JP4478140B2 - Preparation of carbostyril compounds for pharmaceutical use - Google Patents

Preparation of carbostyril compounds for pharmaceutical use Download PDF

Info

Publication number
JP4478140B2
JP4478140B2 JP2006329671A JP2006329671A JP4478140B2 JP 4478140 B2 JP4478140 B2 JP 4478140B2 JP 2006329671 A JP2006329671 A JP 2006329671A JP 2006329671 A JP2006329671 A JP 2006329671A JP 4478140 B2 JP4478140 B2 JP 4478140B2
Authority
JP
Japan
Prior art keywords
formula
compound
salt
water
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006329671A
Other languages
Japanese (ja)
Other versions
JP2008143794A5 (en
JP2008143794A (en
Inventor
賢悟 川崎
宣夫 福田
弘志 三宅
繁敏 牧尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Pharmaceutical Co Ltd
Original Assignee
Otsuka Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Pharmaceutical Co Ltd filed Critical Otsuka Pharmaceutical Co Ltd
Priority to JP2006329671A priority Critical patent/JP4478140B2/en
Publication of JP2008143794A publication Critical patent/JP2008143794A/en
Publication of JP2008143794A5 publication Critical patent/JP2008143794A5/ja
Application granted granted Critical
Publication of JP4478140B2 publication Critical patent/JP4478140B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本件は、胃潰瘍等の治療剤の有効成分として有用な下記の医薬用カルボスチリル化合物をより高純度に製造する医薬用カルボスチリル化合物の改良製法に関する。   The present invention relates to an improved process for producing a pharmaceutical carbostyril compound, which produces the following pharmaceutical carbostyril compound useful as an active ingredient of a therapeutic agent for gastric ulcer and the like with higher purity.

本発明の製法で得られる医薬用カルボスチリル化合物は、下記式(1)で示されるカルボスチリル化合物(化学名:2−(4−クロロベンゾイルアミノ)−3−[2(1H)−キノリノン−4−イル]プロピオン酸)であって、胃潰瘍、急性胃炎、または慢性胃炎の急性悪化期に現れる胃粘膜病変に対する優れた治療効果を示す薬剤である。

Figure 0004478140
The pharmaceutical carbostyril compound obtained by the production method of the present invention is a carbostyril compound represented by the following formula (1) (chemical name: 2- (4-chlorobenzoylamino) -3- [2 (1H) -quinolinone-4. -Yl] propionic acid), which is an agent having an excellent therapeutic effect on gastric mucosal lesions appearing in the acute worsening stage of gastric ulcer, acute gastritis, or chronic gastritis.
Figure 0004478140

本発明の式(1)で示される医薬用カルボスチリル化合物を製造・単離する方法としては、例えば下記反応式1に示す方法が知られている(特許文献1)。すなわち、式(3)の化合物をナトリウムエトキシド等の塩基の存在下に式(4)の化合物と反応させて式(5)の化合物を得、この化合物を塩酸等の鉱酸で加水分解及び脱炭酸させて式(6)の化合物を製造した後、式(7)の4−クロロベンゾイルクロリドでアシル化させて目的とする式(1)の化合物を得た後、医薬として用いる純度の化合物を得るために再結晶化・洗浄等により式(1)の化合物またはその塩を精製する。
反応式1

Figure 0004478140
As a method for producing and isolating a pharmaceutical carbostyril compound represented by the formula (1) of the present invention, for example, a method represented by the following reaction formula 1 is known (Patent Document 1). That is, a compound of formula (3) is reacted with a compound of formula (4) in the presence of a base such as sodium ethoxide to obtain a compound of formula (5), which is hydrolyzed with a mineral acid such as hydrochloric acid and A compound of formula (6) is produced by decarboxylation, and then acylated with 4-chlorobenzoyl chloride of formula (7) to obtain the desired compound of formula (1), and then used as a pharmaceutical compound of purity In order to obtain the compound, the compound of the formula (1) or a salt thereof is purified by recrystallization, washing or the like.
Reaction formula 1
Figure 0004478140

上記で述べたとおり、式(1)の化合物の合成および精製は、式(6)のアミノ酸化合物と式(7)の4−クロロベンゾイルクロリドとの反応により合成する方法が知られている。より具体的には、例えばアセトンと水の混合液中で、例えば炭酸カリウム、水酸化ナトリウムなどの塩基の存在下に行い、反応後に、例えば塩酸を加えて酸性処理することにより、析出する式(1)の化合物を濾取する方法が知られている(特許文献1および非特許文献1)。   As described above, a method of synthesizing and purifying a compound of the formula (1) by a reaction between an amino acid compound of the formula (6) and 4-chlorobenzoyl chloride of the formula (7) is known. More specifically, for example, the reaction is carried out in the presence of a base such as potassium carbonate or sodium hydroxide in a mixed solution of acetone and water. A method of filtering the compound 1) is known (Patent Document 1 and Non-Patent Document 1).

当該反応は、通常、式(6)のアミノ酸化合物に対して等モル以上、好ましくは等モル〜2倍モル程度の式(7)の化合物が用いられている(特許文献1)。具体的には、1.2倍モル程度が用いられている(特許文献2)。すなわち、前記反応は、実際には等モルの式(7)の化合物を用いて行うと当該反応が充分に完結しないために目的の式(1)の化合物の収率は低下することになる。このため、式(6)のアミノ酸化合物に対して過剰量の式(7)の化合物が用いられるのが一般的である。   In this reaction, the compound of the formula (7) is usually used in an equimolar or more, preferably about equimolar to 2-fold molar to the amino acid compound of the formula (6) (Patent Document 1). Specifically, about 1.2 times mole is used (patent document 2). That is, when the reaction is actually carried out using an equimolar amount of the compound of the formula (7), the reaction is not sufficiently completed, so that the yield of the target compound of the formula (1) is lowered. For this reason, an excess amount of the compound of formula (7) is generally used relative to the amino acid compound of formula (6).

過剰分の式(7)の化合物は、下記に示す式(9)の4−クロロ安息香酸となって、式(1)の化合物中に不純物として混在することになる。また、その他に式(1)の化合物中に混在する不純物としては、式(5)の化合物中に混在する不純物に由来するもの(例えば、式(10)の化合物など)、式(7)中に混在する不純物に由来するもの(例えば式(11)の化合物など)が例示され、医療用医薬品としての純度を得るためには、これら不純物および先述の4−クロロ安息香酸を除去するための精製工程が必要であった。この精製方法としては、メタノールとクロロホルムの混合液からの再結晶(特許文献1)、N,N−ジメチルホルムアミドと水の混合液からの再結晶(非特許文献1)などが知られている。
更に式(1)の化合物を用いて製剤化するにあたっては、種々の製剤に加工できるよう、医薬品の有効成分として安定な結晶を得る工程も必要であった。
An excess of the compound of formula (7) becomes 4-chlorobenzoic acid of formula (9) shown below, and is mixed as an impurity in the compound of formula (1). In addition, as impurities mixed in the compound of the formula (1), those derived from impurities mixed in the compound of the formula (5) (for example, compounds of the formula (10), etc.), In order to obtain the purity as a medicinal product, for example, a compound derived from an impurity mixed in (for example, a compound of formula (11)) is purified to remove these impurities and the aforementioned 4-chlorobenzoic acid. A process was required. Known purification methods include recrystallization from a mixture of methanol and chloroform (Patent Document 1), recrystallization from a mixture of N, N-dimethylformamide and water (Non-Patent Document 1), and the like.
Furthermore, when formulating with the compound of formula (1), a process for obtaining stable crystals as an active ingredient of pharmaceuticals is also required so that it can be processed into various formulations.

すなわち、式(1)の化合物においては、乾燥後空気中に放置することで1/2水和物相当の水分を吸収することが経験的にわかっている。一方、更に水分が多い一水和物相当では、式(1)の医薬用カルボスチリル化合物の規格(日本薬局方外規格2002[平成14年9月20日 医薬発第0920001号])に適合しないため、例えば一水和物が得られた場合は、わざわざ得られた結晶を1/2水和物に変換する必要があった。
したがって、式(1)の化合物においては、その規格、安定性等の理由、および錠剤、散剤、顆粒剤などの医薬製剤の形態で用いられることを考慮し、公的機関の規格を充足し、製剤化に適した安定な結晶である1/2水和物が最適であった。

Figure 0004478140
特開昭59−7169号公報 特開2004−131506号公報 国際公開特許WO2006−59781号公報 Uchida, M., et al., Chem. Pharm. Bull., 33 (9), 3775-3786 (1985) That is, it has been empirically known that the compound of formula (1) absorbs water equivalent to 1/2 hydrate by leaving it in the air after drying. On the other hand, the equivalent of monohydrate with more water content does not conform to the standard for pharmaceutical carbostyril compounds of formula (1) (Japanese Pharmacopoeia Standard 2002 [September 20, 2002, Pharmaceutical No. 0920001]). Therefore, for example, when monohydrate was obtained, it was necessary to convert the obtained crystal to 1/2 hydrate.
Therefore, the compound of the formula (1) satisfies the standards of public institutions, considering its specifications, reasons for stability, etc., and being used in the form of pharmaceutical preparations such as tablets, powders, granules, etc. 1/2 hydrate, which is a stable crystal suitable for formulation, was optimal.
Figure 0004478140
JP 59-7169 A JP 2004-131506 A International Patent Publication No. WO2006-59781 Uchida, M., et al., Chem. Pharm. Bull., 33 (9), 3775-3786 (1985)

しかして、上記従来法における式(6)の化合物またはその塩を式(7)の化合物と反応させ、式(1)の化合物またはその塩の粗製体を得て、所望の純度の式(1)の化合物またはその塩に精製する方法としては、上記で説明したようにメタノールとクロロホルムの混合液、或いはN,N−ジメチルホルムアミドと水の混合液からの再結晶法等が知られているが、例えば該混合液からの再結晶収率は49%と極めて低いため、効率的に不純物を除去しながら高い収率が得られ、且つ製剤化が容易で、安定な結晶体を得る製法の開発が必要であった。更に、上記の公知の精製方法において使用されているクロロホルム、N,N−ジメチルホルムアミドなどの溶媒は、医薬品の有効成分としての物質での残留量の許容値が厳しいため、より許容値の高い溶媒を用いた、前記製法の開発も必要であった。   Then, the compound of the formula (6) or a salt thereof in the above conventional method is reacted with the compound of the formula (7) to obtain a crude product of the compound of the formula (1) or a salt thereof, and the formula (1) having a desired purity. As described above, there are known methods for refining the compound or salt thereof, such as a recrystallization method from a mixed solution of methanol and chloroform or a mixed solution of N, N-dimethylformamide and water. For example, since the recrystallization yield from the mixed solution is as low as 49%, the development of a method for obtaining a stable crystal body that can obtain a high yield while efficiently removing impurities and is easy to formulate. Was necessary. Furthermore, solvents such as chloroform and N, N-dimethylformamide used in the above-described known purification methods have higher tolerance values because of the strict tolerance of residual amounts of substances as active pharmaceutical ingredients. It was also necessary to develop the above production method using

そこで、本発明者らは、上記課題を解消するため鋭意研究の結果、これら課題を解決する製法を見出した。
すなわち、本発明者らは、上記従来法における式(6)の化合物またはその塩を式(7)の化合物と反応させ、所望の式(1)の化合物またはその塩を工業的大量生産に適う高純度に得る方法を見出すべく種々検討した結果、式(6)の化合物またはその塩を式(7)の化合物と反応させ、所望の式(1)の化合物またはその塩をメタノールと水の混合液中に分散し、金属塩基性物質との反応により塩基性塩とした後、これを特定の温度で酸性処理することにより所望の式(1)の化合物の1/2水和物の高純度の結晶体を工業的大量生産においても得られることを見出し、本発明を完成するに至った。
Therefore, the present inventors have found a production method for solving these problems as a result of intensive studies to solve the above problems.
That is, the present inventors react the compound of the formula (6) or a salt thereof in the above conventional method with the compound of the formula (7) to suit the desired compound of the formula (1) or a salt thereof for industrial mass production. As a result of various studies to find a method for obtaining high purity, the compound of the formula (6) or a salt thereof is reacted with the compound of the formula (7), and the desired compound of the formula (1) or the salt thereof is mixed with methanol and water. After being dispersed in a liquid and converted into a basic salt by reaction with a metal basic substance, this is acid-treated at a specific temperature to obtain a high purity of the desired compound ½ hydrate of formula (1) The present inventors have found that the crystal can be obtained in industrial mass production, and have completed the present invention.

本発明によれば、医薬として有用な式(1)の化合物1/2水和物を得るために、化学合成によって得られた式(1)の化合物を一旦式(8)で示される式(1)のアルカリ金属塩に変換する工程を行い、もって医薬品の活性成分として、高純度に精製し、公的機関から要求される基準を満足させ、ついで、医薬品の活性成分として、公的機関から要求される基準を満たし、且つ、製剤化に適した結晶体である式(1)の化合物1/2水和物として得る一連の合成・結晶化法を提供する。

Figure 0004478140
According to the present invention, in order to obtain a compound 1/2 hydrate of the formula (1) useful as a medicament, the compound of the formula (1) obtained by chemical synthesis is once represented by the formula (8) ( 1) The step of converting to an alkali metal salt is performed, and as a pharmaceutical active ingredient, it is purified to a high purity to satisfy the standards required by public institutions, and then as a pharmaceutical active ingredient from public institutions. Provided is a series of synthesis and crystallization methods obtained as a compound 1/2 hydrate of the formula (1), which satisfies the required standards and is a crystal suitable for formulation.
Figure 0004478140

本発明によれば、式(1)の化合物またはその塩を、メタノールと水の混合液中で金属塩化反応を行うことにより式(1)の化合物の塩基性塩を得、次いでこれを酸性処理して式(1)の化合物・1/2水和物を得る、式(1)の化合物・1/2水和物の製造方法が提供できる。   According to the present invention, a basic salt of a compound of formula (1) is obtained by subjecting a compound of formula (1) or a salt thereof to a metal chlorination reaction in a mixed solution of methanol and water, which is then treated with an acid. Thus, it is possible to provide a method for producing the compound ½ hydrate of the formula (1) to obtain the compound ½ hydrate of the formula (1).

本発明によれば、式(6)の化合物またはその塩を式(7)の化合物と反応させて得られる式(1)の化合物またはその塩を、メタノールと水の混合液中で金属塩化反応を行うことにより式(1)の化合物の塩基性塩を得、次いでこれを酸性処理して式(1)の化合物・1/2水和物を得る、式(1)の化合物・1/2水和物の製造方法が提供できる。   According to the present invention, a compound of the formula (1) or a salt thereof obtained by reacting a compound of the formula (6) or a salt thereof with the compound of the formula (7) is subjected to a metal chlorination reaction in a mixture of methanol and water. To obtain a basic salt of the compound of formula (1), which is then treated with acid to obtain a compound ½ hydrate of formula (1). A method for producing a hydrate can be provided.

本発明によれば、式(1)の化合物またはその塩を、メタノールと水の混合液中で金属塩化反応を行うことにより式(1)の化合物の塩基性塩を得、次いでこれを酸性処理して式(1)の化合物・1/2水和物を得る方法を含む式(1)の化合物の精製方法が提供できる。   According to the present invention, a basic salt of a compound of formula (1) is obtained by subjecting a compound of formula (1) or a salt thereof to a metal chlorination reaction in a mixed solution of methanol and water, which is then treated with an acid. Thus, a method for purifying the compound of the formula (1) including the method of obtaining the compound ½ hydrate of the formula (1) can be provided.

本発明によれば、式(6)の化合物またはその塩を式(7)の化合物と反応させて得られる式(1)の化合物またはその塩を、メタノールと水の混合液中で金属塩化反応を行うことにより式(1)の化合物の塩基性塩を得、次いでこれを酸性処理して式(1)の化合物・1/2水和物を得る方法を含む式(1)の化合物の精製方法が提供できる。   According to the present invention, a compound of the formula (1) or a salt thereof obtained by reacting a compound of the formula (6) or a salt thereof with the compound of the formula (7) is subjected to a metal chlorination reaction in a mixture of methanol and water. To obtain a basic salt of the compound of formula (1), and then purify the compound of formula (1), including the method of acid-treating to obtain the compound ½ hydrate of formula (1) A method can be provided.

本発明によれば、上記金属塩化反応に用いる塩基が、水酸化ナトリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、または炭酸水素リチウムから選択されることを特徴とする上記の製造方法または精製方法が提供される。さらに、該塩基が、水酸化ナトリウムであることを特徴とする上記に記載の製造方法または精製方法が提供できる。   According to the present invention, the base used for the metal chloride reaction is selected from sodium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, sodium bicarbonate, potassium bicarbonate, or lithium bicarbonate. The above-described production method or purification method is provided. Furthermore, the production method or purification method described above, wherein the base is sodium hydroxide can be provided.

さらに、本発明によれば、メタノールと水の混合液が式(1)の化合物1重量部に対して3〜15容量部であること、及び/またはメタノールと水の混合液の混合割合が、メタノール1容量部に対して、水0.05〜0.4容量部であることを特徴とする上記の製造方法または精製方法が提供される。   Furthermore, according to the present invention, the mixture of methanol and water is 3 to 15 parts by volume with respect to 1 part by weight of the compound of formula (1), and / or the mixing ratio of the mixture of methanol and water is The production method or the purification method described above is characterized by being 0.05 to 0.4 parts by volume of water with respect to 1 part by volume of methanol.

さらに、本発明によれば、酸性処理に用いる酸が塩酸であることを特徴とする上記に記載の製造方法または精製方法が提供できる。   Furthermore, according to the present invention, it is possible to provide the production method or purification method described above, wherein the acid used for the acid treatment is hydrochloric acid.

また、上記反応において酸性処理の反応温度が50℃から90℃であることを特徴とする上記の製造方法または精製方法を提供することができる。   In the above reaction, the above-mentioned production method or purification method can be provided, wherein the reaction temperature of the acid treatment is 50 ° C. to 90 ° C.

また、本発明は、さらに式(1)の化合物の塩基性塩を単離せずに水溶液のまま、酸性処理して式(1)の化合物・1/2水和物を得ることを特徴とする上記の製造方法または精製方法が提供できる。   Further, the present invention is characterized in that the compound / half hydrate of the formula (1) is obtained by acid treatment in an aqueous solution without isolating the basic salt of the compound of the formula (1). The above production method or purification method can be provided.

さらに本発明によれば、上記式(1)の化合物の塩基性塩の水溶液を得るために加える塩基の量が、式(1)の化合物の塩基性塩に対して、0.1〜5倍モルであることを特徴とする上記に記載の製造方法または精製方法が提供できる。   Furthermore, according to the present invention, the amount of the base added to obtain an aqueous solution of the basic salt of the compound of the formula (1) is 0.1 to 5 times the basic salt of the compound of the formula (1). It is possible to provide the production method or the purification method as described above, which is characterized by being a mole.

すなわち、高純度の式(1)の化合物の1/2水和物を得る為に、塩基性条件下、式(6)の化合物を式(7)の化合物と反応させて、一旦、粗製の式(1)の化合物またはその塩を得た場合に、共に収得される式(9)の4−クロロ安息香酸を主とする、不純物を管理基準値以下に除去し、医薬品の有効成分としての純度を得、更にこれを、医薬品の有効成分として好適な、式(1)の化合物の1/2水和物に変換する工業的大量製造法を提供するものである。   That is, in order to obtain a highly purified 1/2 hydrate of the compound of the formula (1), the compound of the formula (6) is reacted with the compound of the formula (7) under basic conditions. When the compound of the formula (1) or a salt thereof is obtained, impurities obtained mainly together with 4-chlorobenzoic acid of the formula (9) are removed to below the control standard value, The present invention provides an industrial mass production method for obtaining purity and further converting it into a half hydrate of the compound of formula (1), which is suitable as an active ingredient of a pharmaceutical product.

式(3)の化合物の製造
本発明において、式(1)の化合物の1/2水和物を得る為に、式(3)の化合物をナトリウムエトキシド等の塩基の存在下に式(4)の化合物と反応させて式(5)の化合物を得、この化合物を塩酸等の鉱酸で加水分解及び脱炭酸させて式(6)の化合物を製造した後、式(7)の4−クロロベンゾイルクロリドでアシル化させて式(1)の化合物またはその塩を得る。まずこの反応で用いる式(3)の4−ブロモメチル−2(1H)キノリノンは、下記反応式2に示すように式(2)の化合物であるアセトアセトアニリドをクロロホルム中で等モル〜過剰量の臭素と反応させた後、減圧濃縮により4−ブロモアセトアセトアニリドを残渣として得た後、該化合物を濃硫酸中に添加して脱水縮合することにより閉環させて所望の式(3)の4−ブロモメチル−2(1H)キノリノンへと導き、製造する(特許文献1)。
Production of the compound of the formula (3) In the present invention, in order to obtain a half hydrate of the compound of the formula (1), the compound of the formula (3) is converted to the formula (4) in the presence of a base such as sodium ethoxide. ) To obtain a compound of formula (5), which is hydrolyzed and decarboxylated with a mineral acid such as hydrochloric acid to produce a compound of formula (6). Acylation with chlorobenzoyl chloride provides a compound of formula (1) or a salt thereof. First, 4-bromomethyl-2 (1H) quinolinone of the formula (3) used in this reaction is obtained by converting an acetoacetanilide which is a compound of the formula (2) into equimolar to excess bromine in chloroform as shown in the following reaction formula 2. Then, 4-bromoacetoacetanilide was obtained as a residue by concentration under reduced pressure, and the compound was added to concentrated sulfuric acid and subjected to dehydration condensation to give a desired 4-bromomethyl- of formula (3). 2 (1H) Lead to quinolinone to produce (Patent Document 1).

反応式2

Figure 0004478140
上記反応式2の式(3)の化合物は、反応式1に示されるように式(1)の化合物またはその塩を得るための中間原料として供されるため、相応の純度が要求されることとなる。しかしながら、この純度要求に対して、前記の方法による式(3)の化合物の製造方法(特許文献1)には、いくつかの問題が残されている。具体的には、式(2)の化合物に単体臭素を作用させて目的とする式(12)を得る際には、式(2)の構造上から目的とする式(12)の化合物とは、臭素化位置の異なる化合物の副生、あるいは過剰に臭素化された化合物の副生が起こる。前記の方法では、式(12)の化合物を減圧濃縮により得ていることから、これらの副生する化合物群は、次の式(3)の化合物を得るための反応の際に、そのまま持ち込まれる。しかして、このように得られた式(3)の化合物には、例えば下記の式(13)の化合物が混在することが知られているし(特許文献3)、その他にも例えば式(14)や式(15)に示される不純物が混在することとなる。さらに、式(3)の化合物を適当な溶媒による再結晶や分散洗浄などの手段で精製しても、十分な精製効果を得ることが困難であるか、あるいはある程度の精製効果が認められるN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1―メチル―2−ピロリドンなどの溶媒を使用しても濾液への損失が大きく工業的製造法としては実用的でないという問題が知られている(特許文献3)。
Figure 0004478140
Reaction formula 2
Figure 0004478140
The compound of the formula (3) in the above reaction formula 2 is used as an intermediate raw material for obtaining the compound of the formula (1) or a salt thereof as shown in the reaction formula 1, so that a corresponding purity is required. It becomes. However, several problems remain in the manufacturing method (Patent Document 1) of the compound of the formula (3) by the above-described method for this purity requirement. Specifically, when a target bromine is allowed to act on the compound of the formula (2) to obtain the target formula (12), the target compound of the formula (12) is determined from the structure of the formula (2). As a result, a by-product of a compound having a different bromination position or a by-product of an excessively brominated compound occurs. In the above method, since the compound of formula (12) is obtained by concentration under reduced pressure, these by-product compound groups are brought in as they are in the reaction for obtaining the compound of the following formula (3). . Thus, it is known that the compound of the formula (3) thus obtained contains, for example, a compound of the following formula (13) (Patent Document 3). ) Or the formula (15). Furthermore, even if the compound of the formula (3) is purified by means such as recrystallization with an appropriate solvent or dispersion washing, it is difficult to obtain a sufficient purification effect, or N, in which a certain purification effect is recognized. Even when a solvent such as N-dimethylformamide, N, N-dimethylacetamide, or 1-methyl-2-pyrrolidone is used, there is a problem that the loss to the filtrate is large and it is not practical as an industrial production method ( Patent Document 3).
Figure 0004478140

このような不純物の問題を解決する手段としては、式(12)の化合物を一旦単離して精製することなども考えられる。しかしながら、式(12)の化合物は極めて高い変異原性を示すことから、これを工業的に大量製造する場合においては、製造に携わる作業員の人体への安全性、保健衛生上の問題を考慮し、該作業員への曝露を防止しなければなないという課題が浮上する。このように式(1)の化合物またはその塩の中間原料である式(3)の化合物の製造方法においても、医薬用の純度を有する化合物を工業的規模で大量に製造するとなると様々な改良技術が要求されている。   As a means for solving such a problem of impurities, it is conceivable to once isolate and purify the compound of the formula (12). However, since the compound of the formula (12) exhibits extremely high mutagenicity, in the case of mass production industrially, the safety of workers involved in the production and the health problems are considered. However, the problem that exposure to the worker must be prevented arises. As described above, in the process for producing the compound of formula (3) which is an intermediate raw material of the compound of formula (1) or a salt thereof, various improved techniques can be obtained when a large amount of a compound having pharmaceutical purity is produced on an industrial scale. Is required.

式(3)の化合物またはその塩を得るための上記問題点を解決する手段の開発が望まれているが、結局のところ、式(3)の化合物をより安全に効率よく且つ純度を低下させることなく得る製造方法として、例えば、式(2)の化合物を臭素と反応させた後、該反応溶液を水洗することによって、該反応溶液中に含まれる臭化水素を除去し、その溶液に濃硫酸を加えて閉環反応を行うことによって、式(3)の化合物またはその塩を得る製造方法(高橋幸一、加門聡:立山化成株式会社)が挙げられる。   Although development of means for solving the above-mentioned problems for obtaining the compound of formula (3) or a salt thereof is desired, after all, the compound of formula (3) is more safely and efficiently reduced in purity. As a production method obtained without any problem, for example, after reacting the compound of formula (2) with bromine, the reaction solution is washed with water to remove hydrogen bromide contained in the reaction solution, and the solution is concentrated. A production method (Kouichi Takahashi, Kaoru Kamon: Tateyama Kasei Co., Ltd.) for obtaining a compound of the formula (3) or a salt thereof by adding a sulfuric acid and carrying out a ring-closing reaction can be mentioned.

具体的には、例えば溶媒として1,2−ジクロロエタンを用い、式(2)で示される化合物またはその塩と臭素とを反応させ、式(12)の4−ブロモアセトアセトアニリドの1,2−ジクロロエタン溶液を得、この溶液を水洗した後に濃硫酸を加えて閉環反応を行い、分液することにより式(3)の4−ブロモメチル−2(1H)キノリノンの硫酸溶液を得る。
この硫酸溶液を水中に添加し、析出した式(3)の化合物またはその塩の結晶を分離した後、乾燥することにより、式(1)の化合物またはその塩を得る為に用いられる式(3)の化合物をより安全に効率よく且つ高純度に製造できる。
このようにして式(2)の化合物またはその塩から、式(12)の化合物を単離せずに式(3)の化合物またはその塩を製造することもでき、医薬品の活性成分を工業的に大量に製造するための中間原料として供するに十分な純度と量の式(3)の化合物またはその塩を取得することができる。
Specifically, for example, 1,2-dichloroethane is used as a solvent, a compound represented by the formula (2) or a salt thereof and bromine are reacted, and 1,2-dichloroethane of 4-bromoacetoacetanilide of the formula (12) is reacted. A solution is obtained, the solution is washed with water, concentrated sulfuric acid is added to perform a ring-closing reaction, and liquid separation is performed to obtain a sulfuric acid solution of 4-bromomethyl-2 (1H) quinolinone of formula (3).
The sulfuric acid solution is added to water, and the precipitated compound of the formula (3) or a salt thereof is separated and dried to obtain a compound of the formula (3) or a salt thereof used for obtaining the salt. ) Can be produced more safely, efficiently and with high purity.
Thus, the compound of the formula (3) or a salt thereof can be produced from the compound of the formula (2) or a salt thereof without isolating the compound of the formula (12). It is possible to obtain a compound of the formula (3) or a salt thereof having a sufficient purity and amount to serve as an intermediate raw material for mass production.

式(3)の化合物から式(6)の化合物の製造
次いで、上記で得られた式(3)の化合物またはその塩を、水酸化ナトリウム、水酸化カリウム、ナトリウムアミド、水素化ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド等の塩基の存在下に式(4)の化合物と反応させて式(5)の化合物を得、この化合物を塩酸等の鉱酸で加水分解及び脱炭酸させて式(6)の化合物を製造することができる。
Production of the compound of the formula (6) from the compound of the formula (3) Next, the compound of the formula (3) or a salt thereof obtained above was converted into sodium hydroxide, potassium hydroxide, sodium amide, sodium hydride, sodium methoxy. In the presence of a base such as sodium ethoxide and sodium ethoxide to give a compound of formula (5), which is hydrolyzed and decarboxylated with a mineral acid such as hydrochloric acid to give a compound of formula (6 ) Can be produced.

式(6)の化合物から式(1)の化合物の製造
反応式3

Figure 0004478140
式(6)の化合物を式(7)の4−クロロベンゾイルクロリドと反応させて式(1)のカルボスチリル化合物、またはその塩を得る反応は、塩基性条件下に常法のアミド結合生成反応によって容易に行うことができる。また、用いる溶媒を適当に選択することによって、反応終了後、反応液を冷却し、また必要に応じて反応液を中和し、析出する結晶を濾取することにより、式(1)の化合物またはその塩を簡単に分離採取することができる。 Production of compound of formula (1) from compound of formula (6)
Reaction formula 3
Figure 0004478140
The reaction of reacting the compound of formula (6) with 4-chlorobenzoyl chloride of formula (7) to give the carbostyryl compound of formula (1) or a salt thereof is a conventional amide bond formation reaction under basic conditions. Can be done easily. In addition, by appropriately selecting the solvent to be used, after completion of the reaction, the reaction solution is cooled, and if necessary, the reaction solution is neutralized, and the precipitated crystals are collected by filtration to obtain the compound of formula (1). Or the salt can be easily separated and collected.

上記反応での塩基は通常、慣用の塩基を用いるができる。該塩基としては、様々な公知の無機塩基及び有機塩基を使用でき、無機塩基としては、アルカリ金属(例えば、リチウム、ナトリウム、カリウム等)、炭酸水素アルカリ金属(例えば、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム等)、アルカリ金属水酸化物(例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等)、炭酸アルカリ金属(例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等)、アルカリ金属低級アルコキシド(例えば、ナトリウムメトキシド、ナトリウムエトキシド、カリウムtert−ブトキシド、ナトリウムtert−ブトキシド、ナトリウムtert−ペントキシド等)、アルカリ金属水素化合物(例えば、水素化ナトリウム、水素化カリウム等)等が例示できる。有機塩基としては、トリアルキルアミン(例えば、トリメチルアミン、トリエチルアミン、N−エチルジイソプロピルアミン等)、ピリジン、キノリン、ピペリジン、イミダゾール、ピコリン、ジメチルアミノピリジン、ジメチルアニリン、N−メチルモルホリン、1,5−ジアザビシクロ[4.3.0]ノン−5−エン(DBN)、1,4−ジアザビシクロ[2.2.2]オクタン−5−エン(DABCO)、1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン(DBU)等が例示できる。また、これらの塩基が液状の場合、溶媒として兼用することもできるし、これらの塩基を上記したような適当な水性溶媒に溶解して用いることもできる。これらの塩基は、1種単独または2種以上混合して使用することもできる。   As the base in the above reaction, a conventional base can be usually used. As the base, various known inorganic bases and organic bases can be used. Examples of the inorganic base include alkali metals (for example, lithium, sodium, potassium, etc.), alkali hydrogen carbonates (for example, lithium hydrogen carbonate, sodium hydrogen carbonate). Potassium carbonate, etc.), alkali metal hydroxides (eg, lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, etc.), alkali metal carbonates (eg, lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate) Etc.), alkali metal lower alkoxides (for example, sodium methoxide, sodium ethoxide, potassium tert-butoxide, sodium tert-butoxide, sodium tert-pentoxide, etc.), alkali metal hydrogen compounds (for example, sodium hydride, potassium hydride, etc.) )etc It can be exemplified. Examples of the organic base include trialkylamine (eg, trimethylamine, triethylamine, N-ethyldiisopropylamine), pyridine, quinoline, piperidine, imidazole, picoline, dimethylaminopyridine, dimethylaniline, N-methylmorpholine, 1,5-diazabicyclo. [4.3.0] Non-5-ene (DBN), 1,4-diazabicyclo [2.2.2] octane-5-ene (DABCO), 1,8-diazabicyclo [5.4.0] undeca An example is -7-ene (DBU). Further, when these bases are liquid, they can be used as a solvent, or these bases can be dissolved in an appropriate aqueous solvent as described above. These bases can be used alone or in combination of two or more.

上記反応において、式(6)の化合物と式(7)の4−クロロベンゾイルクロリドの使用割合は、前者に対して、後者を少なくとも等モル、好ましくは、等モル〜2倍モルとする。また、使用する塩基の量は、4−クロロベンゾイルクロリドに対して、少なくとも等モルを用いる。   In the above reaction, the proportion of the compound of formula (6) and 4-chlorobenzoyl chloride of formula (7) used is at least equimolar, preferably equimolar to double molar, with respect to the former. The amount of the base used is at least equimolar with respect to 4-chlorobenzoyl chloride.

上記反応に用いられる溶媒としては、慣用の溶媒を用いることができ、水、メタノール、エタノール、プロパノール、ブタノール、アセトン、アセトニトリル、酢酸エチル等が例示でき、1種単独または2種以上混合して使用することもできる。   As the solvent used in the above reaction, a conventional solvent can be used, and examples thereof include water, methanol, ethanol, propanol, butanol, acetone, acetonitrile, ethyl acetate, etc., one kind alone or a mixture of two or more kinds. You can also

上記反応は、通常−10〜110℃程度、好ましくは0〜40℃程度で行い、通常5〜15時間程度で完了し、粗製の式(1)の化合物またはその塩(反応副産物としての不純物も含有する)を得ることができる。   The above reaction is usually performed at about −10 to 110 ° C., preferably about 0 to 40 ° C., and is usually completed in about 5 to 15 hours. The crude compound of formula (1) or a salt thereof (impurities as reaction byproducts are also present). Containing) can be obtained.

式(1)の化合物の精製
粗製の式(1)の化合物またはその塩においては、高収率で、且つ不純物が極めて少なくされた医薬の有効成分として相応しい純度に精製するための工程をさらに必要とする。
上記で得られた粗製の式(1)の化合物またはその塩を精製する方法は、上記で述べたようにメタノールとクロロホルムの混合溶媒あるいはN,N−ジメチルホルムアミドと水の混合溶媒からの再結晶法などの公知の方法がある。しかしながら、これら既知の操作方法では工業的レベルで要求される収率としては必ずしも満足し得る収率を得ているわけではなかった。
また、式(1)の化合物は、通常用いられる溶媒に溶け難くく、また上記の公知の式(1)の化合物の精製方法で使用される溶媒のうち、例えばクロロホルム、N,N−ジメチルホルムアミドなどの溶媒は、医薬の有効成分としての物質の残留量の許容値が厳しく、医薬品製造に使用する上で問題となる溶媒でもある。
Purification of the compound of the formula (1) The crude compound of the formula (1) or a salt thereof further requires a step for purifying it to a purity suitable for an active ingredient of a pharmaceutical with a high yield and extremely reduced impurities. And
The method of purifying the crude compound of formula (1) or the salt thereof obtained above is a recrystallization from a mixed solvent of methanol and chloroform or a mixed solvent of N, N-dimethylformamide and water as described above. There are known methods such as the method. However, these known operating methods have not always yielded satisfactory yields as required on an industrial level.
Further, the compound of the formula (1) is hardly soluble in a commonly used solvent, and among the solvents used in the above-described known purification methods of the compound of the formula (1), for example, chloroform, N, N-dimethylformamide Solvents such as these have strict tolerances for the residual amount of substances as active pharmaceutical ingredients, and are problematic solvents for use in pharmaceutical production.

本発明の方法では、粗製の式(1)の化合物またはその塩をメタノールと水という特定の溶媒を特定の混合割合に混合した溶媒中に分散して、塩基を加えて、式(1)の化合物の塩基性塩とし、これを単離するのみという極めて簡便な操作のみで高純度に精製することができ、しかも高収率を得ることが可能となる。更に本発明の方法では、この精製された式(1)の塩基性塩を、水中で酸性処理することにより、医薬の有効成分として好適な所望の式(1)の化合物の1/2水和物の結晶を得ることが可能となる。
しかも一連の工程で使用される溶媒は、メタノールと水のみであって、最終工程で使用される溶媒は水のみであるため、溶媒残留量に係る問題点も考慮する必要がないという利点がある。
In the method of the present invention, a crude compound of the formula (1) or a salt thereof is dispersed in a solvent in which a specific solvent of methanol and water is mixed in a specific mixing ratio, a base is added, and the formula (1) It is possible to purify the compound with a high purity only by an extremely simple operation of converting it into a basic salt of the compound and isolating it, and to obtain a high yield. Further, in the method of the present invention, the purified basic salt of the formula (1) is acid-treated in water, whereby 1/2 hydration of a desired compound of the formula (1) suitable as an active ingredient of a medicine is performed. It becomes possible to obtain a crystal of the object.
In addition, the solvent used in the series of processes is only methanol and water, and the solvent used in the final process is only water, so there is an advantage that it is not necessary to consider the problem relating to the residual amount of solvent. .

上記において、メタノールと水の混合液の使用量は、粗製の式(1)の化合物またはその塩1重量部に対して、3〜15容量部、好ましくは、5〜10容量部を用いるとよい。また、メタノールと水の混合液の混合割合は、メタノール1容量部に対して、水0.05〜0.4容量部、好ましくは、0.05〜0.2容量部であるのがよい。ただし、本発明で用いる上記の比率はこれらに限らない。   In the above, the amount of the mixed solution of methanol and water used is 3 to 15 parts by volume, preferably 5 to 10 parts by volume based on 1 part by weight of the crude compound of formula (1) or a salt thereof. . The mixing ratio of the mixed solution of methanol and water is 0.05 to 0.4 parts by volume of water, preferably 0.05 to 0.2 parts by volume with respect to 1 part by volume of methanol. However, the above ratios used in the present invention are not limited to these.

上記反応において、粗製の式(1)の化合物またはその塩を塩基性塩とするために用いる塩基としては、これらに限らないが、水酸化ナトリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウムのいずれか1種または2種以上から選ばれ、水酸化ナトリウムを好ましく例示できる。また、これらの塩基は例えば水溶液などの形態として用いることもできる。   In the above reaction, the base used to convert the crude compound of formula (1) or a salt thereof into a basic salt is not limited to these, but sodium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate. , Sodium hydrogen carbonate, potassium hydrogen carbonate, lithium hydrogen carbonate, or one or more thereof, and sodium hydroxide can be preferably exemplified. These bases can also be used in the form of, for example, an aqueous solution.

該塩基の使用量は、例えば水酸化ナトリウムが使用される場合は、粗製の式(1)の化合物またはその塩(式(1)の化合物およびこれに混在する式(7)の化合物のモル数の合計)に対して、等モル以上となるように用いるとよい。すなわち、系内のpHが8以上となるように塩基を加えるとよい。   For example, when sodium hydroxide is used, the amount of the base used is the number of moles of the crude compound of the formula (1) or a salt thereof (the compound of the formula (1) and the compound of the formula (7) mixed therein. It is preferable to use it so as to be equimolar or more with respect to the sum of the above. That is, a base may be added so that the pH in the system is 8 or more.

上記塩基性塩化反応温度は、特に限定されないが、通常50℃以下で行うのがよく、好ましくは30〜50℃程度で行うとよい。   Although the basic chlorination reaction temperature is not particularly limited, it is usually performed at 50 ° C. or lower, and preferably at about 30 to 50 ° C.

式(1)の化合物またはその塩の塩基性塩の単離は、慣用の手段、例えば10℃程度まで冷却することにより、式(1)の塩基性塩の結晶として単離することができる。なお、これらの塩基性塩は結晶として単離せずに、例えば水溶液などの形態として次反応に用いることもできる。   The basic salt of the compound of the formula (1) or a salt thereof can be isolated as crystals of the basic salt of the formula (1) by cooling to conventional means, for example, about 10 ° C. These basic salts can be used for the next reaction in the form of, for example, an aqueous solution without being isolated as crystals.

上記操作により、高純度に精製された式(1)の化合物の塩基性塩を得ることができる、より具体的には後記実施例においては、高純度に精製された式(8)で示される式(1)の化合物のナトリウム塩を得ることができる。   By the above operation, a highly purified basic salt of the compound of the formula (1) can be obtained. More specifically, in the examples described later, the compound is represented by the highly purified formula (8). The sodium salt of the compound of formula (1) can be obtained.

次いで、上記式(1)の化合物の塩基性塩を酸性処理し、医薬品の有効成分としての基準を満たす純度の式(1)の化合物の結晶を得る。
具体的には、まず上記の式(1)の化合物の塩基性塩を水に溶解させる。水の量は特に限定はされないが、通常、式(1)の化合物の塩基性塩1重量部に対して20容量部以上を用いるとよい。また、この式(1)の化合物の塩基性塩水溶液を得る際に、適量の塩基を加えると溶解しやすくなり好ましい。次いで、この式(1)の化合物の塩基性塩の水溶液を酸性処理、すなわち、酸を作用させて、式(1)の化合物の1/2水和物を結晶化させる。この酸を作用させる時、好ましくは式(1)の塩基性水溶液に酸を滴下する方法を選ぶが、酸に式(1)の塩基性水溶液を加える方法であってもよい。
Next, the basic salt of the compound of the formula (1) is acid-treated to obtain a crystal of the compound of the formula (1) having a purity that satisfies the standard as an active ingredient of a pharmaceutical product.
Specifically, first, the basic salt of the compound of the above formula (1) is dissolved in water. The amount of water is not particularly limited, but it is usually preferable to use 20 parts by volume or more based on 1 part by weight of the basic salt of the compound of the formula (1). Moreover, when obtaining the basic salt aqueous solution of the compound of the formula (1), it is preferable to add an appropriate amount of a base because it is easy to dissolve. Subsequently, the aqueous solution of the basic salt of the compound of the formula (1) is subjected to an acidic treatment, that is, an acid is allowed to act to crystallize the 1/2 hydrate of the compound of the formula (1). When this acid is allowed to act, a method of dropping the acid to the basic aqueous solution of the formula (1) is preferably selected, but a method of adding the basic aqueous solution of the formula (1) to the acid may be used.

式(1)の化合物の塩基性塩の水溶液を得るために加える塩基としては、水酸化ナトリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウムのいずれか1種または2種以上から選ばれる。前記塩基としては、水酸化ナトリウムを好ましく例示できる。また、式(1)の化合物の塩基性塩の塩基性水溶液を得るために加える塩基の量は、式(1)の化合物の塩基性塩に対して、0.1〜5倍モル程度であることがよい。   Bases added to obtain an aqueous solution of a basic salt of the compound of formula (1) include sodium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, sodium bicarbonate, potassium bicarbonate, and lithium bicarbonate. Any one or two or more are selected. Preferred examples of the base include sodium hydroxide. Moreover, the amount of the base added to obtain a basic aqueous solution of the basic salt of the compound of the formula (1) is about 0.1 to 5 moles relative to the basic salt of the compound of the formula (1). It is good.

上記式(1)の化合物の塩基性塩の水溶液を酸性処理する際に作用させる酸としては、これらに限らないが、例えば塩酸、臭化水素酸、ヨウ化水素酸、及び硫酸等を挙げることができる。前記酸としては、塩酸を好ましく例示できる。また、式(1)の化合物の塩基性塩の塩基性水溶液に酸を作用させる好適な温度は、50℃から90℃、更に好ましくは65℃から70℃である。当該温度で酸を作用させることにより、製剤化に適した結晶を工業的大スケールにおいて、容易に効率よく取得できる。
上記反応溶液を10℃から35℃、好ましくは30℃から35℃に冷却して結晶を分離し、水等で洗浄後、得られる湿体を80℃〜110℃にて乾燥して所望の式(1)の化合物の1/2水和物を得ることができる。
The acid that acts when the aqueous solution of the basic salt of the compound of the above formula (1) is acid-treated is not limited thereto, but examples thereof include hydrochloric acid, hydrobromic acid, hydroiodic acid, and sulfuric acid. Can do. Preferred examples of the acid include hydrochloric acid. Moreover, the suitable temperature which makes an acid act on the basic aqueous solution of the basic salt of the compound of Formula (1) is 50 to 90 degreeC, More preferably, it is 65 to 70 degreeC. By allowing the acid to act at the temperature, crystals suitable for formulation can be easily and efficiently obtained on an industrial large scale.
The reaction solution is cooled to 10 ° C to 35 ° C, preferably 30 ° C to 35 ° C to separate crystals, washed with water and the like, and then the resulting wet body is dried at 80 ° C to 110 ° C to obtain the desired formula. A half hydrate of the compound of (1) can be obtained.

本発明において反応式1における原料化合物(3)〜(6)は適当な塩であってもよく、また適当な反応性誘導体であってもよい。
本発明の製法で得られる式(1)で示される化合物の1/2水和物は、必ずしも結晶水が式(1)で示される化合物に付加しているのではなく、付着水を含む広い概念としての1/2水和物を意味し、また立体異性体、光学異性体を包含する。
In the present invention, the raw material compounds (3) to (6) in Reaction Scheme 1 may be an appropriate salt or an appropriate reactive derivative.
The half hydrate of the compound represented by the formula (1) obtained by the production method of the present invention does not necessarily include crystal water added to the compound represented by the formula (1), but includes a wide range of adhering water. It means a half hydrate as a concept, and includes stereoisomers and optical isomers.

また本発明の製法で得られる式(1)で示される化合物の1/2水和物は、通常の粉砕機(例えばアトマイザー)によって微細化することにより、生体内への吸収をより効率よく行うことができる。当該化合物の微細化した粉末を製造する方法は、当業者が良く知っている公知の方法により容易にできる。該方法は例えばミルの回転比、或いは化合物(1)の1/2水和物の供給比などの適当な条件下にセラミックミルによって微細化することができる。また本発明の製法で得られる式(1)で示される化合物の1/2水和物の適当な供給比や回転比で回転させながら、適当な供給空気圧でエア−ジェットミルを通過させることによっても微細化することができる。当該方法により製剤化に適した平均粒子径0.5〜5μm、90%積算粒子径10μm以下の本発明の製法で得られる式(1)で示される化合物の1/2水和物粉砕品を得ることができる。   Further, the hydrate of the compound represented by the formula (1) obtained by the production method of the present invention is more efficiently absorbed into the living body by being refined by a normal pulverizer (for example, an atomizer). be able to. A method for producing a fine powder of the compound can be easily performed by a known method well known to those skilled in the art. The method can be refined by a ceramic mill under suitable conditions such as a mill rotation ratio or a feed ratio of compound (1) hemihydrate. Further, by passing through an air-jet mill at an appropriate supply air pressure while rotating at an appropriate supply ratio or rotation ratio of the compound 1/2 hydrate obtained by the production method of the present invention. Can also be miniaturized. A crushed product of the compound represented by the formula (1) obtained by the production method of the present invention having an average particle size of 0.5 to 5 μm and a 90% cumulative particle size of 10 μm or less suitable for formulation by the method. Obtainable.

以下に参考例、実施例、比較例を挙げて、本発明を更に詳細に説明する。
(参考例1:高橋および加門の製法)
アセトアセトアニリド(式(2)の化合物)(12kg)を1,2−ジクロロエタン(141L)に溶解させ、室温で臭素(10.9kg)の1,2−ジクロロエタン(17L)溶液を滴下した。40℃〜50℃で3時間反応させた。水(60L)を加えて、60℃〜70℃程度で暫く攪拌した後、分液し、1,2−ジクロロエタン層に濃硫酸(24L)を加え、60℃〜70℃で2時間反応させた。
分液し、硫酸層を水(314L)に注ぎ、析出した結晶を分離し、水(500L)で洗浄した。得られた湿体を乾燥し、4−ブロモメチル−2(1H)キノリノン(式(3)の化合物)12kg(収率75%)を得た。
The present invention will be described in more detail with reference examples, examples and comparative examples.
(Reference Example 1: Manufacturing method of Takahashi and Kamon)
Acetoacetanilide (compound of formula (2)) (12 kg) was dissolved in 1,2-dichloroethane (141 L), and a solution of bromine (10.9 kg) in 1,2-dichloroethane (17 L) was added dropwise at room temperature. It was made to react at 40 to 50 degreeC for 3 hours. Water (60 L) was added and stirred for a while at about 60 ° C. to 70 ° C., followed by liquid separation. Concentrated sulfuric acid (24 L) was added to the 1,2-dichloroethane layer and reacted at 60 ° C. to 70 ° C. for 2 hours. .
Liquid separation was performed, the sulfuric acid layer was poured into water (314 L), and the precipitated crystals were separated and washed with water (500 L). The obtained wet body was dried to obtain 12 kg (yield 75%) of 4-bromomethyl-2 (1H) quinolinone (compound of formula (3)).

(参考例2)
エタノール(40L)にナトリウムエトキシド(3.72kg)、アセチルアミノマロン酸ジエチル(式(4)の化合物)(10.0kg)及び4−ブロモメチル−2(1H)キノリノン(式(3)の化合物)(10.0kg)を加え、55℃〜65℃で1.5時間反応させた。酢酸(0.5kg)を加えた後、減圧濃縮後に水を加え、10℃以下に冷却し、析出した結晶を分離し、水及びエタノールで洗浄した。得られた湿体を乾燥し、2−アセトアミド−2−エトキシカルボニル−3−[2(1H)−キノリノン−4−イル]プロピオン酸エチル(式(5)の化合物)14.0kg(収率89%)を得た。
(Reference Example 2)
Ethanol (40 L), sodium ethoxide (3.72 kg), diethyl acetylaminomalonate (compound of formula (4)) (10.0 kg) and 4-bromomethyl-2 (1H) quinolinone (compound of formula (3)) (10.0 kg) was added and reacted at 55 ° C. to 65 ° C. for 1.5 hours. Acetic acid (0.5 kg) was added, water was added after concentration under reduced pressure, and the mixture was cooled to 10 ° C. or lower. The precipitated crystals were separated and washed with water and ethanol. The obtained wet substance was dried, and 14.0 kg (yield 89) of ethyl 2-acetamido-2-ethoxycarbonyl-3- [2 (1H) -quinolinone-4-yl] propionate (compound of formula (5)). %).

(参考例3)
2−アセトアミド−2−エトキシカルボニル−3−[2(1H)−キノリノン−4−イル]プロピオン酸エチル(式(5)の化合物)40kgに、20%塩酸400mlを加え、8時間還流した。20℃以下に冷却後、析出した結晶を濾取した。得られた結晶をアセトンで洗浄し、約60℃で温風乾燥して、35.4kg(収率97.1%)の2−アミノ−3−[2(1H)−キノリノン−4−イル]プロピオン酸二塩酸塩二水和物(式(6)の化合物)を得た。
(Reference Example 3)
To 40 kg of ethyl 2-acetamido-2-ethoxycarbonyl-3- [2 (1H) -quinolinone-4-yl] propionate (compound of formula (5)), 400 ml of 20% hydrochloric acid was added and refluxed for 8 hours. After cooling to 20 ° C. or lower, the precipitated crystals were collected by filtration. The obtained crystals were washed with acetone and dried in hot air at about 60 ° C. to give 35.4 kg (97.1% yield) of 2-amino-3- [2 (1H) -quinolinon-4-yl]. Propionic acid dihydrochloride dihydrate (compound of formula (6)) was obtained.

(実施例1)
2−アミノ−3−[2(1H)−キノリノン−4−イル]プロピオン酸二塩酸塩二水和物(式(6)の化合物)(608kg)に、水(10336L)及び25%の水酸化ナトリウム水溶液(1662L)を加えて溶解した。次に、4−クロロベンゾイルクロリド(式(7)の化合物)(437kg)のアセトン(1216L)溶液を15℃以下で滴下した。滴下終了後、塩酸酸性とし、析出した結晶を濾取し、水およびアセトンで洗浄して粗製の式(1)の化合物の結晶を得た(661.6kg)。
粗製の式(1)の化合物の結晶をメタノール(6000L)と水(400L)の混合液に加え、40〜50℃に加熱して分散させた。25%の水酸化ナトリウム水溶液(200L)を加えた後、10℃以下に冷却して、析出した結晶を濾取し、メタノールで洗浄した。50℃で乾燥して、式(1)のナトリウム塩を得た(643.1kg、式(6)の化合物からの収率91.9%)。
Example 1
2-Amino-3- [2 (1H) -quinolinone-4-yl] propionic acid dihydrochloride dihydrate (compound of formula (6)) (608 kg), water (10336 L) and 25% hydroxylation Sodium aqueous solution (1662 L) was added and dissolved. Next, a solution of 4-chlorobenzoyl chloride (compound of formula (7)) (437 kg) in acetone (1216 L) was added dropwise at 15 ° C. or lower. After completion of the dropwise addition, the mixture was acidified with hydrochloric acid, and the precipitated crystals were collected by filtration and washed with water and acetone to obtain crude crystals of the compound of formula (1) (661.6 kg).
Crude crystals of the compound of formula (1) were added to a mixture of methanol (6000 L) and water (400 L), and heated to 40 to 50 ° C. to disperse. After adding 25% aqueous sodium hydroxide solution (200 L), the mixture was cooled to 10 ° C. or lower, and the precipitated crystals were collected by filtration and washed with methanol. Drying at 50 ° C. gave the sodium salt of formula (1) (643.1 kg, 91.9% yield from compound of formula (6)).

(実施例2)
実施例1で得られた式(1)のナトリウム塩(325.0kg)を水(16253L)に加え、さらに25%の水酸化ナトリウム水溶液(106L)を加えて、65℃に加温して溶解させた。希塩酸(1972L)を滴下したのち、30℃以下に冷却して、析出した結晶を濾取し、水で洗浄した。85℃で乾燥して、精製された式(1)の化合物の1/2水和物を得た(276kg、収率90.0%)。
(Example 2)
The sodium salt of formula (1) obtained in Example 1 (325.0 kg) was added to water (16253 L), and a 25% aqueous sodium hydroxide solution (106 L) was further added, and the mixture was heated to 65 ° C. to dissolve. I let you. After dilute hydrochloric acid (1972 L) was added dropwise, the mixture was cooled to 30 ° C. or lower, and the precipitated crystals were collected by filtration and washed with water. Drying at 85 ° C. yielded a purified 1/2 hydrate of the compound of formula (1) (276 kg, yield 90.0%).

このように本発明の製造方法を用いることにより、医療用医薬品として十分な純度を得、更に式(1)の化合物を医薬品の有効成分として安定な式(1)の化合物の1/2水和物として工業的に大量製造することが可能となる。更には、本発明の製造法において使用される有機溶媒は、安価で安全性の高い溶媒のみである。   As described above, by using the production method of the present invention, sufficient purity as an ethical drug is obtained, and ½ hydration of the compound of the formula (1) which is stable as the active ingredient of the drug of the formula (1) As a product, it can be industrially mass-produced. Furthermore, the organic solvent used in the production method of the present invention is only an inexpensive and highly safe solvent.

実施例1及び実施例2に示した、式(1)の化合物の粗製体から式(1)のナトリウム塩を経て、式(1)の化合物の1/2水和物を得るまでの、本発明の方法による工業的大量製造における精製効果を明らかにするため、その程度を製造試験例として表1にHPLC分析結果を示す。

Figure 0004478140
表1から明らかなように、粗製体と共に収得される式(9)の4−クロロ安息香酸は、本発明の方法によりナトリウム塩として単離することによって顕著に除去されることが明らかである。更には、その他の微量の不純物、例えば式(10)の化合物についても明らかな精製効果が認められる。このように医薬として要求される高純度な式(1)の化合物の1/2水和物が得られることが分かる。 This is a process for obtaining a half hydrate of the compound of the formula (1) from the crude product of the compound of the formula (1) shown in Example 1 and Example 2 through the sodium salt of the formula (1). In order to clarify the purification effect in industrial mass production by the method of the invention, the HPLC analysis results are shown in Table 1 as the production test examples.
Figure 0004478140
As is apparent from Table 1, it is clear that 4-chlorobenzoic acid of formula (9) obtained with the crude product is remarkably removed by isolation as a sodium salt by the method of the present invention. Furthermore, a clear purification effect is observed for other trace amounts of impurities such as the compound of formula (10). In this way, it can be seen that the highly purified 1/2 hydrate of the compound of the formula (1) required as a medicine is obtained.

(実施例3)
実施例1と同様にして得られたHPLC分析で3.54%の4−クロロ安息香酸を不純物として含む、HPLC分析で純度96.24%の粗製の式(1)の化合物(1010.5kg)をメタノール(4500L)と水(300L)の混合液に加え、分散させた。次いで25%の水酸化ナトリウム水溶液(345L)を加えた。
10℃以下に冷却して、析出した結晶を濾取し、メタノールで洗浄し、式(1)のナトリウム塩の湿体を得た(1129.2kg、HPLC分析の結果、式(1)の化合物の純度は、99.92%、4−クロロ安息香酸の混在量は、0.01%であった。)。
(Example 3)
Crude compound of formula (1) (1010.5 kg) having a purity of 96.24% by HPLC analysis containing 3.54% 4-chlorobenzoic acid as an impurity by HPLC analysis obtained in the same manner as in Example 1. Was added to a mixture of methanol (4500 L) and water (300 L) and dispersed. Then 25% aqueous sodium hydroxide solution (345 L) was added.
After cooling to 10 ° C. or lower, the precipitated crystals were collected by filtration and washed with methanol to obtain a wet salt of sodium salt of formula (1) (1129.2 kg, compound of formula (1) as a result of HPLC analysis. The purity was 99.92%, and the amount of 4-chlorobenzoic acid was 0.01%.)

(実施例4)
実施例3で得られた式(1)のナトリウム塩の湿体(576.6kg)を水(25544L)に加え、25%の水酸化ナトリウム水溶液(174L)を加えて、67℃に加温して溶解させた。希塩酸(3288L)を滴下した。35℃以下に冷却して、析出した結晶を濾取し、水で洗浄した。110℃で乾燥して、精製された式(1)の化合物の1/2水和物を得た(449.8kg、HPLC分析の結果、式(1)の化合物の1/2水和物の純度は、99.93%、4−クロロ安息香酸の混在量は、0.005%であった)。
Example 4
The wet salt (576.6 kg) of the sodium salt of formula (1) obtained in Example 3 was added to water (25544 L), 25% aqueous sodium hydroxide solution (174 L) was added, and the mixture was heated to 67 ° C. And dissolved. Dilute hydrochloric acid (3288 L) was added dropwise. After cooling to 35 ° C. or lower, the precipitated crystals were collected by filtration and washed with water. By drying at 110 ° C., a purified half hydrate of the compound of formula (1) was obtained (449.8 kg, HPLC analysis showed that the half hydrate of the compound of formula (1) The purity was 99.93%, and the amount of 4-chlorobenzoic acid mixed was 0.005%).

実施例3及び4に示したように、本発明の製造法を用いる場合、精製された式(1)のナトリウム塩の乾燥を行わずに、これを湿体のまま、塩酸を作用させて式(1)の化合物の1/2水和物を得る工程に進めることもでき、本発明の製造法は、式(1)の化合物の1/2水和物の工業的大量製造を行う場合において、極めて有効な製造方法である。   As shown in Examples 3 and 4, when the production method of the present invention is used, the purified sodium salt of the formula (1) is not dried, but remains wet and is reacted with hydrochloric acid. The method of the present invention can also be advanced to a step of obtaining a half hydrate of the compound of (1), and the production method of the present invention is used in the case of industrial mass production of the half hydrate of the compound of formula (1). This is an extremely effective manufacturing method.

本発明の製造法によれば、医薬として有用な式(1)の化合物を得るために、式(1)の化合物またはその塩を式(1)の化合物の塩基性塩に変換して、不純物を除去した後、医薬品の活性成分として、必要な基準を満たし、高純度に精製され、且つ製剤化に適した結晶体である式(1)の化合物の1/2水和物として、効率よく取得できる改善された製造方法を提供できる。またこの方法を用いて、式(1)の化合物の精製方法を提供できる。
また本発明の製法において得られる式(1)の化合物の1/2水和物は、医薬品の活性成分として、結晶の取り出しが容易であるため、錠剤、散剤、顆粒剤などの医薬製剤の製剤化に適した安定な結晶体である式(1)の化合物の1/2水和物を提供することができる。
According to the production method of the present invention, in order to obtain a compound of the formula (1) useful as a medicine, the compound of the formula (1) or a salt thereof is converted into a basic salt of the compound of the formula (1) to produce impurities. As an active ingredient of a pharmaceutical product, the hydrate of the compound of the formula (1), which satisfies the necessary standards, is purified to a high purity, and is suitable for formulation, can be efficiently used as a half hydrate. An improved manufacturing method that can be obtained can be provided. This method can also be used to provide a method for purifying the compound of formula (1).
In addition, since the hemihydrate of the compound of the formula (1) obtained in the production method of the present invention can be easily taken out of crystals as an active ingredient of a pharmaceutical, it is a pharmaceutical preparation such as a tablet, powder, granule or the like. It is possible to provide a hemihydrate of the compound of the formula (1) which is a stable crystal suitable for conversion.

Claims (9)

式(6)の化合物またはその塩を式(7)の化合物と反応させて式(1)の化合物またはその塩を得、これをメタノールと水の混合液中、水酸化ナトリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、または炭酸水素リチウムから選択される塩基と反応させることにより式(1)の化合物の塩基性塩を得、次いでこれを酸性処理して式(1)の化合物・1/2水和物を得る、式(1)の化合物・1/2水和物の製造方法。
Figure 0004478140
A compound of the formula (6) or a salt thereof is reacted with a compound of the formula (7) to obtain a compound of the formula (1) or a salt thereof, which is mixed with methanol, water, sodium hydroxide, lithium hydroxide, A basic salt of the compound of formula (1) is obtained by reacting with a base selected from sodium carbonate, potassium carbonate, lithium carbonate, sodium bicarbonate, potassium bicarbonate, or lithium bicarbonate, which is then treated with an acid. A method for producing a compound ½ hydrate of formula (1), wherein a compound ½ hydrate of formula (1) is obtained.
Figure 0004478140
塩基が水酸化ナトリウムであり、塩基性塩がナトリウム塩である請求項1の製造方法。 The process according to claim 1, wherein the base is sodium hydroxide and the basic salt is a sodium salt. メタノールと水の混合液が式(1)の化合物1重量部に対して3〜15容量部である請求項1〜のいずれかの製造方法。 Method of making any of claims 1-2 which is 3 to 15 parts by volume relative to 1 part by weight of the compound of a mixture of methanol and water formula (1). メタノールと水の混合液の混合割合が、メタノール1容量部に対して、水0.05〜0.4容量部である請求項1〜のいずれかの製造方法。 The production method according to any one of claims 1 to 3 , wherein a mixing ratio of the mixed solution of methanol and water is 0.05 to 0.4 parts by volume of water with respect to 1 part by volume of methanol. 酸性処理に用いる酸が塩酸である請求項1〜のいずれかの製造方法。 Method of making any of claims 1-4 acid used in the acid treatment is hydrochloric acid. 酸性処理の反応温度が50℃から90℃である請求項1〜のいずれかの製造方法。 The production method according to any one of claims 1 to 5 , wherein the reaction temperature of the acid treatment is from 50C to 90C. 式(1)の化合物の塩基性塩を単離せずに水溶液のまま、酸性処理して式(1)の化合物・1/2水和物を得る請求項1〜のいずれかの製造方法。 Leave aqueous basic salts of the compounds of formula (1) without isolating any of the method according to claim 1 to 6 to obtain a compound hemihydrate of formula (1) acidic treatment. 式(1)の化合物の塩基性塩の水溶液を得るために加える塩基の量が、式(1)の化合物の塩基性塩に対して、0.1〜5倍モルであることを特徴とする請求項1〜のいずれかの製造方法。 The amount of the base added to obtain an aqueous solution of the basic salt of the compound of the formula (1) is 0.1 to 5 times the molar amount of the basic salt of the compound of the formula (1). method of making any of claims 1-7. 請求項1〜8のいずれか製造方法を含むことを特徴とする、式(1)の化合物の精製方法。
Figure 0004478140
Characterized in that it comprises a method of making any of claims 1-8, purification of a compound of formula (1).
Figure 0004478140
JP2006329671A 2006-12-06 2006-12-06 Preparation of carbostyril compounds for pharmaceutical use Expired - Fee Related JP4478140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006329671A JP4478140B2 (en) 2006-12-06 2006-12-06 Preparation of carbostyril compounds for pharmaceutical use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006329671A JP4478140B2 (en) 2006-12-06 2006-12-06 Preparation of carbostyril compounds for pharmaceutical use

Publications (3)

Publication Number Publication Date
JP2008143794A JP2008143794A (en) 2008-06-26
JP2008143794A5 JP2008143794A5 (en) 2009-02-12
JP4478140B2 true JP4478140B2 (en) 2010-06-09

Family

ID=39604369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006329671A Expired - Fee Related JP4478140B2 (en) 2006-12-06 2006-12-06 Preparation of carbostyril compounds for pharmaceutical use

Country Status (1)

Country Link
JP (1) JP4478140B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104230798B (en) * 2013-06-13 2017-02-15 重庆圣华曦药业股份有限公司 Preparation method of rebamipide
CN104418802B (en) * 2013-09-07 2017-02-22 重庆汇智药物研究院有限公司 rebamipide monohydrate crystal form and preparation method thereof
CN108069901B (en) * 2016-11-16 2020-12-11 重庆圣华曦药业股份有限公司 Novel rebamipide synthesis process
CN111057001A (en) * 2019-12-23 2020-04-24 巨化集团公司制药厂 Preparation method of quinolone malonate compound
CN113248429A (en) * 2021-06-01 2021-08-13 千辉药业(安徽)有限责任公司 Preparation method of rebamipide bulk drug
CN113336700A (en) * 2021-06-15 2021-09-03 大桐制药(中国)有限责任公司 Preparation method of rebamipide

Also Published As

Publication number Publication date
JP2008143794A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP4478140B2 (en) Preparation of carbostyril compounds for pharmaceutical use
EP2712865B1 (en) Improved process for the preparation of ambrisentan
CN106256824B (en) Preparation method of high-purity delafloxacin meglumine salt
CN105541844B (en) Simple preparation method of high-purity linagliptin
WO2007100387A2 (en) Process for preparing tadalafil
JP2014509642A (en) An improved method for the formation of imatinib and its mesylate
JP2022145951A (en) Method for producing (4s)-4-[4-cyano-2-(methylsulfonyl)phenyl]-3,6-dimethyl-2-oxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro pyrimidine-5-carbonitrile
CN103664912A (en) Synthesis process of prucalopride
CN101076521B (en) Process for producing muscarine receptor antagonist and intermediate therefor
TW202120470A (en) Process for the preparation of a nitric oxide donating prostaglandin analogue
CA2694939C (en) Process for producing toluidine compound
CN103588765B (en) The synthetic method of the synthetic method of Azilsartan or its salt and intermediate and intermediate
WO2017131218A1 (en) Azilsartan and method for producing same
CA3011662A1 (en) An improved process for the preparation of regorafenib
WO2014051077A1 (en) Method for producing nitrogen-containing heterocyclic compound of high purity
JP3884063B2 (en) Cefcapene pivoxil methanesulfonate
CN111320622A (en) Method for synthesizing moxifloxacin hydrochloride
CN103588764B (en) The synthetic method of Azilsartan or its salt and intermediate thereof
CN111320588B (en) Method for purifying Lesinurad
CN110655492B (en) Preparation method of oteracil potassium
CN108752339B (en) A kind of synthetic method of quindoline and its derivative
CN108570061B (en) Preparation method of zabbixing
JPH11292873A (en) Production of quinolonecarboxylic acid derivative and intermediate thereof
KR20090091553A (en) Method for the preparation of montelukast and intermediates used therein
CN107365299B (en) Preparation method of dabigatran etexilate and intermediate thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20081216

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100312

R150 Certificate of patent or registration of utility model

Ref document number: 4478140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160319

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees