP2005321093A (ja) * 2004-04-08 2005-11-17 Showa Denko Kk 圧力容器用ライナの製造方法
JP4506496B2 (ja) * 2004-11-12 2010-07-21 株式会社ジェイテクト 減圧弁
FR2879719B1 (fr) * 2004-12-22 2007-11-23 Air Liquide Procede de controle du remplissage de reservoirs de gaz sous pression
US7426935B2 (en) * 2005-04-14 2008-09-23 Gm Global Technology Operations, Inc. Method of discharging high pressure storage vessels
JP2006300193A (ja) * 2005-04-20 2006-11-02 Showa Denko Kk 圧力容器用ライナ
JP2007016807A (ja) * 2005-07-05 2007-01-25 Showa Denko Kk 圧力容器用ライナ
DE102005039202A1 (de) * 2005-08-18 2007-02-22 Linde Ag Mobile, autarke und immissionsfreie Wasserstoff-Tankstelle
US20070079891A1 (en) * 2005-10-10 2007-04-12 Farese David J Cascade bank selection based on ambient temperature
US20070079892A1 (en) 2005-10-10 2007-04-12 Cohen Joseph P Gas filling system
US8156970B2 (en) 2005-10-10 2012-04-17 Air Products And Chemicals, Inc. Temperature-compensated dispensing of compressed gases
US7568507B2 (en) * 2005-12-06 2009-08-04 Air Products And Chemicals, Inc. Diagnostic method and apparatus for a pressurized gas supply system
US20070186982A1 (en) * 2006-02-10 2007-08-16 Cohen Joseph P Method for dispensing compressed gas
US7921883B2 (en) * 2006-06-07 2011-04-12 Air Products And Chemicals, Inc. Hydrogen dispenser with user-selectable hydrogen dispensing rate algorithms
JP2008045650A (ja) * 2006-08-14 2008-02-28 Toyota Motor Corp 水素貯蔵装置
DE102007012080A1 (de) * 2007-03-13 2008-09-18 Linde Ag Verfahren zum Befüllen eines Wasserstoff-Speicherbehälters
US8286670B2 (en) * 2007-06-22 2012-10-16 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for controlled filling of pressurized gas tanks
US8365777B2 (en) * 2008-02-20 2013-02-05 Air Products And Chemicals, Inc. Compressor fill method and apparatus
JP2010218879A (ja) * 2009-03-17 2010-09-30 Toyota Motor Corp 燃料電池監視システム
JP5257206B2 (ja) * 2009-03-31 2013-08-07 株式会社デンソー 流動体充填システム、移動体、及び供給設備
WO2011013214A1 (ja) * 2009-07-29 2011-02-03 トヨタ自動車株式会社 ガス充填システム
JP5489573B2 (ja) * 2009-07-30 2014-05-14 トヨタ自動車株式会社 ガス充填システム及びガス充填装置
JP5474436B2 (ja) * 2009-07-30 2014-04-16 トヨタ自動車株式会社 ガス充填システム
JP4877434B2 (ja) * 2009-11-16 2012-02-15 トヨタ自動車株式会社 ガス充填装置及びガス充填方法
JP5328617B2 (ja) * 2009-11-18 2013-10-30 トヨタ自動車株式会社 ガス充填システム、ガス充填方法、車両
JP5707727B2 (ja) * 2010-04-23 2015-04-30 トヨタ自動車株式会社 ガス充填方法、ガス充填システム、ガスステーション及び移動体
DE112010005543B4 (de) * 2010-05-06 2019-01-17 Toyota Jidosha Kabushiki Kaisha System für Wasserstoff-Beladung
JP5048814B2 (ja) * 2010-07-20 2012-10-17 本田技研工業株式会社 水素充填システムの運転方法
JP5683873B2 (ja) * 2010-08-26 2015-03-11 株式会社モリタホールディングス 塵芥収集車の消火装置及び流量調整装置
US8656938B2 (en) * 2010-11-29 2014-02-25 GM Global Technology Operations LLC Compressed gas tank system with fast fueling ability at any vessel pressure
US8973624B2 (en) * 2011-01-27 2015-03-10 GM Global Technology Operations LLC Compressed hydrogen fueling control valve
KR101547047B1 (ko) 2011-04-26 2015-08-24 가부시키가이샤 고베 세이코쇼 수소 스테이션
JP5839546B2 (ja) 2011-06-30 2016-01-06 株式会社神戸製鋼所 水素ステーション
FR2979002B1 (fr) * 2011-08-12 2014-11-07 Coldway Procede de remplissage d'un reservoir de stockage de gaz
ES2772373T3 (es) * 2011-12-07 2020-07-07 Agility Fuel Systems Llc Sistemas y métodos para monitorizar y controlar sistemas de combustible
CN102384354B (zh) * 2011-12-09 2013-05-08 潍柴动力股份有限公司 柴油机用气瓶充气装置
JP5746962B2 (ja) 2011-12-20 2015-07-08 株式会社神戸製鋼所 ガス供給方法およびガス供給装置
DE102012018109A1 (de) * 2012-09-04 2014-03-27 Linde Aktiengesellschaft Verfahren zur Durchführung eines Drucktests an einem Tank und Betankungseinrichtung
JP5982233B2 (ja) * 2012-09-07 2016-08-31 いすゞ自動車株式会社 液化ガス燃料充填システム
US20140261865A1 (en) * 2013-03-15 2014-09-18 Compressed Energy Systems Methods and apparatuses for recovering, storing, transporting and using compressed gas
US20140261866A1 (en) * 2013-03-15 2014-09-18 Compressed Energy Systems Methods and apparatuses for recovering, storing, transporting and using compressed gas
US9586806B2 (en) * 2013-03-15 2017-03-07 Honda Motor Co., Ltd. Hydrogen fuel dispenser with pre-cooling circuit
JP6484243B2 (ja) * 2013-08-28 2019-03-13 ヌヴェラ・フュエル・セルズ,エルエルシー 統合された電気化学的圧縮機ならびにカスケード式の貯蔵方法およびシステム
JP5886820B2 (ja) * 2013-12-13 2016-03-16 株式会社神戸製鋼所 ガス充填装置及びガス充填方法
JP5901608B2 (ja) * 2013-12-26 2016-04-13 本田技研工業株式会社 燃料充填システム
JP2015183727A (ja) * 2014-03-20 2015-10-22 日立オートモティブシステムズメジャメント株式会社 ガス充填装置
DE102014211503A1 (de) * 2014-06-16 2015-12-17 Bayerische Motoren Werke Aktiengesellschaft Überwachungsvorrichtung für einen Drucktank sowie Drucktank
JP6001600B2 (ja) * 2014-06-26 2016-10-05 株式会社日本自動車部品総合研究所 ガス供給部を制御するシステムおよびガス充填方法
US10174853B2 (en) 2016-10-13 2019-01-08 Itt Manufacturing Enterprises Llc Compressed natural gas (CNG) pressure regulator
US10883664B2 (en) * 2018-01-25 2021-01-05 Air Products And Chemicals, Inc. Fuel gas distribution method
EP3884203A1 (en) 2018-11-20 2021-09-29 Nel Hydrogen A/S High volume, fast hydrogen fueling of a heavy-duty vehicle
US11142447B2 (en) * 2018-12-10 2021-10-12 Textron Innovations Inc. Mobile autonomous hydrogen refueling station
EP3885615B1 (en) 2020-03-23 2024-01-17 Goodrich Corporation Pneumatic damper for piston used in pressure regulator
US11293595B2 (en) * 2020-04-01 2022-04-05 Mirae EHS-code Research Institute Hydrogen fueling system and method based on real-time communication information from CHSS for fuel cell
CN111795299A (zh) * 2020-07-28 2020-10-20 四川博能燃气股份有限公司 一种cng加气装置及加气方法
KR20230014503A (ko) * 2021-07-21 2023-01-30 현대자동차주식회사 차량의 수소탱크 충전 제어 장치
CN113983347A (zh) * 2021-11-18 2022-01-28 中北大学 一种自动识别的加氢***和加氢方法
CN117212678B (zh) * 2023-11-07 2024-01-26 陕西华秦新能源科技有限责任公司 一种向移动式压力容器连续充装氢气的***及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318496A (ja) * 1997-04-30 1998-12-04 Boc Group Inc:The ガス容器の充填方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749200Y2 (ja) * 1990-10-12 1995-11-13 東京瓦斯株式会社 圧縮天然ガスを燃料とする自動車への燃料供給装置
US5259424A (en) * 1991-06-27 1993-11-09 Dvco, Inc. Method and apparatus for dispensing natural gas
EP0653585B1 (de) 1993-11-08 1997-10-29 Maschinenfabrik Sulzer-Burckhardt AG Verfahren und Vorrichtung zum schnellen Betanken eines Druckbehälters mit einem gasförmigen Medium
US5488978A (en) * 1994-05-02 1996-02-06 Gas Research Institute Apparatus and method for controlling the charging of NGV cylinders from natural gas refueling stations
JPH08100891A (ja) * 1994-09-30 1996-04-16 Tokyo Gas Co Ltd ガス供給装置
US5628349A (en) * 1995-01-25 1997-05-13 Pinnacle Cng Systems, Llc System and method for dispensing pressurized gas
JP2762253B2 (ja) 1996-01-31 1998-06-04 本田技研工業株式会社 圧縮天然ガス充填装置
DE19917441C2 (de) * 1999-04-17 2001-10-11 Bosch Gmbh Robert Vorrichtung zum Dosieren und Abfüllen einer Flüssigkeit in Verpackungsbehälter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318496A (ja) * 1997-04-30 1998-12-04 Boc Group Inc:The ガス容器の充填方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102682188B1 (ko) * 2023-06-09 2024-07-05 주식회사 동화엔텍 차량용 수소 가스 충전 시스템

Also Published As

Publication number Publication date
US6598624B2 (en) 2003-07-29
US20020014277A1 (en) 2002-02-07
JP2001355795A (ja) 2001-12-26

Similar Documents

Publication Publication Date Title
JP4490557B2 (ja) 水素急速充填方法
JP4607093B2 (ja) 移動式水素燃料補給ステーション
CN101323248B (zh) 车载高压输氢***
JP2006519344A5 (ja)
ITRM990576A1 (it) Modulo di pompa del carburante per motore a combustione interna.
KR20130135373A (ko) 수소 스테이션
JP2004502229A (ja) ガス流調整システム
JP5839545B2 (ja) 水素ステーション
US10868315B2 (en) System for measuring high pressure of in-tank regulator
CN112909304B (zh) 车载储氢***及其供氢控制方法、燃料电池车
WO2014119398A1 (ja) ガス充填装置およびガス充填方法
CN111129544A (zh) 应用于氢燃料电池汽车的供氢***和氢燃料电池汽车
CN113375054B (zh) 电爆阀在前的阀门组合装置
JP2019513932A (ja) 燃料交換システム及び燃料システムのための燃料供給システム
JP2006322345A (ja) 圧力変動抑制装置及び圧力変動抑制方法
JP2006214491A (ja) ガス貯蔵装置、バルブ装置及びガス供給システム
US3994359A (en) Safety shut-off fuel system
US20070029330A1 (en) Liquid hydrogen tank with a release pressure above the critical pressure
JP2008064160A (ja) 圧縮水素ガス充填装置及び圧縮水素ガス充填方法
CN214500878U (zh) 一种用于移动物体的储氢器组合阀
JP2005121173A (ja) 複数のタンクからなるタンク装置
CN112879802A (zh) 一种用于移动物体的储氢器组合阀及其控制方法
KR101008906B1 (ko) 내장형 레귤레이터
CN113063001A (zh) 一种多功能低压集成阀及其控制方法
JP2019116929A (ja) 燃料電池車両の高圧ガスタンクシステム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees