JP4477266B2 - Hydrotreating catalyst - Google Patents

Hydrotreating catalyst Download PDF

Info

Publication number
JP4477266B2
JP4477266B2 JP2001292972A JP2001292972A JP4477266B2 JP 4477266 B2 JP4477266 B2 JP 4477266B2 JP 2001292972 A JP2001292972 A JP 2001292972A JP 2001292972 A JP2001292972 A JP 2001292972A JP 4477266 B2 JP4477266 B2 JP 4477266B2
Authority
JP
Japan
Prior art keywords
type zeolite
ultrastable
zeolite
pore volume
hydrotreating catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001292972A
Other languages
Japanese (ja)
Other versions
JP2003093883A (en
Inventor
行寛 杉浦
倫明 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2001292972A priority Critical patent/JP4477266B2/en
Publication of JP2003093883A publication Critical patent/JP2003093883A/en
Application granted granted Critical
Publication of JP4477266B2 publication Critical patent/JP4477266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は水素化処理触媒に関する。更に詳しくは、細孔直径3.5〜5nmの範囲の細孔容積が制御された超安定Y型ゼオライトを用いることにより、炭化水素油、特に軽油の水素処理に使用したときに、分解活性および脱硫活性が高い水素化処理触媒に関する。
【0002】
【従来の技術】
従来、炭化水素油の水素化分解を主目的とする水素化処理触媒には、超安定Y型ゼオライト(以下、USYということがある。)に水素化活性金属成分を担持した触媒が使用されてきた。例えば、特開平2−214544号公報には、アルミナとUSYからなる担体に、周期律表第5族金属、第6族金属および第8族金属から選ばれる少なくとも1種の水素化活性金属とホウ素および/またはリンを担持してなることを特徴とする重質石油類の水素化分解触媒が開示されている。
【0003】
超安定Y型ゼオライトは、特有の固体酸、細孔分布などの特性を有するため、接触分解、水素化分解、異性化、アルキル化、リホーミングなどの石油精製用触媒として広く使用されているほか、吸着剤などにも利用されている。特に、水素化分解触媒に使用される超安定Y型ゼオライトは、ゼオライト特有の均一細孔以外に大孔径細孔を有することが望ましい。
【0004】
出発原料NaY型ゼオライトのNa+をNH4 +にイオン交換して、水熱法によってSiO2/Al23比を向上させた超安定Y型ゼオライトは、Y型ゼオライト特有の細孔以外に大孔径細孔を有することが知られている〔例えば、堀越ら、日本化学会誌、(3)、398(1989)〕。しかし、従来のこのような方法で得られる超安定Y型ゼオライトは、大孔径細孔の容積が小さいため、該容積を大きくすることが望まれていた。
【0005】
特開平9−255326号公報において、(a)結晶度100〜130%、(b)比表面積 500〜800m2/g、(c)SiO2/Al23のモル比が8〜18、(d)細孔径が600Å以下である細孔の全細孔容積が0.35〜0.50ml/g、(e)細孔径が20Å未満である細孔の細孔容積が0.15〜0.35ml/g、(f)細孔径20Å〜600Åの範囲にある細孔の細孔容積(PVm)が0.15〜0.30ml/g、(g)細孔径20Å〜600Åの範囲にある細孔の細孔容積(PVm)のうち、細孔径35Å〜50Åの細孔の細孔容積(PVs)が0.10〜0.25ml/g、(h)PVmとPVsの差(PVm−PVs)が0.05ml/g以下、であることを特徴とする均一なミクロポアと均一なメソポアの2種類の細孔を有するフォージャサイト型ゼオライトおよびその製造方法が提案されている。
【0006】
また、特表平9−502416号公報には、ゼオライトY物質の2〜60nm範囲の直径のメソポア容量を、処理溶液の大気圧沸点以上の温度において、そのゼオライトを熱水処理することによって増加させる方法が記載されている。
【0007】
通常、超安定Y型ゼオライトの大孔径細孔の大部分は、細孔直径が3.5〜5nmの範囲の均一な細孔であることが知られている。しかし、従来の処理方法では、細孔直径3.5〜5nmの細孔の細孔容積を制御することができなかったし、また、制御された超安定Y型ゼオライトも知られていなかった。
【0008】
【発明が解決しようとする課題】
本発明の目的は、細孔直径3.5〜5nmの範囲の細孔容積が制御された超安定Y型ゼオライトを用いることにより、炭化水素油、特に軽油の水素分解に使用したときに、分解活性および脱硫活性が高い水素化処理触媒を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、超安定Y型ゼオライトの大孔径細孔の大部分を占める細孔直径3.5〜5nmの範囲の均一な細孔の細孔容積を制御する方法について鋭意研究をした結果、出発原料NaY型ゼオライトの結晶子径と超安定Y型ゼオライトの細孔直径3.5〜5nmの範囲の細孔容積とが密接な関係にあること、そして、細孔直径3.5〜5nmの範囲の細孔容積が制御された超安定Y型ゼオライトを使用した水素化処理触媒は、炭化水素油、特に、軽油の水素処理に使用した場合に、高い分解活性と脱硫活性を示すことを見出し、本発明を完成するに至った。
【0010】
すなわち、本発明は、超安定Y型ゼオライトと周期律表第6族金属および/または第8族金属から選ばれた活性金属成分を含有する水素化処理触媒であって、該超安定Y型ゼオライトの細孔直径3.5〜5nmの範囲の細孔容積yが、下記式の関係を満たすものであることを特徴とする水素化処理触媒に関する。
2.11×10-3x−0.140≦y≦2.11×10-3x−0.110
〔式中、yは、超安定Y型ゼオライトの細孔直径3.5〜5nmの範囲の細孔容積(ml/g)を表し、xは、超安定Y型ゼオライトの出発原料NaY型ゼオライトの結晶子径(nm)を表す。但し、xは、66.5nm以上である。〕
【0011】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明の水素化処理触媒は、後述する特定の超安定Y型ゼオライトと周期律表第6族金属および/または第8族金属から選ばれた活性金属成分を含有する。
【0012】
本発明においては、超安定Y型ゼオライトの出発原料であるNaY型ゼオライトの結晶子径(x)は66.5nm以上であることが必要である。該結晶子径(x)が66.5nmより小さい場合には、得られる超安定Y型ゼオライトの細孔直径3.5〜5nmの範囲の細孔容積(y)はほとんど生成しないため好ましくない。出発原料NaY型ゼオライトの該結晶子径(x)は、好ましくは75nm以上であり、更に好ましくは80nm以上、500nm以下の範囲にあることが望ましい。特に、水素化処理触媒に利用される超安定Y型ゼオライトは、細孔容積(y)の大きいものが好ましく、該結晶子径(x)は、90〜300nmの範囲にあるものが望ましい。
【0013】
なお、本発明において、出発原料NaY型ゼオライトの結晶子径(x)とは、X線回折の(533)面の回折線プロファイルをGauss関数型で近似してScherrerの式により求めた値である。
【0014】
本発明での超安定Y型ゼオライトは、該ゼオライトの細孔直径3.5〜5nmの範囲の細孔容積(y)が出発原料NaY型ゼオライトの結晶子径(x)と下記の式(I)で表される関係にあることが大切である。
2.11×10-3x−0.140≦y≦2.11×10-3x−0.110 (I)
〔式中、yは、超安定Y型ゼオライトの細孔直径3.5〜5nmの範囲の細孔容積(ml/g)を表し、xは、超安定Y型ゼオライトの出発原料NaY型ゼオライトの結晶子径(nm)を表す。但し、xは、66.5nm以上である。〕
【0015】
本発明によれば、出発原料NaY型ゼオライトの結晶子径(x)の大きさを適宜選択することにより、超安定Y型ゼオライトにおける細孔直径3.5〜5nmの範囲の細孔容積(y)を目的とする細孔容積(y)に制御することが可能となる。
なお、結晶子径(x)の大きさが異なる出発原料NaY型ゼオライトは、NaY型ゼオライトの種子を使用する合成方法において、合成時における種子量を変化させることにより製造することができる。
【0016】
本発明において、超安定Y型ゼオライトの細孔直径3.5〜5nmの範囲の細孔容積(y)とは、窒素吸脱着等温線の脱着等温線からB.J.H法で計算した細孔分布より求めた値である。
【0017】
本発明での超安定Y型ゼオライトは、前述の制御された細孔容積(y)を有する外、単位格子定数(UD)が2.455nm以下、好ましくは2.450〜2.419nmの範囲であることが望ましい。また、該超安定Y型ゼオライトは、SiO2/Al23モル比が8以上であることが望ましく、比表面積が400〜900m2/gの範囲にあることが望ましく、また結晶度(リンデ社SK−40を100%とした相対結晶度)は95%以上であることが望ましい。
【0018】
前述の超安定Y型ゼオライトは、例えば、結晶子径が66.5nm以上である出発原料NaY型ゼオライトをアンモニウムイオンでイオン交換してイオン交換率80%以上にしたNH4Y型ゼオライトを水蒸気雰囲気中で加熱処理して単位格子定数を2.455nm以下にした後、鉱酸などの脱アルミニウム剤で処理し、骨格外アルミニウムを除去して製造することができる。
【0019】
本発明の水素化処理触媒は、前述の超安定Y型ゼオライトを含有する耐火性無機酸化物からなる担体に、周期律表第6族金属および/または第8族金属から選ばれた少なくとも一種の活性金属成分を担持した触媒が好適である。耐火性無機酸化物としては、通常、水素化処理触媒に使用される耐火性無機酸化物が使用可能で、具体的には、アルミナ、シリカ、チタニア、ジルコニア、アルミナ−シリカ、アルミナ−チタニア、アルミナ−ボリア、アルミナ−リン、アルミナ−ボリア−リン、アルミナ−チタニア−ボリア、アルミナ−チタニア−リンなどが例示される。担体中に含有される該超安定Y型ゼオライトの量は、1〜50質量%、好ましくは5〜20質量%の範囲が望ましい。
【0020】
本発明での周期律表第6族金属および/または第8族金属から選ばれた活性金属成分としては、モリブデン、タングステン、ニッケル、コバルト、ロジウム、パラジウム、白金などが例示される。特に、モリブデン、タングステン、ニッケル、コバルトが好ましく、ニッケルおよび/またはコバルトとモリブデンおよび/またはタングステンの組み合わせが望ましい。該活性金属成分の含有量は、通常の水素化処理触媒で使用される量が用いられる。好ましい該活性金属成分の含有量は、酸化物として、モリブデン、タングステンでは5〜25質量%、ニッケル、コバルトでは0.5〜10質量%、ロジウム、パラジウム、白金では0.01〜2質量%の範囲が望ましい。
【0021】
本発明の水素化処理触媒は、例えば、前述の超安定Y型ゼオライトと耐火性無機酸化物の前駆体とを混合した後、所望の形状に成型し、乾燥、焼成して得た担体に、前述の活性金属成分の前駆物質を周知の方法により担持し、乾燥、焼成して製造される。
【0022】
本発明の水素化処理触媒は、炭化水素油の通常の水素化処理条件で使用可能である。特に本発明の水素化処理触媒は減圧軽油の水素化処理に好適に使用することができる。このときの水素化処理条件としては、例えば、反応温度300〜450℃、水素分圧2.0〜20MPa、液空間速度0.1〜4hr-1などの条件が好ましく採用される。
【0023】
本発明の水素化処理触媒に使用される超安定Y型ゼオライトは、ゼオライト特有の均一細孔以外に、制御された細孔直径3.5〜5nmの範囲の細孔容積を有するため、炭化水素油、特に、減圧軽油の水素処理に使用して、高い分解活性、高い脱硫活性を示す。
【0024】
【実施例】
以下に実施例を挙げて本発明を説明するが、本発明はこれにより限定されるものでない。
【0025】
(参考例1)
結晶子径が66.5nm以上であるNaY型ゼオライト(A、B、C、D、Eの5種)を調製した。各ゼオライトの性状を表1に示す。
表1示すA、B、C、DおよびEのNaY型ゼオライト4113gを、それぞれ60℃の温水33リットルに懸濁した。次いで、ゼオライトに対して1モル倍の硫安924gを加え、90℃で1時間攪拌してイオン交換した。その後、濾過し、再度、硫安924gを60℃の温水10リットルに溶解した溶液で同様にイオン交換した後、濾過し、60℃の純水30リットルで洗浄し、乾燥、粉砕を行ない、各々65%イオン交換されたY型ゼオライト(NH4 65Y)を得た。
【0026】
次いで、各々のY型ゼオライト(NH4 65Y)3487gを回転スチミング装置で600℃で1時間飽和水蒸気雰囲気中で焼成して焼成Y型ゼオライト(H65Y)を得た。
【0027】
各々の焼成Y型ゼオライト(H65Y)2718gを60℃の温水30リットルに懸濁し、硫安をゼオライトに対して2モル倍量の1848gを加え、90℃で1時間攪拌してイオン交換した後、濾過し、60℃の純水30リットルで洗浄した。洗浄したゼオライトを、再度、60℃の温水30リットルに懸濁し、この懸濁に硫安1812gを加え、90℃で1時間攪拌してイオン交換した。その後、濾過し、60℃の純水30リットルで洗浄し、乾燥、粉砕を行ない、各々85%イオン交換されたY型ゼオライト(NH4 85Y)を得た。
【0028】
それぞれのイオン交換されたY型ゼオライト(NH4 85Y)2952gを回転スチミング装置で780℃で1時間飽和水蒸気雰囲気中で焼成して格子定数2.431〜2.432nmの焼成Y型ゼオライト(H85Y)を得た。
【0029】
各焼成Y型ゼオライト(H85Y)2856gを60℃温水30リットルに懸濁し、この懸濁液に25%硫酸5530gを徐々に添加した後、95℃で1時間攪拌して脱アルミニウム処理をした。その後、濾過、洗浄、乾燥を行い超安定Y型ゼオライトA、B、C、DおよびEを得た。各超安定Y型ゼオライトA〜Eの性状を表2に示す。また、出発原料NaY型ゼオライトの結晶子径(x)と超安定Y型ゼオライトの細孔直径3.5〜5nmの範囲の細孔容積(y)の関係を図1に示す。
【0030】
【表1】

Figure 0004477266
【0031】
【表2】
Figure 0004477266
【0032】
図1に示した、出発原料NaY型ゼオライトの結晶子径(x)と超安定Y型ゼオライトの細孔直径3.5〜5nmの範囲の細孔容積(y)の関係は、次の実験式(II)で表される。
y=2.11×10-3x−0.125 (II)
〔式中、yは、超安定Y型ゼオライトの細孔直径3.5〜5nmの範囲の細孔容積(ml/g)を表し、xは、超安定Y型ゼオライトの出発原料NaY型ゼオライトの結晶子径(nm)を表す。但し、xは、66.5nm以上である。〕
【0033】
そして、式(II)で表される細孔容積の各測定値との標準誤差(σ)は、±0.005(ml/g)であり、誤差範囲を3σ=±0.015(ml/g)とすると、超安定Y型ゼオライトの細孔直径3.5〜5nmの範囲の細孔容積(y)は、下記式(I)で表される。
2.11×10-3x−0.140≦y≦2.11×10-3x−0.110 (I)
〔式中、yは、超安定Y型ゼオライトの細孔直径3.5〜5nmの範囲の細孔容積(ml/g)を表し、xは、超安定Y型ゼオライトの出発原料NaY型ゼオライトの結晶子径(nm)を表す。但し、xは、66.5nm以上である。〕
【0034】
(実施例1)
参考例1の超安定Y型ゼオライトE(出発原料NaY型ゼオライトEから得られたUSY)を使用して水素化処理触媒を調製した。
すなわち、スチームジャケット付100リットルタンクにAl23濃度換算で22%のアルミン酸ナトリウム水溶液88.82kgを入れ、イオン交換水で希釈し40kgとした後、26質量%グルコン酸ナトリウム0.22kgを加え攪拌しながら60℃に加温した。一方、50リットル容器にAl23濃度換算で7%の硫酸アルミニウム水溶液13.86kgを入れ60℃の温水で希釈し40kgとした。ロータリーポンプを用いてアルミン酸ナトリウム溶液中に硫酸アルミニウム溶液を一定速度で添加して、pH=7.2とし、アルミナ水和物の懸濁スラリーを得た。該懸濁スラリーを攪拌しながら60℃で1時間熟成した後、懸濁スラリーを脱水、洗浄した。洗浄後のケーキ状スラリーをイオン交換水で希釈し、Al23濃度で10質量%になるようにした後、15%アンモニア水を用いてスラリーのpHを10.5に調製した。これを還流器付熟成タンクに移し、攪拌しながら95℃で10時間熟成してアルミナ水和物熟成スラリーを得た。
【0035】
次に、参考例1の超安定Y型ゼオライトE0.27kg(固形分重量)をイオン交換水0.63リットルに懸濁させ、ゼオライトの懸濁溶液を調製した。この懸濁溶液をAl23換算で2.35kgの前述のアルミナ水和物熟成スラリーと混合した後、スチームジャケットを備えた双腕式ニーダーで練りながら加温し、所定の水分量まで濃縮した。これにホウ酸(B23換算)0.74kg及びイオン交換水0.84kgを加えた後、所定の水分量まで更に捏和した。得られた捏和物を押出成形機で直径1.8mmの円柱状に成形し110℃で乾燥させた。乾燥したペレットは電気炉中で550℃の温度で焼成して、超安定Y型ゼオライトEを10質量%含有する担体を得た。
【0036】
次いで、三酸化モリブデン170.2g、及び炭酸ニッケル75.4gをイオン交換水600mlに加え、さらに含カルボン酸化合物を加えて攪拌、加熱して溶解した。この溶液を前述の担体1.00kgに含浸した後、乾燥させ、550℃で1時間焼成して水素化処理触媒Eを調製した。該水素化処理触媒Eの活性金属組成はMoO3が14.0質量%、NiOが3.8質量%で、触媒の窒素吸着法による細孔容積は0.40ml/g、比表面積は230m2/g、水銀圧入法による細孔径は7.8nmであった。
【0037】
(実施例2)
実施例1と同様にして、参考例1の超安定Y型ゼオライトC(出発原料NaY型ゼオライトCから得られたUSY)を使用して水素化処理触媒Cを調製した。該水素化処理触媒Cの活性金属組成はMoO3が14.0質量%、NiOが3.8質量%で、触媒の窒素吸着法による細孔容積は0.39ml/g、比表面積は242m2/g、水銀圧入法による細孔径は7.6nmであった。
【0038】
(比較例1)
実施例1と同様にして、市販の超安定Y型ゼオライトを使用して水素化処理触媒Zを調製した。このゼオライトのNaY型ゼオライトの結晶子径は35nmであり、超安定Y型ゼオライトの細孔直径3.5〜5nmの範囲の細孔容積は0.005ml/gである。該水素化処理触媒Zの活性金属組成はMoO3が14.0質量%、NiOが3.8質量%で、触媒の窒素吸着法による細孔容積は0.40ml/g、比表面積は238m2/g、水銀圧入法による細孔径は7.7nmであった。
【0039】
(実施例3)
実施例1、2及び比較例1の水素化処理触媒E、C及びZを用いて、減圧留出油(VGO)の水素化処理を行い、脱硫活性、分解活性を測定した。反応装置には固定床流通式反応装置を用いた。
反応条件および用いた原料油VGOの性状をそれぞれ表3および表4に示す。
【0040】
【表3】
Figure 0004477266
【0041】
【表4】
Figure 0004477266
【0042】
反応により得られた生成油中の硫黄分を測定し、硫黄の除去率を求め比較例1の水素化処理触媒Zの活性と比較した。また、生成油を蒸留装置にかけ、360℃より高沸点分(360℃+)の含有量を測定し、原料油中の量に対する減少率を分解活性として評価した。反応温度380℃における触媒Zに対する相対活性を表5に示した。
【0043】
【表5】
Figure 0004477266
【0044】
以上の結果から明らかなように、水素化処理触媒EおよびCは、水素化処理触媒Zに比較して、脱硫、分解共に高活性を示した。
【0045】
【発明の効果】
以上のように、細孔直径3.5〜5nmの範囲の細孔容積を制御した超安定Y型ゼオライトを用い、これを炭化水素油の水素化処理触媒として使用したとき、すぐれた脱硫活性および分解活性を発揮する。
【図面の簡単な説明】
【図1】出発原料NaY型ゼオライトの結晶子径(x)と超安定Y型ゼオライトの細孔直径3.5〜5nmの範囲の細孔容積(y)との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydroprocessing catalyst. More specifically, by using an ultrastable Y-type zeolite with a controlled pore volume in the pore diameter range of 3.5 to 5 nm, when used for hydroprocessing hydrocarbon oils, particularly light oils, cracking activity and The present invention relates to a hydroprocessing catalyst having high desulfurization activity.
[0002]
[Prior art]
Conventionally, as a hydrotreating catalyst whose main purpose is hydrocracking of hydrocarbon oils, a catalyst in which a hydrogenation active metal component is supported on an ultrastable Y-type zeolite (hereinafter sometimes referred to as USY) has been used. It was. For example, JP-A-2-214544 discloses that a support made of alumina and USY has at least one hydrogenation active metal selected from Group 5 metal, Group 6 metal and Group 8 metal in the periodic table and boron. And / or a hydrocracking catalyst for heavy petroleum, characterized by carrying phosphorus.
[0003]
Ultrastable Y-type zeolite has characteristics such as unique solid acid and pore distribution, so it is widely used as a catalyst for petroleum refining for catalytic cracking, hydrocracking, isomerization, alkylation, reforming, etc. It is also used for adsorbents. In particular, it is desirable that the ultrastable Y-type zeolite used for the hydrocracking catalyst has large pores in addition to the uniform pores unique to zeolite.
[0004]
The ultra-stable Y-type zeolite, in which Na + in the starting material NaY-type zeolite is ion-exchanged to NH 4 + and the SiO 2 / Al 2 O 3 ratio is improved by the hydrothermal method, has pores other than those unique to Y-type zeolite. It is known to have large pores [for example, Horikoshi et al., The Chemical Society of Japan, (3), 398 (1989)]. However, since the conventional ultrastable Y-type zeolite obtained by such a method has a small volume of large pores, it has been desired to increase the volume.
[0005]
In JP-A-9-255326, (a) crystallinity 100 to 130%, (b) specific surface area 500 to 800 m 2 / g, (c) SiO 2 / Al 2 O 3 molar ratio 8 to 18, ( d) The total pore volume of pores having a pore diameter of 600 mm or less is 0.35 to 0.50 ml / g, and (e) The pore volume of pores having a pore diameter of less than 20 mm is 0.15 to 0. 35 ml / g, (f) pore volume (PVm) of pores having a pore diameter in the range of 20 to 600 mm, 0.15 to 0.30 ml / g, (g) pore having a pore diameter in the range of 20 to 600 mm Pore volume (PVm) of pores having a pore diameter of 35 to 50 mm is 0.10 to 0.25 ml / g, and (h) the difference between PVm and PVs (PVm-PVs) is Uniform micropores and uniform mesopores characterized by being 0.05 ml / g or less Faujasite-type zeolite and a manufacturing method thereof having two pores has been proposed.
[0006]
Also, Japanese Patent Publication No. 9-502416 discloses that the mesopore capacity of the zeolite Y substance having a diameter in the range of 2 to 60 nm is increased by hydrothermal treatment of the zeolite at a temperature not lower than the atmospheric pressure boiling point of the treatment solution. A method is described.
[0007]
Usually, it is known that most of the large pores of the ultrastable Y-type zeolite are uniform pores having a pore diameter in the range of 3.5 to 5 nm. However, the conventional treatment method could not control the pore volume of pores having a pore diameter of 3.5 to 5 nm, and a controlled ultrastable Y-type zeolite was not known.
[0008]
[Problems to be solved by the invention]
The object of the present invention is to use an ultrastable Y-type zeolite with a controlled pore volume in a pore diameter range of 3.5 to 5 nm, so that when used for hydrocracking hydrocarbon oils, particularly light oil, An object of the present invention is to provide a hydroprocessing catalyst having high activity and high desulfurization activity.
[0009]
[Means for Solving the Problems]
As a result of intensive studies on a method for controlling the pore volume of uniform pores in the pore diameter range of 3.5 to 5 nm, which occupies most of the large pores of ultrastable Y-type zeolite, the present inventors The crystallite size of the starting material NaY zeolite and the pore volume of the ultrastable Y zeolite in the pore diameter range of 3.5 to 5 nm are closely related, and the pore diameter is 3.5 to 5 nm. The hydrotreating catalyst using ultra-stable Y-type zeolite with controlled pore volume in the range of 1 shows that it has high cracking activity and desulfurization activity when used for hydrotreating hydrocarbon oils, especially light oil. The headline and the present invention were completed.
[0010]
That is, the present invention is a hydrotreating catalyst containing an ultrastable Y-type zeolite and an active metal component selected from Group 6 metal and / or Group 8 metal of the periodic table, the ultrastable Y-type zeolite The hydrotreating catalyst is characterized in that the pore volume y having a pore diameter of 3.5 to 5 nm satisfies the relationship of the following formula.
2.11 × 10 −3 x−0.140 ≦ y ≦ 2.11 × 10 −3 x−0.110
[Wherein y represents the pore volume (ml / g) of the ultrastable Y-type zeolite with a pore diameter of 3.5 to 5 nm, and x represents the starting material NaY-type zeolite of the ultrastable Y-type zeolite. Represents the crystallite size (nm). However, x is 66.5 nm or more. ]
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The hydrotreating catalyst of the present invention contains a specific ultrastable Y-type zeolite described later and an active metal component selected from Group 6 metal and / or Group 8 metal of the Periodic Table.
[0012]
In the present invention, the crystallite size (x) of NaY-type zeolite, which is a starting material for ultra-stable Y-type zeolite, needs to be 66.5 nm or more. When the crystallite diameter (x) is smaller than 66.5 nm, the obtained ultrastable Y-type zeolite is not preferable because the pore volume (y) in the pore diameter range of 3.5 to 5 nm is hardly generated. The crystallite diameter (x) of the starting material NaY-type zeolite is preferably 75 nm or more, more preferably 80 nm or more and 500 nm or less. In particular, the ultrastable Y-type zeolite used for the hydrotreating catalyst preferably has a large pore volume (y), and the crystallite diameter (x) is preferably in the range of 90 to 300 nm.
[0013]
In the present invention, the crystallite diameter (x) of the starting raw material NaY-type zeolite is a value obtained by approximating the diffraction line profile of the (533) plane of X-ray diffraction with a Gaussian function type by the Scherrer equation. .
[0014]
The ultrastable Y-type zeolite in the present invention has a pore volume (y) in the range of 3.5 to 5 nm in pore diameter of the zeolite, the crystallite diameter (x) of the starting material NaY-type zeolite and the following formula (I ) Is important.
2.11 × 10 −3 x−0.140 ≦ y ≦ 2.11 × 10 −3 x−0.110 (I)
[Wherein y represents the pore volume (ml / g) of the ultrastable Y-type zeolite with a pore diameter of 3.5 to 5 nm, and x represents the starting material NaY-type zeolite of the ultrastable Y-type zeolite. Represents the crystallite size (nm). However, x is 66.5 nm or more. ]
[0015]
According to the present invention, by appropriately selecting the crystallite size (x) of the starting raw material NaY-type zeolite, the pore volume (y ) Can be controlled to the desired pore volume (y).
The starting material NaY-type zeolite having a different crystallite diameter (x) can be produced by changing the seed amount during synthesis in a synthesis method using NaY-type zeolite seeds.
[0016]
In the present invention, the pore volume (y) in the range of the pore diameter of 3.5 to 5 nm of the ultrastable Y-type zeolite refers to the desorption isotherm of the nitrogen adsorption / desorption isotherm. J. et al. It is a value obtained from the pore distribution calculated by the H method.
[0017]
The ultrastable Y-type zeolite in the present invention has the above controlled pore volume (y), and the unit cell constant (UD) is 2.455 nm or less, preferably 2.450 to 2.419 nm. It is desirable to be. The ultrastable Y-type zeolite preferably has a SiO 2 / Al 2 O 3 molar ratio of 8 or more, a specific surface area of 400 to 900 m 2 / g, and a crystallinity (linde The relative crystallinity (with SK-40 of 100%) is desirably 95% or more.
[0018]
The ultra-stable Y-type zeolite described above is, for example, a NH 4 Y-type zeolite obtained by ion-exchange of a starting material NaY-type zeolite having a crystallite diameter of 66.5 nm or more with ammonium ions to an ion exchange rate of 80% or more in a steam atmosphere. It is possible to manufacture by removing the extra-framework aluminum by treating with a dealumination agent such as a mineral acid after the unit cell constant is reduced to 2.455 nm or less by heat treatment.
[0019]
The hydrotreating catalyst of the present invention has at least one selected from Group 6 metal and / or Group 8 metal on the periodic table on a support made of a refractory inorganic oxide containing the ultrastable Y-type zeolite. A catalyst carrying an active metal component is preferred. As the refractory inorganic oxide, refractory inorganic oxides usually used for hydrotreating catalysts can be used. Specifically, alumina, silica, titania, zirconia, alumina-silica, alumina-titania, alumina -Boria, alumina-phosphorus, alumina-boria-phosphorus, alumina-titania-boria, alumina-titania-phosphorus, etc. The amount of the ultrastable Y-type zeolite contained in the carrier is 1 to 50% by mass, preferably 5 to 20% by mass.
[0020]
Examples of the active metal component selected from Group 6 metal and / or Group 8 metal of the periodic table in the present invention include molybdenum, tungsten, nickel, cobalt, rhodium, palladium, platinum and the like. In particular, molybdenum, tungsten, nickel, and cobalt are preferable, and a combination of nickel and / or cobalt and molybdenum and / or tungsten is desirable. As the content of the active metal component, an amount used in a normal hydroprocessing catalyst is used. The content of the active metal component is preferably 5 to 25% by mass for molybdenum and tungsten, 0.5 to 10% by mass for nickel and cobalt, and 0.01 to 2% by mass for rhodium, palladium and platinum as oxides. A range is desirable.
[0021]
The hydrotreating catalyst of the present invention, for example, after mixing the above-mentioned ultrastable Y-type zeolite and a precursor of a refractory inorganic oxide, formed into a desired shape, dried and calcined, The active metal component precursor is supported by a known method, dried and fired.
[0022]
The hydrotreating catalyst of the present invention can be used under normal hydrotreating conditions for hydrocarbon oils. In particular, the hydrotreating catalyst of the present invention can be suitably used for hydrotreating vacuum gas oil. As hydrotreating conditions at this time, for example, conditions such as a reaction temperature of 300 to 450 ° C., a hydrogen partial pressure of 2.0 to 20 MPa, and a liquid space velocity of 0.1 to 4 hr −1 are preferably employed.
[0023]
The ultrastable Y-type zeolite used in the hydrotreating catalyst of the present invention has a controlled pore volume in the range of 3.5 to 5 nm in addition to the uniform pores unique to the zeolite, so that it is a hydrocarbon. Used for hydrotreating oils, especially vacuum gas oils, exhibits high cracking activity and high desulfurization activity.
[0024]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
[0025]
(Reference Example 1)
NaY-type zeolite (5 types of A, B, C, D, and E) having a crystallite diameter of 66.5 nm or more was prepared. Table 1 shows the properties of each zeolite.
4113 g of NaY-type zeolites A, B, C, D and E shown in Table 1 were suspended in 33 liters of hot water at 60 ° C., respectively. Next, 924 g of 1 molar ammonium sulfate was added to the zeolite, and the mixture was stirred at 90 ° C. for 1 hour for ion exchange. Thereafter, the mixture was filtered, and again ion-exchanged with a solution obtained by dissolving 924 g of ammonium sulfate in 10 liters of hot water at 60 ° C., filtered, washed with 30 liters of pure water at 60 ° C., dried and crushed, % Ion-exchanged Y-type zeolite (NH 4 65 Y) was obtained.
[0026]
Next, 3487 g of each Y-type zeolite (NH 4 65 Y) was calcined in a saturated steam atmosphere at 600 ° C. for 1 hour by a rotary steaming apparatus to obtain calcined Y-type zeolite (H 65 Y).
[0027]
After suspending 2718 g of each calcined Y-type zeolite (H 65 Y) in 30 liters of warm water at 60 ° C., adding 1848 g of ammonium sulfate 2 mol times the amount of zeolite and stirring for 1 hour at 90 ° C. for ion exchange. , Filtered, and washed with 30 liters of pure water at 60 ° C. The washed zeolite was suspended again in 30 liters of hot water at 60 ° C., 1812 g of ammonium sulfate was added to this suspension, and ion exchange was performed by stirring at 90 ° C. for 1 hour. Thereafter, the mixture was filtered, washed with 30 liters of pure water at 60 ° C., dried and pulverized to obtain Y-type zeolite (NH 4 85 Y) each ion-exchanged by 85%.
[0028]
Each ion-exchanged Y-type zeolite (NH 4 85 Y) (2952 g) was calcined in a rotary steaming apparatus at 780 ° C. for 1 hour in a saturated water vapor atmosphere, and calcined Y-type zeolite having a lattice constant of 2.431 to 2.432 nm (H 85 Y) was obtained.
[0029]
2856 g of each calcined Y-type zeolite (H 85 Y) was suspended in 30 liters of hot water at 60 ° C., and 5530 g of 25% sulfuric acid was gradually added to the suspension, followed by stirring at 95 ° C. for 1 hour for dealumination. . Thereafter, filtration, washing and drying were performed to obtain ultrastable Y-type zeolites A, B, C, D and E. Table 2 shows the properties of each ultrastable Y-type zeolite A to E. FIG. 1 shows the relationship between the crystallite size (x) of the starting raw material NaY zeolite and the pore volume (y) in the pore diameter range of 3.5 to 5 nm of the ultrastable Y zeolite.
[0030]
[Table 1]
Figure 0004477266
[0031]
[Table 2]
Figure 0004477266
[0032]
The relationship between the crystallite diameter (x) of the starting raw material NaY zeolite shown in FIG. 1 and the pore volume (y) in the pore diameter range of 3.5 to 5 nm of the ultrastable Y zeolite is expressed by the following empirical formula: It is represented by (II).
y = 2.11 × 10 −3 x−0.125 (II)
[Wherein y represents the pore volume (ml / g) of the ultrastable Y-type zeolite with a pore diameter of 3.5 to 5 nm, and x represents the starting material NaY-type zeolite of the ultrastable Y-type zeolite. Represents the crystallite size (nm). However, x is 66.5 nm or more. ]
[0033]
The standard error (σ) with respect to each measured value of the pore volume represented by the formula (II) is ± 0.005 (ml / g), and the error range is 3σ = ± 0.015 (ml / g). When g), the pore volume (y) in the range of the pore diameter of 3.5 to 5 nm of the ultrastable Y-type zeolite is represented by the following formula (I).
2.11 × 10 −3 x−0.140 ≦ y ≦ 2.11 × 10 −3 x−0.110 (I)
[Wherein y represents the pore volume (ml / g) of the ultrastable Y-type zeolite with a pore diameter of 3.5 to 5 nm, and x represents the starting material NaY-type zeolite of the ultrastable Y-type zeolite. Represents the crystallite size (nm). However, x is 66.5 nm or more. ]
[0034]
Example 1
A hydrotreating catalyst was prepared using the ultrastable Y-type zeolite E of Reference Example 1 (USY obtained from the starting material NaY-type zeolite E).
In other words, 88.82 kg of 22% sodium aluminate aqueous solution in terms of Al 2 O 3 concentration was placed in a 100 liter tank with a steam jacket, diluted to 40 kg with ion-exchanged water, and then 0.22 kg of 26 mass% sodium gluconate was added. The mixture was heated to 60 ° C. with stirring. On the other hand, 13.86 kg of 7% aluminum sulfate aqueous solution in terms of Al 2 O 3 concentration was placed in a 50 liter container and diluted with hot water at 60 ° C. to make 40 kg. Using a rotary pump, the aluminum sulfate solution was added to the sodium aluminate solution at a constant rate to obtain pH = 7.2, and a suspension slurry of alumina hydrate was obtained. The suspension slurry was aged at 60 ° C. for 1 hour with stirring, and then the suspension slurry was dehydrated and washed. The cake slurry after washing was diluted with ion-exchanged water so that the Al 2 O 3 concentration was 10% by mass, and then the pH of the slurry was adjusted to 10.5 using 15% ammonia water. This was transferred to an aging tank equipped with a refluxer and aged at 95 ° C. for 10 hours with stirring to obtain an alumina hydrate aging slurry.
[0035]
Next, 0.27 kg (solid weight) of the ultrastable Y-type zeolite E of Reference Example 1 was suspended in 0.63 liter of ion-exchanged water to prepare a suspension solution of zeolite. This suspension solution is mixed with 2.35 kg of the above-mentioned alumina hydrate maturation slurry in terms of Al 2 O 3 , then heated while kneading with a double-arm kneader equipped with a steam jacket, and concentrated to a predetermined water content. did. After adding boric acid (converted to B 2 O 3 ) 0.74 kg and ion-exchanged water 0.84 kg to this, the mixture was further kneaded to a predetermined water content. The obtained kneaded product was formed into a columnar shape having a diameter of 1.8 mm with an extruder and dried at 110 ° C. The dried pellets were fired in an electric furnace at a temperature of 550 ° C. to obtain a carrier containing 10% by mass of ultrastable Y-type zeolite E.
[0036]
Next, 170.2 g of molybdenum trioxide and 75.4 g of nickel carbonate were added to 600 ml of ion-exchanged water, and a carboxylic acid compound was further added, stirred and heated to dissolve. The solution was impregnated with 1.00 kg of the carrier, dried, and calcined at 550 ° C. for 1 hour to prepare a hydrotreating catalyst E. The active metal composition of the hydrotreating catalyst E is 14.0% by mass of MoO 3 and 3.8% by mass of NiO, the pore volume of the catalyst by the nitrogen adsorption method is 0.40 ml / g, and the specific surface area is 230 m 2. / G, the pore diameter by mercury porosimetry was 7.8 nm.
[0037]
(Example 2)
In the same manner as in Example 1, hydrotreating catalyst C was prepared using ultrastable Y-type zeolite C of Reference Example 1 (USY obtained from starting raw material NaY-type zeolite C). The active metal composition of the hydrotreating catalyst C is 14.0% by mass of MoO 3 and 3.8% by mass of NiO, the pore volume by the nitrogen adsorption method of the catalyst is 0.39 ml / g, and the specific surface area is 242 m 2. / G, the pore diameter by mercury porosimetry was 7.6 nm.
[0038]
(Comparative Example 1)
In the same manner as in Example 1, a hydrotreating catalyst Z was prepared using a commercially available ultrastable Y-type zeolite. The crystallite size of the NaY zeolite of this zeolite is 35 nm, and the pore volume of the ultrastable Y zeolite in the pore diameter range of 3.5 to 5 nm is 0.005 ml / g. The active metal composition of the hydrotreating catalyst Z is 14.0% by mass of MoO 3 and 3.8% by mass of NiO, the pore volume by the nitrogen adsorption method of the catalyst is 0.40 ml / g, and the specific surface area is 238 m 2. / G, the pore diameter by mercury porosimetry was 7.7 nm.
[0039]
(Example 3)
Using the hydrotreating catalysts E, C, and Z of Examples 1 and 2 and Comparative Example 1, hydrotreating of vacuum distillate oil (VGO) was performed, and desulfurization activity and cracking activity were measured. A fixed bed flow reactor was used as the reactor.
Tables 3 and 4 show the reaction conditions and the properties of the feedstock VGO used, respectively.
[0040]
[Table 3]
Figure 0004477266
[0041]
[Table 4]
Figure 0004477266
[0042]
The sulfur content in the product oil obtained by the reaction was measured and the sulfur removal rate was determined and compared with the activity of the hydrotreating catalyst Z of Comparative Example 1. Further, the produced oil was subjected to a distillation apparatus, the content of a boiling point higher than 360 ° C. (360 ° C. + ) was measured, and the reduction rate relative to the amount in the raw material oil was evaluated as the decomposition activity. Table 5 shows the relative activity with respect to catalyst Z at a reaction temperature of 380 ° C.
[0043]
[Table 5]
Figure 0004477266
[0044]
As is clear from the above results, the hydrotreating catalysts E and C showed higher activity in both desulfurization and decomposition than the hydrotreating catalyst Z.
[0045]
【The invention's effect】
As described above, when an ultrastable Y-type zeolite having a controlled pore volume in a pore diameter range of 3.5 to 5 nm is used and used as a hydrotreating catalyst for hydrocarbon oil, excellent desulfurization activity and Degrading activity is demonstrated.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the crystallite diameter (x) of a starting material NaY-type zeolite and the pore volume (y) in the pore diameter range of 3.5 to 5 nm of an ultrastable Y-type zeolite.

Claims (2)

超安定Y型ゼオライトと周期律表第6族金属および/または第8族金属から選ばれた活性金属成分を含有する水素化処理触媒であって、該超安定Y型ゼオライトの細孔直径3.5〜5nmの範囲の細孔容積yが、下記式の関係を満たすものであることを特徴とする水素化処理触媒。
2.11×10-3x−0.140≦y≦2.11×10-3x−0.110
〔式中、yは、超安定Y型ゼオライトの細孔直径3.5〜5nmの範囲の細孔容積(ml/g)を表し、xは、超安定Y型ゼオライトの出発原料NaY型ゼオライトの結晶子径(nm)を表す。但し、xは、66.5nm以上である。〕
2. A hydrotreating catalyst containing an ultrastable Y-type zeolite and an active metal component selected from Group 6 metal and / or Group 8 metal of the periodic table, wherein the pore diameter of the ultrastable Y-type zeolite is 3. A hydrotreating catalyst, wherein the pore volume y in the range of 5 to 5 nm satisfies the relationship of the following formula.
2.11 × 10 −3 x−0.140 ≦ y ≦ 2.11 × 10 −3 x−0.110
[Wherein y represents the pore volume (ml / g) of the ultrastable Y-type zeolite with a pore diameter of 3.5 to 5 nm, and x represents the starting material NaY-type zeolite of the ultrastable Y-type zeolite. Represents the crystallite size (nm). However, x is 66.5 nm or more. ]
前記xが75nm以上500nm以下であることを特徴とする請求項1に記載の水素化処理触媒。The hydrotreating catalyst according to claim 1, wherein x is 75 nm or more and 500 nm or less.
JP2001292972A 2001-09-26 2001-09-26 Hydrotreating catalyst Expired - Fee Related JP4477266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001292972A JP4477266B2 (en) 2001-09-26 2001-09-26 Hydrotreating catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001292972A JP4477266B2 (en) 2001-09-26 2001-09-26 Hydrotreating catalyst

Publications (2)

Publication Number Publication Date
JP2003093883A JP2003093883A (en) 2003-04-02
JP4477266B2 true JP4477266B2 (en) 2010-06-09

Family

ID=19114845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001292972A Expired - Fee Related JP4477266B2 (en) 2001-09-26 2001-09-26 Hydrotreating catalyst

Country Status (1)

Country Link
JP (1) JP4477266B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6974788B2 (en) * 2004-03-12 2005-12-13 Chevron Oronite Company Llc. Zeolite Y alkylation catalysts
JP2006150185A (en) * 2004-11-26 2006-06-15 Petroleum Energy Center Hydrocracking catalyst composition
JP4954485B2 (en) * 2005-03-15 2012-06-13 一般財団法人石油エネルギー技術センター Hydrorefining catalyst composition

Also Published As

Publication number Publication date
JP2003093883A (en) 2003-04-02

Similar Documents

Publication Publication Date Title
JP5100388B2 (en) Hydrocarbon hydrotreating catalyst composition and hydrotreating method
KR100478078B1 (en) A hydrocracking catalyst for producing middle distillates and a process for the preparation thereof
JPH0576348B2 (en)
JPH0555189B2 (en)
JPH06285374A (en) New catalyst composition
CN102596404A (en) Heavy oil hydrocracking catalyst and heavy oil hydrotreating method using same
JPH0239305B2 (en)
JPH07103376B2 (en) Contact cracking method
JPH0536099B1 (en)
WO2022010520A1 (en) Methods of producing hydrocracking catalyst
JP2007313409A (en) Hydrocracking catalyst composition and its manufacturing method
KR20230104255A (en) Silica-alumina composition comprising 1 to 30% by weight of crystalline ammonium aluminum carbonate hydroxide and process for its preparation
JP4477266B2 (en) Hydrotreating catalyst
JP2000086233A (en) Iron-containing crystalline alumino-silicate
JP3342504B2 (en) Method for producing improved metal-supported crystalline aluminosilicate and method for reforming hydrocarbons using the same
CN111672534B (en) Hydrocracking catalyst, and preparation method and application thereof
JPS6148979B2 (en)
JP2006150185A (en) Hydrocracking catalyst composition
CN116265106A (en) Preparation method of catalytic cracking catalyst for high yield of low carbon olefin
US4572779A (en) Process for the dewaxing of hydrocarbon fractions
JP4624610B2 (en) Method for producing hydrotreating catalyst
CN107344116B (en) Hydrocracking catalyst and its preparation method and application
JP3731615B2 (en) Method for producing catalyst carrier and method for producing hydrocracking catalyst using the same
JP2617952B2 (en) Catalyst for hydrotreating coal liquefaction solvent
JP4484677B2 (en) Hydrocarbon catalytic cracking catalyst composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100311

R150 Certificate of patent or registration of utility model

Ref document number: 4477266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees