JP4487069B2 - Optical patterning material and optical pattern forming method - Google Patents

Optical patterning material and optical pattern forming method Download PDF

Info

Publication number
JP4487069B2
JP4487069B2 JP2005211948A JP2005211948A JP4487069B2 JP 4487069 B2 JP4487069 B2 JP 4487069B2 JP 2005211948 A JP2005211948 A JP 2005211948A JP 2005211948 A JP2005211948 A JP 2005211948A JP 4487069 B2 JP4487069 B2 JP 4487069B2
Authority
JP
Japan
Prior art keywords
photo
bilirubin
patterning material
light
forming method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005211948A
Other languages
Japanese (ja)
Other versions
JP2007033472A (en
Inventor
茂 高原
Original Assignee
国立大学法人 千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 千葉大学 filed Critical 国立大学法人 千葉大学
Priority to JP2005211948A priority Critical patent/JP4487069B2/en
Publication of JP2007033472A publication Critical patent/JP2007033472A/en
Application granted granted Critical
Publication of JP4487069B2 publication Critical patent/JP4487069B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pyrrole Compounds (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)

Description

本発明は、環境にやさしく、化学的にソフトなフォトリソグラフィー材料、とくに、光パターニング材料と光パターン形成方法に関するものである。   The present invention relates to an environmentally friendly and chemically soft photolithography material, and more particularly to a photopatterning material and a photopattern forming method.

画像形成技術である光リソグラフィー材料とその加工プロセスは、半導体加工、配線用レジスト、印刷製版などにおいて広く実用化に供されている。
従来のフォトリソグラフィーのプロセスでは、図3に示すように、感光性樹脂材料を用いて目的に応じた膜をシリコン基板などの上に形成する。これにマスクなどを通して光を照射し、感光性樹脂膜の光照射された領域で光重合または光架橋反応、脱保護反応などを起こすことによって膜材料の溶解度の差を生じさせ、現像によってパターン形成を行っているのが一般的である。これらのプロセスでは、光ラジカル発生剤や光酸発生剤、光塩基発生剤を膜中に用い、光照射した部位においてラジカルや酸、塩基など化学的活性種を生成させる。さらに引き続き、モノマーの重合反応または架橋剤の分子間の架橋、保護基の脱離など共有結合の形成や開裂により、感光性樹脂材料の現像液に対する溶解度差を得るものであった。
Photolithographic materials, which are image forming techniques, and their processing processes are widely put into practical use in semiconductor processing, wiring resist, printing plate making, and the like.
In the conventional photolithography process, as shown in FIG. 3, a film according to the purpose is formed on a silicon substrate or the like using a photosensitive resin material. This is irradiated with light through a mask, etc., and photopolymerization, photocrosslinking reaction, deprotection reaction, etc. are caused in the light irradiated area of the photosensitive resin film, resulting in a difference in solubility of the film material, and pattern formation by development It is common to do. In these processes, a photoradical generator, a photoacid generator, and a photobase generator are used in the film, and chemically active species such as radicals, acids, and bases are generated at the site irradiated with light. Further, a difference in solubility of the photosensitive resin material with respect to the developer was obtained by subsequent formation or cleavage of a covalent bond such as a monomer polymerization reaction, cross-linking of cross-linking agent molecules, or elimination of a protective group.

主要な工業技術のひとつであるフォトリソグラフィー技術は、他の工業技術と同様に環境調和型のプロセスへ変化が望まれている。しかしながら、例えば、半導体加工においては発生した化学的活性種の化学反応によって増幅する化学増幅型のフォトレジストが多く用いられ、図3に示すように、露光後に加熱過程を設けてこれらの反応を促進している。これらのリソグラフィー材料に環境調和型の化合物として天然に存在するような物質を使おうとすると、発生するラジカルや酸、加熱工程によって変質しやすく用いることができる物質が限られてしまう問題があった。 Photolithography technology, which is one of the major industrial technologies, is expected to change to an environmentally conscious process like other industrial technologies. However, for example, in semiconductor processing, a chemically amplified photoresist that is amplified by a chemical reaction of a chemically active species that is generated is often used. As shown in FIG. 3, a heating process is provided after exposure to promote these reactions. is doing. When trying to use a substance that exists naturally as an environmentally conscious compound in these lithography materials, there is a problem that the radicals, acids, and substances that can be easily altered by the heating process are limited.

一方、これまで蓄積されてきた微細加工技術は、バイオセンサー・バイオチップなどバイオケミストリー技術と融合することが期待されているが、現在のプロセスや材料は前述したように、化学的活性種をもちいることや加熱プロセスなどの問題から、直接、生体物質を光でパターニングするには適合したものではなかった。 On the other hand, the microfabrication technology accumulated so far is expected to be integrated with biochemistry technology such as biosensors and biochips. However, as described above, current processes and materials have chemically active species. However, it was not suitable for direct patterning of biological materials with light due to problems such as the heating process and heating process.

また一方、本発明で用いられるビリルビンについては、血中に含まれるヘモグロビンの分解生成物として知られ、一般の血液検査の項目にもなっている良く知られた生体物質である。特許文献1においては、ビリルビンを薄膜(メンブレン)に拡散させた酵素センサーが開示されている。また、非特許文献2には、ビリルビンの光異性化反応が開示されている。しかし、この生体物質そのものを感光性薄膜とし光リソグラフィー材料として用いようとする試みは知られていなかった。
特表2000−507457号公報 Y. Kanna, T.Arai, K. Tokumaru, Bull. Chem. Soc. Jpn., 67, 2758-2762 (1994).
On the other hand, bilirubin used in the present invention is a well-known biological substance that is known as a degradation product of hemoglobin contained in blood and is also a general blood test item. In Patent Document 1, an enzyme sensor in which bilirubin is diffused in a thin film (membrane) is disclosed. Non-Patent Document 2 discloses a photoisomerization reaction of bilirubin. However, there has been no known attempt to use the biological material itself as a photosensitive thin film as an optical lithography material.
JP 2000-507457 Y. Kanna, T. Arai, K. Tokumaru, Bull. Chem. Soc. Jpn., 67, 2758-2762 (1994).

本発明は、かかる事情に鑑みなされたものであって、生体物質に親和性があり、かつ温和な反応条件で、光によるパターニングを可能にする光パターニング材料および光パターン形成方法を提供することにある。   The present invention has been made in view of such circumstances, and provides an optical patterning material and an optical pattern formation method that have an affinity for a biological substance and allow patterning by light under mild reaction conditions. is there.

上記目的を達成するために、本発明は、生体物質に親和性があり、かつ温和な反応条件によって光によりパターニング可能とするため、少なくとも、ビリルビン(Bilirubin)またはビリルビン誘導体を感光性薄膜とすることを特徴とする。   In order to achieve the above-described object, the present invention has at least bilirubin or a bilirubin derivative as a photosensitive thin film so as to have an affinity for a biological substance and allow patterning by light under mild reaction conditions. It is characterized by.

本発明における、少なくとも、ビリルビン(Bilirubin)またはビリルビン誘導体を用いる感光性薄膜は、薄膜中に従来技術のような反応性の高いラジカルや酸、塩基など発生する光開始剤を特に必要とせず、露光した部分の水またはアルカリ溶液における溶解度が向上し、パターン形成が可能である利点がある。 In the present invention, at least a photosensitive thin film using bilirubin or a bilirubin derivative does not particularly require a photoinitiator that generates a highly reactive radical, acid, base or the like as in the prior art, and is exposed to light. Thus, there is an advantage that the solubility in the water or alkali solution is improved and pattern formation is possible.

ビリルビン(Bilirubin)またはビリルビン誘導体は、分子内に光を吸収する部位と、これにより光シスートランス異性化をともない分子構造を大きく変化する部位をもつとともに、分子内もしくは分子間で水素結合をつくる部位を有する。したがって、本発明のビリルビン(Bilirubin)またはビリルビン誘導体を用いる感光性薄膜の光照射による溶解度の差は、光シスートランス異性化に引き続いて行なわれる水素結合の変化によっておこると考えられ、これによって溶媒和可能なフリーの極性基が出現するため、薄膜中に従来技術のような反応性の高いラジカルや酸、塩基などを必要とせずパターニングできたものと考えられる。これにより、成膜時の溶媒除去以外の加熱プロセスを必要としないばかりでなく、希薄なアルカリ水溶液で可能であり、環境負荷が小さく新規なソフトな光リソグラフィー材料を実現した。 Bilirubin or bilirubin derivatives have a site that absorbs light in the molecule and a site that greatly changes the molecular structure due to photo-cis-trans isomerization, and creates a hydrogen bond within or between molecules. Have Therefore, the difference in solubility due to light irradiation of the photosensitive thin film using the bilirubin or bilirubin derivative of the present invention is considered to be caused by a change in hydrogen bonding performed following photocis-trans isomerization. Since possible free polar groups appear, it is considered that patterning was possible without requiring highly reactive radicals, acids, bases, and the like in the thin film. As a result, not only a heating process other than the solvent removal at the time of film formation is required, but also a dilute alkaline aqueous solution is possible, and a new soft photolithography material with a small environmental load is realized.

以下に、図に示す本発明の実施形態(以下、単に本発明という)を説明する。   Hereinafter, embodiments of the present invention shown in the drawings (hereinafter simply referred to as the present invention) will be described.

図1は、本発明で用いられるビリルビン(Bilirubin)の化学構造、図2は、ビリルビン(Bilirubin)誘導体の化学構造を示す。   FIG. 1 shows the chemical structure of bilirubin used in the present invention, and FIG. 2 shows the chemical structure of a bilirubin derivative.

図4に示すように、基板2として、シリコンウエハーを用意し、これにビリルビン(Bilirubin)の1.30wt.% ジメチルスルフォキシド(DMSO)溶液を滴下し、スピンコート法により製膜した。触針式膜厚計(アルファステップ)により膜厚を測定したところ、4500rpm回転の条件でおよそ30nmのビリルビン薄膜1が得られた。これを、常温または100℃以下で乾燥した。   As shown in FIG. 4, a silicon wafer was prepared as the substrate 2, and a 1.30 wt.% Dimethyl sulfoxide (DMSO) solution of bilirubin was dropped onto the silicon wafer, and a film was formed by spin coating. When the film thickness was measured with a stylus type film thickness meter (alpha step), a bilirubin thin film 1 of approximately 30 nm was obtained under the condition of 4500 rpm rotation. This was dried at room temperature or below 100 ° C.

この薄膜の紫外-可視スペクトルを測定すると400nm-500nmに大きな光吸収を示した。これは可視光源、例えば通常のランプ以外にもアルゴンイオンレーザーや半導体レーザーによっても感光させることが可能であることを示す。   When the ultraviolet-visible spectrum of this thin film was measured, it showed a large light absorption at 400 nm-500 nm. This indicates that it can be exposed not only by a visible light source such as an ordinary lamp but also by an argon ion laser or a semiconductor laser.

該ビリルビン(Bilirubin)薄膜1に、ラインアンドスペースのパターンマスク4を通して、キセノンランプ(光強度 350mJ/cm2s)で20分間露光した後、0.02 wt.%のテトラメチルアンモニウムハイドロキシド水溶液を用いて、30秒間ディップ現像するとポジ型のパターン5が形成できた。これを図5に示す。 The bilirubin thin film 1 is exposed to a xenon lamp (light intensity 350 mJ / cm 2 s) through a line and space pattern mask 4 for 20 minutes, and then an aqueous solution of 0.02 wt.% Tetramethylammonium hydroxide is used. When dip development was performed for 30 seconds, a positive pattern 5 could be formed. This is shown in FIG.

次に、実施例1で用いたビリルビン(Bilirubin)の1.30wt.% DMSO溶液に0.01wt.%になるよう過酸化水素分解酵素であるホースラディッシュペルオキシターゼを溶かし、実施例1と同じように薄膜を形成した。 Next, horseradish peroxidase, a hydrogen peroxide-degrading enzyme, was dissolved in a 1.30 wt.% DMSO solution of bilirubin used in Example 1 to 0.01 wt.%, And the thin film was formed in the same manner as in Example 1. Formed.

実施例1と同様にラインアンドスペースのパターンマスクを通して、キセノンランプ(光強度 350mJ/cm2s)で20分間露光した後、0.02 wt.%のテトラメチルアンモニウムハイドロキシド水溶液を用いて、30秒間ディップ現像するとポジ型のパターン形成ができた。 After exposure for 20 minutes with a xenon lamp (light intensity 350 mJ / cm 2 s) through a line and space pattern mask in the same manner as in Example 1, 0.02 wt.% Tetramethylammonium hydroxide aqueous solution was used for 30 seconds dip. When developed, a positive pattern was formed.

このパターンに1wt.%過酸化水素水を一滴滴下すると、パターン部分でガスが発生していることが観察された。これは酵素の直接パターニングが光リソグラフィーのプロセスによって可能であることを示す。本実施例で得られるビリルビン(Bilirubin)薄膜を形成した基板を用いれば、担体を用いることなく、基板に、直接、バイオセンサー等を形成することができる。 When one drop of 1 wt.% Hydrogen peroxide solution was dropped on this pattern, it was observed that gas was generated in the pattern portion. This indicates that direct patterning of the enzyme is possible by a photolithographic process. If the substrate on which the bilirubin thin film obtained in this example is used is used, a biosensor or the like can be directly formed on the substrate without using a carrier.

なお、該ビリルビン(Bilirubin)薄膜の塗布、製膜は、スピンコート方法に限定されず、スクリーン印刷、インクジェット、ロールコータ等、適宜、選択することができる。基板は、実施例に限定されず、例えば、ガラス,ポリカーボネート,ポリエステル,ポリエチレン,ポリプロピレン等からも選択できる。また、ビリルビン誘導体を用いることも可能である。露光は、可視光源、通常のランプ以外にも、例えば、アルゴンイオンレーザーや半導体レーザーによっても感光させることができる。 In addition, application | coating and film forming of this bilirubin thin film are not limited to a spin coat method, A screen printing, an inkjet, a roll coater, etc. can be selected suitably. A board | substrate is not limited to an Example, For example, it can select from glass, a polycarbonate, polyester, polyethylene, a polypropylene, etc. A bilirubin derivative can also be used. In addition to the visible light source and the normal lamp, the exposure can be performed by, for example, an argon ion laser or a semiconductor laser.

拡大している光リソグラフィーの応用分野において、半導体加工、配線用レジスト、スクリーン印刷などの印刷材料だけでなく、バイオセンサーや細胞培養足場材料、DNAチップ、バイオチップ等のパターニング材料として利用可能であり、応用分野が広く有用性が極めて高い。 It can be used as a patterning material for biosensors, cell culture scaffolding materials, DNA chips, biochips, etc. as well as printing materials for semiconductor processing, wiring resists, screen printing, etc. Wide application field, very useful.

ビリルビン(Bilirubin)化学構造Bilirubin chemical structure ビリルビン(Bilirubin)誘導体の化学構造Chemical structure of bilirubin derivatives 従来のフォトリソグラフィー工程Conventional photolithography process 本発明によるビリルビン(Bilirubin)のフォトリソグラフィー工程Bilirubin photolithography process according to the present invention 本発明によるビリルビン(Bilirubin)のフォトリソグラフィーによるパターン写真Photolithographic pattern photo of bilirubin according to the present invention

符号の説明Explanation of symbols

1・・・ビリルビン薄膜
2・・・基板
3・・・光
4・・・マスク
5・・・パターン
DESCRIPTION OF SYMBOLS 1 ... Bilirubin thin film 2 ... Substrate 3 ... Light 4 ... Mask 5 ... Pattern

Claims (9)

分子内に光を吸収する部位とこれにより光シス−トランス異性化をともない、分子構造を変化させる部位をもつとともに、分子内および/または分子間で水素結合をつくる部位を有する光異性化材料を含み、
前記光異性化材料は、少なくとも、ビリルビン又はビリルビン誘導体を含み、
該光異性化材料に、光を照射して、光シス−トランス異性化に引き続き、水素結合の変化によって、水またはアルカリ溶液への溶解度の差を生じさせることを特徴とする光パターニング材料。
A photoisomerizable material having a site that absorbs light in a molecule and a site that changes molecular structure with photo-cis-trans isomerization, and a site that forms a hydrogen bond within and / or between molecules. Including
The photoisomerization material includes at least bilirubin or a bilirubin derivative,
A photo-patterning material, wherein the photo-isomerization material is irradiated with light to cause a difference in solubility in water or an alkali solution due to a change in hydrogen bonding following photo-cis-trans isomerization.
生体物質に親和性を有する光異性化材料を含み、
前記光異性化材料は、少なくとも、ビリルビン又はビリルビン誘導体を含み、
該光異性化材料へ光を照射して、光異性化反応により、生体物質に親和性を有するパターンを形成することを特徴とする光パターニング材料。
Including a photoisomerization material having affinity for biological substances,
The photoisomerization material includes at least bilirubin or a bilirubin derivative,
A photo-patterning material, wherein a pattern having affinity for a biological substance is formed by irradiating light to the photo-isomerization material and by a photo-isomerization reaction.
過酸化水素分解酵素を含むことを特徴とする請求項1又は2に記載の光パターニング材料。 The photopatterning material according to claim 1 , further comprising a hydrogen peroxide-degrading enzyme. 前記過酸化水素分解酵素は、ホースラディッシュペルオキシターゼであることを特徴とする請求項3に記載の光パターニング材料。 The photo-patterning material according to claim 3, wherein the hydrogen peroxide-degrading enzyme is horseradish peroxidase. 支持体に、請求項1又は2に記載の光パターニング材料により成膜する第1の工程と、
該光パターニング材料に、光を照射する第2の工程と、
該光の照射によって、該光パターニング材料に、光シス−トランス異性化に引き続き、水素結合の変化によって、水またはアルカリ溶液への溶解度の差を生じさせる第3の工程と、
該光パターニング材料より、該溶解度の差により生じた水またはアルカリ溶液への溶解成分を除去する第4の工程とを有することを特徴とする光パターン形成方法。
A first step of forming a film on the support with the photo-patterning material according to claim 1 or 2 ,
A second step of irradiating the photo-patterning material with light;
A third step of causing the photo-patterning material to undergo a difference in solubility in water or an alkaline solution by photo-cis-trans isomerization followed by a change in hydrogen bonding by irradiation with the light;
And a fourth step of removing from the optical patterning material a component dissolved in water or an alkali solution caused by the difference in solubility.
前記成膜工程において、前記パターニング材料に、ジメチルスルフォキシドを溶媒として用いることを特徴とする請求項5に記載の光パターン形成方法。 6. The optical pattern forming method according to claim 5 , wherein dimethyl sulfoxide is used as a solvent for the patterning material in the film forming step. 前記第3の工程は、パターンマスクを通して露光する工程であることを特徴とする請求項5に記載の光パターン形成方法。 6. The optical pattern forming method according to claim 5, wherein the third step is a step of exposing through a pattern mask. 前記支持体は、半導体基板であることを特徴とする請求項5に記載の光パターン形成方法。 6. The optical pattern forming method according to claim 5, wherein the support is a semiconductor substrate. 前記支持体は、シリコンであることを特徴とする請求項8に記載の光パターン形成方法。 The optical pattern forming method according to claim 8, wherein the support is silicon.
JP2005211948A 2005-07-21 2005-07-21 Optical patterning material and optical pattern forming method Active JP4487069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005211948A JP4487069B2 (en) 2005-07-21 2005-07-21 Optical patterning material and optical pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005211948A JP4487069B2 (en) 2005-07-21 2005-07-21 Optical patterning material and optical pattern forming method

Publications (2)

Publication Number Publication Date
JP2007033472A JP2007033472A (en) 2007-02-08
JP4487069B2 true JP4487069B2 (en) 2010-06-23

Family

ID=37792873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005211948A Active JP4487069B2 (en) 2005-07-21 2005-07-21 Optical patterning material and optical pattern forming method

Country Status (1)

Country Link
JP (1) JP4487069B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101135921B1 (en) * 2009-12-15 2012-04-13 한국과학기술원 Method for fabrication of patterned micro/nano architectures by means of directional photofluidization of polymer

Also Published As

Publication number Publication date
JP2007033472A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
Park et al. Eco-friendly photolithography using water-developable pure silk fibroin
JP2968363B2 (en) Negative-working radiation-sensitive mixtures and radiation-sensitive recording materials produced therefrom
FR2782560A1 (en) LIGHT-ACTIVATED COMPOSITION, RESERVES INCLUDED THEREOF AND USES THEREOF
KR20030023603A (en) Creation of resist structures
JPS62164045A (en) Negative photoresist composition and formation of image
CN100476583C (en) Ring sulfonium and sulfonium oxide and photoacid generator and photoetching glue containing ring sulfonium and sulfonium oxide
CN107108511A (en) The sulfonic acid derivative compound of optical acid generating agent is used as in resist application
Peter et al. Organotin in nonchemically amplified polymeric hybrid resist imparts better resolution with sensitivity for next-generation lithography
US7989155B2 (en) Lithographic method
JP4487069B2 (en) Optical patterning material and optical pattern forming method
JP2861253B2 (en) Photosensitive resin composition
KR100200305B1 (en) Photoresist for deep uv and method for forming photoresist pattern using the same
JP3851440B2 (en) Positive photosensitive composition
JP5633225B2 (en) Photosensitive resin composition, article using the same, and method for producing relief pattern
JP5439902B2 (en) Photosensitive resin composition and pattern forming method
Xu et al. Synthesis of dual‐functional copolymer with orthogonally photosensitive groups
KR890008928A (en) Positive Photoresist Composition and Positive Image Formation Method
JP3925882B2 (en) Positive photosensitive resin composition
JP4512607B2 (en) Manufacturing method of substrate for producing microarray
KR101210904B1 (en) Fluorescence pattern of the fluorescent dye incorporated photo-crosslinkable photoresiet
KR940007793B1 (en) Formation of pattern
KR100252225B1 (en) Base resin for photoresist using ultra-violet ray for fabrication of semiconductor device, its manufacturing method and photoresist using ultra-violet ray comprosing the base resin
JP2861992B2 (en) New resist material
KR100252226B1 (en) Base resin for photoresist using ultra-violet ray for fabrication of semiconductor device, its manufacturing method and photoresist using ultra-violet ray comprosing the base resin
An et al. Increasing the Sensitivity of Nonchemically Amplified Resists by Oxime Sulfonate-Functionalized Polystyrene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150