JP4471485B2 - Correction method for thermal displacement between two feed screws - Google Patents

Correction method for thermal displacement between two feed screws Download PDF

Info

Publication number
JP4471485B2
JP4471485B2 JP2000343372A JP2000343372A JP4471485B2 JP 4471485 B2 JP4471485 B2 JP 4471485B2 JP 2000343372 A JP2000343372 A JP 2000343372A JP 2000343372 A JP2000343372 A JP 2000343372A JP 4471485 B2 JP4471485 B2 JP 4471485B2
Authority
JP
Japan
Prior art keywords
feed screw
points
thermal displacement
error
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000343372A
Other languages
Japanese (ja)
Other versions
JP2002144192A (en
Inventor
鈴木重啓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enshu Co Ltd
Original Assignee
Enshu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enshu Co Ltd filed Critical Enshu Co Ltd
Priority to JP2000343372A priority Critical patent/JP4471485B2/en
Publication of JP2002144192A publication Critical patent/JP2002144192A/en
Application granted granted Critical
Publication of JP4471485B2 publication Critical patent/JP4471485B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、送りねじの熱変位補正方法に係り、特に、送りねじの両端2点位置をワーク幅に対応して調節させ、この2点位置間のストローク誤差補正を行う送りねじの2点間熱変位補正方法とその装置に関する。
【0002】
【従来の技術】
従来、工作機械における送りねじの熱変位補正方法として、本願出願人が開発した特開平11−254273号公報に見るものが提案されている。
【0003】
上記特開平11−254273号公報は、送りねじの全長の真の値と、送りねじの両端2点の機械原点からの距離とを測定して、真の値からの誤差を求め、上記誤差から原点シフト量及びピッチ誤差補正値を決定してストローク全域の誤差補正を行う2点間熱変位補正方法である。これにより、先ず、送りねじの全長の真の値と、送りねじの両端2点の機械原点からの距離とを測定して、真の値からの誤差を求める。続いて、上記誤差から原点シフト量及びピッチ誤差補正値を決定する。これにより、送りねじの2点間についてのストローク全域の誤差補正を正確に行うことができる。
【0004】
上記送りねじの2点間設定は、固定式であるから、ワークの大小幅に関係ないものになっている。これがため、2点間設定距離に、ワーク幅が接近した関係にあるときは、両者の接近で熱変位補正が正確に実行される。しかし、2点間設定距離に対して、ワーク幅が極端に狭いと、加工に不要なストローク部分が拡大するため、折角2点間設定して熱変位補正しても、補正誤差を拡大するという問題がある。
【0005】
【発明が解決しようとする課題】
本発明は、上記従来の2点間熱変位補正方法に見られる問題点に鑑みてなされたものである。本発明の目的とするところは、、送りねじの両端2点位置をワーク幅に対応して調節させ、この2点位置間のストローク誤差補正を行う送りねじ2点間熱変位補正方法とこの装置を提供することを目的とする。
【0006】
本発明の請求項1の送りねじ2点間熱変位補正方法は、送りねじの全長の真の値と、送りねじの両端2点の機械原点からの距離とを測定して、真の値からの誤差を求め、上記誤差から原点シフト量及びピッチ誤差補正値を決定してストローク全域の誤差補正を行う送りねじ2点間熱変位補正方法において、上記送りねじの両端2点位置をワーク幅に接近した関係に調節させ、上記2点位置間のストローク誤差補正を行うことを特徴とする。
【0008】
【作用】
上記請求項1に記載の送りねじ2点間熱変位補正方法は、上記送りねじの2点間設定は、調節式であるから、ワークの大小幅に関連して調節できる。これがため、2点間設定距離
を、ワーク幅に接近した関係に調節すれば、両者の接近で熱変位補正がより一層正確に実行される。したがって、2点間設定距離に対して、ワーク幅に二つのセンサを接近させて、加工に不要なストローク部分を縮小するため、2点間設定距離の補正誤差が最小値に抑制され、従来の送りねじ熱変位補正方法にない、正確無比な送りネジの熱変位補正が行える。
【0010】
【発明の実施の形態】
以下、本発明を図面に示す実施形態を参照して説明する。図1は本発明の送りねじ2点間熱変位補正方法を実施する送りねじ2点間補正装置の正面図であり、図2は送りねじ2点間熱変位補正方法の作用線図である。また、図3は送りねじ2点間検出手段の平面図であり、図4は2点間検出手段の左側面図である。
【0011】
図1〜図4により送りねじ2点間熱変位補正方法とこれを実施する送りねじ2点間熱変位補正装置100について説明する。図1において、工作機械の移動体の1つとなるテーブル10には、送りねじ12が螺合しており、この送りねじ12の正逆転でテーブル10が左右移動される。上記送りねじ12の片側には、引張ベアリング14が支持されている。上記固定側ベアリング16の送りねじ12には、パルスモータPMが連結されている。上記パルスモータPMは、NC制御装置20からの送り指令により、テーブル10を指定方向に所定量だけ送り制御する。このとき、送りねじ12が熱変位していると、真の長さと異なるために、パルスモータPMの回転に対するテーブル10の移動量に誤差を生ずる。
【0012】
本発明は、上記テーブル10の移動量の熱変位誤差をワーク幅に対応して補正するものである。上記テーブル10は、機械原点(О)から僅か離れた測定点(О1)と、ストローク端(О3)の少し手前の測定点(О2)とが、テーブル10の通過時に、2点間検出手段となる位置検出センサSにより検出される。上記位置検出センサSは、機械本体に固着した近接スイッチで、テーブル10上の測定点(О1)と測定点(О2)に配置した磁石片M1,M2を検出して検出信号をNC制御装置20に送り込むようになっている。
【0013】
上記位置検出センサSと各磁石片M1,M2との取付け構成は、図3と図4に示している。位置検出センサSは、磁気式の近接スイッチであって、機械本体の固定側1に取付体2をボルト5で締付け固着されている。他方の二つの磁石片M1,M2は、テーブル10の側面にその移動方向に向けた断面コ型のガイドバー30を付設し、これに移動調節可能に取付けられている。その取付け構造は、ガイドバー30の溝30a内にボルト31,32と螺合するナット体34.35を嵌め、このボルトの頭部側に磁石片M1,M2を付設した磁石取付体36,37を係合させ、ナット体に締付て所定位置に固着している。従って、上記磁石片M1,M2の取付位置となる測定点(О1)と測定点(О2)は、上記ボルト31,32を緩め、磁石取付体36,37を左右移動方向に連続して微調節することができる。
【0014】
上記テーブル10の移動量Lと、各測定点(О1)と測定点(О2)との関係図を、図2に示す。テーブル10の移動量Lは、機械原点(О)から僅か離れた測定点(О1)までの距離を(L1)とし、機械原点(О)から測定点(О2)までの距離を(L2)とする。これに対し、テーブル10の移動量Lに対する真の値(E)からの誤差±△Eを縦軸で示し、測定点(О1)の誤差−△E1となり、測定点(О2)の誤差は+△E2となる誤差曲線E´で表される。上記誤差曲線E´は、機械原点(О)から僅か離れた測定点(О1)と、機械原点(О)からストローク端(О3)に近い測定点(О2)までの2点間の距離を各々測定し、真の値(E)のテーブル送り量に対する実際の送り量との誤差±△Eを求めることで求められ、原点シフト量及びピンチ誤差補正値を決定する。これにより、ストローク全域にわたり誤差の補正が可能となる。
【0015】
本発明の送りねじ2点間熱変位補正方法を実施する送りねじ2点間熱変位補正装置100は、上記のように構成されており、以下のように作用する。
先ず、レーザー測定器等により通常のピンチ誤差補正を行う。上記誤差補正の直後に、移動体10の機械原点(О)から測定点(О1),測定点(О2)までの距離(L1),(L2)の測定を位置検出センサSにより行う。これを真の値(E)として記憶させる。
次に、加工後或いは加工中に、移動体10の機械原点(О)から測定点(О1),測定点(О2)までの距離(L1´),(L2´)の測定を位置検出センサSにより行う。これを真の値(E´)とし、図2に示す。ここで、(L2´−L2)−(L1´−L1)/(L2−L1)=△L2−△L1/L2−L1から、△L2−△L1/L2−L1=磁石片M1,M2の取付位置2点間の伸び量/磁石片M1,M2の取付位置2点間の真の距離となり、実測値(E´)の勾配が決る。また、△E=△L1−(△L2−△L1/L2−L1)×L1となり、機械原点(О)での座標補正量を求めることができる。
【0016】
以上のように、送りねじ2点間熱変位補正方法の基本は、送りねじの全長の真の値と、送りねじの両側2点の機械原点(О)からの距離を各々測定して、真の値からの誤差を求める。上記誤差から原点シフト量及びピンチ誤差補正値を決定する。これにより、送りねじのストローク全域にわたる誤差補正を高精度に行う。
【0017】
そして、特に、本発明の送りねじ2点間熱変位補正方法は、上記送りねじの2点間設定が調節式であるから、ワークの大小幅に関連して調節できる。これがため、移動体10の機械原点(О)から測定点(О1),測定点(О2)における2点間設定距離を、ワークWの幅W1に接近した関係に調節すれば、両者の接近で熱変位補正が更に一層正確に実行される。したがって、2点間設定距離に対して、ワーク幅を接近させて、加工に不要なストローク部分を縮小するため、2点間設定距離の補正誤差が最小値に抑制され、従来の送りねじ熱変位補正方法にない、正確無比な送りネジの熱変位補正が行える。
【0018】
また、送りねじ2点間熱変位補正装置100については、上記送りねじの2点間設定が、調節式であるから、ワークの大小幅に関連して調節できる。これがため、2点間設定距離をワーク幅に接近した関係に調節すれば、両者の接近で熱変位補正が正確に実行される。したがって、2点間設定距離となる測定点(О1),測定点(О2)を、ワーク幅に接近させて、加工に不要なストローク部分を縮小するため、2点間設定距離の補正誤差が最小値に抑制され、従来の送りねじ熱変位補正装置にない、正確無比な送りネジの熱変位補正を実行する送りねじ2点間熱変位補正装置が提供できる。上記2点間設定距離の調節は、図3と図4に示すように、各測定点(О1),(О2)に配置した磁石片M1,M2をガイドバー30の溝30aに沿って左右に調節し、固着することにより実行される。
【0019】
本発明は、上記一実施形態に限定されない。例えば、2点間検出手段は図示のものに限定されず、各種タイプのセンサやスイッチ及びその取付け・調節手段が使用可能である。更に、工作機械の移動体はテーブル10に限定されず、移動コラムやサドル又は主軸頭・ラムであっても良い。
【0020】
【発明の効果】
請求項1によると、送りねじの両端2点位置をワーク幅に対応して調節させ、上記2点位置間のストローク誤差補正を行うから、ワーク幅に対応した送りねじの両端2点位置の熱変位補正が高精度に、且つ能率良く実施制御できる。
【図面の簡単な説明】
【図1】本発明の送りねじ2点間熱変位補正方法を実施する送りねじ2点間熱変位補正装置の正面図である。
【図2】2点間熱変位補正方法の作用線図である。
【図3】2点間検出手段の平面図である。
【図4】2点間検出手段の左側面図である
【符号の説明】
1 機械本体の固定側
2 取付体
5 ボルト
10 テーブル
12 送りねじ
14 引張ベアリング
16 固定側ベアリング
20 NC制御装置
30 ガイドバー
30a 溝
31,32 ボルト
34.35 ナット体
36,37 磁石取付体
E 真の値
E´ 誤差曲線
L 移動量
L1 機械原点(О)から測定点(О1)までの距離
L2 機械原点(О)から測定点(О2)までの距離
О 機械原点
О1,О2 測定点
О3 ストローク端
S 位置検出センサ
PM パルスモータ
M1,M2 磁石片
100 送りねじ2点間熱変位補正装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for correcting a thermal displacement of a feed screw, and in particular, between two points of a feed screw that adjusts the positions of two points on both ends of the feed screw in accordance with the workpiece width and corrects a stroke error between the two points. The present invention relates to a thermal displacement correction method and apparatus.
[0002]
[Prior art]
Conventionally, as a method for correcting the thermal displacement of a feed screw in a machine tool, one disclosed in Japanese Patent Application Laid-Open No. 11-254273 developed by the present applicant has been proposed.
[0003]
The above-mentioned Japanese Patent Application Laid-Open No. 11-254273 measures the true value of the total length of the lead screw and the distance from the machine origin at the two ends of the lead screw to determine the error from the true value. This is a two-point thermal displacement correction method in which an origin shift amount and a pitch error correction value are determined and error correction is performed for the entire stroke. Thereby, first, the true value of the total length of the feed screw and the distances from the machine origin at the two ends of the feed screw are measured, and the error from the true value is obtained. Subsequently, an origin shift amount and a pitch error correction value are determined from the error. Thereby, the error correction of the whole stroke area between the two points of the feed screw can be accurately performed.
[0004]
Since the setting between the two points of the feed screw is a fixed type, it is not related to the size of the workpiece. For this reason, when the workpiece width is close to the set distance between the two points, the thermal displacement correction is accurately executed by the proximity of the two. However, if the workpiece width is extremely narrow with respect to the set distance between the two points, the stroke part unnecessary for machining will be expanded, so even if it is set between the two folding points and the thermal displacement is corrected, the correction error will be expanded. There's a problem.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the problems seen in the above-described conventional two-point thermal displacement correction method. The object of the present invention is to adjust the position of two points on both ends of the feed screw in accordance with the work width and to correct the thermal displacement between the two points of the feed screw and to correct the stroke error between the two points. The purpose is to provide.
[0006]
The method for correcting thermal displacement between two points of a feed screw according to claim 1 of the present invention measures the true value of the total length of the feed screw and the distances from the machine origin of the two points on both ends of the feed screw. In the method for correcting the thermal displacement between two points of the feed screw by determining the origin shift amount and the pitch error correction value from the above error and correcting the error over the entire stroke, the positions of the two points on both ends of the feed screw are set to the workpiece width. The stroke error correction between the two point positions is performed by adjusting the close relationship .
[0008]
[Action]
In the method for correcting the thermal displacement between the two points of the feed screw according to the first aspect, since the setting between the two points of the feed screw is an adjustment type, it can be adjusted in relation to the size of the workpiece. For this reason, if the set distance between the two points is adjusted so as to be close to the workpiece width, the thermal displacement correction is more accurately executed by the closeness of the two. Therefore, since the two sensors are brought closer to the workpiece width with respect to the set distance between the two points to reduce the stroke portion unnecessary for machining, the correction error of the set distance between the two points is suppressed to the minimum value. It is possible to correct the thermal displacement of the lead screw exactly and unmatched by the lead screw thermal displacement correction method.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to embodiments shown in the drawings. FIG. 1 is a front view of a feed screw two-point correction apparatus for carrying out the feed screw two-point thermal displacement correction method of the present invention, and FIG. 2 is an action diagram of the feed screw two-point thermal displacement correction method. 3 is a plan view of the feed screw two-point detection means, and FIG. 4 is a left side view of the two-point detection means.
[0011]
The feed screw two-point thermal displacement correction method and the feed screw two-point thermal displacement correction apparatus 100 that implements this will be described with reference to FIGS. In FIG. 1, a feed screw 12 is screwed to a table 10 that is one of moving bodies of a machine tool, and the table 10 is moved left and right by forward and reverse rotation of the feed screw 12. A tension bearing 14 is supported on one side of the feed screw 12. A pulse motor PM is connected to the feed screw 12 of the fixed side bearing 16. The pulse motor PM controls the feed of the table 10 in a specified direction by a predetermined amount in response to a feed command from the NC controller 20. At this time, if the feed screw 12 is thermally displaced, an error occurs in the amount of movement of the table 10 with respect to the rotation of the pulse motor PM because it is different from the true length.
[0012]
The present invention corrects the thermal displacement error of the movement amount of the table 10 in accordance with the workpiece width. The table 10 has a measuring point (О1) slightly separated from the machine origin (О) and a measuring point (О2) just before the stroke end (O3) when the table 10 passes between the two-point detecting means. Is detected by the position detection sensor S. The position detection sensor S is a proximity switch fixed to the machine body and detects the magnet pieces M1 and M2 arranged at the measurement points (O1) and (O2) on the table 10 and sends detection signals to the NC controller 20. It comes to send to.
[0013]
The mounting configuration of the position detection sensor S and the magnet pieces M1, M2 is shown in FIGS. The position detection sensor S is a magnetic proximity switch, and a mounting body 2 is fastened and fixed to a fixed side 1 of the machine body with a bolt 5. The other two magnet pieces M1 and M2 are attached to the side surface of the table 10 with a guide bar 30 having a U-shaped cross section directed in the moving direction thereof so that the movement can be adjusted. The mounting structure includes a magnet mounting body 36, 37 in which a nut body 34.35 screwed with the bolt 31, 32 is fitted in the groove 30a of the guide bar 30, and magnet pieces M1, M2 are attached to the head side of the bolt. Are fastened to the nut body and fixed in place. Therefore, the measurement points (O1) and (O2) that are the attachment positions of the magnet pieces M1 and M2 are finely adjusted by loosening the bolts 31 and 32 and continuously adjusting the magnet attachment bodies 36 and 37 in the lateral movement direction. can do.
[0014]
FIG. 2 shows a relationship diagram between the movement amount L of the table 10 and each measurement point (O1) and measurement point (O2). The distance L of the table 10 is (L1), the distance from the machine origin (О) to the measurement point (О1), and the distance from the machine origin (О) to the measurement point (О2) as (L2). To do. On the other hand, the error ± ΔE from the true value (E) with respect to the movement amount L of the table 10 is indicated by the vertical axis, and becomes the error −ΔE1 of the measurement point (О1), and the error of the measurement point (О2) is + It is represented by an error curve E ′ that becomes ΔE2. The above error curve E ′ shows the distance between two points from the measurement point (О1) slightly away from the machine origin (О) and the measurement point (О2) close to the stroke end (О3) from the machine origin (О). The origin shift amount and the pinch error correction value are determined by measuring and obtaining an error ± ΔE between the true value (E) and the actual feed amount with respect to the table feed amount. This makes it possible to correct the error over the entire stroke.
[0015]
The feed screw two-point thermal displacement correction apparatus 100 that performs the feed screw two-point thermal displacement correction method of the present invention is configured as described above and operates as follows.
First, normal pinch error correction is performed using a laser measuring instrument or the like. Immediately after the error correction, the position detection sensor S measures the distances (L1) and (L2) from the mechanical origin (O) of the moving body 10 to the measurement points (O1) and (O2). This is stored as a true value (E).
Next, during or after machining, the position detection sensor S measures the distances (L1 ′) and (L2 ′) from the machine origin (O) of the moving body 10 to the measurement points (O1) and (O2). To do. This is the true value (E ′) and is shown in FIG. Here, from (L2'-L2)-(L1'-L1) / (L2-L1) = ΔL2-ΔL1 / L2-L1, ΔL2-ΔL1 / L2-L1 = magnet pieces M1, M2 The amount of elongation between the two attachment positions / the true distance between the two attachment positions of the magnet pieces M1 and M2, and the gradient of the actually measured value (E ′) is determined. Further, ΔE = ΔL1− (ΔL2−ΔL1 / L2−L1) × L1, and the coordinate correction amount at the mechanical origin (O) can be obtained.
[0016]
As described above, the basic method for correcting the thermal displacement between two feed screw points is to measure the true value of the total length of the feed screw and the distance from the machine origin (О) at two points on both sides of the feed screw. Find the error from the value of. The origin shift amount and the pinch error correction value are determined from the error. Thereby, error correction over the entire stroke of the feed screw is performed with high accuracy.
[0017]
In particular, the method for correcting the thermal displacement between two points of the feed screw according to the present invention can be adjusted in relation to the size of the workpiece because the setting between the two points of the feed screw is an adjustment type. For this reason, if the set distance between the two points at the measurement point (O1) and the measurement point (O2) from the machine origin (O) of the moving body 10 is adjusted to be close to the width W1 of the workpiece W, the two can approach each other. Thermal displacement correction is performed even more accurately. Therefore, since the workpiece width is made closer to the set distance between the two points to reduce the stroke portion unnecessary for machining, the correction error of the set distance between the two points is suppressed to the minimum value, and the conventional feed screw thermal displacement is reduced. It is possible to correct the thermal displacement of the lead screw exactly and unmatched by the correction method.
[0018]
Moreover, about the feed screw two-point thermal displacement correction apparatus 100, since the setting between the two points of the feed screw is an adjustment type, it can be adjusted in relation to the size of the workpiece. For this reason, if the set distance between the two points is adjusted to be close to the workpiece width, the thermal displacement correction is accurately executed by the closeness of both. Therefore, since the measurement point (О1) and measurement point (О2), which are set distance between two points, are brought close to the workpiece width and the stroke part unnecessary for machining is reduced, the correction error of the set distance between the two points is minimized. Therefore, it is possible to provide a two-point feed screw thermal displacement correction device that performs accurate and unmatched feed screw thermal displacement correction, which is limited by the value and is not found in conventional feed screw thermal displacement correction devices. As shown in FIGS. 3 and 4, the adjustment of the set distance between the two points is performed by moving the magnet pieces M1 and M2 arranged at the measurement points (O1) and (O2) left and right along the groove 30a of the guide bar 30. This is done by adjusting and fixing.
[0019]
The present invention is not limited to the above-described embodiment. For example, the point-to-point detection means is not limited to that shown in the figure, and various types of sensors and switches and their attachment / adjustment means can be used. Furthermore, the moving body of the machine tool is not limited to the table 10, and may be a moving column, a saddle, a spindle head, or a ram.
[0020]
【The invention's effect】
According to the first aspect of the present invention, the two point positions on both ends of the feed screw are adjusted in accordance with the workpiece width, and the stroke error between the two point positions is corrected. Displacement correction can be implemented and controlled with high accuracy and efficiency.
[Brief description of the drawings]
FIG. 1 is a front view of a two-point feed screw thermal displacement correction apparatus for carrying out a two-point feed screw thermal displacement correction method of the present invention.
FIG. 2 is an action diagram of a method for correcting a thermal displacement between two points.
FIG. 3 is a plan view of a point-to-point detection unit.
FIG. 4 is a left side view of the point-to-point detection means.
DESCRIPTION OF SYMBOLS 1 Machine side fixed side 2 Attachment body 5 Bolt 10 Table 12 Feed screw 14 Tensile bearing 16 Fixed side bearing 20 NC controller 30 Guide bar 30a Groove 31, 32 Bolt 34.35 Nut body 36, 37 Magnet attachment body E True Value E 'Error curve L Travel distance L1 Distance from machine origin (О) to measurement point (О1) L2 Distance from machine origin (О) to measurement point (О2) О Machine origin O1, O2 Measurement point O3 Stroke end S Position detection sensor PM Pulse motor M1, M2 Magnet piece 100 Thermal displacement correction device between two feed screws

Claims (1)

送りねじの全長の真の値と、送りねじの両端2点の機械原点からの距離とを測定して、真の値からの誤差を求め、上記誤差から原点シフト量及びピッチ誤差補正値を決定してストローク全域の誤差補正を行う送りねじ2点間熱変位補正方法において、上記送りねじの両端2点位置をワーク幅に接近した関係に調節させ、上記2点位置間のストローク誤差補正を行うことを特徴とする送りねじ2点間熱変位補正方法。  Measure the true value of the total length of the feed screw and the distance from the machine origin at the two ends of the feed screw, find the error from the true value, and determine the origin shift amount and pitch error correction value from the above errors Then, in the method for correcting the thermal displacement between the two points of the feed screw that corrects the error in the entire stroke, the position of the two points on both ends of the feed screw is adjusted to be close to the workpiece width, and the stroke error between the two points is corrected. A method for correcting thermal displacement between two feed screws.
JP2000343372A 2000-11-10 2000-11-10 Correction method for thermal displacement between two feed screws Expired - Lifetime JP4471485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000343372A JP4471485B2 (en) 2000-11-10 2000-11-10 Correction method for thermal displacement between two feed screws

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000343372A JP4471485B2 (en) 2000-11-10 2000-11-10 Correction method for thermal displacement between two feed screws

Publications (2)

Publication Number Publication Date
JP2002144192A JP2002144192A (en) 2002-05-21
JP4471485B2 true JP4471485B2 (en) 2010-06-02

Family

ID=18817749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000343372A Expired - Lifetime JP4471485B2 (en) 2000-11-10 2000-11-10 Correction method for thermal displacement between two feed screws

Country Status (1)

Country Link
JP (1) JP4471485B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4926264B2 (en) * 2009-07-15 2012-05-09 智雄 松下 Pattern forming apparatus and positioning apparatus
JP4917665B1 (en) 2010-11-11 2012-04-18 ファナック株式会社 Thermal displacement correction method and thermal displacement correction apparatus for machine tool
CN115570013B (en) * 2022-10-27 2023-04-14 上海狄兹精密机械股份有限公司 Straightener is used in lead screw processing
CN116618479B (en) * 2023-07-19 2023-09-22 常州三协电机股份有限公司 Screw rod straightening device

Also Published As

Publication number Publication date
JP2002144192A (en) 2002-05-21

Similar Documents

Publication Publication Date Title
EP2781303B1 (en) Machine tool
JP3897501B2 (en) Ball screw thermal displacement compensation device
JP4470929B2 (en) Ball screw thermal displacement compensation device
US6595766B2 (en) Die clamping apparatus, die clamping force measurement method and die clamping force adjustment method
JP4471485B2 (en) Correction method for thermal displacement between two feed screws
JP2840842B2 (en) Displacement correction method and device
KR100408794B1 (en) Method of detecting grinding residual amount and apparatus thereof
US5813322A (en) Die height correcting apparatus for press
JP3385039B2 (en) Thickness measuring method and measuring device in bender
JP2006116654A (en) Thermal deformation correction method and thermal deformation correcting device of nc machine tool
JPH08174320A (en) Device and method for machining up to fixed depth
JP3901290B2 (en) Compensation method for bore size and NC lathe capable of performing this compensation method
JP2004322255A (en) Machine tool with straight line position measuring instrument
JP2019013996A (en) Workpiece machining method in machine tool
JPH11254273A (en) Thermal displacement correcting method for feed screw
JP3806245B2 (en) Workpiece machining method
JPH11254272A (en) Thermal displacement correcting method for feed screw
GB2081475A (en) Position control process and apparatus for a positioning cylinder drive
JPS58126045A (en) Method and device for correcting positioning of machine tool
JP3802183B2 (en) Abutting positioning method of back gauge device, back gauge device and mold using this abutting positioning method
JPH05208342A (en) Thermal displacement correcting method for screw feed mechanism
CN218935782U (en) Three-coordinate measuring instrument stable in movement
JP4599942B2 (en) Lathe and blade edge position correction method
JPS6331877Y2 (en)
JP2000263302A (en) Tool tip position measuring device and method for numerically controlled machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150