JP4484987B2 - Gas adsorption / desorption reaction vessel - Google Patents

Gas adsorption / desorption reaction vessel Download PDF

Info

Publication number
JP4484987B2
JP4484987B2 JP26363299A JP26363299A JP4484987B2 JP 4484987 B2 JP4484987 B2 JP 4484987B2 JP 26363299 A JP26363299 A JP 26363299A JP 26363299 A JP26363299 A JP 26363299A JP 4484987 B2 JP4484987 B2 JP 4484987B2
Authority
JP
Japan
Prior art keywords
desorption
gas
gas adsorption
adsorption
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26363299A
Other languages
Japanese (ja)
Other versions
JP2001082697A (en
Inventor
幸雄 佐藤
晴信 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP26363299A priority Critical patent/JP4484987B2/en
Publication of JP2001082697A publication Critical patent/JP2001082697A/en
Application granted granted Critical
Publication of JP4484987B2 publication Critical patent/JP4484987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、吸放熱を伴ってガスの吸放出を行うガス吸脱着材料を収容してガスの吸脱着反応を起こさせるガス吸脱着反応容器に関するものである。
【0002】
【従来の技術】
水素吸蔵合金のようなガス吸脱着材料は、吸発熱を伴って水素等のガスの吸脱着反応を起こすので、この反応を利用した各種のシステムが提案されている。
例えば、水素吸蔵合金は水素を吸放出する際に吸放熱が生じるので、圧力操作や温度操作によって水素の吸放出を行い、その際に発生する熱を利用して冷暖房や冷凍、熱回収を行う装置類が提案されている。また、吸放熱を利用して水素の貯蔵、運搬、回収、精製等を行う装置類も提案されている。
これらの装置類では、水素の出入りがあるため、水素吸蔵合金を密閉した容器に収める必要があり、また、水素吸蔵合金との間で熱交換を行う構造が必要である。容器への水素吸蔵合金の収容方法としては一般に2つのタイプが知られている。その一つは内蔵式と称されるものであり、図11に示すようにチューブ1内に水素吸蔵合金を収容し、このチューブ1内で水素の移動を行わせるとともに、チューブの外側で熱媒体を移動させ、チューブ1壁を通して熱媒体と水素吸蔵合金との間で熱の移動を行わせるものである。なお、チューブ1内での水素の移動では、移動を円滑にするために通気管60を配置しておく。通気管60は径方向においても通気性が確保されており、該通気管60の外層には、クロス90が被せられている。このクロス90は通気性を有しており、上記水素吸蔵合金粉末とクロス90内部とを通気性を保った状態で遮る。
他の一つは外蔵式と称されるものであり、容器内に水素吸蔵合金を収容するとともに、この容器内に熱媒体移動用のチューブを配設し、このチューブ内を移動する熱媒体と水素吸蔵合金との間で熱の移動を行わせるものである。これらは内外の相違はあっても、いずれも壁部を通して熱の移動がなされている。
【0003】
【発明が解決しようとする課題】
上記装置では、水素吸蔵合金で水素の吸放出を効率的に行わせるため、または熱を効率的に取り出すためには、水素吸蔵合金と熱媒体との間で効率的に熱を伝達させることが必要であり、特に水素吸蔵合金と反応容器や熱媒体移動チューブの伝熱壁部との間の熱伝達効率を良好に保つことが重要である。このため水素吸蔵合金と伝熱壁とは確実に接触していることが望ましい。しかし、水素吸蔵合金は水素の吸収に際し体積膨張し、一方、水素の放出に際しては体積収縮するので、水素を吸蔵していない合金を反応容器内に密に充填すると水素の吸蔵時に合金が膨張する余地が少なくなって水素吸蔵が阻害され、また合金の崩壊や反応容器等への過大な負荷を招いてしまう。このため、反応容器への合金の収容は、上記膨張を見越して多少の隙間があるように行うのが一般的である。これにより、図11に示すように、水素吸蔵合金の膨張時(左方図)には、水素吸蔵合金はチューブ1内の空間に密な状態にあるが、水素が収縮した状態(右方図)では空間に隙間が生じる。しかし、このような隙間があると、水素吸蔵合金と伝熱壁とが十分に接触しない状態になり、気体を介した熱伝達になるため伝熱効率が悪くてエネルギロスを招き、結果として装置効率を低下させるという問題がある。
本発明は上記事情を背景としてなされたものであり、ガスの脱着時にガス吸脱着材料と伝熱壁とを確実に接触させて良好な熱伝達効率が得られるガス吸脱着反応容器を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記課題を解決するため、本発明のガス吸脱着反応容器のうち第1の発明は、吸放熱を伴ってガスを吸脱着するガス吸脱着材料を収容して、該ガス吸脱着材料でガスの吸脱着反応を生じさせるとともに、容器筒壁を通して該ガス吸脱着材料と外部との間で熱の伝達を行う筒状のガス吸脱着反応容器において、ガスの脱着時に前記ガス吸脱着材料を前記容器筒壁に押し当てる押当て機能材を有し、該押当て機能材が、少なくともガス脱着時に外側に拡がる拡張力を有するように、内外層で線膨張率が異なり、内層側に線膨張率が小さい材料が位置するように筒状に巻回されたバイメタル巻筒体からなり、その外壁と前記反応容器筒壁内面との間にガス吸脱着材料を収容するように反応容器内に配置されていることを特徴とする。
【0005】
第2の発明のガス吸脱着反応容器は、吸放熱を伴ってガスを吸脱着するガス吸脱着材料を収容して、該ガス吸脱着材料でガスの吸脱着反応を生じさせるとともに、容器筒壁を通して該ガス吸脱着材料と外部との間で熱の伝達を行う筒状のガス吸脱着反応容器において、ガスの脱着時に前記ガス吸脱着材料を前記容器筒壁に押し当てる押当て機能材を有し、該押当て機能材が、少なくともガス脱着時に外側に拡がる拡張力を有するように、ガス脱着低温時に形状記憶によって拡径変形するように筒状に巻回された形状記憶合金巻筒体からなり、その外壁と前記反応容器筒壁内面との間に前記ガス吸脱着材料を収容するように前記反応容器内に配置されていることを特徴とする。
【0006】
第3の発明のガス吸脱着反応容器は、第1または第2の発明において、前記押当て機能材が、前記吸脱着に伴ってガスが移動する通気路を構成していることを特徴とする。
【0007】
第4の発明のガス吸脱着反応容器は、吸放熱を伴ってガスを吸脱着するガス吸脱着材料を収容して、該ガス吸脱着材料でガスの吸脱着反応を生じさせるとともに、容器筒壁を通して該ガス吸脱着材料と外部との間で熱の伝達を行う筒状のガス吸脱着反応容器において、ガスの脱着時に前記ガス吸脱着材料を前記容器筒壁に押し当てる押当て機能材を有し、該押当て機能材が、少なくともガス脱着時に外側に拡がる拡張力を有する筒体または柱体からなり、その外壁と前記反応容器筒壁内面との間に前記ガス吸脱着材料を収容するように前記反応容器内に配置されているとともに、該押当て機能材が、前記吸脱着に伴ってガスが移動する通気路構成していることを特徴とする。
【0008】
第5の発明のガス吸脱着反応容器は、第4の発明において、前記押当て機能材が前記反応容器内に配置され、それ自身の移動または体積膨張もしくは変形によって前記ガス吸脱着材料を前記容器筒壁に押し当てることを特徴とする。
【0009】
第6の発明のガス吸脱着反応容器は、第4または第5の発明において、前記押当て機能材が、弾性材からなることを特徴とする。
【0010】
第7の発明のガス吸脱着反応容器は、第4〜第6のいずれかの発明において、前記押当て機能材が、コイルバネ状巻筒体からなることを特徴とする。
【0011】
第8の発明のガス吸脱着反応容器は、吸放熱を伴ってガスを吸脱着するガス吸脱着材料を収容して、該ガス吸脱着材料でガスの吸脱着反応を生じさせるとともに、容器筒壁を通して該ガス吸脱着材料と外部との間で熱の伝達を行う筒状のガス吸脱着反応容器において、少なくともガスの脱着時に前記ガス吸脱着材料を前記伝熱壁に押し当てる押当て機能材を有し、前記押当て機能材が、前記反応容器内に位置する押当て磁性体と、該押当て磁性体と磁力で引き寄せ合うように作用し合って前記押当て磁性体に前記ガス吸脱着材料の押当てを行わせる共同磁性体とからなり、該共同磁性体が、容器筒壁の一部で構成され、または容器外に配置されるものであることを特徴とする。
【0012】
第9の発明のガス吸脱着反応容器は、第の発明において、前記押当て磁性体が、拡径変形可能な強磁性巻筒体からなることを特徴とする
【0013】
第10の発明のガス吸脱着反応容器は、第の発明において、前記押当て磁性体が、前記ガス吸脱着材料中に混入された磁性粒体からなることを特徴とする。
【0018】
本発明の容器は、前述したように、ガス吸脱着に伴う吸放熱を利用した冷暖房や冷凍装置、ガス吸放出を利用したガス貯蔵、精製等の装置の一部として組み込むことができるが、その用途が特定のものに限定されるものではない。要はガス吸脱着材料において吸放熱を伴ってガスの吸放出を行わせるものであればよい。
なお、本発明の反応容器に収容するガス吸脱着材料としては、代表的には水素吸蔵合金を挙げることができるが、要は、ガスの吸蔵、脱着反応が起こり、その結果として吸放熱が生じる材料であればよい。例えば吸着剤としてガスの吸着、離脱を行ったり、反応によってガスの吸収、放出を行ったりするものを使用することができる。すなわち、上記ガス吸蔵にはガス吸着やガス吸収が含まれ、ガス脱着にはガス離脱やガス放出が含まれる。上記材料としては可逆的に吸着、離脱を行う材料として活性炭、カーボンファイバ、ゼオライト、活性アルミナ等を挙げることができ、また化学反応によって可逆的に水素ガスの吸収、放出を行う材料として上記水素吸蔵合金を挙げることができる。該水素吸蔵合金は排熱や自然エネルギ等を利用して効率的に水素の吸放出を行うことができるという利点を有している。
【0019】
ガスの吸蔵と脱着とを交互に行わせる方法としては、各種の材料に適した方法が採られるが、加熱、冷却による熱駆動や圧縮機等を用いた圧力駆動の方法が挙げられる。熱駆動では、ガス吸脱着材料を加熱することにより材料に吸蔵されているガスを脱着でき、冷却することにより材料にガスを吸蔵させることができ、圧力駆動では、雰囲気圧を下げることにより材料に吸蔵されているガスを脱着でき、雰囲気圧を上げることによって材料にガスを吸蔵させることができる。
【0020】
上記ガス吸脱着材料は、ガスの出入りができるように本発明の反応容器に収容される。この際に、ガス吸脱着材料は通常は粉粒体の状態で収容されるが、本発明としてはその性状は特に限定されるものではなく、粉粒体に限定されるものでもない。該反応容器は、前述した従来例のように、内蔵式のものとすることができるが、その容器形状は特に限定されない。なお、反応容器は、通常、上記ガス吸脱着材料を収容した空間に連通するガス導入管および排出管を設けて、ガスの出入りを可能にする。また、反応容器では、上記材料において吸脱着の結果生じる吸放熱を熱媒との間で熱交換でき、または外部から熱をガス吸脱着材料に与えられるように構成する必要があり、容器筒壁が伝熱壁となる。
【0021】
そして、本発明の収容容器では、ガスの脱着時にガス吸脱着材料を伝熱壁に押し当てる押当て機能材を有している。
この押当て機能材は、常時、ガス吸脱着材料を伝熱壁に押当てていることが必要とされるものではなく、少なくともガス吸脱着材料におけるガスの脱着時に押当て機能を発揮するものであればよい。この押当てにより伝熱壁に押し当てられたガス吸脱着材料は、伝熱壁に確実に接触して、伝熱壁との間の熱伝達効率が向上する。このときのガス吸脱着材料の押し当ては、押当てがない場合に比べて少なからず伝熱壁との接触効率が向上するものであればよく、押し当ての程度は特に限定されない。また、押当て機能材は、ガス吸脱着材料を押当てる機能に加えてガス吸脱着材料の膨張を許容できるものでなければならない。このため、押当て機能材はガス脱着時にのみ押当て機能が出現するものやガス脱着時に押当て機能が増大するものであればよい。また、押当て機能がガス吸脱着材料の膨張力よりも小さな押当て機能材を用いれば、常時押当て機能が作用していてもガス吸脱着材料の膨張は許容されることになる。すなわち、ガス吸脱着材料の膨張が許容されるためには、膨張時に、押当て機能が解除されるか膨張力が押当て作用に勝るものであればよい。
【0022】
押当て機能材は、ガス吸脱着材料に作用してこれを伝熱壁側に押すものであればよく、特にその構造が限定されるものではない。
例えば、それ自身の体積膨張や移動、変形に伴って押当て機能が発揮されるものが挙げられる。このような作用を有するものとしては、押当て機能材の弾性変形力を利用するものが考えられる。この弾性変形力は、通常は、常時発揮されるものであり、ガス脱着によって体積収縮したガス吸脱着材料を伝熱壁に押し当てられるだけの弾性力が必要である。一方、ガス吸脱着材料のガス吸着に際してはガス吸脱着材料の膨張力が上記弾性変形力に打ち勝ってガス吸脱着材料の膨張が許容される弾性力であることが必要である。
弾性変形力を利用するものとしては、板材を筒状に巻き回してコイルバネ状にしたものや高弾性材を筒状や柱状にしたものを反応容器内に配置したものが挙げられる。これらは、弾性変形した状態でガス吸脱着材料とともに反応容器内に収容し、その復元力(弾性変形力)によって押当て機能を発揮するようにすればよい。
【0023】
また、ガス吸脱着材料の押し当てが必要なのは、ガスが該材料から脱着される時期、すなわち吸熱発生(低温の状態にある)時期であるので、ガス吸脱着材料の温度変化を利用して、温度が低い状態で変形して押当て作用が生じる押し付け機能材を使用することもできる。このような押当て機能材としては、形状記憶合金やバイメタルを用いたものが示される。
【0024】
形状記憶合金は、低温時に体積収縮したガス吸脱着材料を伝熱壁に押し当てられる形状を記憶させておく。反応容器にこの形状記憶合金を収容させる際には、弾性変形または塑性変形によってガス吸脱着材料の膨張に合わせた形状に変形させておけばよい。この弾性変形または塑性変形はガス吸脱着材料の膨張力によっも変形可能なものであることが必要になる。形状記憶合金は、ガスの脱着時にガス吸脱着材料が吸熱して温度が低下することから先に記憶されていた形状に変形し、体積収縮したガス吸脱着材料を確実に伝熱壁の押し当てる。一方、ガスの吸着によってガス吸脱着材料が膨張する際には、その膨張力によって形状記憶合金を変形させてガス吸着、材料膨張が進行する。また、このガス吸着時の温度に合わせて高温での形状も記憶させた材料(二方向形状記憶合金)を用いることも可能である。これによれば、材料の膨張の妨げになる応力がガス吸脱着材料にかからないか、極力少なくすることができる。該形状記憶合金は種々の形状とすることができ、例えば拡径、縮径が可能な巻筒体にすることができる。
【0025】
バイメタルは、熱膨張率の異なる材料同士を張り合わせたものであり、本発明では、ガス吸脱着材料におけるガス吸着とガス脱着とにおける温度変化を利用してバイメタルを変形させ、よってガス脱着時の押当て機能を得る。このときは、ガス脱着時の低温環境での変形を基準にすればよい。これ以外の温度域では、温度変化に従って変形してガス吸脱着材料の膨張に合わせたものとするのが最適であるが、ガス吸脱着材料の膨張時にこの膨張力によってバイメタルを弾性変形させるものであっても良い。該バイメタルも種々の形状とすることができるが拡径、縮径が可能な巻筒体を例示することができる。
【0026】
さらに、押当て機能材は上記したように自身の弾性や変形によって押付け機能を生じるほかに、2種以上の部材で共同して押当て機能を発揮するものでもよく、例えば磁力による吸引力や反発力を利用したものを用いることができる。この場合、一方を磁石にして他方を磁性体とするものや、両方を磁石とするものが挙げられる。これらの磁石や磁性体は押当て機能材の全部を構成するものであってもよく、また、押当て機能材の一部を構成するものであってもよい。要は、共同する当て機能材同士が磁力によって引き合うものであればよい。共同する押当て機能材の形状は特に限定されるものではなく、両方が可動でもよく、また一方のみが可動であっても良く、通常は押当て磁性体と共同磁性体とで構成される。押当て磁性体を可動とすることによってガス吸脱着材料を伝熱壁に押し当てることができる。磁石や磁性体またはこれらを含む押当て機能材は、拡径、縮径可能な筒巻体のような構造物や粒体のような浮動物として配置することができる。またこれらの対となる共同磁性体は、反応容器の一部で構成したり、反応容器外に配置したりする。
【0027】
本発明によれば、収容容器中にガス吸脱着材料が収容されているとともに、押当て機能材が配置されているので、少なくともガスの脱着時にこの押当て機能材が作用して、体積収縮したガス吸脱着材料を伝熱壁に確実に押し当てて、ガス吸脱着材料と伝熱壁との間の熱伝達を良好に保つ。また、ガス吸着時にはガス吸脱着材料の膨張が許容されてガスの吸着も効率的になされる。
【0028】
【発明の実施の形態】
(実施形態1)
以下に、本発明の一実施形態を図1〜図4に基づいて説明する。
この実施形態では、反応容器はチューブ1からなり、チューブ1の筒壁が伝熱壁を構成している。該チューブ1は、図4に示すように複数本が並設され、一端部が閉鎖されているとともに他端部が中空ヘッダ2に連結されており、各チューブ1…1は、交差して配置された複数のプレートフィン4…4を貫通し、かつ貫通部でプレートフィン4…4に密着固定されている。なお中空ヘッダ2には内部に連通する水素ガス移動管5が取り付けられている。この実施形態では、上記により熱交換器が構成される。
チューブ1内部には、図1に示すように同軸に通気筒6が設けられており、該通気筒6は3層で構成されている。該通気筒6の最内層には、金網またはパンチングメタルからなる板材を曲げて筒状に成形したコイルスプリング状巻筒体7が配置されており、該巻筒体7によって押当て機能材が構成されている。該巻筒体7は、無負荷時には拡がって両縁が開いた状態になるように加工されており、弾性変形によって両縁を閉じて断面円状にすることができる。なお、巻筒体7の両縁には、内側に折り曲げられた屈曲片7a、7aが軸方向に沿って形成されており、両縁を閉じた状態では、これら屈曲片7a、7a同士が対面して重なり合う。チューブ1の組立に際しては、図2に示すように重ね合わされた屈曲片7a、7aを両側から挟持して巻筒体7の弾性変形(拡径)を阻止する仮止めクリップ10を取り付けておく。
【0029】
さらに通気筒6における巻筒体7の外層には、同じく金網またはパンチングメタルからなる板材を曲げて筒状に成形した巻筒体8が配置されている。該巻筒体8は、無負荷時に両縁がほぼ合わさって断面円状になるように成形されており、弾性変形によって拡径することができる。なお、巻筒体8の両縁は、巻筒体7の両縁の反対側に位置するように嵌められており、巻筒体7の弾性力(拡径方向)は、巻筒体8の弾性力(縮径方向)よりも大きく、従って、無負荷時には、巻筒体7の弾性力によって巻筒体7、8が拡径された状態になる。
さらに、巻筒体8の外層には、伸縮性クロス9が被せられており、後述する水素吸蔵合金粉末とクロス9内部とを通気性を保った状態で遮っている。
【0030】
上記通気筒6に上記した仮止めクリップ10を取り付けた状態でチューブ1内に収容した後、通気筒6外周側とチューブ1内周側の間の空間に、ガス吸脱着材料として水素吸蔵合金粉末を充填する。この際には水素吸蔵合金が水素を吸蔵して膨張することを考慮して上記空間に隙間が残るように収容する。そして、水素吸蔵合金粉末を収容した後、前記した仮止めクリップ10を外してチューブ1内から取り除く。仮止めクリップ10が外された巻筒体7は、その拡張弾性力によって巻筒体8の収縮弾性力に打ち勝って拡径する。その結果、上記空間に収容された水素吸蔵合金は隙間なくチューブ1の内壁1a(伝熱壁)に押し当てられる。
【0031】
この実施形態では、2つの熱交換器を用意して、両熱交換器間に設けた圧力駆動装置によって熱交換器間で水素ガスを移動させるものとする(図示しない)。
上記圧力駆動によって水素ガス移動管5を通して中空ヘッダ2内に水素ガスが送り込まれると、該水素はヘッダ2から各チューブ1へと至り、通気管6を通って軸方向に移動し、さらに巻筒体7、8および伸縮性クロス9を通って径方向に移動する。この水素導入によってチューブ1内の水素圧力が上昇し、水素吸蔵合金中に水素が吸蔵される。水素吸蔵合金は水素の吸蔵によって膨張し、通気管6を内周側に圧迫する。この圧迫力と巻筒体8の収縮力とが合わさって、巻筒体7の拡張力に打ち勝って通気筒6を縮径させる。この縮径では、巻筒体8による縮径動作が加わるので、変形が円滑になされる。このときにも水素吸蔵合金には巻筒体7で付勢力が掛かっているので、図3左方図に示すように、該合金は通気管6とチューブ1との間に密に充填された状態にあり、伝熱壁であるチューブ1の内壁1aに密着している。このとき水素吸蔵合金は水素の吸蔵によって発熱しており、その熱はチューブ1の内壁1aを伝わり、そのまま外部にまたはプレートフィン4に伝わって外部熱媒(空気等)に熱移動する。上記熱の伝達においては、水素吸蔵合金はチューブ内壁に確実に接触しているので水素吸蔵合金からチューブ壁へと確実かつ効率的に熱が伝達される。なお、上記熱は排熱として排気されたり、暖房等、加熱用の熱として利用されたりする。
【0032】
一方、水素吸蔵合金に吸蔵された水素を放出する際には、圧力駆動装置によって吸引すると、負圧によって水素吸蔵合金中から水素が放出され通気管6、中空ヘッダ2、水素ガス移動管5を通って水素が外部に移動する。水素吸蔵合金では水素の放出に伴って水素吸蔵合金は収縮し、体積が減少するが、この体積減少によって通気筒6への圧迫が解かれる。これによって通気管6では、図3右方図に示すように、巻筒体7の拡張弾性力が巻筒体8の縮径弾性力に勝って通気管6が拡径し、水素吸蔵合金をチューブ1内壁1aに押付ける。また水素放出においては吸熱が生じており、プレートフィン4、チューブ1の内壁1aを介して外部熱媒との間で熱交換されるが、上記のように水素吸蔵合金がチューブ1の内壁1aに密着しているので冷熱の熱伝達も効率的になされる。この冷熱は冷房、冷凍等に利用することができる。
【0033】
(実施形態2)
次に他の実施形態を図5に基づいて説明する。この実施形態では、上記実施形態1における巻筒体7、8に変えてバイメタル巻筒体15からなる押当て機能材を用いている。このバイメタル巻筒体15は、金網またはパンチングメタルからなる2種の板材を内外層に貼り合わせたものであり、内層側板材15aに外層側板材15bよりも線膨張率の小さな材料を用いている。該バイメタル巻筒体15は、水素吸蔵合金での水素吸放出による温度変化(高温〜低温)に従って径(小〜大)が変化し、常温時には中間程度の径になる。なお、バイメタル巻筒体15の外層には、上記実施形態と同様に伸縮性クロス9が被せられて通気筒16が構成されている。
チューブ1の組立に際しては、上記通気筒16をそのままチューブ1内に挿入、配置する。上記通気筒16の配置に際しては、常温での作業になるため、バイメタル巻筒体15は中間程度の大きさ(径)を有しており、したがって実施形態1のように仮止めクリップを使用する必要がなく、容易に配置作業を行うことができる。
上記通気筒16をチューブ1内に収容した後は、通気筒16外周部とチューブ1内周部との間の空間に水素吸蔵合金粉末を充填する。このときには、バイメタル巻筒体15の拡径、縮径と水素吸蔵合金の収縮、膨張を考慮して上記空間への収容量を定める。通常は、水素吸蔵合金の膨張の方がバイメタル巻筒体15の収縮よりも大きいので、常温収容時には多少の隙間を残して水素吸蔵合金を収容する。
【0034】
上記熱交換器では、実施形態1と同様にして水素の導入または排出がなされる。 水素排出時には水素吸蔵合金に吸蔵された水素が放出され、水素吸蔵合金では吸熱が生じる。水素放出によって水素吸蔵合金は体積収縮するが、チューブ内は上記吸熱によって低温になり、バイメタル巻筒体15では拡径変形が起こる。上記体積収縮を越えて拡径するようにバイメタルの材料や水素吸蔵合金の収容量を設定しておくことにより図5右方図に示すように水素吸蔵合金はチューブ1の内壁に押し当てられ、チューブ1壁と水素吸蔵合金との間で熱が確実かつ効率的に伝達される。
一方、水素導入時には水素吸蔵合金中に水素が吸蔵され、水素吸蔵合金は膨張する。また、水素吸蔵によって放熱が起こり温度が上昇するためバイメタル巻筒体15は、内外層での熱膨張率の差異によって縮径変形する。上記膨張がこの縮径を越えるように設定しておくことによって、図5左方図に示すように水素吸蔵合金が通気管16とチューブ1との間の空間に密に収容された状態になり、水素吸蔵合金がチューブ1内壁に確実に接触するので水素吸蔵合金からチューブ1壁へと熱が確実かつ効率的に伝達される。
【0035】
(実施形態3)
さらに、他の実施形態を図6に基づいて説明する。
この実施形態では、前記実施形態2におけるバイメタル巻筒体15に変えて形状記憶合金からなる形状記憶合金巻筒体20を押当て機能材として用いる。他の構成は実施形態2と同様である。この形状記憶合金巻筒体20は金網またはパンチングメタルからなる板材を巻き重ねて筒状に成形したものであり、水素吸蔵合金で水素が放出される時の低温状態で拡径した状態になるように形状記憶されており、常温では、水素吸蔵合金が膨張した状態に合うように小径に成形されている。また、形状記憶合金巻筒体20は水素吸蔵合金の膨張によって塑性変形(縮径)できる程度に軟質の性質も有している。該形状記憶合金巻筒体20の外層には、上記各実施形態と同様に伸縮性クロス9が被せられて通気筒21が構成されている。
チューブ1の組立に際しては、小径の状態にある通気筒21をそのままチューブ1内に挿入、配置する。さらに、通気筒21外周部とチューブ1内周部との間の空間に、ガス吸脱着材料として水素吸蔵合金粉末を充填する。この際には水素吸蔵合金が水素を吸蔵して膨張することを考慮して、上記空間に隙間を残しておく。
【0036】
上記熱交換器では、実施形態1と同様にして水素の導入または排出がなされ、水素吸蔵合金で水素の吸放出がなされる。水素放出時には水素吸蔵合金は体積収縮しつつ吸熱するが、チューブ1内は吸熱によって低温になり、形状記憶合金巻筒体20では記憶された形状に戻るように拡径変形する。上記体積収縮と拡径変形とをバランスさせることにより、図6右方図に示すように水素吸蔵合金をチューブ1内壁に押し当てることができ、チューブ1壁と水素吸蔵合金との間で熱を確実かつ効率的に伝達することができる。
一方、水素吸蔵時には、水素吸蔵合金は膨張しつつ放熱し温度が上昇する。形状記憶合金巻筒体20は膨張する水素吸蔵合金で押圧され、塑性変形によって縮径変形する。したがって水素吸蔵合金は図6左方図に示すように、通気管21とチューブ1との間の空間に密に収容された状態になり、水素吸蔵合金による発熱は水素吸蔵合金からチューブ内壁に確実かつ効率的に伝達される。
なお、この実施形態では、水素吸蔵合金の膨張時に形状記憶合金巻筒体を塑性変形させるものとしたが、弾性変形可能なものを使用することもでき、さらには、上記膨張時の高温環境において径の小さい形状を記憶させた二方向性形状記憶合金を用いることもできる。これによれば、水素吸蔵合金の膨張が一層容易になされる。
【0037】
(実施形態4)
さらに他の実施形態を図7に基づいて説明する。
この実施形態では、押当て機能材として高弾性通気性柱体25を用いている。この高弾性通気性柱体25は、弾性係数が低くて水素吸蔵合金の膨張、収縮力によって容易に体積膨張、収縮することができるゴム等の高弾性体からなり、また、径方向および軸方向に通気性を有するように織物状、綿状等で構成されている。なお、この高弾性通気性柱体25の外層には上記各実施形態と同様に伸縮性クロス9が被せられて通気路26が構成されている。
この高弾性通気性柱体25を上記実施形態と同様にチューブ1内に収容し、通気路26とチューブ1との間に水素吸蔵合金を収容する。この際には、該空間に隙間なく、かつ高弾性通気性柱体を若干収縮させる程度に押し込んで水素吸蔵合金を収容する。
【0038】
この熱交換器を上記実施形態と同様に使用すると、水素の吸蔵時には水素吸蔵合金が膨張して高弾性通気性柱体25を圧迫するので、図7左方図に示すように高弾性通気性柱体25はさらに収縮する。水素吸蔵合金には高弾性通気性柱体25の弾性力も加わってチューブ1の内壁に密着し、水素吸蔵合金とチューブ1壁との間で効率的に熱の交換がなされる。一方、水素の放出時には水素吸蔵合金は収縮するものの、図7右方図に示すように高弾性通気性柱体25が弾性力によって拡径変形(復元変形)し、空間に隙間が生じることなく水素吸蔵合金がチューブ内壁に密着する。この際に、最も水素吸蔵合金が体積収縮した状態でも、該水素吸蔵合金に高弾性通気性柱体25の弾性力が加わっているので、水素吸蔵合金はチューブ1壁に確実に接触している。したがって水素の放出時においても水素吸蔵合金とチューブ壁との間で効率的に熱の伝達がなされる。
【0039】
(実施形態5)
さらに他の実施形態を図8に基づいて説明する。
この実施形態では、押当て機能材として弾性中空筒体30を用いる。この弾性中空筒体30は、弾性係数が低くて水素吸蔵合金の膨張、収縮力によって容易に伸び縮みできるゴム等の弾性材で筒体に構成されている。この弾性中空筒体の外層には、該弾性中空体の伸縮に追従できるように、網、パンチングメタル、連続発泡体等で構成された通気性シート31が巻き回されており、該通気性シート31の外層に伸縮性クロス9が被せられて通気筒32が構成されている。この通気筒32では、弾性中空筒体30の外周側で通気性シート31によって通気路が確保されている。
【0040】
上記通気筒32を上記実施形態と同様にチューブ1内に収容し、通気筒32とチューブ1との間に水素吸蔵合金を収容する。この際には、該空間に隙間なく、かつ弾性中空筒体30が多少縮径する程度に水素吸蔵合金を押し込んで充填する。このチューブ1を熱交換器として使用すると、上記実施形態と同様に、水素の吸蔵時には水素吸蔵合金は膨張し、弾性中空筒体30を圧迫してこれを縮径させる。水素吸蔵合金は図8左方図に示すように弾性中空筒体30の弾性力も加わってチューブ1内壁に密着しており、水素吸蔵合金とチューブ1壁との間で効率的に熱の交換がなされる。一方、水素の放出時には、図8右方図に示すように水素吸蔵合金は収縮するものの、弾性中空筒体30が弾性力によって拡径変形し、空間に隙間が生じることなく水素吸蔵合金をチューブ1内壁に押し当てる。したがって水素の放出時においても水素吸蔵合金とチューブ壁との間で効率的に熱の伝達がなされる。
【0044】
(実施形態
さらに、他の実施形態を図に基づいて説明する。
この実施形態では、チューブ100を強磁性体で構成し、また、押当て機能材として、強磁性体からなる金網またはパンチングメタルの板材を巻いて筒状にした強磁性巻筒体45を用いる。該強磁性巻筒体45が押当て磁性体を構成している。該強磁性巻筒体45はその外層に伸縮性クロス9が被せられて通気筒46が構成されており、該通気筒46が上記チューブ100内に配置される。
該通気筒46は、チューブ100内に配置した状態では、膨張した水素吸蔵合金の充填量にほぼ見合った大きさ(径)を有している。該通気筒46とチューブ100の間には、水素吸蔵合金を収容するが、その際には水素吸蔵合金の膨張を考慮して空間に隙間を確保しておく。この隙間は、水素吸蔵合金が膨張した際に、上記空間に水素吸蔵合金が密に充填されている状態になるように定め、若干は膨張した水素吸蔵合金が通気筒46を圧迫する程度に定める。
【0045】
このチューブを熱交換器として使用すると、上記実施形態と同様に、水素の吸蔵時には水素吸蔵合金は膨張し、上記空間の隙間を埋めて密の状態になる。このとき、強磁性巻筒体45の弾性力も得られ、図左方図に示すように水素吸蔵合金はチューブ1内壁に密着し、水素吸蔵合金とチューブ壁との間で効率的に熱の交換がなされる。一方、水素の放出時には、チューブの外部から永久磁石や電磁石で磁力を加え、チューブ100および強磁性巻筒体45を磁化させる。磁化されたチューブ100は共同磁性体として強磁性巻筒体45と互いに引き合い、その結果、強磁性巻筒体45が拡径変形する。水素の放出時には水素吸蔵合金は収縮するが図右方図に示すように強磁性巻筒体45が拡径変形することにより空間に隙間が生じることなく水素吸蔵合金がチューブ100の内壁に押し当てられ、水素吸蔵合金とチューブ壁との間で効率的に熱の伝達がなされる。
なお、上記では水素の放出時にのみチューブ外部から磁力を加えたが常時磁力を加えるものであってもよい。また、チューブ自身が磁力を発生させるものであってもよい。
【0046】
(実施形態
さらに他の実施形態を図10に基づいて説明する。
この実施形態では、押当て機能材として実施形態における筒状磁性体に変えて磁性粒材50を水素吸蔵合金中に分散混合させたものである。この磁性粒材50は、強磁性体で構成された剛性粒である。
チューブ100は、上記実施形態と同様に強磁性体で構成されており、チューブ100内には、網、パンチングメタル等の通気材質で構成され、その回りにクロス90が外装された通気管60を挿入、配置し、この通気管60とチューブ100内壁との間に水素吸蔵合金粉末と磁性粒材50の混合物を充填する。このとき、水素吸蔵合金の膨張を考慮して空間に隙間が残るように充填する。
【0047】
このチューブを熱交換器として使用すると、上記実施形態と同様に、水素の吸蔵時には水素吸蔵合金は膨張し、上記空間の隙間を埋めて密の状態になる。水素吸蔵合金はチューブ1内壁に密着し、水素吸蔵合金とチューブ壁との間で効率的に熱の交換がなされる。一方、水素の放出時には、チューブ100の外部から永久磁石や電磁石で磁力を加え、チューブ100および磁性粒材50を磁化させる。磁化されたチューブ100と磁性粒材50とは互いに引き合い、その結果、磁性粒材50は回りの水素吸蔵合金とともにチューブ100の内壁側に引き寄せられる。水素の放出時には水素吸蔵合金は収縮するが上記のように水素吸蔵合金がチューブ100の内壁側に引き寄せられることにより水素吸蔵合金がチューブ100の内壁に押し当てられ、水素吸蔵合金とチューブ100壁との間で効率的に熱の伝達がなされる。なお、この実施形態においても磁力は水素の放出時にのみではなく常時加えるものであってもよい。また、磁性粒材50を永久磁石で構成することにより外部からの磁力の付加を不要とすることも可能である。
【0050】
なお、上記各実施形態では、ガス吸脱着材料として水素吸蔵合金を用いたものについて説明したが、本発明としては、ガス吸脱着材料がこれに限定されるものではなく、また、吸脱着されるガスが水素ガスに限定されるものでもない。
また、上記各実施形態では、ガスの吸脱着を利用して熱を利用する熱交換器について説明したが、本発明の用途としてはこれに限定されるものではなく、要は、ガス吸脱着材料において吸放熱を伴ってガスの吸脱着がなされる装置類に広く適用することができる。
また、上記各実施形態では圧力駆動によってガスの吸脱着を行わせる場合について説明したが、本発明としては、当然に、熱媒から伝熱壁を通して熱をガス吸脱着材料に伝えることによってガス吸脱着材料にガスの吸脱着を促す熱駆動のものであってもよい。
【0051】
【発明の効果】
以上、説明したように、本発明のガス吸脱着反応容器によれば、ガスの脱着時にガス吸脱着材料を伝熱壁に押し当てる押当て機能材を有するので、ガスの脱着によって体積収縮するガス吸脱着材料と伝熱壁との間で効率的な熱伝達を可能にする。これにより高価率にガス吸・脱着反応を生じさせたり発・吸熱した熱・冷熱を外部に伝えることができる。そのためバッチプロセスでのサイクルが短縮されるため吸着材の量を大幅に削減できる。従って容器がコンパクト化しエネルギロスも低減でき、設置スペースも小さくできる効果がある。
【図面の簡単な説明】
【図1】 本発明の一実施形態の分解斜視図である。
【図2】 同じく正面断面図である。
【図3】 同じく水素吸放出動作を示す正面断面図である。
【図4】 同じく熱交換器の斜視図である。
【図5】 本発明の他の実施形態における水素吸放出動作を示す正面断面図である。
【図6】 さらに他の実施形態における水素吸放出動作を示す正面断面図である。
【図7】 さらに他の実施形態における水素吸放出動作を示す正面断面図である。
【図8】 さらに他の実施形態における水素吸放出動作を示す正面断面図である。
【図】 さらに他の実施形態における水素吸放出動作を示す正面断面図である。
【図10】 さらに他の実施形態における水素吸放出動作を示す正面断面図である。
【図11】 従来の反応容器における水素吸放出動作を示す正面断面図である。
【符号の説明】
1 チューブ
1a 内壁
2 中空ヘッダ
4 プレートフィン
5 水素ガス移動管
6 通気筒
7 巻筒体
8 巻筒体
9 伸縮性クロス
10 仮止めクリップ
15 バイメタル巻筒体
16 通気筒
20 形状記憶合金巻筒体
21 通気筒
25 高弾性通気性柱体
26 通気路
30 弾性中空筒体
32 通気筒
45 強磁性巻筒体
46 通気筒
50 磁性粒材
60 通気管
90 クロス
100 チューブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas adsorption / desorption reaction vessel that accommodates a gas adsorption / desorption material that absorbs / releases gas with absorption / release of heat and causes a gas adsorption / desorption reaction.
[0002]
[Prior art]
  Gas adsorption / desorption materials such as hydrogen storage alloys cause adsorption / desorption reactions of gas such as hydrogen with absorption and exotherm, and various systems using this reaction have been proposed.
  For example, hydrogen storage alloy absorbs and releases heat when absorbing and releasing hydrogen, so that hydrogen is absorbed and released by pressure and temperature operations, and heat generated at that time is used for air conditioning, freezing, and heat recovery. Devices have been proposed. In addition, devices for storing, transporting, recovering, purifying and the like using hydrogen absorption / release have been proposed.
  In these devices, since hydrogen flows in and out, it is necessary to store the hydrogen storage alloy in a sealed container, and a structure for exchanging heat with the hydrogen storage alloy is required. There are generally two types of methods for accommodating the hydrogen storage alloy in the container. One of them is called the built-in type.11As shown in FIG. 2, the hydrogen storage alloy is accommodated in the tube 1, the hydrogen is moved in the tube 1, the heat medium is moved outside the tube, and the heat medium and the hydrogen storage alloy are moved through the tube 1 wall. Heat transfer between them. In addition, in the movement of the hydrogen in the tube 1, the vent pipe 60 is arrange | positioned in order to make a movement smooth. The vent pipe 60 is air permeable in the radial direction, and the outer layer of the vent pipe 60 is covered with a cloth 90. The cloth 90 has air permeability, and blocks the hydrogen storage alloy powder and the inside of the cloth 90 while maintaining air permeability.
  The other is a so-called external storage type, in which a hydrogen storage alloy is accommodated in a container, a heat medium moving tube is disposed in the container, and the heat medium moves in the tube. Heat transfer between the hydrogen storage alloy and the hydrogen storage alloy. Even though there is a difference between inside and outside, heat is transferred through the wall portion.
[0003]
[Problems to be solved by the invention]
  In the above apparatus, in order to efficiently absorb and release hydrogen with the hydrogen storage alloy, or to efficiently extract heat, it is possible to efficiently transfer heat between the hydrogen storage alloy and the heat medium. In particular, it is important to maintain good heat transfer efficiency between the hydrogen storage alloy and the heat transfer wall portion of the reaction vessel or the heat transfer tube. For this reason, it is desirable that the hydrogen storage alloy and the heat transfer wall are in reliable contact. However, the hydrogen storage alloy expands in volume upon absorption of hydrogen, while the volume contracts upon release of hydrogen. Therefore, if an alloy that does not store hydrogen is closely packed in the reaction vessel, the alloy expands when hydrogen is stored. The room is reduced, hydrogen storage is hindered, and the alloy collapses or an excessive load is applied to the reaction vessel. For this reason, the alloy is generally accommodated in the reaction vessel so that there is a slight gap in anticipation of the expansion. This allows the figure11As shown in FIG. 3, when the hydrogen storage alloy is expanded (left side), the hydrogen storage alloy is in a dense state in the space in the tube 1, but in a state where hydrogen is contracted (right side), there is a gap in the space. Occurs. However, if there is such a gap, the hydrogen storage alloy and the heat transfer wall will not be in sufficient contact with each other, and heat transfer via gas will result in poor heat transfer efficiency, resulting in energy loss, resulting in equipment efficiency. There is a problem of lowering.
  The present invention has been made against the background of the above circumstances, and provides a gas adsorption / desorption reaction vessel in which a gas adsorbing / desorbing material and a heat transfer wall are reliably brought into contact with each other at the time of gas desorption to obtain good heat transfer efficiency. With the goal.
[0004]
[Means for Solving the Problems]
  In order to solve the above problems, the first invention of the gas adsorption / desorption reaction vessel of the present invention contains a gas adsorbing / desorbing material that adsorbs / desorbs gas with absorption / release of heat, and the gas adsorbing / desorbing material contains gas. Causing an adsorption / desorption reaction,ContainerHeat is transferred between the gas adsorption / desorption material and the outside through the wall.TubularIn the gas adsorption / desorption reaction vessel, the gas adsorption / desorption material is removed at the time of gas desorption.Said container cylinderIt has a pressing functional material that presses against the wall, and the linear expansion coefficient is different between the inner and outer layers and the linear expansion coefficient is small on the inner layer side so that the pressing functional material has an expansion force that spreads outward at least when desorbing gas. It consists of a bimetal wound cylinder wound in a cylindrical shape so that the material is located, and its outer wall and the reaction vesselInner wall surfaceIt is characterized by being disposed in the reaction vessel so as to accommodate the gas adsorbing / desorbing material therebetween.
[0005]
  The gas adsorption / desorption reaction vessel of the second invention accommodates a gas adsorption / desorption material that adsorbs / desorbs gas with absorption / release of heat, and causes gas adsorption / desorption reaction with the gas adsorption / desorption material,ContainerHeat is transferred between the gas adsorption / desorption material and the outside through the wall.TubularIn the gas adsorption / desorption reaction vessel, the gas adsorption / desorption material is removed at the time of gas desorption.Said container cylinderIt has a pressing functional material that presses against the wall, and the pressing functional material is wound in a cylindrical shape so that it expands and deforms by shape memory at the time of gas desorption low temperature so that it has an expansion force that expands outward at least during gas desorption. It consists of a turned shape memory alloy winding cylinder, its outer wall and the reaction vesselInner wall surfaceIt is arrange | positioned in the said reaction container so that the said gas adsorption / desorption material may be accommodated between.
[0006]
  A gas adsorption / desorption reaction vessel according to a third aspect of the present invention is the first or second aspect, wherein the pressing functional material isGas moves with the adsorption / desorptionIt is characterized by constituting an air passage.
[0007]
  The gas adsorption / desorption reaction vessel of the fourth invention accommodates a gas adsorbing / desorbing material that adsorbs / desorbs gas with absorption / release of heat, and causes gas adsorption / desorption reaction with the gas adsorbing / desorbing material,ContainerHeat is transferred between the gas adsorption / desorption material and the outside through the wall.TubularIn the gas adsorption / desorption reaction vessel, the gas adsorption / desorption material is added when the gas is desorbed.ContainerA pressing functional material that presses against a wall, the pressing functional material comprising at least a cylinder or a column having an expanding force that expands outward when gas is desorbed, and the outer wall and the reaction vesselInner wall surfaceIs disposed in the reaction vessel so as to accommodate the gas adsorbing and desorbing material between, and the pressing functional material,Gas moves with the adsorption / desorptionAir passageTheIt is characterized by comprising.
[0008]
  A gas adsorption / desorption reaction vessel according to a fifth invention is the gas adsorption / desorption reaction vessel according to the fourth invention, wherein the pressing functional material is disposed in the reaction vessel, and the gas adsorption / desorption material is moved by its own movement or volume expansion or deformation.Container tube wallIt is characterized by being pressed against.
[0009]
  A gas adsorption / desorption reaction vessel according to a sixth aspect of the present invention comprises:4th or 5thIn the invention, the pressing function material isMade of elastic materialIt is characterized by that.
[0010]
  A gas adsorption / desorption reaction vessel according to a seventh aspect of the present invention comprises:Any of 4-6In the invention of the above, the pressing functional material,Consists of a coil spring-like wound cylinderIt is characterized by that.
[0011]
  The gas adsorption / desorption reaction vessel of the eighth invention accommodates a gas adsorption / desorption material that adsorbs / desorbs gas with absorption / release of heat and causes gas adsorption / desorption reaction with the gas adsorption / desorption material,Container tube wallHeat transfer between the gas adsorption / desorption material and the outsideTubularIn the gas adsorption / desorption reaction vessel,at leastA pressing functional material that presses the gas adsorbing / desorbing material against the heat transfer wall at the time of desorption of the gas, wherein the pressing functional material is located in the reaction vessel; and the pressing magnetic material And a joint magnetic body that causes the pressing magnetic body to press the gas adsorbing / desorbing material together so as to attract each other by magnetic force.The joint magnetic body is configured by a part of the container cylinder wall or disposed outside the container.It is characterized by that.
[0012]
  A gas adsorption / desorption reaction vessel according to a ninth aspect of the present invention comprises:8In the invention ofThe pressing magnetic body is made of a ferromagnetic cylindrical body that can be expanded in diameter.It is characterized by
[0013]
  A gas adsorption / desorption reaction vessel according to a tenth aspect of the present invention comprises:8In the invention ofThe pressing magnetic body isIt is characterized by comprising magnetic particles mixed in the gas adsorption / desorption material.
[0018]
As described above, the container of the present invention can be incorporated as a part of an apparatus such as a heating / cooling or refrigeration apparatus using gas absorption / desorption associated with gas adsorption / desorption, gas storage / purification using gas absorption / release, etc. The application is not limited to a specific one. In short, any gas absorption / desorption material may be used as long as it allows gas to be absorbed / released with heat absorption / release.
A typical example of the gas adsorption / desorption material accommodated in the reaction vessel of the present invention is a hydrogen occlusion alloy, but the main point is that gas occlusion / desorption reactions occur, resulting in absorption / release of heat. Any material can be used. For example, an adsorbent that adsorbs and desorbs gas or absorbs and releases gas by reaction can be used. That is, the gas storage includes gas adsorption and gas absorption, and the gas desorption includes gas detachment and gas release. Examples of the above-mentioned materials include activated carbon, carbon fiber, zeolite, activated alumina, etc. that can be reversibly adsorbed and desorbed, and the above-mentioned hydrogen storage as a material that can reversibly absorb and release hydrogen gas by chemical reaction. Mention may be made of alloys. The hydrogen storage alloy has the advantage that hydrogen can be efficiently absorbed and released using exhaust heat, natural energy, or the like.
[0019]
As a method of alternately performing gas occlusion and desorption, methods suitable for various materials are employed, and examples thereof include a heat drive by heating and cooling and a pressure drive method using a compressor. In the thermal drive, the gas occluded in the material can be desorbed by heating the gas adsorption / desorption material, and the gas can be occluded in the material by cooling, and in the pressure drive, the material is reduced by lowering the atmospheric pressure. The occluded gas can be desorbed, and the gas can be occluded in the material by increasing the atmospheric pressure.
[0020]
  The gas adsorption / desorption material is accommodated in the reaction vessel of the present invention so that gas can enter and exit. At this time, the gas adsorbing / desorbing material is usually accommodated in the form of a granular material, but the properties of the present invention are not particularly limited, and the material is not limited to the granular material. The reaction vessel is as in the conventional example described above.Built-in typeThe container shape is not particularly limited. The reaction vessel is usually provided with a gas introduction pipe and a discharge pipe communicating with the space containing the gas adsorbing / desorbing material so that gas can enter and exit. In addition, the reaction vessel needs to be configured so that heat absorption / dissipation resulting from the adsorption / desorption in the material can be exchanged with the heat medium, or heat can be given to the gas adsorption / desorption material from the outside.There is a container tube wallWith heat transfer wallsBecome.
[0021]
And in the storage container of this invention, it has a pressing functional material which presses a gas adsorption / desorption material to a heat-transfer wall at the time of desorption of gas.
This pressing function material does not always require the gas adsorbing / desorbing material to be pressed against the heat transfer wall, and at least exhibits a pressing function when the gas adsorbing / desorbing material is desorbed. I just need it. The gas adsorbing / desorbing material pressed against the heat transfer wall by this pressing reliably contacts the heat transfer wall, and the heat transfer efficiency with the heat transfer wall is improved. The pressing of the gas adsorption / desorption material at this time is not limited as long as the contact efficiency with the heat transfer wall is improved as compared with the case where there is no pressing, and the degree of pressing is not particularly limited. In addition to the function of pressing the gas adsorbing / desorbing material, the pressing function material must be capable of allowing the gas adsorbing / desorbing material to expand. For this reason, the pushing function material should just be what has a pushing function only at the time of gas desorption, or a pushing function increases at the time of gas desorption. In addition, if a pressing function material having a pressing function smaller than the expansion force of the gas adsorption / desorption material is used, the gas adsorption / desorption material is allowed to expand even if the pressing function is always applied. That is, in order to allow expansion of the gas adsorbing / desorbing material, it is sufficient if the pressing function is canceled or the expansion force is superior to the pressing action during expansion.
[0022]
  The pressing function material is not particularly limited as long as it acts on the gas adsorption / desorption material and pushes it to the heat transfer wall side.
  For example, there is one that exerts a pressing function with its own volume expansion, movement, and deformation. As what has such an effect | action, what utilizes the elastic deformation force of a pressing functional material can be considered. This elastic deformation force is normally exerted at all times, and requires an elastic force sufficient to press the gas adsorbing / desorbing material volume-contracted by gas desorption onto the heat transfer wall. On the other hand, at the time of gas adsorption of the gas adsorbing / desorbing material, it is necessary that the expansion force of the gas adsorbing / desorbing material overcomes the elastic deformation force so that the gas adsorbing / desorbing material is allowed to expand.
  As materials that use elastic deformation force, plate materials are wound into a cylindrical shape and coil spring shapes, or highly elastic materials in a cylindrical shape or a column shape are placed in a reaction vessel.What you didCan be mentioned. These may be accommodated in the reaction container together with the gas adsorbing / desorbing material in an elastically deformed state and exhibit a pressing function by its restoring force (elastic deformation force).
[0023]
In addition, it is necessary to press the gas adsorbing / desorbing material at a time when the gas is desorbed from the material, that is, when heat is generated (in a low temperature state). It is also possible to use a pressing function material that is deformed at a low temperature and generates a pressing action. As such a pressing function material, a material using a shape memory alloy or bimetal is shown.
[0024]
The shape memory alloy memorizes the shape in which the gas adsorbing / desorbing material volume-shrinked at low temperatures is pressed against the heat transfer wall. When the shape memory alloy is accommodated in the reaction vessel, the shape memory alloy may be deformed by elastic deformation or plastic deformation according to the expansion of the gas adsorption / desorption material. This elastic deformation or plastic deformation is required to be deformable by the expansion force of the gas adsorption / desorption material. The shape memory alloy absorbs heat from the gas adsorbing / desorbing material when the gas is desorbed, and the temperature is lowered. Therefore, the shape memory alloy is deformed to the previously memorized shape, and the heat-adhering wall is reliably pressed against the gas shrinking / desorbing material whose volume has shrunk . On the other hand, when the gas adsorption / desorption material expands due to gas adsorption, the shape memory alloy is deformed by the expansion force, and gas adsorption and material expansion proceed. It is also possible to use a material (bidirectional shape memory alloy) in which the shape at a high temperature is memorized in accordance with the temperature at the time of gas adsorption. According to this, the stress that hinders the expansion of the material is not applied to the gas adsorption / desorption material, or can be reduced as much as possible. The shape memory alloy can have various shapes, for example, it can be formed into a wound tubular body capable of expanding and reducing the diameter.
[0025]
The bimetal is a laminate of materials having different coefficients of thermal expansion. In the present invention, the bimetal is deformed by utilizing the temperature change between gas adsorption and gas desorption in the gas adsorbing and desorbing material. Get a guessing function. At this time, the deformation in a low temperature environment at the time of gas desorption may be used as a reference. In other temperature ranges, it is optimal to be deformed according to temperature changes to match the expansion of the gas adsorbing / desorbing material, but the bimetal is elastically deformed by this expansion force when the gas adsorbing / desorbing material expands. There may be. Although the bimetal can also have various shapes, a wound tubular body capable of expanding and reducing the diameter can be exemplified.
[0026]
  Furthermore, in addition to the pressing function material being caused by its own elasticity and deformation as described above, the pressing function material may exhibit a pressing function in cooperation with two or more types of members. Those using power can be used. In this case, one having one as a magnet and the other as a magnetic material, and the other having both as magnets can be mentioned. These magnets and magnetic bodies may constitute all of the pressing functional material, or may constitute a part of the pressing functional material. In short, collaboratePushThe contact function materials attract each other by magnetic forceFishIf it is. The shape of the pressing functional material to be jointed is not particularly limited, and both of them may be movable, or only one of them may be movable, and is usually composed of a pressing magnetic body and a joint magnetic body. By making the pressing magnetic body movable, the gas adsorption / desorption material can be pressed against the heat transfer wall. A magnet, a magnetic body, or a pressing functional material including these can be arranged as a structure such as a cylindrical wound body that can be expanded or reduced in diameter or a floating body such as a granular body. Further, the paired joint magnetic bodies are constituted by a part of the reaction vessel or disposed outside the reaction vessel.
[0027]
According to the present invention, since the gas adsorbing / desorbing material is accommodated in the storage container and the pressing function material is disposed, the pressing function material acts at least when the gas is desorbed, and the volume contracts. The gas adsorbing / desorbing material is reliably pressed against the heat transfer wall, and the heat transfer between the gas adsorbing / desorbing material and the heat transfer wall is kept good. Further, during gas adsorption, expansion of the gas adsorption / desorption material is allowed, and gas adsorption is also efficiently performed.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
Below, one Embodiment of this invention is described based on FIGS. 1-4.
In this embodiment, the reaction vessel is composed of the tube 1 and the tube wall of the tube 1 constitutes a heat transfer wall. As shown in FIG. 4, a plurality of the tubes 1 are arranged side by side, one end is closed and the other end is connected to the hollow header 2, and the tubes 1... The plurality of plate fins 4... 4 are penetrated and fixed to the plate fins 4. The hollow header 2 is attached with a hydrogen gas moving pipe 5 communicating with the inside. In this embodiment, the heat exchanger is configured as described above.
As shown in FIG. 1, a through-cylinder 6 is coaxially provided inside the tube 1, and the through-cylinder 6 is composed of three layers. The innermost layer of the through-cylinder 6 is provided with a coil spring-like winding cylinder 7 formed by bending a sheet material made of a metal mesh or punching metal into a cylindrical shape, and the winding cylinder 7 constitutes a pressing functional material. Has been. The winding cylinder 7 is processed so that it expands when no load is applied and both edges are opened, and both edges can be closed by elastic deformation to have a circular cross section. Bending pieces 7a and 7a bent inward are formed along the axial direction at both edges of the winding cylinder 7. When both edges are closed, the bending pieces 7a and 7a face each other. And overlap. When assembling the tube 1, a temporary fastening clip 10 is attached to prevent the elastic deformation (expansion) of the wound cylinder 7 by sandwiching the bent pieces 7 a and 7 a overlapped from both sides as shown in FIG. 2.
[0029]
Further, on the outer layer of the wound cylinder 7 in the through-cylinder 6 is disposed a wound cylinder 8 that is formed by bending a plate material made of a metal mesh or punching metal into a cylindrical shape. The wound tubular body 8 is formed so that both edges are substantially joined to form a circular cross section when no load is applied, and can be expanded in diameter by elastic deformation. Note that both edges of the winding cylinder 8 are fitted so as to be located on opposite sides of the both edges of the winding cylinder 7, and the elastic force (in the diameter-enlarging direction) of the winding cylinder 7 is the same as that of the winding cylinder 8. It is larger than the elastic force (diameter reduction direction). Therefore, when there is no load, the winding cylinders 7 and 8 are expanded in diameter by the elastic force of the winding cylinder 7.
Furthermore, the outer layer of the wound cylinder 8 is covered with a stretchable cloth 9, which blocks a hydrogen storage alloy powder, which will be described later, and the interior of the cloth 9 while maintaining air permeability.
[0030]
After the provisional fastening clip 10 is attached to the through-cylinder 6 and accommodated in the tube 1, a hydrogen storage alloy powder as a gas adsorbing / desorbing material is inserted into the space between the outer circumferential side of the through-cylinder 6 and the inner circumferential side of the tube 1. Fill. At this time, the hydrogen storage alloy is accommodated in such a way that a gap remains in the space in consideration of the expansion of the hydrogen storage alloy. And after accommodating hydrogen storage alloy powder, the above-mentioned temporary fix clip 10 is removed and it removes from the inside of the tube 1. The winding cylinder body 7 from which the temporary fixing clip 10 is removed overcomes the contraction elastic force of the winding cylinder body 8 by its expansion elastic force and expands its diameter. As a result, the hydrogen storage alloy accommodated in the space is pressed against the inner wall 1a (heat transfer wall) of the tube 1 without a gap.
[0031]
In this embodiment, two heat exchangers are prepared, and hydrogen gas is moved between the heat exchangers by a pressure driving device provided between the two heat exchangers (not shown).
When hydrogen gas is fed into the hollow header 2 through the hydrogen gas moving pipe 5 by the pressure driving, the hydrogen reaches the tubes 1 from the header 2 and moves in the axial direction through the vent pipe 6. It moves radially through the bodies 7, 8 and the stretchable cloth 9. By introducing this hydrogen, the hydrogen pressure in the tube 1 rises, and hydrogen is occluded in the hydrogen storage alloy. The hydrogen storage alloy expands due to the storage of hydrogen and presses the vent pipe 6 toward the inner peripheral side. The compression force and the contraction force of the winding cylinder 8 are combined to overcome the expansion force of the winding cylinder 7 and reduce the diameter of the through cylinder 6. In this diameter reduction, since the diameter reducing operation by the winding cylinder 8 is added, the deformation is made smoothly. Also at this time, since the urging force is applied to the hydrogen storage alloy by the winding cylinder 7, the alloy is tightly filled between the vent pipe 6 and the tube 1 as shown in the left side of FIG. It is in a state and is in close contact with the inner wall 1a of the tube 1 which is a heat transfer wall. At this time, the hydrogen storage alloy generates heat due to the storage of hydrogen, and the heat is transferred to the inner wall 1a of the tube 1 and transferred to the outside as it is or to the plate fin 4 to be transferred to an external heat medium (air or the like). In the heat transfer, since the hydrogen storage alloy is in reliable contact with the inner wall of the tube, heat is reliably and efficiently transferred from the hydrogen storage alloy to the tube wall. The heat is exhausted as exhaust heat or used as heat for heating such as heating.
[0032]
On the other hand, when releasing the hydrogen stored in the hydrogen storage alloy, if it is sucked by the pressure driving device, the hydrogen is released from the hydrogen storage alloy by the negative pressure, and the vent pipe 6, the hollow header 2, and the hydrogen gas moving pipe 5 are opened. Hydrogen moves to the outside through. In the hydrogen storage alloy, as the hydrogen is released, the hydrogen storage alloy contracts and the volume decreases, but the pressure on the through cylinder 6 is released by the volume decrease. As a result, in the vent pipe 6, as shown in the right side of FIG. 3, the expansion elastic force of the winding cylinder body 7 exceeds the reduced diameter elastic force of the winding cylinder body 8, and the diameter of the ventilation pipe 6 is increased. Press against the inner wall 1a of the tube 1. Further, in the hydrogen release, heat absorption occurs, and heat exchange is performed with the external heat medium via the plate fin 4 and the inner wall 1a of the tube 1, but as described above, the hydrogen storage alloy is transferred to the inner wall 1a of the tube 1. Because of the close contact, the heat transfer of the cold heat is also made efficient. This cold heat can be used for cooling, freezing and the like.
[0033]
(Embodiment 2)
Next, another embodiment will be described with reference to FIG. In this embodiment, instead of the winding cylinders 7 and 8 in the first embodiment, a pressing functional material made of a bimetal winding cylinder 15 is used. This bimetal wound cylinder 15 is obtained by bonding two kinds of plate materials made of wire mesh or punching metal to the inner and outer layers, and uses a material having a smaller linear expansion coefficient than the outer layer side plate material 15b for the inner layer side plate material 15a. . The bimetallic wound cylinder 15 changes in diameter (small to large) according to a temperature change (high temperature to low temperature) due to hydrogen absorption / release in the hydrogen storage alloy, and has an intermediate diameter at room temperature. Note that the outer layer of the bimetal wound cylinder 15 is covered with a stretchable cloth 9 as in the above-described embodiment to form a cylinder 16.
When the tube 1 is assembled, the above-described cylinder 16 is inserted and disposed in the tube 1 as it is. Since the operation of the cylinders 16 is performed at room temperature, the bimetal wound cylinder 15 has an intermediate size (diameter). Therefore, a temporary fixing clip is used as in the first embodiment. There is no need, and the arrangement work can be easily performed.
After the through cylinder 16 is accommodated in the tube 1, the space between the outer periphery of the through cylinder 16 and the inner periphery of the tube 1 is filled with hydrogen storage alloy powder. At this time, the accommodation amount in the space is determined in consideration of the diameter expansion and contraction of the bimetal wound cylinder 15 and the contraction and expansion of the hydrogen storage alloy. Usually, since the expansion of the hydrogen storage alloy is larger than the contraction of the bimetal cylinder 15, the hydrogen storage alloy is accommodated while leaving some gaps when accommodated at room temperature.
[0034]
In the heat exchanger, hydrogen is introduced or discharged in the same manner as in the first embodiment. At the time of hydrogen discharge, hydrogen stored in the hydrogen storage alloy is released, and heat is generated in the hydrogen storage alloy. Although the hydrogen storage alloy shrinks in volume due to the release of hydrogen, the inside of the tube becomes low temperature due to the above-mentioned heat absorption, and diameter expansion deformation occurs in the bimetal wound cylinder 15. The hydrogen storage alloy is pressed against the inner wall of the tube 1 as shown in the right side of FIG. 5 by setting the capacity of the bimetal material and the hydrogen storage alloy so as to expand beyond the volume shrinkage. Heat is reliably and efficiently transferred between the wall of the tube 1 and the hydrogen storage alloy.
On the other hand, when hydrogen is introduced, hydrogen is stored in the hydrogen storage alloy, and the hydrogen storage alloy expands. In addition, since heat is released due to the occlusion of hydrogen and the temperature rises, the bimetallic cylindrical body 15 is deformed by a reduced diameter due to a difference in thermal expansion coefficient between the inner and outer layers. By setting the expansion so as to exceed this reduced diameter, the hydrogen storage alloy is tightly accommodated in the space between the vent pipe 16 and the tube 1 as shown in the left side of FIG. Since the hydrogen storage alloy contacts the inner wall of the tube 1 with certainty, heat is reliably and efficiently transferred from the hydrogen storage alloy to the wall of the tube 1.
[0035]
(Embodiment 3)
Furthermore, another embodiment is described based on FIG.
In this embodiment, a shape memory alloy winding cylinder 20 made of a shape memory alloy is used as the pressing function material instead of the bimetal winding cylinder 15 in the second embodiment. Other configurations are the same as those of the second embodiment. This shape memory alloy tubular body 20 is formed by winding a sheet of metal mesh or punching metal into a cylindrical shape, and is expanded in a low temperature state when hydrogen is released by the hydrogen storage alloy. The shape is memorized, and at room temperature, the hydrogen storage alloy is formed into a small diameter so as to match the expanded state. In addition, the shape memory alloy wound tubular body 20 has a soft property to such an extent that it can be plastically deformed (reduced diameter) by the expansion of the hydrogen storage alloy. The outer layer of the shape memory alloy tubular body 20 is covered with the stretchable cloth 9 in the same manner as in the above-described embodiments to form a cylinder 21.
When the tube 1 is assembled, the small-diameter through cylinder 21 is inserted and arranged in the tube 1 as it is. Further, the space between the outer peripheral portion of the through cylinder 21 and the inner peripheral portion of the tube 1 is filled with hydrogen storage alloy powder as a gas adsorption / desorption material. At this time, a gap is left in the space in consideration that the hydrogen storage alloy stores hydrogen and expands.
[0036]
In the heat exchanger, hydrogen is introduced or discharged in the same manner as in the first embodiment, and hydrogen is absorbed and released by the hydrogen storage alloy. At the time of hydrogen release, the hydrogen storage alloy absorbs heat while shrinking in volume, but the inside of the tube 1 becomes low temperature due to heat absorption, and the shape memory alloy wound body 20 undergoes diameter expansion deformation so as to return to the memorized shape. By balancing the volume shrinkage and the diameter expansion deformation, the hydrogen storage alloy can be pressed against the inner wall of the tube 1 as shown in the right side of FIG. 6, and heat is generated between the wall of the tube 1 and the hydrogen storage alloy. It can be transmitted reliably and efficiently.
On the other hand, at the time of hydrogen storage, the hydrogen storage alloy dissipates heat while expanding and the temperature rises. The shape memory alloy wound tubular body 20 is pressed by the expanding hydrogen storage alloy, and undergoes a diameter reduction deformation by plastic deformation. Accordingly, as shown in the left side of FIG. 6, the hydrogen storage alloy is tightly accommodated in the space between the vent pipe 21 and the tube 1, and the heat generated by the hydrogen storage alloy is reliably transferred from the hydrogen storage alloy to the inner wall of the tube. And transmitted efficiently.
In this embodiment, the shape memory alloy wound tubular body is plastically deformed when the hydrogen storage alloy is expanded. However, an elastically deformable one can be used, and further, in the high temperature environment during the expansion. A bi-directional shape memory alloy in which a shape having a small diameter is memorized can also be used. According to this, the hydrogen storage alloy can be further easily expanded.
[0037]
(Embodiment 4)
Still another embodiment will be described with reference to FIG.
In this embodiment, the highly elastic air-permeable column 25 is used as the pressing function material. This highly elastic air-permeable column 25 is made of a highly elastic material such as rubber that has a low elastic coefficient and can be easily volume-expanded and contracted by the expansion and contraction force of the hydrogen-absorbing alloy. It has a woven shape, a cotton shape or the like so as to have air permeability. The outer layer of the highly elastic air-permeable column body 25 is covered with the stretchable cloth 9 in the same manner as in each of the above-described embodiments to form the air passage 26.
This highly elastic air-permeable column body 25 is accommodated in the tube 1 in the same manner as in the above embodiment, and a hydrogen storage alloy is accommodated between the air passage 26 and the tube 1. At this time, the hydrogen-absorbing alloy is accommodated by pushing the high-elasticity air-permeable column body into a space that does not have a gap and is slightly contracted.
[0038]
When this heat exchanger is used in the same manner as in the above embodiment, the hydrogen storage alloy expands and compresses the highly elastic air-permeable column 25 during the storage of hydrogen, so that the highly elastic air permeability is shown in the left side of FIG. The column 25 further contracts. The hydrogen storage alloy is also in close contact with the inner wall of the tube 1 due to the elastic force of the highly elastic air-permeable column 25, so that heat is efficiently exchanged between the hydrogen storage alloy and the tube 1 wall. On the other hand, although the hydrogen storage alloy contracts when hydrogen is released, the highly elastic air-permeable column 25 is expanded and deformed by elastic force (restoration deformation) as shown in the right side of FIG. The hydrogen storage alloy adheres to the inner wall of the tube. At this time, even when the hydrogen storage alloy is most contracted in volume, since the elastic force of the highly elastic air-permeable column 25 is applied to the hydrogen storage alloy, the hydrogen storage alloy is reliably in contact with the wall of the tube 1. . Therefore, even when hydrogen is released, heat is efficiently transferred between the hydrogen storage alloy and the tube wall.
[0039]
(Embodiment 5)
Still another embodiment will be described with reference to FIG.
In this embodiment, the elastic hollow cylinder 30 is used as the pressing function material. The elastic hollow cylinder 30 is formed into a cylinder with an elastic material such as rubber that has a low elastic coefficient and can be easily expanded and contracted by the expansion and contraction force of the hydrogen storage alloy. A breathable sheet 31 made of a net, punching metal, continuous foam or the like is wound around the outer layer of the elastic hollow cylinder so as to follow the expansion and contraction of the elastic hollow body. The outer cylinder 31 is covered with a stretchable cloth 9 to form a through cylinder 32. In the through cylinder 32, an air passage is secured by the air permeable sheet 31 on the outer peripheral side of the elastic hollow cylinder 30.
[0040]
The through cylinder 32 is housed in the tube 1 in the same manner as in the above embodiment, and a hydrogen storage alloy is housed between the through cylinder 32 and the tube 1. At this time, the hydrogen storage alloy is pushed in and filled to such an extent that there is no gap in the space and the elastic hollow cylinder 30 is somewhat reduced in diameter. When the tube 1 is used as a heat exchanger, the hydrogen storage alloy expands during the storage of hydrogen, and compresses the elastic hollow cylinder 30 to reduce its diameter, as in the above embodiment. The hydrogen storage alloy is in close contact with the inner wall of the tube 1 due to the elastic force of the elastic hollow cylinder 30 as shown in the left side of FIG. 8, so that heat can be efficiently exchanged between the hydrogen storage alloy and the wall of the tube 1. Made. On the other hand, when the hydrogen is released, as shown in the right side of FIG. 8, the hydrogen storage alloy contracts, but the elastic hollow cylinder 30 is expanded and deformed by the elastic force, and the hydrogen storage alloy is tubed without generating a gap in the space. 1 Press against the inner wall. Therefore, even when hydrogen is released, heat is efficiently transferred between the hydrogen storage alloy and the tube wall.
[0044]
(Embodiment6)
  Furthermore, other embodiments are illustrated.9Based on
  In this embodiment, the tube 100 is made of a ferromagnetic material, and a ferromagnetic winding tube 45 formed by winding a metal mesh or a punching metal plate material made of a ferromagnetic material is used as a pressing function material. The ferromagnetic cylinder 45 constitutes a pressing magnetic body. The ferromagnetic wound body 45 is covered with the stretchable cloth 9 on its outer layer to form a through cylinder 46, and the through cylinder 46 is disposed in the tube 100.
  The cylinder 46 has a size (diameter) substantially commensurate with the filling amount of the expanded hydrogen storage alloy in the state of being disposed in the tube 100. A hydrogen storage alloy is accommodated between the cylinder 46 and the tube 100. At this time, a space is secured in the space in consideration of expansion of the hydrogen storage alloy. This gap is determined such that when the hydrogen storage alloy expands, the space is filled with the hydrogen storage alloy, and the gap is determined to a degree such that the expanded hydrogen storage alloy presses the through-cylinder 46. .
[0045]
  When this tube is used as a heat exchanger, as in the above embodiment, the hydrogen storage alloy expands during the storage of hydrogen and fills the gaps in the space to become a dense state. At this time, the elastic force of the ferromagnetic cylindrical body 45 is also obtained.9As shown in the left side view, the hydrogen storage alloy is in close contact with the inner wall of the tube 1, and heat is efficiently exchanged between the hydrogen storage alloy and the tube wall. On the other hand, when hydrogen is released, a magnetic force is applied from the outside of the tube with a permanent magnet or an electromagnet to magnetize the tube 100 and the ferromagnetic wound body 45. The magnetized tube 100 attracts each other as a joint magnetic body with the ferromagnetic winding cylinder 45, and as a result, the ferromagnetic winding cylinder 45 undergoes a diameter expansion deformation. The hydrogen storage alloy shrinks when hydrogen is released.9As shown in the right side view, the ferromagnetic coil 45 is expanded and deformed, so that the hydrogen storage alloy is pressed against the inner wall of the tube 100 without a gap in the space, and between the hydrogen storage alloy and the tube wall. Heat is transferred efficiently.
  In the above, a magnetic force is applied from the outside of the tube only when hydrogen is released, but a magnetic force may be applied constantly. Further, the tube itself may generate a magnetic force.
[0046]
(Embodiment7)
  Still another embodiment is illustrated.10Based on
In this embodiment, the embodiment as a pressing functional material6The magnetic particle material 50 is dispersed and mixed in the hydrogen storage alloy instead of the cylindrical magnetic body in FIG. The magnetic particle material 50 is a rigid particle made of a ferromagnetic material.
  The tube 100 is made of a ferromagnetic material as in the above-described embodiment, and the tube 100 is made of a ventilation material such as a net or a punching metal, and has a ventilation tube 60 with a cloth 90 around it. The mixture of the hydrogen storage alloy powder and the magnetic particle material 50 is filled between the ventilation tube 60 and the inner wall of the tube 100. At this time, in consideration of expansion of the hydrogen storage alloy, filling is performed so that a gap remains in the space.
[0047]
When this tube is used as a heat exchanger, as in the above embodiment, the hydrogen storage alloy expands during the storage of hydrogen and closes the space so as to be in a dense state. The hydrogen storage alloy is in close contact with the inner wall of the tube 1, and heat is efficiently exchanged between the hydrogen storage alloy and the tube wall. On the other hand, when releasing hydrogen, a magnetic force is applied from the outside of the tube 100 with a permanent magnet or an electromagnet to magnetize the tube 100 and the magnetic particle material 50. The magnetized tube 100 and the magnetic particle material 50 attract each other. As a result, the magnetic particle material 50 is attracted to the inner wall side of the tube 100 together with the surrounding hydrogen storage alloy. When the hydrogen is released, the hydrogen storage alloy shrinks, but as described above, the hydrogen storage alloy is attracted to the inner wall side of the tube 100, so that the hydrogen storage alloy is pressed against the inner wall of the tube 100. Heat is efficiently transferred between the two. In this embodiment as well, the magnetic force may be constantly applied not only when hydrogen is released. Further, it is possible to eliminate the need for external magnetic force by configuring the magnetic particle material 50 with a permanent magnet.
[0050]
In each of the above-described embodiments, the hydrogen storage alloy is used as the gas adsorbing / desorbing material. However, the present invention is not limited to this, and the gas adsorbing / desorbing material is adsorbed / desorbed. The gas is not limited to hydrogen gas.
In each of the above embodiments, a heat exchanger that uses heat by utilizing gas adsorption / desorption has been described. However, the application of the present invention is not limited to this, and the main point is a gas adsorption / desorption material. Can be widely applied to devices in which gas is adsorbed and desorbed with absorption and release of heat.
In each of the above embodiments, the case where gas is adsorbed / desorbed by pressure driving has been described. However, as a matter of course, in the present invention, gas is absorbed by transferring heat from a heat medium to a gas adsorbing / desorbing material through a heat transfer wall. The desorption material may be of a heat drive that promotes gas adsorption / desorption.
[0051]
【The invention's effect】
As described above, according to the gas adsorption / desorption reaction vessel of the present invention, since the gas adsorption / desorption material is pressed against the heat transfer wall at the time of gas desorption, the gas shrinks in volume by desorption of the gas. It enables efficient heat transfer between the adsorption / desorption material and the heat transfer wall. As a result, the gas absorption / desorption reaction can be caused at an expensive rate, and the heat / cold heat generated / absorbed can be transmitted to the outside. Therefore, the cycle in the batch process is shortened, so that the amount of adsorbent can be greatly reduced. Therefore, the container can be made compact, energy loss can be reduced, and the installation space can be reduced.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of an embodiment of the present invention.
FIG. 2 is a front sectional view of the same.
FIG. 3 is a front sectional view showing the hydrogen absorption / release operation.
FIG. 4 is a perspective view of the heat exchanger.
FIG. 5 is a front sectional view showing a hydrogen absorption / release operation according to another embodiment of the present invention.
FIG. 6 is a front sectional view showing a hydrogen absorption / release operation in still another embodiment.
FIG. 7 is a front sectional view showing a hydrogen absorption / release operation in still another embodiment.
FIG. 8 is a front sectional view showing a hydrogen absorption / release operation in still another embodiment.
[Figure9FIG. 10 is a front sectional view showing hydrogen absorption / release operation in still another embodiment.
[Figure10FIG. 10 is a front sectional view showing hydrogen absorption / release operation in still another embodiment.
[Figure11FIG. 10 is a front sectional view showing the hydrogen absorption / release operation in a conventional reaction vessel.
[Explanation of symbols]
    1 tube
    1a inner wall
    2 Hollow header
    4 Plate fin
    5 Hydrogen gas transfer pipe
    6 cylinders
    7 Rolled cylinder
    8 winding cylinder
    9 Stretch cloth
  10 Temporary clip
  15 Bimetal cylinder
  16 cylinders
  20 Shape Memory Alloy Winding Body
  21 cylinders
  25 High elasticity breathable column
  26 Airway
  30 Elastic hollow cylinder
  32 cylinders
45 Ferromagnetic cylinder
  46 cylinders
  50 Magnetic granules
60 Vent pipe
  90 cross
100 tubes

Claims (10)

吸放熱を伴ってガスを吸脱着するガス吸脱着材料を収容して、該ガス吸脱着材料でガスの吸脱着反応を生じさせるとともに、容器筒壁を通して該ガス吸脱着材料と外部との間で熱の伝達を行う筒状のガス吸脱着反応容器において、ガスの脱着時に前記ガス吸脱着材料を前記容器筒壁に押し当てる押当て機能材を有し、該押当て機能材が、少なくともガス脱着時に外側に拡がる拡張力を有するように、内外層で線膨張率が異なり、内層側に線膨張率が小さい材料が位置するように筒状に巻回されたバイメタル巻筒体からなり、その外壁と前記反応容器筒壁内面との間にガス吸脱着材料を収容するように反応容器内に配置されていることを特徴とするガス吸脱着反応容器。The gas with the absorbing heat houses the gas adsorption and desorption material desorbed, with resulting adsorption-desorption reaction of gases in the gas adsorption and desorption material, between through the container tubular wall between the gas adsorption and desorption material and external In a cylindrical gas adsorption / desorption reaction vessel that transfers heat, the gas adsorption / desorption material has a pressing function material that presses the gas adsorption / desorption material against the container cylinder wall at the time of gas desorption. The outer wall consists of a bimetallic cylinder wound in a cylindrical shape so that a material with a low linear expansion coefficient is located on the inner layer side so that the inner and outer layers have different expansion coefficients so that they sometimes have an expansion force that spreads outward. A gas adsorption / desorption reaction container, which is disposed in the reaction container so as to accommodate a gas adsorption / desorption material between the inner wall of the reaction container and the inner wall of the reaction container. 吸放熱を伴ってガスを吸脱着するガス吸脱着材料を収容して、該ガス吸脱着材料でガスの吸脱着反応を生じさせるとともに、容器筒壁を通して該ガス吸脱着材料と外部との間で熱の伝達を行う筒状のガス吸脱着反応容器において、ガスの脱着時に前記ガス吸脱着材料を前記容器筒壁に押し当てる押当て機能材を有し、該押当て機能材が、少なくともガス脱着時に外側に拡がる拡張力を有するように、ガス脱着低温時に形状記憶によって拡径変形するように筒状に巻回された形状記憶合金巻筒体からなり、その外壁と前記反応容器筒壁内面との間に前記ガス吸脱着材料を収容するように前記反応容器内に配置されていることを特徴とするガス吸脱着反応容器。A gas adsorbing and desorbing material that absorbs and desorbs gas with absorption and release of heat is accommodated, and a gas adsorbing and desorbing reaction is caused by the gas adsorbing and desorbing material, and between the gas adsorbing and desorbing material and the outside through the container cylinder wall In a cylindrical gas adsorption / desorption reaction vessel that transfers heat, the gas adsorption / desorption material has a pressing function material that presses the gas adsorption / desorption material against the container cylinder wall at the time of gas desorption. It consists of a shape memory alloy wound tubular body wound in a cylindrical shape so as to expand and deform by shape memory at the time of gas desorption at a low temperature so as to have an expansion force that sometimes expands outward, and its outer wall and the inner surface of the reaction vessel cylindrical wall A gas adsorption / desorption reaction vessel, which is disposed in the reaction vessel so as to accommodate the gas adsorption / desorption material therebetween. 前記押当て機能材が、前記吸脱着に伴ってガスが移動する通気路を構成していることを特徴とする請求項1または2に記載のガス吸脱着反応容器。The gas adsorption / desorption reaction container according to claim 1 or 2, wherein the pressing function material constitutes an air passage through which gas moves in accordance with the adsorption / desorption. 吸放熱を伴ってガスを吸脱着するガス吸脱着材料を収容して、該ガス吸脱着材料でガスの吸脱着反応を生じさせるとともに、容器筒壁を通して該ガス吸脱着材料と外部との間で熱の伝達を行う筒状のガス吸脱着反応容器において、ガスの脱着時に前記ガス吸脱着材料を前記容器筒壁に押し当てる押当て機能材を有し、該押当て機能材が、少なくともガス脱着時に外側に拡がる拡張力を有する筒体または柱体からなり、その外壁と前記反応容器筒壁内面との間に前記ガス吸脱着材料を収容するように前記反応容器内に配置されているとともに、該押当て機能材が、前記吸脱着に伴ってガスが移動する通気路構成していることを特徴とするガス吸脱着反応容器。The gas with the absorbing heat houses the gas adsorption and desorption material desorbed, with resulting adsorption-desorption reaction of gases in the gas adsorption and desorption material, between through the container tubular wall between the gas adsorption and desorption material and external In a cylindrical gas adsorption / desorption reaction vessel that transfers heat, the gas adsorption / desorption material has a pressing function material that presses the gas adsorption / desorption material against the container cylinder wall at the time of gas desorption. It is composed of a cylinder or a column having an expansion force that sometimes expands outward, and is disposed in the reaction vessel so as to accommodate the gas adsorption / desorption material between the outer wall and the inner surface of the reaction vessel cylinder wall , A gas adsorption / desorption reaction vessel, wherein the pressing functional material constitutes a vent passage through which gas moves in accordance with the adsorption / desorption. 前記押当て機能材が前記反応容器内に配置され、それ自身の移動または体積膨張もしくは変形によって前記ガス吸脱着材料を前記容器筒壁に押し当てることを特徴とする請求項4記載のガス吸脱着反応容器。5. The gas adsorption / desorption according to claim 4, wherein the pressing function material is disposed in the reaction vessel, and the gas adsorption / desorption material is pressed against the vessel cylinder wall by its own movement, volume expansion or deformation. Reaction vessel. 前記押当て機能材が、弾性材からなることを特徴とする請求項4または5に記載のガス吸脱着反応容器。  The gas adsorption / desorption reaction container according to claim 4 or 5, wherein the pressing function material is made of an elastic material. 前記押当て機能材が、コイルバネ状巻筒体からなることを特徴とする請求項4〜6のいずれかに記載のガス吸脱着反応容器。  The gas adsorption / desorption reaction container according to any one of claims 4 to 6, wherein the pressing function material is formed of a coil spring-like wound cylindrical body. 吸放熱を伴ってガスを吸脱着するガス吸脱着材料を収容して、該ガス吸脱着材料でガスの吸脱着反応を生じさせるとともに、容器筒壁を通して該ガス吸脱着材料と外部との間で熱の伝達を行う筒状のガス吸脱着反応容器において、少なくともガスの脱着時に前記ガス吸脱着材料を前記伝熱壁に押し当てる押当て機能材を有し、前記押当て機能材が、前記反応容器内に位置する押当て磁性体と、該押当て磁性体と磁力で引き寄せ合うように作用し合って前記押当て磁性体に前記ガス吸脱着材料の押当てを行わせる共同磁性体とからなり、該共同磁性体が、容器筒壁の一部で構成され、または容器外に配置されるものであることを特徴とするガス吸脱着材料反応容器。A gas adsorbing and desorbing material that absorbs and desorbs gas with absorption and release of heat is accommodated, and a gas adsorbing and desorbing reaction is caused by the gas adsorbing and desorbing material, and between the gas adsorbing and desorbing material and the outside through the container cylinder wall In a cylindrical gas adsorption / desorption reaction vessel for transferring heat, at least when the gas is desorbed, the gas adsorption / desorption material is pressed against the heat transfer wall, and the pressing function material is the reaction composed of a magnetic material Pushing located within the vessel, and co-magnetic to perform the pushing of the gas adsorption and desorption material in the magnetic Te said pressing with each other act to mutually attracted by pressing against the magnetic body and the magnetic force A gas adsorbing / desorbing material reaction vessel , wherein the joint magnetic body is constituted by a part of a container cylinder wall or disposed outside the container. 前記押当て磁性体が、拡径変形可能な強磁性巻筒体からなることを特徴とする請求項8記載のガス吸脱着反応容器。  9. The gas adsorption / desorption reaction vessel according to claim 8, wherein the pressing magnetic body is made of a ferromagnetic cylindrical body capable of expanding and deforming. 前記押当て磁性体が、前記ガス吸脱着材料中に混入された磁性粒体からなることを特徴とする請求項8記載のガス吸脱着反応容器。  The gas adsorption / desorption reaction vessel according to claim 8, wherein the pressing magnetic body is made of magnetic particles mixed in the gas adsorption / desorption material.
JP26363299A 1999-09-17 1999-09-17 Gas adsorption / desorption reaction vessel Expired - Fee Related JP4484987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26363299A JP4484987B2 (en) 1999-09-17 1999-09-17 Gas adsorption / desorption reaction vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26363299A JP4484987B2 (en) 1999-09-17 1999-09-17 Gas adsorption / desorption reaction vessel

Publications (2)

Publication Number Publication Date
JP2001082697A JP2001082697A (en) 2001-03-30
JP4484987B2 true JP4484987B2 (en) 2010-06-16

Family

ID=17392209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26363299A Expired - Fee Related JP4484987B2 (en) 1999-09-17 1999-09-17 Gas adsorption / desorption reaction vessel

Country Status (1)

Country Link
JP (1) JP4484987B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3738696B2 (en) * 2001-03-21 2006-01-25 トヨタ自動車株式会社 Method for promoting adsorption or release of fuel gas in adsorbent
JP4803573B2 (en) * 2005-03-16 2011-10-26 株式会社日本製鋼所 Heat transfer device
AU2005336050B2 (en) * 2005-08-31 2011-01-06 Coldway Thermochemical reactor for a cooling and/or heating apparatus
JP4821235B2 (en) * 2005-09-29 2011-11-24 カシオ計算機株式会社 Reactor
CN103052853B (en) * 2010-08-05 2016-03-30 富士通株式会社 Adsorption type heat pump
JP6094164B2 (en) * 2012-11-16 2017-03-15 株式会社リコー Heat storage and dissipation device
CN114210702B (en) * 2021-12-29 2022-09-30 陈琳 Kitchen waste treatment device and treatment method
CN114852965B (en) * 2022-06-27 2022-12-20 扬州大学 Method for purifying circulating hydrogen for polycrystalline silicon
CN115468330B (en) * 2022-09-22 2023-05-23 哈尔滨商业大学 Magnetic absorption conversion type adsorption refrigeration/heat pump air conditioning system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834928U (en) * 1981-08-31 1983-03-07 川崎重工業株式会社 Metal hydride holding vessel
JPS5962400U (en) * 1982-10-20 1984-04-24 三菱製鋼株式会社 Pressure vessel for filling hydrogen absorber
JPS6040899U (en) * 1983-08-29 1985-03-22 三菱重工業株式会社 hydrogen storage container
DE3338879C2 (en) * 1983-10-24 1986-11-13 Mannesmann AG, 4000 Düsseldorf Pressurized gas container
JPH0288404A (en) * 1988-09-26 1990-03-28 Honda Motor Co Ltd Heat exchanger using metallic hydrogen compound
JP3392168B2 (en) * 1993-01-27 2003-03-31 マツダ株式会社 Alloy storage tank for hydrogen storage

Also Published As

Publication number Publication date
JP2001082697A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
JP4484987B2 (en) Gas adsorption / desorption reaction vessel
JP5816205B2 (en) Hydrogen storage composite material, method of using the same, and hydrogen storage system using the same
JP4347066B2 (en) Solid adsorption heat pump
JP5482681B2 (en) Heat storage device
JP3626979B2 (en) Solid absorbent boiler / absorber apparatus, method of manufacturing the same, and refrigeration apparatus using the apparatus
US4971605A (en) Isothermal thermo-cyclic processing
US5661986A (en) Chemical reactor, refrigerating machine and container provided therewith and reagent cartridge therefor
US4138861A (en) Solid adsorption air conditioning apparatus and method
US8640489B2 (en) Heat pump
JP2010502931A (en) Heat exchanger
JP5768783B2 (en) Adsorption heat pump system and cold heat generation method
JP2550768B2 (en) Adsorption heat exchanger
JP2009505828A (en) Thermochemical reactor for cooling and / or heating equipment
JP2003225561A (en) Gas adsorption element
JPH0712425B2 (en) Reactor
JP2007064573A (en) Adsorber and its manufacturing method
JP6757613B2 (en) Heat storage system, heat storage container, heat storage device using heat storage container, and warming device using heat storage device
JP3046975B2 (en) Hydrogen storage container
WO2004097286A1 (en) Hydrogen storage container
JP2000292032A (en) Replacing gas recovery container employed in installation of air conditioner
WO2016027815A1 (en) Chemical heat storage device
JPS62155310A (en) Actuator
JPS61175283A (en) Adsorption compressor
JP2023053753A (en) Adsorber and adsorptive heat pump
JPS6044699A (en) Hydrogen storing container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4484987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees