JP4470541B2 - Compressor control device - Google Patents

Compressor control device Download PDF

Info

Publication number
JP4470541B2
JP4470541B2 JP2004082944A JP2004082944A JP4470541B2 JP 4470541 B2 JP4470541 B2 JP 4470541B2 JP 2004082944 A JP2004082944 A JP 2004082944A JP 2004082944 A JP2004082944 A JP 2004082944A JP 4470541 B2 JP4470541 B2 JP 4470541B2
Authority
JP
Japan
Prior art keywords
value
control
compressor
detection value
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004082944A
Other languages
Japanese (ja)
Other versions
JP2005264913A (en
Inventor
博之 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004082944A priority Critical patent/JP4470541B2/en
Publication of JP2005264913A publication Critical patent/JP2005264913A/en
Application granted granted Critical
Publication of JP4470541B2 publication Critical patent/JP4470541B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Description

本発明は、単位時間あたりに吐出する流体容量を可変できる可変容量コンプレッサの制御装置に関し、車両用空調装置の冷凍サイクルにおいて、冷媒を圧縮する可変容量コンプレッサに適用して有効である。   The present invention relates to a control device for a variable displacement compressor that can vary the volume of fluid discharged per unit time, and is effective when applied to a variable displacement compressor that compresses refrigerant in a refrigeration cycle of a vehicle air conditioner.

従来、可変容量コンプレッサの制御装置においては、PI(比例積分)制御によりコンプレッサの容量制御をする方法が広く知られている(以下一般例と称す)。このPI制御(比例積分制御)は、目標蒸発器温度TEOと、蒸発器の実測温度Teと、これらの偏差の積分値とを基に前回の容量制御信号の出力値を補正して今回の出力値を決定し、コンプレッサの容量を制御している。   Conventionally, in a control device for a variable displacement compressor, a method of controlling the displacement of the compressor by PI (proportional integral) control is widely known (hereinafter referred to as a general example). This PI control (proportional integral control) corrects the output value of the previous capacity control signal based on the target evaporator temperature TEO, the measured temperature Te of the evaporator, and the integrated value of these deviations, and outputs this time. The value is determined and the compressor capacity is controlled.

例えば車両用空調装置に冷凍サイクルでは、コンプレッサの容量制御(PI制御)により、コンプレッサが吐出する冷媒容量が変化する、言い換えると蒸発器へ流入する冷媒量が変化する。したがって、蒸発器の冷凍能力が変化するため、蒸発器の温度Teが目標蒸発器温度TEOに近づくように制御できる。   For example, in a refrigeration cycle in a vehicle air conditioner, the refrigerant capacity discharged by the compressor changes, in other words, the amount of refrigerant flowing into the evaporator changes due to compressor capacity control (PI control). Therefore, since the refrigerating capacity of the evaporator changes, it is possible to control the evaporator temperature Te so as to approach the target evaporator temperature TEO.

また、可変容量コンプレッサの容量をトランスミッション信号またはパワーステアリング信号によって中間容量に制御する方法が特許文献1にて知られている。   Patent Document 1 discloses a method for controlling the capacity of a variable capacity compressor to an intermediate capacity by a transmission signal or a power steering signal.

これによると、パワーステアリング操作中や、オートマチック車でドランスミッションが接続されている場合などエンジンが過負荷状態の時にコンプレッサの吐出容量が中間容量に制御されるため、コンプレッサがエンジンに掛ける負荷を軽減することができる。
実公平7−15766号公報
According to this, since the discharge capacity of the compressor is controlled to an intermediate capacity when the engine is overloaded, such as during power steering operation or when a transmission transmission is connected to an automatic vehicle, the load applied to the engine by the compressor is controlled. Can be reduced.
Japanese Utility Model Publication No. 7-15766

しかし、一般例の可変容量コンプレッサのPI制御ではコンプレッサ起動時に、目標蒸発器温度TEOと蒸発器温度Teを比較してTEOに対してTeが低ければコンプレッサを100%容量に制御し、逆にTeがTEOよりも高ければ0%容量から起動する。つまり、コンプレッサ起動時に目標蒸発器温度TEOと蒸発器温度Teの差が小さくても、計算上初回の制御信号出力値は100%または0%容量の値となり、その後蒸発器温度Teの変化に応じて徐々に制御信号出力値を変化させて行く。   However, in the PI control of the variable displacement compressor of the general example, when the compressor is started, the target evaporator temperature TEO and the evaporator temperature Te are compared, and if Te is lower than TEO, the compressor is controlled to 100% capacity, and conversely Te If is higher than TEO, it starts from 0% capacity. In other words, even if the difference between the target evaporator temperature TEO and the evaporator temperature Te is small at the time of starting the compressor, the first control signal output value in the calculation becomes a value of 100% or 0% capacity, and then changes according to the change of the evaporator temperature Te Gradually change the control signal output value.

このため、特にTEOとTeの差が小さい場合には、コンプレッサ容量が過剰となり、容量制御値により変化したTeが目標エバ温度TEOに対してオーバーシュートまたはアンダーシュートを起こし、大きく外れてしまうという問題がある。これにより、例えば蒸発器が車両用空調装置において、車室内へ流れる空気を冷却している場合には、最終的には車室内に吹出す空器温度に狂いが生じてしまう。   For this reason, especially when the difference between TEO and Te is small, the compressor capacity becomes excessive, and Te that has changed due to the capacity control value causes overshoot or undershoot with respect to the target evaporation temperature TEO, resulting in a large deviation. There is. As a result, for example, when the evaporator cools the air flowing into the vehicle interior in the vehicle air conditioner, the temperature of the air blown out into the vehicle interior eventually becomes distorted.

また、蒸発器温度Teは時間遅れを持って変化するため、コンプレッサ容量制御値が適切に算出されない状態が所定時間連続する場合もある。なお、特許文献1においてもコンプレッサ制御をPI制御した場合には、同様に上記の問題が発生する。   Further, since the evaporator temperature Te changes with a time delay, a state where the compressor capacity control value is not properly calculated may continue for a predetermined time. Also in Patent Document 1, when the compressor control is PI-controlled, the above problem similarly occurs.

本発明は、上記点に鑑み、可変容量コンプレッサの起動時にPI(比例積分)制御により発生するコンプレッサ容量制御のアンダーシュートまたはオーバーシュートの低減を目的とする。   The present invention has been made in view of the above points, and it is an object of the present invention to reduce undershoot or overshoot of compressor capacity control generated by PI (proportional integration) control when a variable capacity compressor is started.

上記目的を達成するため、請求項1および2に記載の発明では、コンプレッサの制御装置において、制御信号値に応じて単位時間あたりに吐出する流体の容量を可変する可変容量型コンプレッサ(11)と、可変容量型コンプレッサ(11)の流体吐出容量に応じて変化する第1検出値(Te)を検出する第1検出手段(16)と、第2検出値(Tam)を検出する第2検出手段(18)と、第1検出値(Te)および第2検出値(Tam)が入力され、第1検出値(Te)と目標値(TEO)の偏差が小さくなるように制御信号値を出力する制御手段(17)とを備え、
可変容量コンプレッサ(11)の起動時には、制御手段(17)が第1検出値(Te)と、目標値(TEO)と、第2検出値(Tam)とに基づいて、可変容量コンプレッサ(11)の吐出容量が0%より大きく100%より小さい中間容量となるように制御信号値を算出、出力する起動時制御を行い、
可変容量コンプレッサ(11)の起動時以外には、制御手段(17)が目標値(TEO)と第1検出値(Te)に基づいた比例演算および積分演算により、制御信号値を算出、出力する比例積分(PI)制御を行うことを共通の特徴としている。
In order to achieve the above object, according to the first and second aspects of the present invention, in the compressor control device, a variable displacement compressor (11) that varies the volume of fluid discharged per unit time according to the control signal value; The first detection means (16) for detecting the first detection value (Te) that changes in accordance with the fluid discharge capacity of the variable displacement compressor (11), and the second detection means for detecting the second detection value (Tam) (18), the first detection value (Te) and the second detection value (Tam) are input, and the control signal value is output so that the deviation between the first detection value (Te) and the target value (TEO) becomes small. Control means (17),
At the time of starting the variable displacement compressor (11), the control means (17) controls the variable displacement compressor (11) based on the first detection value (Te), the target value (TEO), and the second detection value (Tam). The control signal value is calculated and output so that the discharge volume of the gas becomes an intermediate volume larger than 0% and smaller than 100%, and the startup control is performed.
Except when the variable displacement compressor (11) is started, the control means (17) calculates and outputs a control signal value by proportional calculation and integral calculation based on the target value (TEO) and the first detection value (Te). A common feature is to perform proportional integral (PI) control.

これによると、可変容量コンプレッサ(11)の起動時に制御手段(17)が起動時制御を行って可変容量コンプレッサ(11)の吐出容量が0%より大きく100%より小さい中間容量となるように制御信号値を算出、出力する。このため、一般例のように起動時のコンプレッサ容量が100%または0%から制御が始まる場合に比べて第1検出値(Te)が目標値(TEO)に対して起こす、アンダーシュートまたはオーバーシュートを軽減することができる。   According to this, when the variable capacity compressor (11) is started, the control means (17) performs control at the time of start so that the discharge capacity of the variable capacity compressor (11) becomes an intermediate capacity larger than 0% and smaller than 100%. Calculate and output the signal value. For this reason, the undershoot or overshoot occurs when the first detection value (Te) occurs with respect to the target value (TEO) as compared with the case where the control starts from 100% or 0% as in the general example. Can be reduced.

上述の共通の特徴に加えて、請求項に記載の発明では、可変容量コンプレッサ(11)の吐出する流体容量を大きくすると第1検出値(Te)と目標値(TEO)の偏差が小さくなる場合には、第2検出値(Tam)に基づいて決定される制限制御信号値と、目標値(TEO)と第1検出値(Te)に基づいた比例演算および積分演算で算出した比例積分制御値とを比較して、可変容量コンプレッサ(11)の流体吐出容量が小さくなる方の値を中間容量の制御信号値とするようになっていることを特徴としている。 In addition to the common features described above, in the invention according to claim 1, the deviation of an increase in the fluid volume for discharging the variable capacity compressor (11) a first detection value (Te) and the target value (TEO) is smaller In this case, the proportional control calculated by the limit control signal value determined based on the second detection value (Tam), the proportional calculation based on the target value (TEO) and the first detection value (Te), and the integral calculation. Compared with the control value, the value with the smaller fluid discharge capacity of the variable capacity compressor (11) is set as the control signal value of the intermediate capacity.

ところで、一般例では可変容量コンプレッサ(11)の吐出する流体容量を大きくすると第1検出値(Te)と目標値(TEO)の偏差が小さくなる場合には、可変容量コンプレッサ(11)の吐出容量を100%として制御が始まる。   By the way, in the general example, when the displacement of the first detection value (Te) and the target value (TEO) decreases when the fluid volume discharged from the variable displacement compressor (11) is increased, the discharge capacity of the variable displacement compressor (11). Control starts with 100%.

しかし、請求項では、第2検出値(Tam)に基づいて決定される制御信号値と、目標値(TEO)と第1検出値(Te)に基づいた比例演算および積分演算で算出した比例積分制御値とを比較して小さい方の値を中間容量の制御信号値としている。これにより、具体的に中間容量の制御信号値を決定して、第1検出値(Te)が目標値(TEO)に対して起こす、アンダーシュートまたはオーバーシュートを軽減することができる。
上述の共通の特徴に加えて、請求項2に記載の発明では、起動時に可変容量コンプレッサ(11)の吐出する流体容量を小さくすると第1検出値(Te)と目標値(TEO)の偏差が小さくなる場合には、第2検出値(Tam)に基づいて決定される制限制御信号値と、目標値(TEO)と第1検出値(Te)に基づいた比例演算および積分演算で算出した比例積分制御値とを比較して、可変容量コンプレッサ(11)の流体吐出容量が大きくなる方の値を中間容量の制御信号値とするようになっていることを特徴とする。
ところで、一般例では可変容量コンプレッサ(11)の吐出する流体容量を小さくすると第1検出値(Te)と目標値(TEO)の偏差が小さくなる場合には、可変容量コンプレッサ(11)の吐出容量を0%として制御が始まる。
しかし、請求項2では、第2検出値(Tam)に基づいて決定される制御信号値と、目標値(TEO)と第1検出値(Te)に基づいた比例演算および積分演算で算出した比例積分制御値とを比較して大きい方の値を中間容量の制御信号値としている。これにより、具体的に中間容量の制御信号値を決定して、第1検出値(Te)が目標値(TEO)に対して起こす、アンダーシュートまたはオーバーシュートを軽減することができる。
However, in claim 1, in proportion calculated in the control signal value is determined based on the second detection value (Tam), proportional calculation and an integral calculation target value (TEO) based on the first detection value (Te) The smaller value is compared with the integral control value, and the control signal value of the intermediate capacity is used. Thus, it is possible to specifically determine the control signal value of the intermediate capacity and reduce the undershoot or overshoot caused by the first detection value (Te) with respect to the target value (TEO).
In addition to the common features described above, in the invention described in claim 2, if the fluid volume discharged from the variable displacement compressor (11) is reduced at the time of startup, the deviation between the first detection value (Te) and the target value (TEO) is increased. When it becomes smaller, the limit control signal value determined based on the second detection value (Tam), the proportionality calculated by the proportional calculation and the integral calculation based on the target value (TEO) and the first detection value (Te). Comparing with the integral control value, the value with the larger fluid discharge capacity of the variable capacity compressor (11) is set as the control signal value of the intermediate capacity.
By the way, in the general example, when the fluid volume discharged from the variable displacement compressor (11) is reduced, the deviation between the first detection value (Te) and the target value (TEO) is reduced. Control starts with 0%.
However, in claim 2, the control signal value determined based on the second detection value (Tam), the proportionality calculated by the proportional calculation and the integral calculation based on the target value (TEO) and the first detection value (Te). The larger value compared with the integral control value is used as the control signal value of the intermediate capacity. Thus, it is possible to specifically determine the control signal value of the intermediate capacity and reduce the undershoot or overshoot caused by the first detection value (Te) with respect to the target value (TEO).

また、請求項3に記載の発明のように、請求項1に記載のコンプレッサの制御装置において、可変容量コンプレッサ(11)は、冷媒を蒸発させて車室内空間へ流れる空気を冷却する蒸発器(14)への冷媒流量を変化させており、
第1検出値は蒸発器(14)の温度(Te)であり、目標値は目標蒸発器温度(TEO)であり、第2検出値は車室外の空気温度(Tam)、蒸発器(14)の温度(Te)、冷媒の圧力値の少なくとも1つとして、具体的に例えば蒸発器(14)が車室内空間を冷房する車両用空調装置の冷凍サイクルの可変容量コンプレッサの吐出冷媒容量を制御してもよい。
It is preferable as defined in claim 3, the control device of the compressor according to claim 1, the variable capacity compressor (11) is an evaporator for cooling the air by evaporating the refrigerant flowing into the vehicle interior space ( 14) the refrigerant flow rate to
The first detection value is the temperature (Te) of the evaporator (14), the target value is the target evaporator temperature (TEO), the second detection value is the air temperature (Tam) outside the passenger compartment, and the evaporator (14). Specifically, for example, the evaporator (14) controls the discharge refrigerant capacity of the variable capacity compressor of the refrigeration cycle of the vehicle air conditioner that cools the vehicle interior space as at least one of the temperature (Te) of the refrigerant and the pressure value of the refrigerant. May be.

また、請求項に記載の発明のように、請求項1ないしのいずれか1つに記載のコンプレッサの制御装置において、起動時制御を所定時間継続して行ってもよい。 Further, as in the invention described in claim 4 , in the compressor control device described in any one of claims 1 to 3 , the startup control may be continuously performed for a predetermined time.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
図1は、本発明を車両用空調装置の冷凍サイクルにおけるコンプレッサ11に適用した第1実施形態を示している。図1の冷凍サイクルは周知のものと同構成であり、コンプレッサ11は気相冷媒を吸引圧縮して高圧状態にするものである。本実施形態では、コンプレッサ11は、単位時間当たりの冷媒吐出容量を可変することができる可変容量コンプレッサ11である。この可変容量コンプレッサ11については後述する。
(First embodiment)
FIG. 1 shows a first embodiment in which the present invention is applied to a compressor 11 in a refrigeration cycle of a vehicle air conditioner. The refrigeration cycle in FIG. 1 has the same configuration as that of a known one, and the compressor 11 sucks and compresses the gas-phase refrigerant into a high pressure state. In the present embodiment, the compressor 11 is a variable capacity compressor 11 that can vary the refrigerant discharge capacity per unit time. The variable capacity compressor 11 will be described later.

可変容量コンプレッサ11から吐出された高圧冷媒は凝縮器12に流入する。凝縮器12は、冷媒の熱を外気に放熱させることにより冷媒を凝縮させている。凝縮して液相となった冷媒は減圧器13へ流入する。減圧器13は冷媒の通路面積を絞ることにより冷媒を減圧している。   The high-pressure refrigerant discharged from the variable capacity compressor 11 flows into the condenser 12. The condenser 12 condenses the refrigerant by dissipating the heat of the refrigerant to the outside air. The refrigerant that has condensed into a liquid phase flows into the decompressor 13. The decompressor 13 decompresses the refrigerant by reducing the passage area of the refrigerant.

減圧された冷媒は蒸発器14へ流入し、車室内へ流れる空気から吸熱する。この時、冷媒は吸熱した熱により蒸発して気相状態となる。なお、送風機15は車室内へ向けて空気を送風している。本実施形態では図示していないが、蒸発器14の空気流れ下流には車室内への空気を暖めるヒータや、車室内への吹き出し温度を調節するためのエアミックスドア、吹出し口の切替装置などが配置されている。蒸発器14から流出する気相冷媒は再び可変容量コンプレッサ11へ吸引され、圧縮される。   The decompressed refrigerant flows into the evaporator 14 and absorbs heat from the air flowing into the passenger compartment. At this time, the refrigerant is evaporated by the absorbed heat to be in a gas phase state. The blower 15 blows air toward the vehicle interior. Although not shown in the present embodiment, downstream of the air flow of the evaporator 14, a heater for warming the air into the vehicle interior, an air mix door for adjusting the temperature of the air blown into the vehicle interior, a switching device for the outlet, etc. Is arranged. The gas-phase refrigerant flowing out of the evaporator 14 is again sucked into the variable capacity compressor 11 and compressed.

ところで、可変容量コンプレッサ11の吐出容量は、制御ECU17からの信号レベル(制御信号値)によって制御される。この制御ECU17には、蒸発器14の温度Teを検出する蒸発器温度センサ16と外気の温度Tamを検出する外気温度センサ18が入力される。   Incidentally, the discharge capacity of the variable capacity compressor 11 is controlled by the signal level (control signal value) from the control ECU 17. An evaporator temperature sensor 16 for detecting the temperature Te of the evaporator 14 and an outside air temperature sensor 18 for detecting the outside air temperature Tam are input to the control ECU 17.

本実施形態の可変容量コンプレッサ11は、外部可変容量型の公知のものであり、例えば斜板型圧縮機の場合には、吐出圧と吸入圧を利用して斜板室の圧力を制御することにより斜板の傾斜角度を可変してピストンのストローク、すなわちコンプレッサ吐出容量を略0%〜100%の範囲で連続的に変化させることができる。なお、この斜板室の圧力制御は制御ECU17がコンプレッサ11の電磁機構へ送る制御電流値により調節される。   The variable displacement compressor 11 of this embodiment is a known external variable displacement compressor. For example, in the case of a swash plate compressor, the pressure in the swash plate chamber is controlled by using the discharge pressure and the suction pressure. By changing the inclination angle of the swash plate, the stroke of the piston, that is, the compressor discharge capacity can be continuously changed in the range of approximately 0% to 100%. The pressure control in the swash plate chamber is adjusted by a control current value sent from the control ECU 17 to the electromagnetic mechanism of the compressor 11.

次に、上記構成において本実施形態の制御ECU17がコンプレッサ11を起動する時の制御について説明すると、制御ECU17は、吹出し空気温度、外気温度Tamなどから蒸発器14が発揮しなければならない冷凍能力を目標蒸発器温度TEOとして算出する。以下図2を使用してコンプレッサ11起動時の制御について説明する。   Next, the control when the control ECU 17 of the present embodiment starts the compressor 11 in the above configuration will be described. The control ECU 17 has the refrigerating capacity that the evaporator 14 must exhibit from the blown air temperature, the outside air temperature Tam, and the like. Calculated as the target evaporator temperature TEO. Hereinafter, the control when the compressor 11 is started will be described with reference to FIG.

まず、制御ECU17には外気温度Tam、蒸発器温度Teが入力される(S110)。その後、制御ECU17は、目標蒸発器温度TEO、蒸発器温度Te、目標蒸発器温度TEOと蒸発器温度Teの偏差などに基づき、比例演算および積分演算を行ってPI制御信号値を計算する。   First, the outside temperature Tam and the evaporator temperature Te are input to the control ECU 17 (S110). Thereafter, the control ECU 17 calculates a PI control signal value by performing a proportional operation and an integral operation based on the target evaporator temperature TEO, the evaporator temperature Te, the deviation between the target evaporator temperature TEO and the evaporator temperature Te, and the like.

さらに、予め与えられている図3の特性図、つまり外気温Tamに基づいてコンプレッサ11の制限容量、より詳細にはコンプレッサ11の制限容量に対応する制御信号値(制限制御信号値と称す)を決定する(S120)。外気温Tamによる制限容量の特性図は、図3に示すように、外気温がT2℃以上の時は容量100%、T1以下の場合は容量A%、T1からT2の間では外気温Tamに応じた中間容量となる。本実施形態では、T1は例えば10℃、T2は例えば30℃、A%は例えば50%である。制御ECU17の処理は、PI制御信号値と制限制御信号値の算出後S130へ進む。   Further, a control signal value (referred to as a limit control signal value) corresponding to the limit capacity of the compressor 11, more specifically, the limit capacity of the compressor 11 based on the characteristic diagram of FIG. Determine (S120). As shown in FIG. 3, the characteristic diagram of the limited capacity by the outside air temperature Tam is 100% capacity when the outside air temperature is T2 ° C. or more, A% capacity when the outside air temperature is T1 or less, and outside air temperature Tam between T1 and T2. The corresponding intermediate capacity. In this embodiment, T1 is, for example, 10 ° C., T2 is, for example, 30 ° C., and A% is, for example, 50%. The process of the control ECU 17 proceeds to S130 after calculating the PI control signal value and the limit control signal value.

S130では制御ECU17がコンプレッサ起動後、S秒以内か否かを判定する。S秒以内の場合は処理がS150へ進み、S秒より大きい場合には処理がS140へ進む。本実施形態では、S秒は例えば30秒であるが、S秒間の制御ではなくコンプレッサ起動時の初回の容量制御値算出にのみ、起動時制御を行ってもよい。   In S130, the control ECU 17 determines whether or not it is within S seconds after the compressor is started. If it is within S seconds, the process proceeds to S150, and if it is greater than S seconds, the process proceeds to S140. In this embodiment, the S second is, for example, 30 seconds, but the startup control may be performed only for the initial capacity control value calculation when the compressor is started, not the control for S seconds.

S150では、S120で算出したPI制御信号値と制限制御信号値を比較して小さい方を容量制御信号値としてコンプレッサ11に出力する。一方、S140では比較を行わずにPI制御信号値を容量制御信号値としてコンプレッサ11に出力する。   In S150, the PI control signal value calculated in S120 and the limit control signal value are compared, and the smaller one is output to the compressor 11 as a capacity control signal value. On the other hand, in S140, the PI control signal value is output to the compressor 11 as a capacity control signal value without comparison.

次に、第1実施形態による作用効果を列挙すると、(1)コンプレッサ11起動時に制御ECU17が起動時制御を行い、コンプレッサ11の制御容量を中間容量の値とするため、蒸発器温度Teが目標温度TEOに対して起こす、アンダーシュートまたはオーバーシュートを軽減することができる。   Next, actions and effects according to the first embodiment are listed. (1) Since the control ECU 17 performs start-up control when the compressor 11 is started, and the control capacity of the compressor 11 is set to an intermediate capacity value, the evaporator temperature Te is set to the target. Undershoot or overshoot caused by the temperature TEO can be reduced.

ところで、従来例では可変容量コンプレッサ11の吐出する流体容量が大きくなると蒸発器温度Teと目標値TEOの偏差が小さくなる場合には、蒸発器14の初期温度Tesと目標蒸発器温度TEOとの差(偏差)が小さい場合であっても可変容量コンプレッサ11の吐出容量を100%として制御が始まる(図4および図5参照)。   By the way, in the conventional example, when the fluid volume discharged from the variable displacement compressor 11 increases, the difference between the initial temperature Tes of the evaporator 14 and the target evaporator temperature TEO when the deviation between the evaporator temperature Te and the target value TEO decreases. Even when the (deviation) is small, the control starts with the discharge capacity of the variable capacity compressor 11 being 100% (see FIGS. 4 and 5).

これにより、急激に蒸発器温度Teが変化し、目標温度TEOに対してアンダーシュートまたはオーバーシュートを起こしてしまう。つまり、目標温度TEOに対する偏差Eが大きくなってしまう。   As a result, the evaporator temperature Te changes abruptly, causing undershoot or overshoot with respect to the target temperature TEO. That is, the deviation E with respect to the target temperature TEO becomes large.

しかし、本実施形態では外気温Tamに基づいて決定される制限制御信号値(図3)と、目標値TEOと蒸発器温度Teに基づいた比例演算および積分演算で算出した比例積分制御値とを比較して小さい方の値を中間容量の制御信号値としている(図2のS150)。図4に示すように、制御ECU17は所定時間S秒間、制御信号値を制限容量Fに応じた制限制御信号値としている。一般例のように起動時のコンプレッサ容量が100%から制御が始まる場合に比べて蒸発器温度Teが目標値TEOに対して起こす、アンダーシュートまたはオーバーシュート(偏差E’)を小さくすることができる。   However, in this embodiment, the limit control signal value (FIG. 3) determined based on the outside air temperature Tam, and the proportional integral control value calculated by the proportional calculation and the integral calculation based on the target value TEO and the evaporator temperature Te are obtained. The smaller value is used as the control signal value of the intermediate capacity (S150 in FIG. 2). As shown in FIG. 4, the control ECU 17 sets the control signal value as the limit control signal value corresponding to the limit capacity F for a predetermined time S seconds. The undershoot or overshoot (deviation E ′) caused by the evaporator temperature Te with respect to the target value TEO can be reduced as compared with a case where the control starts from 100% as in the general example. .

(2)コンプレッサ11の起動後S秒間は制御ECU17が起動時制御を行い、目標値TEOと蒸発器温度Teに基づいた比例演算および積分演算で算出した比例積分制御値とを比較して小さい方の値を中間容量の制御信号値としている。このため、コンプレッサ11の制御容量をより適切な値に制御することができ、図5のように蒸発器温度Teの目標値TEOに対するアンダーシュートまたはオーバーシュート(偏差E’)を小さくできる。   (2) The control ECU 17 performs start-up control for S seconds after the compressor 11 is started, and compares the target value TEO with the proportional calculation based on the evaporator temperature Te and the proportional integral control value calculated by the integral calculation, whichever is smaller Is the control signal value of the intermediate capacity. Therefore, the control capacity of the compressor 11 can be controlled to a more appropriate value, and the undershoot or overshoot (deviation E ′) with respect to the target value TEO of the evaporator temperature Te can be reduced as shown in FIG.

なお、アンダーシュートまたはオーバーシュート(偏差E’)が小さくなることにより、制御ECU17がより精密(正確)に車室内空間への吹出し温度を制御することができる。   Note that, since the undershoot or overshoot (deviation E ′) is reduced, the control ECU 17 can more accurately (accurately) control the blowing temperature into the vehicle interior space.

(他の実施形態)
上述の実施形態では、起動制御時の所定時間S秒を固定値とした例を示したが、この所定時間S秒を外気温度Tamまたは蒸発器温度Teの変数としてもよい。
(Other embodiments)
In the above-described embodiment, an example in which the predetermined time S seconds during the start-up control is set as a fixed value is shown. However, the predetermined time S seconds may be used as a variable of the outside air temperature Tam or the evaporator temperature Te.

また、上述の実施形態では、本発明をコンプレッサ11の冷媒吐出容量が増加すると蒸発器温度Teが低下する蒸発器14に適用した例を示したが、蒸発器14に換えて冷媒吐出容量が増加するとTeに相当とする温度が上昇する、例えばヒータなどの温度制御にも本発明を適用できるのは当然である。   In the above-described embodiment, the example in which the present invention is applied to the evaporator 14 in which the evaporator temperature Te decreases as the refrigerant discharge capacity of the compressor 11 increases is shown. However, the refrigerant discharge capacity increases in place of the evaporator 14. Then, the temperature corresponding to Te rises. For example, the present invention can naturally be applied to temperature control of a heater or the like.

本発明を車両用空調装置のコンプレッサに適用した第1実施形態の冷凍サイクルを示す模式図である。It is a schematic diagram which shows the refrigerating cycle of 1st Embodiment which applied this invention to the compressor of the vehicle air conditioner. 第1実施形態の制御ECUのコンプレッサ起動時の制御を示す流れ図である。It is a flowchart which shows the control at the time of the compressor starting of control ECU of 1st Embodiment. 図2のフローチャートの作動説明に供する制御特性図である。FIG. 3 is a control characteristic diagram for explaining the operation of the flowchart of FIG. 2. 第1実施形態および一般例のコンプレッサ起動後の制御容量の変化を示す図である。It is a figure which shows the change of the control capacity | capacitance after the compressor starting of 1st Embodiment and a general example. 第1実施形態および一般例のコンプレッサ起動後の蒸発器温度Teの変化を示す図である。It is a figure which shows the change of the evaporator temperature Te after the compressor starting of 1st Embodiment and a general example.

符号の説明Explanation of symbols

11…可変容量型コンプレッサ、14…蒸発器、
16…蒸発器温度センサ(第1検出手段)、17…制御ECU(制御手段)、
18…外気温度センサ(第2検出手段)、Te…蒸発器温度(第1検出値)、
Tam…外気温度(第2検出値)、TEO…蒸発器目標温度(目標値)。


11 ... Variable displacement compressor, 14 ... Evaporator,
16 ... Evaporator temperature sensor (first detection means), 17 ... Control ECU (control means),
18 ... Outside air temperature sensor (second detection means), Te ... Evaporator temperature (first detection value),
Tam ... Outside air temperature (second detection value), TEO ... Evaporator target temperature (target value).


Claims (4)

制御信号値に応じて単位時間あたりに吐出する流体の容量を可変する可変容量型コンプレッサ(11)と、
前記可変容量型コンプレッサ(11)の流体吐出容量に応じて変化する第1検出値(Te)を検出する第1検出手段(16)と、
第2検出値(Tam)を検出する第2検出手段(18)と、
前記第1検出値(Te)および前記第2検出値(Tam)が入力され、前記第1検出値(Te)と目標値(TEO)の偏差が小さくなるように前記制御信号値を出力する制御手段(17)とを備え、
前記可変容量コンプレッサ(11)の起動時には、前記制御手段(17)が前記第1検出値(Te)と、前記目標値(TEO)と、前記第2検出値(Tam)とに基づいて、前記可変容量コンプレッサ(11)の吐出容量が0%より大きく100%より小さい中間容量となるように前記制御信号値を算出、出力する起動時制御を行い、
前記可変容量コンプレッサ(11)の起動時以外には、前記制御手段(17)が前記目標値(TEO)と前記第1検出値(Te)に基づいた比例演算および積分演算により、前記制御信号値を算出、出力する比例積分(PI)制御を行い、
前記起動時に前記可変容量コンプレッサ(11)の吐出する流体容量を大きくすると前記第1検出値(Te)と前記目標値(TEO)の偏差が小さくなる場合には、前記第2検出値(Tam)に基づいて決定される制限制御信号値と、前記目標値(TEO)と前記第1検出値(Te)に基づいた比例演算および積分演算で算出した比例積分制御値とを比較して、前記可変容量コンプレッサ(11)の流体吐出容量が小さくなる方の値を前記中間容量の制御信号値とするようになっていることを特徴とするコンプレッサの制御装置。
A variable displacement compressor (11) that varies the volume of fluid discharged per unit time in accordance with a control signal value;
First detection means (16) for detecting a first detection value (Te) that changes according to the fluid discharge capacity of the variable displacement compressor (11);
Second detection means (18) for detecting a second detection value (Tam);
Control in which the first detection value (Te) and the second detection value (Tam) are input, and the control signal value is output so that a deviation between the first detection value (Te) and the target value (TEO) is small. Means (17),
At the time of starting the variable displacement compressor (11), the control means (17) is based on the first detection value (Te), the target value (TEO), and the second detection value (Tam). The control signal value is calculated and output so that the discharge capacity of the variable capacity compressor (11) is an intermediate capacity greater than 0% and less than 100%, and a start-up control is performed.
Other than when the variable displacement compressor (11) is started, the control means (17) performs the control signal value by proportional calculation and integral calculation based on the target value (TEO) and the first detection value (Te). There line calculation, a proportional integral (PI) control for outputting,
When the fluid volume discharged from the variable capacity compressor (11) at the time of starting is increased, if the deviation between the first detection value (Te) and the target value (TEO) is reduced, the second detection value (Tam). And the proportional control value calculated by the proportional calculation and the integral calculation based on the target value (TEO) and the first detection value (Te), and the variable control signal value determined based on A compressor control apparatus characterized in that a value with a smaller fluid discharge capacity of the capacity compressor (11) is set as a control signal value of the intermediate capacity .
制御信号値に応じて単位時間あたりに吐出する流体の容量を可変する可変容量型コンプレッサ(11)と、
前記可変容量型コンプレッサ(11)の流体吐出容量に応じて変化する第1検出値(Te)を検出する第1検出手段(16)と、
第2検出値(Tam)を検出する第2検出手段(18)と、
前記第1検出値(Te)および前記第2検出値(Tam)が入力され、前記第1検出値(Te)と目標値(TEO)の偏差が小さくなるように前記制御信号値を出力する制御手段(17)とを備え、
前記可変容量コンプレッサ(11)の起動時には、前記制御手段(17)が前記第1検出値(Te)と、前記目標値(TEO)と、前記第2検出値(Tam)とに基づいて、前記可変容量コンプレッサ(11)の吐出容量が0%より大きく100%より小さい中間容量となるように前記制御信号値を算出、出力する起動時制御を行い、
前記可変容量コンプレッサ(11)の起動時以外には、前記制御手段(17)が前記目標値(TEO)と前記第1検出値(Te)に基づいた比例演算および積分演算により、前記制御信号値を算出、出力する比例積分(PI)制御を行い、
前記起動時に前記可変容量コンプレッサ(11)の吐出する流体容量を小さくすると前記第1検出値(Te)と前記目標値(TEO)の偏差が小さくなる場合には、前記第2検出値(Tam)に基づいて決定される制限制御信号値と、前記目標値(TEO)と前記第1検出値(Te)に基づいた比例演算および積分演算で算出した比例積分制御値とを比較して、前記可変容量コンプレッサ(11)の流体吐出容量が大きくなる方の値を前記中間容量の制御信号値とするようになっていることを特徴とするコンプレッサの制御装置。
A variable displacement compressor (11) that varies the volume of fluid discharged per unit time in accordance with a control signal value;
First detection means (16) for detecting a first detection value (Te) that changes according to the fluid discharge capacity of the variable displacement compressor (11);
Second detection means (18) for detecting a second detection value (Tam);
Control in which the first detection value (Te) and the second detection value (Tam) are input, and the control signal value is output so that a deviation between the first detection value (Te) and the target value (TEO) is small. Means (17),
At the time of starting the variable displacement compressor (11), the control means (17) is based on the first detection value (Te), the target value (TEO), and the second detection value (Tam). The control signal value is calculated and output so that the discharge capacity of the variable capacity compressor (11) is an intermediate capacity greater than 0% and less than 100%, and a start-up control is performed.
Other than when the variable displacement compressor (11) is started, the control means (17) performs the control signal value by proportional calculation and integral calculation based on the target value (TEO) and the first detection value (Te). There line calculation, a proportional integral (PI) control for outputting,
When the fluid volume discharged from the variable displacement compressor (11) at the time of starting is reduced, the deviation between the first detection value (Te) and the target value (TEO) is reduced, and thus the second detection value (Tam). And the proportional control value calculated by the proportional calculation and the integral calculation based on the target value (TEO) and the first detection value (Te), and the variable control signal value determined based on The compressor control device characterized in that the value of the fluid discharge capacity of the capacity compressor (11) which is larger is used as the control signal value of the intermediate capacity .
前記可変容量コンプレッサ(11)は、冷媒を蒸発させて車室内空間へ流れる空気を冷却する蒸発器(14)への冷媒流量を変化させており、
前記第1検出値は前記蒸発器(14)の温度(Te)であり、
前記目標値は目標蒸発器温度(TEO)であり、
前記第2検出値は、車室外の空気温度(Tam)、前記蒸発器(14)の温度(Te)、前記冷媒の圧力値の少なくとも1つであることを特徴とする請求項1に記載のコンプレッサの制御装置。
The variable capacity compressor (11) changes the refrigerant flow rate to the evaporator (14) that evaporates the refrigerant and cools the air flowing into the vehicle interior space.
The first detection value is the temperature (Te) of the evaporator (14),
The target value is a target evaporator temperature (TEO),
The second detection value, the car outdoor air temperature (Tam), the evaporator (14) temperature (Te) of, according to claim 1, wherein at least is one of the pressure values of the refrigerant Compressor control device.
前記起動時制御が所定時間継続して行われるようになっていることを特徴とする請求項1ないしのいずれか1つに記載のコンプレッサの制御装置。 The compressor control apparatus according to any one of claims 1 to 3 , wherein the start-up control is performed continuously for a predetermined time.
JP2004082944A 2004-03-22 2004-03-22 Compressor control device Expired - Lifetime JP4470541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004082944A JP4470541B2 (en) 2004-03-22 2004-03-22 Compressor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004082944A JP4470541B2 (en) 2004-03-22 2004-03-22 Compressor control device

Publications (2)

Publication Number Publication Date
JP2005264913A JP2005264913A (en) 2005-09-29
JP4470541B2 true JP4470541B2 (en) 2010-06-02

Family

ID=35089723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004082944A Expired - Lifetime JP4470541B2 (en) 2004-03-22 2004-03-22 Compressor control device

Country Status (1)

Country Link
JP (1) JP4470541B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626470B2 (en) * 2005-10-04 2011-02-09 株式会社デンソー Air conditioner for vehicles

Also Published As

Publication number Publication date
JP2005264913A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
US7836716B2 (en) Refrigerant cycle device and control system for vehicle
JP3861451B2 (en) Supercritical refrigeration cycle
US20050284164A1 (en) Supercritical heat pump cycle system
JP4453724B2 (en) Refrigeration cycle equipment for vehicles
US20070237648A1 (en) Compressor driving torque estimating apparatus and compressor driving source control apparatus
JP2010048459A (en) Refrigerating cycle device
US20070084596A1 (en) Vehicle air conditioner with variable displacement compressor
JP2009192090A (en) Refrigerating cycle device
JP4882978B2 (en) Refrigeration cycle equipment
JP2008286158A (en) Torque estimation device for compressor
CN105283331A (en) Air-conditioner system for vehicle and method for controlling same
JP2008292112A (en) Suction pressure estimating device for compressor of refrigerating cycle device
KR20080089967A (en) Air conditioner of controlling method
JP2002267279A (en) Refrigeration cycle controller
US6823687B2 (en) Vehicle air conditioner with variable displacement compressor
JP2009097772A (en) Refrigerating cycle device
JP2009243784A (en) Refrigerant shortage detection device
JP4470541B2 (en) Compressor control device
JP2002283840A (en) Vapor-compression refrigeration cycle
JP2019035534A (en) Refrigeration cycle device
JP4525515B2 (en) Refrigeration cycle equipment
JP2007083891A (en) Air conditioner for vehicle
JP2009241763A (en) Air-conditioning device for vehicle
WO2023008088A1 (en) Refrigeration cycle apparatus
KR101710365B1 (en) Unexpected torque calculating method for liquid refrigerant containg compressor and vehicle air conditioner including controller implementing the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4470541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250