JP4485083B2 - Method for recovering gallium and indium - Google Patents

Method for recovering gallium and indium Download PDF

Info

Publication number
JP4485083B2
JP4485083B2 JP2001051574A JP2001051574A JP4485083B2 JP 4485083 B2 JP4485083 B2 JP 4485083B2 JP 2001051574 A JP2001051574 A JP 2001051574A JP 2001051574 A JP2001051574 A JP 2001051574A JP 4485083 B2 JP4485083 B2 JP 4485083B2
Authority
JP
Japan
Prior art keywords
indium
heating
gallium
decomposition product
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001051574A
Other languages
Japanese (ja)
Other versions
JP2002256355A (en
Inventor
一富 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2001051574A priority Critical patent/JP4485083B2/en
Publication of JP2002256355A publication Critical patent/JP2002256355A/en
Application granted granted Critical
Publication of JP4485083B2 publication Critical patent/JP4485083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガリウム(Ga)、インジウム(In)および砒素(As)を主成分とする化合物半導体結晶屑からGaおよびInを低コストで回収するガリウムおよびインジウムの回収方法に関するものである。
【0002】
【従来の技術】
Ga、InおよびAsを主成分とする化合物半導体結晶の代表的なものとして、InGaAs単結晶が挙げられる。InGaAs単結晶は、光通信ダブルヘテロ接合レーザー用基板として使用され、光通信機器に必要不可欠な化合物半導体結晶素材である。
【0003】
InGaAs単結晶は、通常Inx Gal-x As、X=0.3前後の組成で使用されることが多い。X=0.3前後のInx Gal-x As結晶を成長させるには、X=0.8〜0.9の融液が使用され非常に広範囲なXを有する結晶屑が発生する。
InGaAs単結晶屑からのGaおよびInの回収は、従来ほとんど行われていないが、GaAs結晶屑やInAs結晶屑からGaおよびInを分離回収する技術を組み合わせ応用することにより回収できるものと予想される。
【0004】
GaAs結晶屑からGaを回収する方法としては、乾式法ならびに湿式法が一般に知られている。
乾式法は、GaAs結晶屑を真空加熱容器に入れ、10-3Pa以下の真空度で1,000℃以上に加熱することで蒸気圧の高いAsを昇華分離する。分解速度は比較的速いが、Asによる装置の腐食を抑制するため、装置材質等に制限があり、バッチ当たりの処理量増大が難しいという欠点がある。
【0005】
また、1000℃以上に加熱するため、容器から不純物が混入し易く、Gaと蒸気圧差の小さい不純物がある場合にはGaの蒸発による損失を招来する。さらに、不純物が金属間化合物を形成している場合には、不純物を数ppmより低い値にすることは難しい。
湿式法は、GaAs結晶屑をアルカリ溶融分解し、分解生成物を水で浸出する。次に塩酸で浸出液のpHを調整し水酸化ガリウム(Ga(OH)3 )を沈殿させ、そのGa(OH)3 を水酸化ナトリウム(NaOH)水溶液に溶解し、これを電解液としてGaを電解採取する。
【0006】
電解採取では、白金、カーボンまたはステンレスを電極材とし、電気化学的還元により陰極にGaを析出させ回収する。電解液中のGa濃度は30%以下、NaOH濃度は30〜50%で、最大2000A/m2 の電流密度で電解する。
しかし、電解採取は原料であるGa2 3 、Ga(OH)3 からGaを電析するのが主目的で、得られるGaの純度は99%が限界である。
【0007】
一方、InAs結晶屑からInを回収する方法にも乾式法と湿式法がある。
乾式法は、GaAs結晶屑からのGa回収と同様に、InAs結晶屑を真空加熱分解する方法が一般的である。
湿式法は、InAs結晶屑を硫酸で溶解し、その溶解液をNaOHでpH調整し水酸化インジウム(In(OH)3 )を沈殿させる。In(OH)3 は硫酸で溶解され亜鉛粉末等を投入することでInを還元析出させる。Inの精製には、再結晶法等が適当である。
【0008】
InGaAs結晶屑の場合も、上記処理法を応用することでAsを分離することは容易である。
しかしながら、その結果得られるInx Gal-x 合金、X=0.3〜0.9をInとGaに分離するのは難しく、電解精製もしくは再結晶等で分離を行わなければならない。
【0009】
電解精製では、アノードにIn−Ga合金を使用し、カソードにInのみを電析させるが、Ga3+とIn3+の還元電位が近いため精密な電極電位の制御が必要で、電解液の付着や巻き込み防止さらに電解条件の精密制御が困難なため高い分離効率を期待することはできない。
再結晶法は、In−Ga融液から結晶を晶出させる際に偏析係数の差を利用して融液中にどちらか一方の金属を濃縮し、固化部分の純度を高くする方法である。ところが、In−Ga二元系合金はInx Gal-x 、X=0.165で共晶となるため、一回の操作でInとGaを完全に分離するのは非常に難しく、多数回の繰り返し操作を行う場合には生産効率が極めて低下する。
【0010】
再結晶の手法には、一方向凝固、ゾーンメルティング、単結晶成長がある。
一方向凝固は、例えばInx Gal-x 、X=0.165未満の場合、ボート等の容器に入れたIn−Ga融液を一端からゆっくり冷却、固化してゆき、In−Ga融液中にInを濃縮させる。Inの偏析には冷却速度が影響し、冷却速度が遅いほど精製効率が向上する。しかし、冷却速度を遅くすると生産性が低下するためコスト上昇は避けられない。
【0011】
ゾーンメルティングは、多数回の一方向凝固を一回の操作で連続的に行う方法であるため一方向凝固の生産性の低さを改善できるが、一方向凝固と同様に処理量が多くなると制御が難しく、生産性の大幅な改善には至っていない。
単結晶成長は、成長速度が遅く大量生産には不適当である。
【0012】
【発明が解決しようとする課題】
上述の通り、Ga、InおよびAsを主成分とする化合物半導体結晶屑からGaおよびInを回収する場合、従来のGaAs結晶屑またはInAs結晶屑から、GaまたはInを回収する技術の組み合わせで対応するのでは、GaとInの分離が難しく、多くの工程が必要となり回収コストが高くなるという問題がある。
【0013】
本発明は、Ga、InおよびAsを主成分とする化合物半導体結晶屑からのGaおよびInの回収における上記課題を解決するものであって、小規模な設備でGaおよびInを高い効率で回収可能であり、低コストなガリウムおよびインジウムの回収方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明のガリウムおよびインジウムの回収方法では、Ga、InおよびAsを主成分とする化合物半導体結晶屑を減圧下、700〜900℃に加熱することでAsの一部を昇華させた一次分解生成物について、156℃以上に加熱しながら濾過してInを分離回収し、次に一次分解生成物の濾過残渣に鉛(Pb)を添加し、減圧下、900〜1100℃に加熱することで残留Asを昇華させた二次分解生成物について、30℃以上に保持しながら濾過してGaを分離回収することにより上記課題を解決している。
【0015】
このガリウムおよびインジウムの回収方法は、真空加熱分解法と、In−Pb合金に対するGaの分配係数が小さいという性質を組み合わせ利用している。
Ga、InおよびAsを主成分とする化合物半導体結晶屑(Inx Gal-x As、X=0.3〜0.9)は、粒径を2〜3mm以下にすると加熱分解が促進されるので、塊状の屑は予め粉砕するのが好ましい。
【0016】
化合物半導体結晶屑は、石英もしくは炭素製容器に入れ真空加熱炉を使用し、減圧下、700〜900℃に加熱すると、化合物半導体結晶屑に固溶しているInと等モル量のAsが昇華し、一次分解生成物としてGaAsとIn融液を生成する。
減圧条件は、30〜0.1Paが最適であるが、分解速度とInの蒸発損失を考慮しなければならない。
【0017】
加熱温度が700℃未満の場合、化合物半導体結晶屑は分解速度が遅く実用的でない。ただし、真空度を上げれば分解は促進されるが、設備が高価になるだけでなく、所定の真空度に達するまでの時間が長くなり効率的でない。また、900℃より高温の場合は、GaAsの分解も始まるのでInの他Gaまでもが生成し、冷却するとIn−Ga合金を生成してしまうためInの効率的な回収ができない。
【0018】
昇華したAsは、真空加熱炉と真空ポンプとの間に水冷トラップを取り付けると、金属As(α型及びβ型)として凝集するので、後で回収する。
一次分解生成物は、156℃以上に保持した状態で濾過するが、156℃より低温ではInが凝固し、GaAsと分離不可能である。温度の上限は特に限定しないが、一次分解生成物の酸化防止や作業性を考慮すると250℃以下の温度で行うのが良い。
【0019】
雰囲気は乾燥した大気中、窒素(N2 )もしくはアルゴン(Ar)雰囲気中が最適である。濾過には156℃以上に加熱保温したセラミックスフィルター等の耐熱性素材でできた濾過フィルターを利用する。一次分解生成物の濾過によって化合物半導体結晶屑から92%以上のInを分離回収することが可能となる。
濾過フィルター上に残留する一次分解生成物の濾過残渣は、Inが付着したGaAs結晶である。この濾過残渣を石英もしくは炭素製容器に入れ、Pbを添加したした後、真空加熱炉を使用し、減圧下、900〜1100℃に加熱すると、GaAsはGa融液とAs蒸気に分解する。
【0020】
一方PbはGaおよび微量のInと混合融液を形成するが、GaAsやGaよりもInと結合しやすい性質があるため、冷却時にはIn−Pb合金を形成し、最終的に二次分解生成物としてGaとIn−Pb合金の混合物が生成する。
In−Pb合金は、全組成領域で固溶体を形成するが、一次分解生成物の濾過残渣に添加するPbの質量の最低値は、濾過残渣に付着しているInの質量の0.28倍すなわちInx Pbl-x 、X=0.13となるように制御することが好ましい。
【0021】
0.28倍未満ではIn−Pb合金がInに近似した物性を示すため、Inx Gal-x 、X=0.165共晶合金にPbが溶解した(In、Pb)x Gal-x 、X=0.165合金が形成される可能性があり、Gaとの分離が困難になる。ただし、Pb添加量が多すぎるとPbがGaを汚染するだけでなく、後工程で濾過分離する処理量が増加し、非効率的である。
【0022】
減圧下、900〜1100℃での加熱を終了した後の冷却速度は、15℃/min以下とし、ゆっくりとした冷却過程を通してInがPbに分配されるのを完結させ、さらにInの融点である156℃とPbの融点である327℃の間で一定時間保持して、In−Pb合金を成長させることが好ましい。
例えば、冷却速度が15℃/minより大きい場合には、Ga−In合金が生成し、156〜327℃の間で一定時間保持してもGa−In合金を消滅させるためには長時間を要し、生産性の低下を引き起こす原因となる。
【0023】
また、156℃より低温では、InおよびPbが凝固するため拡散速度が遅く、一方327℃より高温ではGa、In、Pbが融液のままである。
減圧条件は、30〜0.1Paが適当であるが、分解速度とGaの蒸発損失を考慮して決定しなければならない。加熱温度が900℃未満の場合、一次分解生成物の濾過残渣の分解速度が遅く実用的でない。ただし、真空度を上げれば分解は促進されるが、設備が高価になるだけでなく、所定の真空度に達するまでの時間が長くなり効率的でない。また、1100℃より高温の場合は、分解が促進される反面、Gaの蒸発損失が大きく、回収率を低下させる。
【0024】
二次分解生成物は、30℃以上に保持しながら濾過する。Gaの融点が29.6℃であるため、30℃未満ではGaが凝固し易く、仮にGaが融液状態を維持していても粘度が高いためIn−Pb合金にGa融液が多く付着し効率よく分離することができない。
雰囲気は乾燥した大気中、N2 もしくはAr中とし、温度の上限を100℃未満とすることでGaの酸化が抑制できる。濾過フィルターはポリプロピレン製の不織布、セラミックスフィルターなどが良いが耐熱性、耐食性および濾過性能に問題がなければこれら以外の材質でもよい。
【0025】
以上の方法で、二次分解生成物の濾過によって化合物半導体結晶屑から92%以上のGaを分離回収することが可能となる。
【0026】
【発明の実施の形態】
Ga、InおよびAsを主成分とする化合物半導体結晶屑(Inx Gal-x As、X=0.3〜0.9)を、粒径を2〜3mm以下に粉砕する。粉砕には、ジョークラッシャー、ロールミル等が適しているが、これらの粉砕機に限定されるものではない。
【0027】
粉砕した化合物半導体結晶屑は、石英製容器に入れ真空加熱炉に設置する。真空加熱炉と真空ポンプとの間には水冷トラップを取り付ける。真空ポンプは、30〜0.1Paが維持できれば油回転ポンプでも十分である。
真空加熱炉を30〜0.1Paまで減圧にし、炉内温度を700〜900℃に昇温すると、Inx Gal-x Asは分解を開始し、石英製容器にIn融液が生成すると同時に、昇華したAsはトラップに凝集する。加熱時間は、Inx Gal-x Asの仕込み量、石英製容器への仕込み深さによってコントロールしなければならないが、通常Inx Gal-x Asの仕込み量1kg当たり1〜3hが適当で、加熱時間が短いと分解が不十分となり、加熱時間が長いとInの蒸発損失を引き起こす。
【0028】
石英製容器の内容物を156〜250℃まで炉冷した後、真空加熱炉から石英製容器を取り出し、内容物を156〜250℃に加熱保温した細孔径10〜20μmのセラミックスフィルターで吸引濾過する。セラミックスフィルターの加熱保温は、温風循環炉やリボンヒーターを使用すればよい。
セラミックスフィルター上にはInが付着したGaAs結晶が残留するのでセラミックス製のへらで掻き集める。Inはセラミックスフィルターで濾別し、石英もしくは炭素製容器に回収する。
【0029】
次にInが付着したGaAs結晶と、GaAs結晶に付着しているInの質量に対し0.28倍のPbを石英製容器に入れ、真空加熱炉に設置した後、30〜0.1Paまで減圧にし、炉内温度を900〜1100℃に昇温する。Pbは粒径5mm以下のショットが良いが、微粉末は表面酸化量が多く、真空加熱の際に低沸点のPbOが蒸発し真空加熱炉を汚染したり、Ga中にPbOが混入するので使用は避けるべきである。
【0030】
真空加熱炉は900〜1100℃までゆっくりと昇温する。加熱時間は通常Inが付着したGaAs結晶粒の仕込み量1kg当たり1〜3hが適当であるが、加熱時間が短いと分解が不十分となり易く、加熱時間が長いとGaの蒸発損失を引き起こすので、仕込み量および仕込み深さを考慮し制御しなければならない。真空加熱炉はゆっくり昇温しないとGaAs結晶が分解を開始する前にPbが蒸発してしまうため、昇温速度は10℃/minが最適である。
【0031】
加熱終了後、真空加熱炉は15℃/min以下で冷却を開始し、156〜327℃で1〜2h保持した後、石英製容器の内容物を30〜100℃まで炉冷する。真空加熱炉から石英製容器を取り出し、内容物を30〜100℃に加熱保温した細孔径10〜20μmのセラミックスフィルターで吸引濾過する。セラミックスフィルターの加熱保温は、リボンヒーター等がよい。
【0032】
セラミックスフィルター上には、Gaが付着したIn−Pb合金が残留するのでセラミックス製のへらで掻き集める。Gaはセラミックスフィルターで濾別し、石英もしくは炭素製容器に回収する。
In−Pb合金には少量のGaが付着するが、Gaは希塩酸に浸漬すれば融液塊として剥がれ落ち、デカンテーション等で回収すればGaの回収率は93%以上に上昇する。また、In−Pb合金からInを回収する場合には再結晶または電解精製が適当であるが、低コストで回収率の高い方法があればこの方法に特定されるものではない。ただし、一次分解生成物を得る段階でInの分離回収率を上げておけば、In−Pb合金の発生量は微量であり、In−Pb合金は半田合金としても使用可能である。
【0033】
【実施例】
〔実施例1〕
化合物半導体結晶屑(Inx Gal-x As、X=0.3)を、ジョークラッシャーで粒径を3mm以下に粉砕した。
粉砕したInx Gal-x As1kgを秤量し、石英製容器(内径φ200mm×高さ150mm)に入れ真空加熱炉に設置した。真空加熱炉と油回転ポンプとの間には水冷トラップを取り付けた。
【0034】
真空加熱炉を15Paまで減圧にし、炉内温度を900℃に昇温した。加熱時間は2hとした。加熱後、石英製容器内容物を200℃まで炉冷した後、真空加熱炉から石英製容器を取り出し、内容物を温風循環炉で200℃に加熱保温した細孔径20μmのセラミックスフィルターで吸引濾過した。
セラミックスフィルター上に残留したInが付着したGaAs結晶をセラミックス製のへらで掻き集めた。セラミックスフィルターで濾別されたInは、石英製容器に回収した。この時のIn回収率は、93%であった。
【0035】
GaAs結晶に付着しているInの質量は約5gと分析され、Inが付着した残渣とPb(平均粒径4mm)50gを石英製容器に入れ、真空加熱炉に設置した後、15Paまで減圧にし、炉内温度を1050℃に昇温した。真空加熱炉の昇温速度は5.5℃/minとし、加熱時間は1.5hとした。
加熱終了後、真空加熱炉は15℃/min以下で冷却を開始し、327℃で2h保持した後、石英製容器の内容物を50℃まで炉冷した。真空加熱炉から石英製容器を取り出した後、内容物を50℃に加熱保温した細孔径20μmのセラミックスフィルターで吸引濾過した。
【0036】
セラミックスフィルター上に残留したGaが付着したIn−Pb合金をセラミックス製のへらで掻き集めた。セラミックスフィルターを通過したGaは石英製容器に回収した。Gaの回収率は93%であった。
〔実施例2〕
Inが付着したGaAs結晶に添加するPb(平均粒径4mm)が300gである以外は実施例1と同様に操作した。この時のInの回収率は93%、Gaの回収率は91%であった。
【0037】
〔実施例3〕
粉砕したInx Gal-x As1kgを真空加熱炉で15Paまで減圧にし、一次分解生成物を生成させる時の炉内温度を800℃に昇温した以外は実施例1と同様に操作した。この時のInの回収率は90%、Gaの回収率は93%であった。
【0038】
〔実施例4〕
Inが付着したGaAs結晶に添加するPb(平均粒径4mm)が300gであり、真空加熱炉にて炉内温度を昇温速度は5.5℃/minで1100℃まで昇温した以外は実施例1と同様に操作した。この時のInの回収率は93%、Gaの回収率は91%であった。
【0039】
【発明の効果】
本発明のガリウムおよびインジウムの回収方法によれば、Ga、InおよびAsを主成分とする化合物半導体結晶屑からGaおよびInを小規模な設備で高い効率で回収可能であり、廃棄物量が極めて少なく、ガリウムおよびインジウムを低コストで回収することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for recovering gallium and indium, which recovers Ga and In at low cost from compound semiconductor crystal chips containing gallium (Ga), indium (In), and arsenic (As) as main components.
[0002]
[Prior art]
A typical example of a compound semiconductor crystal containing Ga, In and As as main components is an InGaAs single crystal. InGaAs single crystal is used as a substrate for optical communication double heterojunction lasers and is a compound semiconductor crystal material indispensable for optical communication equipment.
[0003]
InGaAs single crystals are usually used with a composition of In x Gal x As, where X = 0.3. X = 0.3 to growing In x Ga lx As crystals before and after the crystals debris generated with X = 0.8 to 0.9 of the melt is used very broad X.
Although recovery of Ga and In from InGaAs single crystal scraps has been rarely performed in the past, it is expected that they can be recovered by combining and applying techniques for separating and recovering Ga and In from GaAs crystal scraps and InAs crystal scraps. .
[0004]
As a method for recovering Ga from GaAs crystal scraps, a dry method and a wet method are generally known.
In the dry method, GaAs crystal scraps are placed in a vacuum heating vessel and heated to 1,000 ° C. or higher at a vacuum degree of 10 −3 Pa or lower to sublimate and separate As having a high vapor pressure. Although the decomposition rate is relatively fast, there is a drawback in that it is difficult to increase the throughput per batch because there is a limitation on the material of the device in order to suppress corrosion of the device due to As.
[0005]
Further, since heating is performed at 1000 ° C. or higher, impurities are easily mixed from the container, and if there is an impurity having a small vapor pressure difference from Ga, loss due to Ga evaporation is caused. Furthermore, when the impurity forms an intermetallic compound, it is difficult to make the impurity lower than a few ppm.
In the wet method, GaAs crystal chips are alkali-melted and decomposed, and the decomposition product is leached with water. Next, the pH of the leaching solution is adjusted with hydrochloric acid to precipitate gallium hydroxide (Ga (OH) 3 ), and the Ga (OH) 3 is dissolved in an aqueous solution of sodium hydroxide (NaOH). Collect.
[0006]
In electrolytic collection, platinum, carbon, or stainless steel is used as an electrode material, and Ga is deposited on the cathode by electrochemical reduction and collected. Electrolysis is performed at a maximum current density of 2000 A / m 2 with a Ga concentration of 30% or less and an NaOH concentration of 30 to 50% in the electrolytic solution.
However, the main purpose of electrowinning is to deposit Ga from raw materials Ga 2 O 3 and Ga (OH) 3, and the purity of the obtained Ga is limited to 99%.
[0007]
On the other hand, methods for recovering In from InAs crystal scrap include a dry method and a wet method.
In general, the dry method is a method in which InAs crystal scraps are decomposed by vacuum heating in the same manner as Ga recovery from GaAs crystal scraps.
In the wet method, InAs crystal scraps are dissolved with sulfuric acid, and the pH of the solution is adjusted with NaOH to precipitate indium hydroxide (In (OH) 3 ). In (OH) 3 is dissolved in sulfuric acid, and In is reduced and precipitated by adding zinc powder or the like. For purification of In, a recrystallization method or the like is appropriate.
[0008]
In the case of InGaAs crystal scraps, it is easy to separate As by applying the above processing method.
However, the resulting In x Ga lx alloy, it is difficult to separate the X = 0.3 to 0.9 in the In and Ga, it must be carried out separated in electrolytic refining or recrystallization.
[0009]
In electrolytic purification, an In—Ga alloy is used for the anode and only In is electrodeposited on the cathode. However, since the reduction potentials of Ga 3+ and In 3+ are close, precise electrode potential control is required. High separation efficiency cannot be expected because it is difficult to prevent adhesion and entrainment and to precisely control the electrolysis conditions.
The recrystallization method is a method of increasing the purity of the solidified portion by concentrating one of the metals in the melt using the difference in segregation coefficient when crystallizing the crystal from the In—Ga melt. However, since the In—Ga binary alloy becomes a eutectic with In x Ga lx , X = 0.165, it is very difficult to completely separate In and Ga by one operation, and it is repeated many times. When operating, the production efficiency is extremely reduced.
[0010]
Recrystallization methods include unidirectional solidification, zone melting, and single crystal growth.
For example, in the case of In x Ga lx , where X is less than 0.165, the In—Ga melt in a vessel such as a boat is slowly cooled and solidified from one end, and the In—Ga melt is poured into the In—Ga melt. In is concentrated. The cooling rate affects the segregation of In, and the slower the cooling rate, the higher the purification efficiency. However, if the cooling rate is slowed down, the productivity is inevitably increased, so an increase in cost is inevitable.
[0011]
Zone melting is a method in which a large number of unidirectional solidifications are continuously performed in a single operation, so that the low productivity of unidirectional solidification can be improved. It is difficult to control and has not led to a significant improvement in productivity.
Single crystal growth is not suitable for mass production because of its slow growth rate.
[0012]
[Problems to be solved by the invention]
As described above, when recovering Ga and In from compound semiconductor crystal scraps containing Ga, In and As as main components, a combination of techniques for recovering Ga or In from conventional GaAs crystal scraps or InAs crystal scraps is supported. However, there is a problem that separation of Ga and In is difficult, many processes are required, and the recovery cost is high.
[0013]
The present invention solves the above-mentioned problems in the recovery of Ga and In from compound semiconductor crystal scraps containing Ga, In and As as main components, and enables Ga and In to be recovered with high efficiency in a small-scale facility. An object of the present invention is to provide a low-cost method for recovering gallium and indium.
[0014]
[Means for Solving the Problems]
In the method for recovering gallium and indium according to the present invention, a primary decomposition product obtained by sublimating a part of As by heating compound semiconductor crystal scraps containing Ga, In and As as main components to 700 to 900 ° C. under reduced pressure. The In was separated and recovered by heating while heating to 156 ° C. or higher, and then lead (Pb) was added to the filtration residue of the primary decomposition product and heated to 900 to 1100 ° C. under reduced pressure to leave residual As. The above-mentioned problems are solved by filtering and separating and recovering Ga from the secondary decomposition product obtained by sublimating the carbon while maintaining at 30 ° C. or higher.
[0015]
This recovery method of gallium and indium uses a combination of the vacuum thermal decomposition method and the property that the distribution coefficient of Ga to the In—Pb alloy is small.
Since compound semiconductor crystal scraps (In x Ga lx As, X = 0.3 to 0.9) containing Ga, In and As as main components have a particle size of 2 to 3 mm or less, thermal decomposition is promoted. It is preferable to grind the lump of lump in advance.
[0016]
When compound semiconductor crystal scraps are placed in a quartz or carbon container and heated to 700-900 ° C. under reduced pressure, As is dissolved in compound semiconductor crystal scraps in an equimolar amount of As. Then, GaAs and In melt are generated as primary decomposition products.
The pressure reducing condition is optimally 30 to 0.1 Pa, but the decomposition rate and the In evaporation loss must be taken into consideration.
[0017]
When the heating temperature is less than 700 ° C., the compound semiconductor crystal debris has a slow decomposition rate and is not practical. However, if the degree of vacuum is increased, decomposition is promoted, but not only is the equipment expensive, but also the time until a predetermined degree of vacuum is reached is increased and not efficient. Further, when the temperature is higher than 900 ° C., decomposition of GaAs starts, so that not only In but also Ga is generated, and when cooled, an In—Ga alloy is generated, so that In cannot be efficiently recovered.
[0018]
Sublimated As aggregates as metal As (α-type and β-type) when a water-cooled trap is attached between the vacuum heating furnace and the vacuum pump, and is collected later.
The primary decomposition product is filtered in a state where the temperature is maintained at 156 ° C. or higher, but at a temperature lower than 156 ° C., In solidifies and cannot be separated from GaAs. The upper limit of the temperature is not particularly limited, but it is preferably performed at a temperature of 250 ° C. or lower in consideration of oxidation prevention of primary decomposition products and workability.
[0019]
The optimum atmosphere is dry air, nitrogen (N 2 ) or argon (Ar) atmosphere. For the filtration, a filtration filter made of a heat resistant material such as a ceramic filter heated and kept at 156 ° C. or higher is used. It is possible to separate and recover 92% or more of In from compound semiconductor crystal scraps by filtering the primary decomposition product.
The filtration residue of the primary decomposition product remaining on the filtration filter is GaAs crystal with In deposited. When this filtration residue is put into a quartz or carbon container, Pb is added, and then heated to 900-1100 ° C. under reduced pressure using a vacuum heating furnace, GaAs is decomposed into Ga melt and As vapor.
[0020]
On the other hand, Pb forms a mixed melt with Ga and a small amount of In, but has the property of being more easily bonded to In than GaAs or Ga. Therefore, an In—Pb alloy is formed during cooling, and finally a secondary decomposition product. As a result, a mixture of Ga and In—Pb alloy is formed.
The In—Pb alloy forms a solid solution in the entire composition range, but the minimum value of the mass of Pb added to the filtration residue of the primary decomposition product is 0.28 times the mass of In adhering to the filtration residue, It is preferable to control so that In x Pb lx , X = 0.13.
[0021]
If it is less than 0.28 times, the In—Pb alloy exhibits physical properties similar to In. Therefore , P x was dissolved in an In x Ga lx , X = 0.165 eutectic alloy (In, Pb) x Gal x , X = 0 .165 alloy may be formed and separation from Ga becomes difficult. However, if the amount of Pb added is too large, Pb not only contaminates Ga, but also increases the amount of filtration and separation in a subsequent process, which is inefficient.
[0022]
The cooling rate after heating at 900 to 1100 ° C. under reduced pressure is 15 ° C./min or less, completes the distribution of In to Pb through a slow cooling process, and is the melting point of In. It is preferable to grow the In—Pb alloy by keeping the temperature between 156 ° C. and 327 ° C., which is the melting point of Pb, for a certain time.
For example, when the cooling rate is higher than 15 ° C./min, a Ga—In alloy is formed, and it takes a long time to extinguish the Ga—In alloy even if it is held at a temperature of 156 to 327 ° C. for a certain time. And cause a decrease in productivity.
[0023]
Further, at a temperature lower than 156 ° C., In and Pb solidify, the diffusion rate is slow. On the other hand, at a temperature higher than 327 ° C., Ga, In, and Pb remain in the melt.
The decompression condition is suitably 30 to 0.1 Pa, but must be determined in consideration of the decomposition rate and the evaporation loss of Ga. When heating temperature is less than 900 degreeC, the decomposition | disassembly rate of the filtration residue of a primary decomposition product is slow, and it is not practical. However, if the degree of vacuum is increased, decomposition is promoted, but not only is the equipment expensive, but also the time until a predetermined degree of vacuum is reached is increased and not efficient. On the other hand, when the temperature is higher than 1100 ° C., the decomposition is accelerated, but the evaporation loss of Ga is large and the recovery rate is lowered.
[0024]
The secondary decomposition product is filtered while maintaining at 30 ° C. or higher. Since the melting point of Ga is 29.6 ° C., Ga is easily solidified at less than 30 ° C., and even if Ga is maintained in a melt state, the viscosity is high, so that a large amount of Ga melt adheres to the In—Pb alloy. It cannot be separated efficiently.
The atmosphere can be dry air, N 2 or Ar, and the upper limit of the temperature can be less than 100 ° C. to suppress the oxidation of Ga. The filtration filter is preferably a non-woven fabric made of polypropylene, a ceramic filter or the like, but other materials may be used as long as there is no problem in heat resistance, corrosion resistance and filtration performance.
[0025]
By the above method, it becomes possible to separate and recover 92% or more of Ga from the compound semiconductor crystal scraps by filtering the secondary decomposition products.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Ga, In and As as main components a compound semiconductor crystal chips (In x Ga lx As, X = 0.3~0.9) , and grinding the grain size below 2 to 3 mm. For crushing, a jaw crusher, a roll mill and the like are suitable, but the invention is not limited to these crushers.
[0027]
The crushed compound semiconductor crystal scraps are placed in a quartz container and placed in a vacuum heating furnace. A water-cooled trap is installed between the vacuum heating furnace and the vacuum pump. An oil rotary pump is sufficient as long as the vacuum pump can maintain 30 to 0.1 Pa.
The vacuum heating furnace until 30~0.1Pa to reduced pressure and elevated temperature in the furnace to 700~900 ℃, In x Ga lx As starts decomposing, the In melt is produced in a quartz vessel at the same time, sublimation As is aggregated in the trap. Heating time, the charged amount of In x Ga lx As, must be controlled by feed depth into a quartz vessel, usually In x Ga lx As the charged amount 1kg per 1~3h is appropriate, heating time If it is short, the decomposition becomes insufficient, and if the heating time is long, it causes evaporation loss of In.
[0028]
After the contents of the quartz container are cooled to 156 to 250 ° C., the quartz container is taken out of the vacuum heating furnace, and the contents are suction filtered through a ceramic filter having a pore diameter of 10 to 20 μm heated and kept at 156 to 250 ° C. . The ceramic filter may be heated and maintained using a hot air circulating furnace or a ribbon heater.
Since GaAs crystals with In adhered on the ceramic filter remain, scrape them with a ceramic spatula. In is filtered through a ceramic filter and collected in a quartz or carbon container.
[0029]
Next, GaAs crystal with In and Pb 0.28 times the mass of In adhering to the GaAs crystal are put in a quartz container and placed in a vacuum heating furnace, and then the pressure is reduced to 30 to 0.1 Pa. The furnace temperature is raised to 900-1100 ° C. Pb shots with a particle size of 5 mm or less are good, but fine powder has a large amount of surface oxidation, and low boiling point PbO evaporates during vacuum heating, contaminating the vacuum heating furnace, and PbO is mixed in Ga. Should be avoided.
[0030]
A vacuum heating furnace raises temperature slowly to 900-1100 degreeC. The heating time is usually 1 to 3 h per 1 kg of GaAs crystal grains charged with In, but if the heating time is short, decomposition tends to be insufficient, and if the heating time is long, it causes Ga evaporation loss. It must be controlled in consideration of the charge amount and the preparation depth. If the temperature of the vacuum heating furnace is not increased slowly, Pb will evaporate before the GaAs crystal starts to decompose, so the temperature increase rate is optimally 10 ° C./min.
[0031]
After completion of the heating, the vacuum heating furnace starts cooling at 15 ° C./min or less, and is held at 156 to 327 ° C. for 1 to 2 hours. Then, the contents of the quartz container are cooled to 30 to 100 ° C. The quartz container is taken out from the vacuum heating furnace, and the contents are suction filtered through a ceramic filter having a pore diameter of 10 to 20 μm heated and kept at 30 to 100 ° C. A ribbon heater or the like is preferable for heating and keeping the ceramic filter.
[0032]
On the ceramic filter, an In—Pb alloy with Ga adhered remains, and is scraped up with a ceramic spatula. Ga is filtered by a ceramic filter and collected in a quartz or carbon container.
A small amount of Ga adheres to the In—Pb alloy, but if Ga is immersed in dilute hydrochloric acid, it peels off as a molten mass, and if recovered by decantation or the like, the Ga recovery rate increases to 93% or more. Further, when In is recovered from an In—Pb alloy, recrystallization or electrolytic purification is appropriate, but this method is not limited to a low cost and high recovery method. However, if the separation and recovery rate of In is increased at the stage of obtaining the primary decomposition product, the amount of In—Pb alloy generated is very small, and the In—Pb alloy can be used as a solder alloy.
[0033]
【Example】
[Example 1]
Compound semiconductor crystal scraps (In x Gal x As, X = 0.3) were pulverized with a jaw crusher to a particle size of 3 mm or less.
Weigh ground In x Ga lx As1kg, was placed in a vacuum heating furnace was placed in a quartz vessel (inner diameter .phi.200 mm × height 150 mm). A water-cooled trap was installed between the vacuum heating furnace and the oil rotary pump.
[0034]
The vacuum heating furnace was depressurized to 15 Pa, and the furnace temperature was raised to 900 ° C. The heating time was 2 h. After heating, the quartz container contents are furnace-cooled to 200 ° C., then the quartz container is taken out of the vacuum heating furnace, and the contents are suction filtered through a ceramic filter having a pore diameter of 20 μm heated and kept at 200 ° C. in a hot air circulating furnace. did.
The GaAs crystal with In deposited on the ceramic filter was scraped with a ceramic spatula. In separated by a ceramic filter was collected in a quartz container. The In recovery rate at this time was 93%.
[0035]
The mass of In adhering to the GaAs crystal was analyzed to be about 5 g, and the residue adhering to In and 50 g of Pb (average particle size 4 mm) were put in a quartz container and placed in a vacuum heating furnace, and then the pressure was reduced to 15 Pa. The furnace temperature was raised to 1050 ° C. The heating rate of the vacuum heating furnace was 5.5 ° C./min, and the heating time was 1.5 h.
After completion of the heating, the vacuum heating furnace started cooling at 15 ° C./min or less, held at 327 ° C. for 2 hours, and then the contents of the quartz container were cooled to 50 ° C. After taking out the quartz container from the vacuum heating furnace, the contents were subjected to suction filtration with a ceramic filter having a pore diameter of 20 μm heated and kept at 50 ° C.
[0036]
The In—Pb alloy with Ga remaining on the ceramic filter was scraped with a ceramic spatula. Ga that passed through the ceramic filter was collected in a quartz container. The recovery rate of Ga was 93%.
[Example 2]
The same operation as in Example 1 was carried out except that Pb (average particle diameter 4 mm) added to the GaAs crystal to which In was adhered was 300 g. At this time, the recovery rate of In was 93%, and the recovery rate of Ga was 91%.
[0037]
Example 3
The ground In x Ga lx As1kg was evacuated to 15Pa with vacuum furnace was operated in the same manner as in Example 1 except for raising the furnace temperature at which to produce a primary decomposition products 800 ° C.. At this time, the recovery rate of In was 90%, and the recovery rate of Ga was 93%.
[0038]
Example 4
Pb (average particle size 4 mm) added to the GaAs crystal with In adhered was 300 g, and the temperature inside the furnace was increased to 1100 ° C. at a heating rate of 5.5 ° C./min in a vacuum heating furnace. The same operation as in Example 1 was performed. At this time, the recovery rate of In was 93%, and the recovery rate of Ga was 91%.
[0039]
【The invention's effect】
According to the method for recovering gallium and indium of the present invention, Ga and In can be recovered with high efficiency from a compound semiconductor crystal scrap containing Ga, In and As as main components with a small scale facility, and the amount of waste is extremely small. Gallium and indium can be recovered at low cost.

Claims (3)

ガリウム、インジウムおよび砒素を主成分とする化合物半導体結晶屑を減圧下、700〜900℃に加熱することで砒素の一部を昇華させた一次分解生成物について、156℃以上に加熱しながら濾過してインジウムを分離回収し、次に一次分解生成物の濾過残渣に鉛を添加し、減圧下、900〜1100℃に加熱することで残留砒素を昇華させた二次分解生成物について、30℃以上に保持しながら濾過してガリウムを分離回収することを特徴とするガリウムおよびインジウムの回収方法。The primary decomposition product obtained by sublimating a part of arsenic by heating compound semiconductor crystal scraps mainly composed of gallium, indium and arsenic to 700 to 900 ° C. under reduced pressure is filtered while heating to 156 ° C. or higher. Indium was separated and recovered, then lead was added to the filtration residue of the primary decomposition product, and the secondary decomposition product obtained by sublimating residual arsenic by heating to 900 to 1100 ° C. under reduced pressure was 30 ° C. or higher. A method for recovering gallium and indium, characterized in that gallium is separated and recovered by filtration while being held in a vacuum. 一次分解生成物の濾過残渣に添加する鉛の質量が、濾過残渣に付着しているインジウムの質量の0.28倍以上であることを特徴とする請求項1記載のガリウムおよびインジウムの回収方法。The method for recovering gallium and indium according to claim 1, wherein the mass of lead added to the filtration residue of the primary decomposition product is 0.28 times or more of the mass of indium adhering to the filtration residue. 一次分解生成物の濾過残渣に鉛を添加し減圧下、900〜1100℃での加熱を終了した後、毎分15℃以下で冷却し、156〜327℃で所定時間保持して二次分解生成物を生成させることを特徴とする請求項1または請求項2記載のガリウムおよびインジウムの回収方法。After adding lead to the filtration residue of the primary decomposition product and heating at 900 to 1100 ° C. under reduced pressure, it is cooled at 15 ° C. or less per minute and kept at 156 to 327 ° C. for a predetermined time to generate secondary decomposition. The method for recovering gallium and indium according to claim 1 or 2, wherein a product is produced.
JP2001051574A 2001-02-27 2001-02-27 Method for recovering gallium and indium Expired - Lifetime JP4485083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001051574A JP4485083B2 (en) 2001-02-27 2001-02-27 Method for recovering gallium and indium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001051574A JP4485083B2 (en) 2001-02-27 2001-02-27 Method for recovering gallium and indium

Publications (2)

Publication Number Publication Date
JP2002256355A JP2002256355A (en) 2002-09-11
JP4485083B2 true JP4485083B2 (en) 2010-06-16

Family

ID=18912332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001051574A Expired - Lifetime JP4485083B2 (en) 2001-02-27 2001-02-27 Method for recovering gallium and indium

Country Status (1)

Country Link
JP (1) JP4485083B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5184519B2 (en) 2007-04-19 2013-04-17 日本板硝子株式会社 Metal recovery method
CN103415634B (en) * 2011-04-18 2015-08-19 英派尔科技开发有限公司 Gallium and/or arsenic is extracted from gallium arsenide
KR20170019246A (en) 2015-08-11 2017-02-21 주식회사 엔코 A recovery method for valuable metal from the LED wastes or electronic wastes
KR101699517B1 (en) 2015-11-25 2017-01-24 (주)성은 Recycling method of ammonium nitrate waste
KR20230095372A (en) 2021-12-22 2023-06-29 주식회사 퀀타머티리얼스 Method of high purity indium-gallium collecting from igzo waste targer

Also Published As

Publication number Publication date
JP2002256355A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
EP1845169B1 (en) Method for recovering indium
US4198231A (en) Recovery and separation of gadolinium and gallium
CN110902685A (en) Method for separating silicon-containing mixture to obtain industrial silicon
CN106222421A (en) Gold mud treatment method
JP4485083B2 (en) Method for recovering gallium and indium
JP5217480B2 (en) Recovery method of crude indium
JP4190678B2 (en) Purification method of gallium
WO2009081725A1 (en) Silicon reclamation method
JP4183926B2 (en) Method for recovering tantalum / niobium from tantalum / niobium-containing carbide materials
JP7403118B2 (en) Metal recovery method and gallium nitride production method
JP3933869B2 (en) Method for recovering indium hydroxide or indium
JP2000327488A (en) Production of silicon substrate for solar battery
JP2015147956A (en) Method for recovering gallium
JP6373772B2 (en) Method for recovering indium and gallium
JP5339762B2 (en) Method for producing indium metal
CN110938838B (en) Method for treating anode carbon slag of aluminum electrolysis cell by using NaCl molten salt extraction method
JP5133547B2 (en) Purification method of gallium
JP3799488B2 (en) Method for purifying Ga-containing solution
JP6017876B2 (en) A method for recovering gallium from waste copper gallium.
JP4281576B2 (en) Method for dissolving gold powder and method for producing gold ingot
JP3885913B2 (en) Method for purifying recovered gallium
JPH11269569A (en) Gallium refining
JP2000153250A (en) Decomposition method of semiconductor scrap
JP4194703B2 (en) Decomposition of gallium phosphide scrap
JP2001064734A (en) Recovery of iridium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

R150 Certificate of patent or registration of utility model

Ref document number: 4485083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

EXPY Cancellation because of completion of term