JP4486368B2 - Silicon needle manufacturing method - Google Patents

Silicon needle manufacturing method Download PDF

Info

Publication number
JP4486368B2
JP4486368B2 JP2004008898A JP2004008898A JP4486368B2 JP 4486368 B2 JP4486368 B2 JP 4486368B2 JP 2004008898 A JP2004008898 A JP 2004008898A JP 2004008898 A JP2004008898 A JP 2004008898A JP 4486368 B2 JP4486368 B2 JP 4486368B2
Authority
JP
Japan
Prior art keywords
needle
etching
silicon
mask
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004008898A
Other languages
Japanese (ja)
Other versions
JP2005198865A (en
Inventor
良一 大東
興治 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2004008898A priority Critical patent/JP4486368B2/en
Publication of JP2005198865A publication Critical patent/JP2005198865A/en
Application granted granted Critical
Publication of JP4486368B2 publication Critical patent/JP4486368B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00111Tips, pillars, i.e. raised structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0046Solid microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0053Methods for producing microneedles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/055Microneedles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0361Tips, pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/05Arrays
    • B81B2207/056Arrays of static structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching
    • B81C2201/0132Dry etching, i.e. plasma etching, barrel etching, reactive ion etching [RIE], sputter etching or ion milling

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Anesthesiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Analytical Chemistry (AREA)
  • Dermatology (AREA)
  • Medical Informatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Description

本発明は、例えば医療、生物現象、創薬に用いる微細な針として使用されるシリコン針およびその製造方法に関する。   The present invention relates to a silicon needle used as a fine needle used in, for example, medical treatment, biological phenomenon, and drug discovery, and a method for manufacturing the same.

医療、生物現象、創薬に用いる微細な針として、シリコンウエハをエッチングすることにより作製されたシリコン製の針(通常、複数本の針群から構成される)を用いる試みが行われている。このシリコン製の複数針において、個々の針は所望のテーパ角度を有して先端が尖った形態をなしている。   Attempts have been made to use silicon needles (usually composed of a plurality of needle groups) produced by etching a silicon wafer as fine needles used in medicine, biological phenomena, and drug discovery. In the plurality of silicon needles, each needle has a desired taper angle and a pointed tip.

従来のシリコン製の針として、例えば、図4に示されるような形態のものが存在している。図4に示される形態のシリコン製の針は、例えば、シリコンウエハに等方性エッチングを行って形成されたものであって、基端部102から先端部101にかけて全体になだらかなテーパ形状をなしている。   As a conventional silicon needle, for example, the one shown in FIG. 4 exists. The silicon needle of the form shown in FIG. 4 is formed by performing isotropic etching on a silicon wafer, for example, and has a gentle taper shape from the base end portion 102 to the tip end portion 101 as a whole. ing.

このようなシリコン製の針100を形成するに際し行われるエッチングには、溶液としてHNO3/HF/CH3COOH/H2O等を用いてシリコンウエハをエッチングする等方性ウエットエッチング、あるいはSF6/O2等の混合ガスを導入することによって生成したプラズマによってエッチングするドライエッチングが好適例として挙げられる。このような手法に基づき図4に示されるごとく基端部102から先端部101にかけて全体にテーパ形状をなしている構造が形成される。 The etching performed when forming such a silicon needle 100 is isotropic wet etching in which a silicon wafer is etched using HNO 3 / HF / CH 3 COOH / H 2 O as a solution, or SF 6. A preferable example is dry etching in which etching is performed by plasma generated by introducing a mixed gas such as / O 2 . Based on such a method, a structure having a taper shape as a whole is formed from the base end portion 102 to the tip end portion 101 as shown in FIG.

しかしながら、このような従来のシリコン針の製造方法では、シリコン針の端部の直径とシリコン針の高さの比であるアスペクト比が1以上の構造の針を作製することが極めて困難である。そのため、シリコン製の針を高密度で形成することができないばかりか、要求される個々の針仕様を満足させることが困難となるという不都合が生じ得る。   However, in such a conventional method of manufacturing a silicon needle, it is extremely difficult to manufacture a needle having an aspect ratio of 1 or more, which is the ratio of the diameter of the end of the silicon needle to the height of the silicon needle. For this reason, not only silicon needles cannot be formed at a high density, but it is also difficult to satisfy the required individual needle specifications.

また、他のシリコン製の針の形態として、特開2002−239014号公報に提案されているものが存在する。当該公報には、図5に示されるように先端部に向かって細径化したテーパ形状を有する先端部201と該先端部201に連なり厚さ方向にわたって同一径の円柱である基端部202から構成されるシリコン製の針状体200が開示されている。   Another type of silicon needle is proposed in Japanese Patent Application Laid-Open No. 2002-239014. As shown in FIG. 5, the gazette includes a tip 201 having a tapered shape with a diameter reduced toward the tip, and a base end 202 that is continuous with the tip 201 and is a cylinder having the same diameter in the thickness direction. A silicon needle 200 is disclosed.

しかしながら、この提案の針形状には先端部201と基端部202の境界にショルダー222が存在するため、穿刺抵抗が大きくなるという不都合が生じる。   However, this proposed needle shape has a disadvantage that the puncture resistance is increased because the shoulder 222 exists at the boundary between the distal end portion 201 and the proximal end portion 202.

特開2002−239014号公報JP 2002-239014 A

このような実状のもとに本発明は創案されたものであり、その目的は、生産性に優れ、アスペクト比が大きく針群の配設密度を高くとること(すなわち、高密度での針群の形成)が可能で、穿刺性に優れたシリコン針およびその製造方法を提供することにある。   The present invention was devised under such circumstances, and its purpose is to provide excellent productivity, a high aspect ratio and a high needle group arrangement density (that is, a needle group at a high density). It is an object of the present invention to provide a silicon needle excellent in puncture properties and a method for manufacturing the same.

このような課題を解決するために、本発明は、シリコンウエハをエッチングして基体の上に一体的に形成された複数の針状体を備え、当該複数の針状体は、先端に向かって連続的に漸減した外径を備える針本体を備えるように形成されたシリコン針の製造方法であって、該方法は、複数の針状体を形成すべき箇所に対応してマスクを設ける工程と、前記マスクを設ける工程に次いで行われ、マスクを設けた状態でシリコンウエハに対してエッチングステップと堆積ステップを繰り返して、針状体の基礎となる側面箇所に堆積層を形成しつつ高さ(厚さ)方向に選択エッチング性を有する異方性エッチングを施す第1のエッチング工程と、前記側面箇所に堆積した堆積層を除去する工程と、前記シリコンウエハに対してマスクを設けた状態で、等方性エッチングを施すことにより、徐々に針形状を形成するとともに頂部のマスクを落下させて除去する第2のエッチング工程と、を有してなるように構成される。 In order to solve such a problem, the present invention includes a plurality of needle-like bodies integrally formed on a substrate by etching a silicon wafer, and the plurality of needle-like bodies are directed toward the tip. A method of manufacturing a silicon needle formed to have a needle body with a continuously decreasing outer diameter, the method comprising the step of providing a mask corresponding to a location where a plurality of needle-like bodies are to be formed; Then, after the step of providing the mask, the etching step and the deposition step are repeated on the silicon wafer with the mask provided, and the height ( a first etching step of applying anisotropic etching with a selective etching property in the thickness direction), and removing the deposit layer deposited on the side surface portion, in a state in which a mask with respect to the silicon wafer, By performing anisotropic etching, the second etching step of removing by dropping the mask of the top with gradually form needle-shaped, configured so as to have a.

また、本発明の製造方法の好ましい態様として、前記マスクは、シリコンウエハ表面を酸化処理またはシリコンウエハ上にシリコン窒化膜を形成した後、フォトリソグラフィー法およびエッチング処理法により形成された円形状群のマスクパターンとして構成される。   As a preferred embodiment of the manufacturing method of the present invention, the mask is formed of a circular group formed by photolithography or etching after the silicon wafer surface is oxidized or a silicon nitride film is formed on the silicon wafer. Configured as a mask pattern.

また、本発明の製造方法の好ましい態様として、前記マスクパターンの配設密度は20〜70個/mm2となるように構成される。
また、本発明の製造方法の好ましい態様として、前記複数の針状体は、先端に向かって連続的に漸減した外径を備える針本体を備えるように構成される。
また、本発明の製造方法の好ましい態様として、前記複数の針状体の高さをHとし、先端から1/3Hでの位置での外径をD1、先端から2/3Hでの位置での外径をD2として場合に、D1/D2比の値が、0.4以上1.0未満の範囲にあるように構成される。
また、本発明の製造方法の好ましい態様として、前記複数の針状体の高さHが、60〜200μmとなるように構成される。
Moreover, as a preferable aspect of the manufacturing method of the present invention, the arrangement density of the mask pattern is configured to be 20 to 70 / mm 2 .
Moreover, as a preferable aspect of the manufacturing method of the present invention, the plurality of needle-like bodies are configured to include a needle body having an outer diameter that gradually decreases gradually toward the tip.
Further, as a preferred embodiment of the manufacturing method of the present invention, the height of the plurality of needle-like bodies is H, the outer diameter at a position 1 / 3H from the tip is D 1 , and the position at 2 / 3H from the tip. When the outer diameter is D 2 , the D 1 / D 2 ratio value is in the range of 0.4 or more and less than 1.0.
Moreover, as a preferable aspect of the manufacturing method of this invention, it is comprised so that the height H of the said some acicular body may be 60-200 micrometers.

本発明のシリコン針は、本発明のシリコン針は、基体の上に形成された複数の針状体を備え、複数の針状体は、先端に向かって連続的に漸減した外径を備える針本体を備えてなるように構成され、また、本発明のシリコン針の製造方法は、マスクを設けた後、方性エッチングを施した後、側面に堆積した堆積層を除去し、さらに等方性エッチングを施すように構成されるので、生産性が良好で、アスペクト比が大きく針群の配設密度を高くとること(すなわち、高密度での針群の形成)が可能で、極めて穿刺性に優れたシリコン針を得ることができる。   The silicon needle of the present invention includes a plurality of needle-like bodies formed on a base body, and the plurality of needle-like bodies have an outer diameter that gradually decreases gradually toward the tip. The silicon needle manufacturing method of the present invention is provided with a main body, and after providing a mask, performing isotropic etching, then removing the deposited layer deposited on the side surface, and further isotropic Since it is configured to be etched, the productivity is good, the aspect ratio is large, and the arrangement density of the needle group can be increased (that is, the needle group can be formed at a high density), which makes it extremely puncturable. An excellent silicon needle can be obtained.

以下、本発明のシリコン針およびその製造方法について、図1〜図3を参照しつつ詳細に説明する。   Hereinafter, the silicon needle of the present invention and the manufacturing method thereof will be described in detail with reference to FIGS.

図1は、エッチングの結果、基体の上に形成された複数の針状体を備える本発明のシリコン針の一部分を示した概略斜視図であり、図2は1つの針状体に注目した概略側面図であり、図3(a)〜(d)は本発明のシリコン針の製造方法を経時的に説明するための概略断面図である。   FIG. 1 is a schematic perspective view showing a part of a silicon needle of the present invention provided with a plurality of needle-like bodies formed on a substrate as a result of etching, and FIG. 2 is a schematic view focusing on one needle-like body. FIG. 3A to FIG. 3D are schematic cross-sectional views for explaining the silicon needle manufacturing method of the present invention over time.

本発明のシリコン針1は、図1に示されるようにシリコンウエハをエッチングした基体2(材質はシリコン)の上に一体的に形成された複数の針状体10を備えている。   As shown in FIG. 1, the silicon needle 1 of the present invention includes a plurality of needle-like bodies 10 integrally formed on a substrate 2 (material is silicon) obtained by etching a silicon wafer.

針状体10は、基体2の上に立設された状態で形成されており、複数の針状体10の単位平方ミリ当たりの配設密度は、20〜70個/mm2とされる。配設密度をあまり大きくし過ぎると、針そのものの外径を極限まで細径化しなければならず針状体の折れ等の発生の問題が生じてしまう。また、現行の技術レベルでの製造限界から必然的に上限が存在する。 The needle-like bodies 10 are formed standing on the base 2, and the arrangement density per unit square millimeter of the plurality of needle-like bodies 10 is 20 to 70 pieces / mm 2 . If the arrangement density is too large, the outer diameter of the needle itself must be reduced to the limit, which causes problems such as the breakage of the needle-like body. In addition, there is inevitably an upper limit due to manufacturing limitations at the current technical level.

本発明における複数の針状体10は、図示のごとく、それぞれ、先端に向かって漸減した外径を備える針本体18とを備えている。針本体18は後述の製造方法から容易に理解できるように、異方性エッチングにより形成された実質的な円柱形状体を等方性エッチングによって徐々に針形状に形成したものであるために、先端部から基部にかけてなだらかな連続した直線ないし曲線形状を有している。   As shown in the figure, each of the plurality of needle-like bodies 10 according to the present invention includes a needle body 18 having an outer diameter that gradually decreases toward the tip. As can be easily understood from the manufacturing method described later, the needle body 18 is formed by gradually forming a substantially cylindrical body formed by anisotropic etching into a needle shape by isotropic etching. It has a gentle continuous straight line or curved shape from the base to the base.

これにより針本体18の全域における穿刺抵抗は、穿刺に全く支障のないレベルに仕上がっている。   Thus, the puncture resistance in the entire area of the needle body 18 is finished to a level that does not hinder puncture at all.

本発明における複数の針状体10は、図2に示されるごとくその高さをHとし、先端から1/3Hでの位置での外径をD1、先端から2/3Hでの位置での外径をD2とした場合に、D1/D2比の値が、0.4以上1.0未満の範囲内にあるように構成される。この値が0.4未満となると針ピッチによりアスペクト比が低くなるという不都合が生じ、また、この値が1.0以上だと針形状が逆テーパとなるため折れやすくなるという不都合が生じる。 As shown in FIG. 2, the plurality of needle-like bodies 10 according to the present invention has a height H, an outer diameter at a position 1 / 3H from the tip, D 1 , and a position at 2 / 3H from the tip. When the outer diameter is D 2 , the D 1 / D 2 ratio value is in the range of 0.4 or more and less than 1.0. When this value is less than 0.4, there is a disadvantage that the aspect ratio is lowered due to the needle pitch, and when this value is 1.0 or more, the needle shape becomes a reverse taper so that the needle shape is easily broken.

前記複数の針状体10の高さHは、60〜200μm、より好ましくは、150〜200μm程度とされ、本願のシリコン針1が医療、生物現象、創薬に用いる微細針として有効に機能するための必要な長さが要求される。   The height H of the plurality of needle-like bodies 10 is 60 to 200 μm, more preferably about 150 to 200 μm, and the silicon needle 1 of the present application effectively functions as a fine needle used for medical treatment, biological phenomenon, and drug discovery. The required length for is required.

次に、本発明のシリコン針1の製造方法を図3を参照しつつ説明する。   Next, a method for manufacturing the silicon needle 1 of the present invention will be described with reference to FIG.

本発明におけるシリコン針の製造方法は、シリコンウエハを所定のステップでエッチングすることにより形成するものであって、基体の上に一体的に複数の針状体を立設するように形成する。以下、工程順に説明する。   The silicon needle manufacturing method of the present invention is formed by etching a silicon wafer in a predetermined step, and is formed so that a plurality of needle-like bodies are erected integrally on a base. Hereinafter, it demonstrates in order of a process.

(1)複数の針状体を形成すべき箇所に対応するようにマスクを設ける工程
図3(a)に示されるように複数の針状体を形成すべき箇所に対応するようにマスク22が設けられる。図3(a)の例では2本の針状体が形成される状況が部分的に示されている。また、図示例ではマスク22の上にパターン形成のためのフォトレジスト23が存在する。
(1) Process of providing a mask so as to correspond to the locations where a plurality of needle-like bodies are to be formed As shown in FIG. Provided. In the example of FIG. 3A, the situation where two needle-like bodies are formed is partially shown. In the illustrated example, a photoresist 23 for pattern formation exists on the mask 22.

マスク22は、シリコンウエハ31表面を、酸化処理して酸化膜(例えば、SiO2)、および/または、シリコンウエハ31上にシリコン窒化膜を形成した後、フォトレジストを塗布し、フォトリソグラフィー法によりマスクパターンを形成する。また、シリコン酸化膜の厚みが1.5μm以上の場合、針を形成するためのマスクは、シリコン酸化膜のみでも良い。 The mask 22 is formed by oxidizing the surface of the silicon wafer 31 to form an oxide film (for example, SiO 2 ) and / or a silicon nitride film on the silicon wafer 31, and then applying a photoresist and performing photolithography. A mask pattern is formed. Further, when the thickness of the silicon oxide film is 1.5 μm or more, the mask for forming the needle may be only the silicon oxide film.

通常、マスク22は全て同一直径のパターンとされ、その大きさは、例えば、直径20〜80μm程度のものが例示できる。   Normally, the masks 22 are all patterns having the same diameter, and the size can be exemplified by, for example, a diameter of about 20 to 80 μm.

(2)異方性エッチングを施す第1のエッチング工程
次いで、図3(b)に示されるように異方性エッチングを施す第1のエッチング工程が行なわれる。この工程は、上述のマスク22を設けた状態でシリコンウエハ31に対してエッチングステップと堆積ステップを繰り返して、針状体の基礎となる円柱形状体35を形成するために行われる。すなわち、円柱形状体35を形成するとともに、その側面に堆積層34を形成しつつ高さ(厚さ)方向に選択エッチング性を有する異方性エッチングを施す工程である。
(2) First Etching Step for Performing Anisotropic Etching Next, a first etching step for performing anisotropic etching is performed as shown in FIG. This process is performed in order to form the cylindrical body 35 that is the basis of the needle-like body by repeating the etching step and the deposition step on the silicon wafer 31 with the mask 22 provided. That is, the cylindrical body 35 is formed and anisotropic etching having selective etching properties in the height (thickness) direction is performed while forming the deposition layer 34 on the side surface.

異方性エッチングを行う場合、例えば、ICPーRIE(誘導結合型プラズマによる反応性イオンエッチング)装置を用いるのが好適である。   When performing anisotropic etching, for example, it is preferable to use an ICP-RIE (reactive ion etching by inductively coupled plasma) apparatus.

このICPーRIE装置を用い、反応ガスとして例えばSF6のエッチングガスと例えばC48の堆積ガスを交互にプラズマ化させて、エッチングステップと堆積ステップを繰り返すいわゆるボッシュ・プロセスが実施される。 Using this ICP-RIE apparatus, a so-called Bosch process is performed in which, for example, an etching gas of SF 6 and a deposition gas of C 4 F 8 , for example, are alternately converted into plasma as a reaction gas, and the etching step and the deposition step are repeated.

このような第1のエッチング工程により、図3(b)に示されるように例えば、エッチング残存形体として針状体の基礎となる、高さ130〜170μm程度の円柱形状体35が形成される。   By such a first etching step, as shown in FIG. 3B, for example, a cylindrical body 35 having a height of about 130 to 170 μm, which is the basis of the needle-like body, is formed as an etching remaining shape.

エッチングステップにおける装置内に導入する反応ガスの流量は、100〜200sccm程度、1回当たりの処理時間は、5〜15秒程度、ガス圧力は4.0〜4.7Pa程度、コイルへの印加電力は、600〜900W程度、基板電極への印加電力は15〜25W程度とされる。   The flow rate of the reaction gas introduced into the apparatus in the etching step is about 100 to 200 sccm, the processing time per time is about 5 to 15 seconds, the gas pressure is about 4.0 to 4.7 Pa, and the power applied to the coil Is about 600 to 900 W, and the power applied to the substrate electrode is about 15 to 25 W.

堆積ステップにおける装置内に導入する反応ガスの流量は、50〜80sccm程度、1回当たりの処理時間は、5〜10秒程度、ガス圧力は1.3〜2.0Pa程度、コイルへの印加電力は、600〜900W程度とされる。   The flow rate of the reaction gas introduced into the apparatus in the deposition step is about 50 to 80 sccm, the processing time per time is about 5 to 10 seconds, the gas pressure is about 1.3 to 2.0 Pa, and the power applied to the coil Is about 600 to 900 W.

(3)針状体の基礎となる側面に堆積した堆積層を除去する工程
このような異方性エッチング工程を行った後に、図3(c)に示されるように針状体の基礎となる側面に堆積した堆積層34(図3(b))を除去する工程を施す。除去するための溶液としては、H2SO4/H22/H2O混合溶液が好適に用いられる。H2SO4/H22/H2Oの混合体積比は、3〜9:3:1程度とされ、処理時間は10〜30分程度とされる。溶液の攪拌は通常しなくてもよい。また、処理後は純水によるリンスを10〜30分程度行なうのがよい。この工程で、通常、図3(c)に示されるようにフォトレジスト23も除去される。
(3) Step of removing the deposited layer deposited on the side surface serving as the basis of the needle-like body After performing such an anisotropic etching step, it becomes the basis of the needle-like body as shown in FIG. A step of removing the deposited layer 34 (FIG. 3B) deposited on the side surface is performed. As the solution for removal, a mixed solution of H 2 SO 4 / H 2 O 2 / H 2 O is preferably used. The mixing volume ratio of H 2 SO 4 / H 2 O 2 / H 2 O is about 3 to 9: 3: 1, and the processing time is about 10 to 30 minutes. The solution may not normally be stirred. Moreover, it is good to perform the rinse with a pure water for about 10 to 30 minutes after a process. In this step, the photoresist 23 is also usually removed as shown in FIG.

(4)等方性エッチングを施す第3のエッチング工程
上記堆積層を除去した後に、次いで、図3(d)に示される針形体を形成させるために第2のエッチング工程としての等方性エッチング処理がなされる。このエッチング工程によって、図3(d)に示されるように先端に向かって細径化したテーパ状をなす針本体18を備えるシリコン製の針状体10が形成される。
(4) Third etching step for performing isotropic etching After removing the deposited layer, isotropic etching is then performed as a second etching step to form the needle shape shown in FIG. 3 (d). Processing is done. By this etching step, a silicon needle-like body 10 having a tapered needle body 18 that is tapered toward the tip as shown in FIG. 3D is formed.

シリコン製の針状体10は、通常、なだらかな針状の側面湾曲形体となり、穿刺に全く支障のない形態に仕上げられる。   The needle-like body 10 made of silicon usually has a gentle needle-like side-curved shape and is finished in a form that does not hinder puncture at all.

等方性エッチング処理は、マスク22を設けた状態でシリコンウエハ31に対して行われる。等方性エッチングはウエットエッチングあるいはドライエッチングいずれを用いてもよい。   The isotropic etching process is performed on the silicon wafer 31 with the mask 22 provided. As the isotropic etching, either wet etching or dry etching may be used.

等方性ドライエッチングを行う場合、例えば、上述したICPーRIE装置を用いるのが好適である。シリコンウエハ31のエッチング反応ガスとしては、例えばSF6が好適に用いられる。装置内に導入する反応ガスの流量は、100〜150sccm程度、ガス圧力は4.0〜5.1Pa程度、コイルへの印加電力は、600〜900W程度、基板電極への印加電力は3〜10W程度とされる。 When performing isotropic dry etching, for example, the above-described ICP-RIE apparatus is preferably used. For example, SF 6 is suitably used as the etching reaction gas for the silicon wafer 31. The flow rate of the reaction gas introduced into the apparatus is about 100 to 150 sccm, the gas pressure is about 4.0 to 5.1 Pa, the applied power to the coil is about 600 to 900 W, and the applied power to the substrate electrode is 3 to 10 W. It is said to be about.

また、等方性ウエットエッチングを行う場合、好適なエッチング溶液としては、HNO3/HF/CH3COOH/H2Oを例示することができる。HNO3/HF/CH3COOH/H2Oの混合体積比は、6〜250:40〜760:0〜200:42〜1350程度とされ、処理時間は15〜525秒程度とされる。 When performing an isotropic wet etching, suitable etching solution can be exemplified HNO 3 / HF / CH 3 COOH / H 2 O. The mixing volume ratio of HNO 3 / HF / CH 3 COOH / H 2 O is about 6 to 250: 40 to 760: 0 to 200: 42 to 1350, and the processing time is about 15 to 525 seconds.

特に、後者の溶液を用いる等方性ウエットエッチングでは、エッチングにより落下し得るマスク22を、落下した時点で落下位置から製品に影響のない場所まで移動流出させることができるので好都合である。   In particular, isotropic wet etching using the latter solution is advantageous because the mask 22 that can be dropped by etching can be moved out of the dropping position to a place that does not affect the product.

また、処理後は純水によるリンスを5〜30分程度行なうのがよい。   Moreover, it is good to perform the rinse with a pure water for about 5 to 30 minutes after a process.

以下に具体的実施例を示し、本発明をさらに詳細に説明する。
(実施例1)
厚さ600μmのシリコンウエハ31を準備した。次いでこのシリコンウエハ31の基板の表面を熱酸化して、酸化シリコン層を形成した後、フォトレジスト法およびエッチング処理法を用いて複数の針状体を形成すべき箇所に対応するようにマスク22(符号23はフォトレジスト)を形成した(図3(a))。マスク22(符号23)の直径は50μmとした。なお、複数の針状体の単位平方ミリ当たりの配設密度は、48個/mm2を目標に設定した。
The present invention will be described in further detail with reference to specific examples.
Example 1
A silicon wafer 31 having a thickness of 600 μm was prepared. Next, after the surface of the substrate of the silicon wafer 31 is thermally oxidized to form a silicon oxide layer, the mask 22 is formed so as to correspond to locations where a plurality of needle-like bodies are to be formed using a photoresist method and an etching method. (Reference numeral 23 is a photoresist) (FIG. 3A). The diameter of the mask 22 (reference numeral 23) was 50 μm. The target density of a plurality of needle-like bodies per unit square millimeter was set to 48 / mm 2 .

ついで、以下の要領でシリコンウエハ31に対して異方性エッチングを施す第1のエッチング処理を施した。すなわち、シリコンウエハ31に対してエッチングステップと堆積ステップを繰り返して、針状体の基礎となる側面に堆積層34を形成しつつ高さ(厚さ)方向に選択エッチング性を有する異方性エッチングを施して、深さ150μm程度の穴を作製するとともに、エッチング残存形体として針状体の基礎となる円柱形状体35を形成した(図3(b))。   Next, a first etching process for performing anisotropic etching on the silicon wafer 31 was performed in the following manner. That is, anisotropic etching having selective etching property in the height (thickness) direction while forming the deposition layer 34 on the side surface that is the basis of the needle-like body by repeating the etching step and the deposition step on the silicon wafer 31. As shown in FIG. 3B, a hole having a depth of about 150 μm was formed, and a cylindrical body 35 serving as a base of the needle-like body was formed as an etching remaining shape.

第1のエッチング処理条件
ICPーRIE装置を用い、反応ガスとしてSF6のエッチングガスと、C48の堆積ガスを交互にプラズマ化させて、エッチングステップと堆積ステップを繰り返した。
The etching step and the deposition step were repeated by using the ICP-RIE apparatus for the first etching treatment process, by making the etching gas of SF 6 and the deposition gas of C 4 F 8 alternately into plasma as the reaction gas.

エッチングおよび堆積ステップにおける装置内に導入するSF6反応ガスとC48反応ガスの流量比はSF6/C48=8/3、1回当たりの処理時間の比はエッチング/堆積=3/2、ガス圧比はエッチング/堆積=3、コイルへの印加電力は900W、基板電極への印加電力は18Wとした。 The flow rate ratio of SF 6 reactive gas and C 4 F 8 reactive gas introduced into the apparatus in the etching and deposition steps is SF 6 / C 4 F 8 = 8/3, and the ratio of processing time per time is etching / deposition = The gas pressure ratio was 3/2, the etching / deposition was 3, the power applied to the coil was 900 W, and the power applied to the substrate electrode was 18 W.

エッチングステップと堆積ステップとを交互に繰り返して、合計70分の異方性エッチングを行なった。   The etching step and the deposition step were alternately repeated to perform anisotropic etching for a total of 70 minutes.

このような異方性エッチング工程を行った後に、図3(c)に示されるように針状体の基礎となる側面に堆積した堆積層34(図3(b))をH2SO4/H22/H2O混合溶液を用いて除去した。使用したH2SO4/H22/H2Oの混合体積比は、5/3/2であり、処理時間は15分とした。また、処理後、純水によるリンスを15分行なった。 After performing such an anisotropic etching step, as shown in FIG. 3C, the deposited layer 34 (FIG. 3B) deposited on the side surface serving as the basis of the needle-like body is converted into H 2 SO 4 / It was removed using a H 2 O 2 / H 2 O mixed solution. The mixed volume ratio of H 2 SO 4 / H 2 O 2 / H 2 O used was 5/3/2, and the treatment time was 15 minutes. After the treatment, rinsing with pure water was performed for 15 minutes.

次いで、図3(d)に示されるように第2のエッチング工程としての等方性エッチング処理を行なった。   Next, as shown in FIG. 3D, an isotropic etching process as a second etching process was performed.

第2のエッチング処理条件
第2のエッチング工程における等方性エッチングは、処理液としてHNO3/HF/CH3COOH/H2O(混合体積比=25/637/40/298)を用い、処理時間は1分15秒とした。溶液の攪拌は行なわなかった。また、処理後、純水によるリンスを10分行なった。
Second etching treatment condition Isotropic etching in the second etching step is performed using HNO 3 / HF / CH 3 COOH / H 2 O (mixing volume ratio = 25/637/40/298) as a treatment liquid. The time was 1 minute 15 seconds. The solution was not stirred. Further, after treatment, rinsing with pure water was performed for 10 minutes.

このようにして図3(d)に示されるように先端に向かって連続的に細径化したテーパ状をなす針本体18を備えるシリコン製の針状体10が形成された。   Thus, as shown in FIG. 3 (d), the silicon needle-like body 10 provided with the needle body 18 having a tapered shape continuously reduced in diameter toward the tip was formed.

複数の針状体の高さHは135μmであり、先端から1/3Hでの位置での外径D1は19μmであり、先端から2/3Hでの位置での外径D2は31μmであり、D1/D2比の値は0.61であった。針本体18の側面は、なだらかな湾曲となり、穿刺に全く支障のないレベルにまで仕上げられていることが確認された。 The height H of the plurality of needle-like bodies is 135 μm, the outer diameter D 1 at the position 1 / 3H from the tip is 19 μm, and the outer diameter D 2 at the position 2 / 3H from the tip is 31 μm. Yes, the value of D 1 / D 2 ratio was 0.61. It was confirmed that the side surface of the needle body 18 was gently curved and finished to a level that did not hinder puncture at all.

例えば、医療、生物現象、創薬に用いる微細な針として使用される。   For example, it is used as a fine needle for use in medicine, biological phenomena, and drug discovery.

図1は、基体の上に形成された複数の針状体を備える本発明のシリコン針の一部分を示した概略斜視図である。FIG. 1 is a schematic perspective view showing a part of a silicon needle of the present invention having a plurality of needle-like bodies formed on a substrate. 図2は1つの針状体に注目した概略側面図である。FIG. 2 is a schematic side view focusing on one acicular body. 図3(a)〜(d)は本発明のシリコン針の製造方法を経時的に説明するための概略断面図である。3 (a) to 3 (d) are schematic cross-sectional views for explaining the silicon needle manufacturing method of the present invention over time. 図4は、従来例であり、基体の上に形成された複数の針状体を備える従来のシリコン針の一部分を示した概略斜視図である。FIG. 4 is a schematic perspective view showing a part of a conventional silicon needle having a plurality of needle-like bodies formed on a base body as a conventional example. 図5は、従来例であり、基体の上に形成された複数の針状体を備える従来のシリコン針の一部分を示した概略斜視図である。FIG. 5 is a schematic perspective view showing a part of a conventional silicon needle having a plurality of needle-like bodies formed on a base body as a conventional example.

符号の説明Explanation of symbols

1…シリコン針
2…基体(シリコンウエハ部分)
10…針状体
18…針本体
31…シリコンウエハ
34…堆積層
1 ... silicon needle 2 ... substrate (silicon wafer part)
DESCRIPTION OF SYMBOLS 10 ... Acicular body 18 ... Needle main body 31 ... Silicon wafer 34 ... Deposition layer

Claims (5)

シリコンウエハをエッチングして基体の上に一体的に形成された複数の針状体を備え、当該複数の針状体は、先端に向かって連続的に漸減した外径を備える針本体を備えるように形成されたシリコン針の製造方法であって、
該方法は、
複数の針状体を形成すべき箇所に対応してマスクを設ける工程と、
前記マスクを設ける工程に次いで行われ、マスクを設けた状態でシリコンウエハに対してエッチングステップと堆積ステップを繰り返して、針状体の基礎となる側面箇所に堆積層を形成しつつ高さ(厚さ)方向に選択エッチング性を有する異方性エッチングを施す第1のエッチング工程と、
前記側面箇所に堆積した堆積層を除去する工程と、
前記シリコンウエハに対してマスクを設けた状態で、等方性エッチングを施すことにより、徐々に針形状を形成するとともに頂部のマスクを落下させて除去する第2のエッチング工程と、を有してなることを特徴とするシリコン針の製造方法。
A plurality of needle-like bodies integrally formed on a substrate by etching a silicon wafer are provided, and the plurality of needle-like bodies have a needle body having an outer diameter that gradually decreases toward the tip. A method of manufacturing a silicon needle formed in
The method
Providing a mask corresponding to a location where a plurality of needle-like bodies are to be formed;
Next to the step of providing the mask, the etching step and the deposition step are repeated on the silicon wafer with the mask provided to form a height (thickness) while forming a deposition layer on the side surface serving as the basis of the needle-shaped body. A first etching step of performing anisotropic etching having selective etching properties in the direction),
Removing the deposited layer deposited on the side portion;
A second etching step of forming a needle shape gradually by applying isotropic etching in a state where a mask is provided on the silicon wafer, and dropping and removing the top mask. A method of manufacturing a silicon needle,
前記マスクは、シリコンウエハ表面を酸化処理またはシリコンウエハ上にシリコン窒化膜を形成した後、フォトリソグラフィー法およびエッチング処理法により形成された円形状群のマスクパターンである請求項1に記載のシリコン針の製造方法。   2. The silicon needle according to claim 1, wherein the mask is a circular group mask pattern formed by oxidizing the surface of a silicon wafer or forming a silicon nitride film on the silicon wafer and then performing a photolithography method and an etching method. 3. Manufacturing method. 前記マスクパターンの配設密度は20〜70個/mm2である請求項1または請求項2に記載のシリコン針の製造方法。 3. The method of manufacturing a silicon needle according to claim 1, wherein an arrangement density of the mask pattern is 20 to 70 pieces / mm 2. 4 . 前記複数の針状体の高さをHとし、先端から1/3Hでの位置での外径をD1、先端から2/3Hでの位置での外径をD2として場合に、D1/D2比の値が、0.4以上1.0未満の範囲にあるように形成される請求項1ないし請求項3のいずれかに記載のシリコン針の製造方法。 When the height of the plurality of needle-like bodies is H, the outer diameter at the position 1 / 3H from the tip is D 1 , and the outer diameter at the position 2 / 3H from the tip is D 2 , D 1 the value of / D 2 ratio, a manufacturing method of the silicon needle according to any one of claims 1 to 3 is formed to be in the range of 0.4 or more and less than 1.0. 前記複数の針状体の高さHが、60〜200μmとなるように形成される請求項1ないし請求項4のいずれかに記載のシリコン針の製造方法。   The method of manufacturing a silicon needle according to any one of claims 1 to 4, wherein a height H of the plurality of needle-like bodies is formed to be 60 to 200 µm.
JP2004008898A 2004-01-16 2004-01-16 Silicon needle manufacturing method Expired - Fee Related JP4486368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004008898A JP4486368B2 (en) 2004-01-16 2004-01-16 Silicon needle manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004008898A JP4486368B2 (en) 2004-01-16 2004-01-16 Silicon needle manufacturing method

Publications (2)

Publication Number Publication Date
JP2005198865A JP2005198865A (en) 2005-07-28
JP4486368B2 true JP4486368B2 (en) 2010-06-23

Family

ID=34822087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004008898A Expired - Fee Related JP4486368B2 (en) 2004-01-16 2004-01-16 Silicon needle manufacturing method

Country Status (1)

Country Link
JP (1) JP4486368B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5338021B2 (en) * 2006-07-04 2013-11-13 凸版印刷株式会社 Manufacturing method of needle-shaped body
EP2789363B1 (en) 2006-07-27 2016-11-02 Toppan Printing Co., Ltd. Method of manufacturing microneedle
JP4930899B2 (en) * 2006-08-01 2012-05-16 凸版印刷株式会社 Manufacturing method of needle-shaped body
WO2008020632A1 (en) * 2006-08-18 2008-02-21 Toppan Printing Co., Ltd. Microneedle and microneedle patch
JP5613493B2 (en) * 2010-08-10 2014-10-22 学校法人 関西大学 Method for producing mold for producing fine needle and method for producing fine needle
KR101182494B1 (en) 2012-02-20 2012-09-12 윤니나 Needle roller including a plurality of needles and method of fabricating disk using for the same
JP2014097163A (en) * 2012-11-14 2014-05-29 Ikeda Kikai Sangyo Kk Method of manufacturing microneedle array
JP6623536B2 (en) * 2015-03-30 2019-12-25 大日本印刷株式会社 Needle-like member and puncture device
KR102184940B1 (en) * 2017-11-15 2020-12-01 주식회사 엘지생활건강 Apparatus and Process for Continuous Production of Microneedle
JP2021000146A (en) * 2019-06-19 2021-01-07 株式会社アルバック Production method of silicon microneedle
CN111675190A (en) * 2020-06-18 2020-09-18 苏州恒之清生物科技有限公司 Preparation method of miniature solid silicon needle

Also Published As

Publication number Publication date
JP2005198865A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
US9283365B2 (en) Patch production
EP1244495B1 (en) Method of forming vertical, hollow needles within a semiconductor substrate
JP4486368B2 (en) Silicon needle manufacturing method
JP2009540984A (en) Method for producing porous microneedles and use thereof
JP3696513B2 (en) Manufacturing method of needle-shaped body
JP4414774B2 (en) Silicon needle manufacturing method
JP4265696B2 (en) Manufacturing method of microneedle
JP2002079499A (en) Method of manufacturing needle-like article, and manufactured needle
US9919916B2 (en) Manufacture of microneedles
JP2022088395A (en) Pore formation in substrate
JP2019000646A (en) Microneedle
JP5094208B2 (en) Manufacturing method of structure
US20050079711A1 (en) Hollow tip array with nanometer size openings and formation thereof
JP2008029386A (en) Method for manufacturing plate for needle-like body and method for manufacturing needle-like body
CN111228642A (en) Hollow microneedle array device and manufacturing method
JPH0689655A (en) Electric-field emitting structure and formation thereof
TW202408430A (en) Fabrication methods for high aspect ratio microneedles and tools
US20100224590A1 (en) Method for producing microneedle structures employing one-sided processing
CN111228643A (en) Hollow microneedle array device and manufacturing method thereof
JP2008150674A (en) Method for producing fine structure
TW201007834A (en) Silicon substrate etching method
JP2005347078A (en) Fine manufacturing method of structure and masking method of the structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees