JP4470348B2 - Method for producing tertiary carboxylic acid ester - Google Patents

Method for producing tertiary carboxylic acid ester Download PDF

Info

Publication number
JP4470348B2
JP4470348B2 JP2001210301A JP2001210301A JP4470348B2 JP 4470348 B2 JP4470348 B2 JP 4470348B2 JP 2001210301 A JP2001210301 A JP 2001210301A JP 2001210301 A JP2001210301 A JP 2001210301A JP 4470348 B2 JP4470348 B2 JP 4470348B2
Authority
JP
Japan
Prior art keywords
group
carboxylic acid
pivalate
iso
acid ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001210301A
Other languages
Japanese (ja)
Other versions
JP2003026631A (en
Inventor
浩司 安部
由浩 牛越
晶和 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2001210301A priority Critical patent/JP4470348B2/en
Publication of JP2003026631A publication Critical patent/JP2003026631A/en
Application granted granted Critical
Publication of JP4470348B2 publication Critical patent/JP4470348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高純度第3級カルボン酸エステルの製造方法に関する。第3級カルボン酸エステルは、農薬、医薬、電子材料等の合成中間体や原体として、また溶剤として有用な化合物である。
【0002】
【従来の技術】
従来の第3級カルボン酸エステルを合成する方法は、第3級カルボン酸とアルコールの酸触媒、および塩基触媒縮合によるエステル化反応が一般的であり、かつ安価である。しかしながら、上記反応は平衡反応であり、原料のカルボン酸とアルコールのどちらか一方、もしくは両方が反応系に残る。特に、ピバリン酸のエステル化反応において、ピバリン酸の沸点は163〜164℃であり、ピバリン酸ブチルの沸点は165℃ときわめて近く、分離が困難である。そのため、水を加えて抽出処理、もしくは蒸留精製等煩雑な手間が必要となり、特に水分を含まないカルボン酸エステルの製造を目的とする場合、後処理で水を取り除くのに多大な手間を必要とする。
また、第3級カルボン酸は、酸性度が小さいため、水洗によって完全に除去することは困難である。さらに、蒸留において、原料アルコールと生成物である第3級カルボン酸エステルとは共沸しやすい場合が多く、目的とする第3級カルボン酸エステルから、原料の第3級カルボン酸、アルコールを完全に分離精製することは難しい。例えば、ピバリン酸とn−ヘキサノールのエステル化反応において、ピバリン酸n−ヘキシルは、n−ヘキサノールと共沸し、ピバリン酸n−ヘキシル中の微量のn−ヘキサノールを除去することが困難になる。
【0003】
一方、第3級カルボン酸エステルとアルコールとを金属アルコラート存在下に反応させて、目的とする第3級カルボン酸エステルを合成する方法もあるが、この場合にも生成物である第3級エステルと原料アルコールとが共沸しやすい場合が多く、前記した場合と同様に、特に原料のアルコールを完全に分離することが困難であり、目的とする第3級カルボン酸エステルを高純度で得ることは難しい。
【0004】
また、カルボン酸とアルコールから、一方の成分を過剰に用いることなく効率良くエステルを合成する方法として、アルコールに第3級カルボン酸塩化物を反応させる方法がある。しかし、この酸塩化物は微量の水分によりカルボン酸と塩化水素に分解されるために、前記と同様に原料の第3級カルボン酸、アルコールを完全に分離精製することは難しく、高純度の第3級カルボン酸エステルを合成することは望めない。
【0005】
さらに、カルボン酸とアルコールを等モル量用い、効率良くエステルを合成する手法として、トリフルオロ酢酸無水物、ジシクロヘキシルカルボジイミド、トリフェニルホスフィン等の脱水剤を等モル量以上の過剰に使用する方法が知られている(Comprehensive Organic Transformations;VCH:New York,1989,pp980−981)。しかしながら、これらの脱水剤は高価で入手し難く、工業的製法としては適さない。
【0006】
【発明が解決しようとする課題】
上述したように、第3級カルボン酸エステルは医農薬の合成中間体・原体や、電子材料として有用な化合物であり、不純物、特にカルボン酸、アルコール等の混入は品質の低下につながるため、できるだけこれらの不純物を含まない第3級カルボン酸エステルの提供が望まれている。本発明の目的は、前記のようなカルボン酸、アルコール等の不純物の混入する課題を解決し、原料に二種類のカルボン酸エステルを使用し、触媒を用いたエステル交換反応より、製造、及び後処理、分離精製が容易で、かつ工業的に安価に、高収率で目的とする高純度ピバリン酸エステルを製造することのできる方法を提供するものである。
【0007】
【課題を解決するための手段】
本発明は、下記一般式(I)、
【0008】
【化5】

Figure 0004470348
【0009】
(式中、R、R、RおよびXは、それぞれメチル基を示す。)で表されるピバリン酸メチルおよび下記一般式(II)、
【0010】
【化6】
Figure 0004470348
【0011】
(式中、Rは、メチル基を示し、Rは炭素数2〜20のアルキル基を示す。)で表される酸エステルとのエステル交換反応によって下記一般式(III)、
【0012】
【化7】
Figure 0004470348
【0013】
(式中、R、R、Rは、それぞれメチル基を示し、Rは炭素数2〜20のアルキル基を示す。)で表されるピバリン酸エステルを製造するに際し、ピバリン酸メチルおよび上記一般式(II)の酸エステルを触媒中、エステル交換反応させることを特徴とするピバリン酸エステルの製造方法に関する。
【0016】
本発明の一般式(II)で表されるカルボン酸エステルにおいて、R はエチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、エイコサデシル基等の炭素数2〜20のアルキル基が好ましい。アルキル基はiso−プロピル基、iso−ブチル基、tert−ブチル基、iso−ペンチル基、tert−ペンチル基、iso−ヘキシル基、iso−ヘプチル、iso−オクチル基、2−エチルヘキシル基、iso−ノニル基、iso−デシル基、iso−ドデシル基、iso−オクタデシル基等の分枝アルキル基でもよい
【0017】
本発明の一般式(II)で表される酸エステルの具体例としては、例えば酢酸エチル〔R =エチル基〕、酢酸プロピル〔R =n−プロピル基〕、酢酸iso−プロピル〔R =iso−プロピル基〕、酢酸ブチル〔R =n−ブチル基〕、酢酸iso−ブチル〔R =iso−ブチル基〕、酢酸tert−ブチル〔R =tert−ブチル基〕、酢酸ペンチル〔R =n−ペンチル基〕、酢酸iso−ペンチル〔R =iso−ペンチル基〕、酢酸tert−ペンチル〔R =tert−ペンチル基〕、酢酸ヘキシル〔R =n−ヘキシル基〕、酢酸iso−ヘキシル〔R =iso−ヘキシル基〕酢酸tert−ヘキシル〔R =tert−ヘキシル基〕、酢酸ヘプチル〔R =n−ヘプチル基〕、酢酸iso−ヘプチル〔R =iso−ヘプチル基〕、酢酸オクチル〔R =n−オクチル基〕、酢酸iso−オクチル〔R =iso−オクチル基〕、酢酸ノニル〔R =n−ノニル基〕、酢酸iso−ノニル〔R =iso−ノニル基〕、酢酸デシル〔R =n−デシル基〕、酢酸iso−デシル〔R =iso−デシル基〕、酢酸ウンデシル〔R =n−ウンデシル基〕、酢酸ドデシル〔R =n−ドデシル基〕、酢酸オクタデシル〔R =n−オクタデシル基〕などが挙げられる。なお、これらの化合物はほんの一例にすぎず、本発明のカルボン酸エステルは、様々な構造が可能である。
【0018】
本発明の一般式(III)で表されるピバリン酸エステルにおいて、R は炭素数2〜20の炭化水素基を示す。一般式(III)で表されるピバリン酸エステルの具体例としては、例えばピバリン酸エチル〔R =エチル基〕、ピバリン酸プロピル〔R =n−プロピル基〕、ピバリン酸iso−プロピル〔R =iso−プロピル基〕、ピバリン酸ブチル〔R =n−ブチル基〕、ピバリン酸iso−ブチル〔R =iso−ブチル基〕、ピバリン酸tert−ブチル〔R =tert−ブチル基〕、ピバリン酸ペンチル〔R =n−ペンチル基〕、ピバリン酸iso−ペンチル〔R =iso−ペンチル基〕、ピバリン酸tert−ペンチル〔R =tert−ペンチル基〕、ピバリン酸ヘキシル〔R =n−ヘキシル基〕、ピバリン酸iso−ヘキシル〔R =iso−ヘキシル基〕、ピバリン酸tert−ヘキシル〔R =tert−ヘキシル基〕、ピバリン酸ヘプチル〔R =n−ヘプチル基〕、ピバリン酸iso−ヘプチル〔R =iso−ヘプチル基〕、ピバリン酸オクチル〔R =n−オクチル基〕、ピバリン酸iso−オクチル〔R =iso−オクチル基〕、ピバリン酸ノニル〔R =n−ノニル基〕、ピバリン酸iso−ノニル〔R =iso−ノニル基〕、ピバリン酸デシル〔R =n−デシル基〕、ピバリン酸iso−デシル〔R =iso−デシル基〕、ピバリン酸ウンデシル〔R =n−ウンデシル基〕、ピバリン酸ドデシル〔R =n−ドデシル基〕、ピバリン酸オクタデシル〔R =n−オクタデシル基〕などが挙げられる。なお、これらの化合物はほんの一例にすぎず、本発明で合成可能なピバリン酸エステルは、様々な構造が可能である。前記一般式(III)として、Rが炭素数3〜12までの炭化水素基を示す場合は、通常のカルボン酸とアルコールを原料に用いたエステル化と比べて、カルボン酸やアルコールと前記一般式(III)との分離が容易なので有利である。特に、Rが炭素数3〜6までの炭化水素基を示す場合は更に有利となる。
【0019】
本発明において、前記一般式(III)と共に下記一般式(IV)で表されるカルボン酸エステルが副生する。
【0020】
【化8】
Figure 0004470348
【0021】
(式中、Rは、メチル基を示し、Xはメチル基を示す。)
【0022】
一般式(IV)で表されるカルボン酸エステルの具体例としては、例えば酢酸メチル〔R =メチル基〕(沸点57.5℃)、酢酸エチル〔R =エチル基〕(沸点77℃)が挙げられる。平衡をずらすために、一般式(III)の第3級カルボン酸エステルの沸点より、一般式(IV)のカルボン酸エステルの沸点の方が低く、先に一般式(IV)のカルボン酸エステルを留去させると、よりスムーズに反応が進行する利点がある。
【0023】
エステル交換反応の原料である前記一般式(I)と前記一般式(II)のモル比は、1:2〜2:1が好ましく、特に、極力1:1に近い方が好ましい。通常のエステル化反応は、生成系へ平衡をずらすために、アルコールを過剰に用いる。そのため、反応容器が大きくしたり、蒸留留去に時間がかかるなど、生産効率が著しく低下する問題を有する。しかしながら、本発明によると、共沸無く副生する前記一般式(IV)を留去できるので、反応容器は最小限に小さくでき、蒸留に無駄な時間を要しない利点がある。
【0024】
本発明で使用される触媒は、金属アルコラート、金属水素化物、鉱酸、アリールスルホン酸、ルイス酸等各種触媒が適用可能である。特に有効な触媒として、ナトリウムメチラート、ナトリムエチラート、カリウムtert−ブトキシド等の金属アルコラート;水素化ナトリウム、水素化カリウム等の金属水素化物;硫酸、塩酸等の鉱酸;ベンゼンスルホン酸、パラトルエンスルホン酸等のアリールスルホン酸;トリブロモホウ素、トリフルオロホウ素等のハロゲン化ホウ素、テトラiso−プロポキシチタン等のルイス酸が挙げられる。
【0025】
触媒の量は、二種類のカルボン酸エステルの合計量に対し、0.1mol%以上使用することが望ましく、特に0.5〜30mol%の範囲で使用することが望ましい。
【0026】
エステル交換反応は液層で進行する。その際、原料のカルボン酸エステルが溶媒の役割を果たすので、他の溶媒を特に使用する必要はなく、反応容器が大きくなる点、並びに後処理の容易性の観点から用いない方が好ましいが、原料および生成物と反応しない有機溶媒であれば、いずれを使用しても差し支えない。その一例として、ジブチルエーテル、ジフェニルエーテル、1,4−ジオキサン、ジメトキシエタン、ジエトキシエタン、ジグリム、トリグリムなどのエーテル類;n−ヘプタン、iso−ヘプタン、n−オクタン、iso−オクタン、n−ノナン、iso−ノナン、n−デカン、iso−デカンなどの直鎖、あるいは分枝状脂肪族炭化水素;シクロヘキサン、シクロヘプタン、シクロオクタン、シクロドデカン等の脂環式炭化水素;ベンゼン、トルエン、(o,m,p−)キシレン、クロロベンゼン、ニトロベンゼン等の芳香族炭化水素;1,2−ジクロロエタン、テトラクロロエチレン等のハロゲン化炭化水素類;アセトニトリル、ベンゾニトリル等のニトリル類;3−ペンタノン、シクロヘキサノン等のケトン類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類などが挙げられる。これら有機溶媒は単独で用いても良いし、混合して用いても差し支えない。
【0027】
本発明における反応温度は特に制限されないが、通常20〜250℃の間で反応させる。反応速度の観点から、好ましくは60〜250℃の範囲である。反応時間は1分〜6時間、好ましくは10分〜2時間の範囲で行われる。反応圧力は、通常、0.1〜50気圧、好ましくは0.5〜5気圧である。
【0028】
前記一般式(III)を得る方法としては蒸留が好ましい。蒸留は、反応しながら前記一般式(IV)を留去させて、そのまま蒸留しても良いし、反応後、触媒を不活性化処理した後に蒸留を行っても良い。蒸留条件は、還流比率0.01〜10が好ましく、更に好ましくは0.1〜3である。理論段数は0〜60段が好ましく、更に好ましくは5〜30段である。蒸留は常圧蒸留、減圧蒸留、加圧蒸留等の公知の手段を用いることができ、特に限定されるものではない。
【0029】
蒸留は、最初に前記一般式(IV)が留去され、次に前記一般式(I)や(II)が留去され、最後に、目的物の前記一般式(III)で表される第3級カルボン酸エステルが得られるので、前記一般式(I)や(II)の原料カルボン酸エステル中に、微量のアルコールが混入している場合でも、前記一般式(I)、(II)、(IV)の留去中に除去することが可能になった。
【0030】
本発明により得られる目的物の上記一般式(III)で表される第3級カルボン酸エステルのガスクロマトグラフィーによる純度は99.9%以上の高純度品であり、ピバリン酸またはアルコールは全く検出されなかった。特に、本発明によれば、カルボン酸とアルコールの副生が実質的に起こらないため、高純度で目的の第3級カルボン酸エステルを収率良く得ることができ、しかも、未反応の原料カルボン酸エステルは回収し、再利用することが可能である特徴がある。
【0031】
【実施例】
次に、実施例を挙げて本発明をさらに詳しく説明するが、本発明は、その趣旨を超えない限り以下の実施例に限定されるものではない。
【0032】
実施例1
300mL反応容器に、酢酸n−ヘキシル(144g、1mol)、ピバリン酸メチル(116g、1mol)、ナトリウムメチラート(粉末,1.08g、20mmol)を加え、理論段数10段の蒸留装置を組み、全還流、常圧にて、115℃中で30分間加熱還流した。次に、常圧のまま、還流比率1にして酢酸メチルを留出させながら反応を進めた。酢酸メチルが留出しなくなったら、還流比率1のまま、25mmHgの減圧蒸留にてピバリン酸メチル、酢酸n−ヘキシルを除去した。続いて、目的のピバリン酸n−ヘキシル(留出温度:93℃/16mmHg)の蒸留精製を行い、151.1g(収率81%)取得した。ガスクロマトグラフィーによるピバリン酸n−ヘキシルの純度は99.9%以上であり、ピバリン酸や、n−ヘキサノールは全く検出されなかった。
【0033】
実施例2
300mL反応容器に、1%n−ヘキサノールを含有する酢酸n−ヘキシル(144g、1mol)、ピバリン酸メチル(116g、1mol)、ナトリウムメチラート(粉末,1.08g、20mmol)を加え、理論段数10段の蒸留装置を組み、全還流、常圧にて、115℃中で30分間加熱還流した。次に、常圧のまま、還流比率1にして酢酸メチルを留出させながら反応を進めた。酢酸メチルが留出しなくなったら、還流比率1のまま、25mmHgの減圧蒸留にてピバリン酸メチル、酢酸n−ヘキシルを除去した。続いて、目的のピバリン酸n−ヘキシル(留出温度:93℃/16mmHg)の蒸留精製を行い、150.3g(収率81%)取得した。ガスクロマトグラフィーによるピバリン酸n−ヘキシルの純度は99.9%以上であり、ピバリン酸や、n−ヘキサノールは全く検出されなかった。
【0034】
実施例3
1L反応容器に酢酸n−ブチル(302g、2.6mol)、ピバリン酸メチル(302g、2.6mol)、ナトリウムメチラート(粉末,2.70g、52mmol)を加え、理論段数10段の蒸留装置を組み、全還流、常圧にて、90℃中で30分間加熱還流した。次に、常圧のまま、還流比率1にして酢酸メチルを留出させながら反応を進めた。酢酸メチルが留出しなくなったら、還流比率1のまま、90mmHgの減圧蒸留にてピバリン酸メチル、酢酸n−ブチルを除去した。続いて、目的のピバリン酸n−ブチル(留出温度:94℃/90mmHg)の蒸留精製を行い、330.4g(収率80%)取得した。ガスクロマトグラフィーによるピバリン酸n−ブチルの純度は99.9%以上であり、ピバリン酸や、n−ブタノールは全く検出されなかった。
【0035】
比較例1
1L反応容器にピバリン酸(202g、2mol)、n−ブタノール(593mg、4mol)、硫酸(10g、5mol%)を加え、Dean−Starkを装備し、脱水しながら9時間還流を行った。反応液を冷却後、15wt%のNaOH水溶液を500mL加え、室温で攪拌し、有機層を飽和食塩水で2回洗浄した後、硫酸マグネシウムで乾燥した。次いで減圧蒸留(94℃/90mmHg)により反応粗生成物から目的のピバリン酸ブチルが231.1g(収率73%)得られたが、ガスクロマトグラフィーによる純度測定の結果は89%であり、ピバリン酸ブチル中にピバリン酸が9%とn−ブタノールが2%混入していた。
【0036】
比較例2
300mL反応容器にピバリン酸メチル(116g、1mol)、n−ブタノール(74g、1mol)、ナトリウムメチラート(1.08g、20mmol)を加え、実施例1と同様に反応を行った。減圧蒸留より、ピバリン酸ブチルが124g(収率78%)得られた。ガスクロマトグラフィーによる純度測定の結果は99.5%であり、0.4%のブタノールが混入していた。
【0037】
【発明の効果】
本発明によると、二種類のカルボン酸エステルのエステル交換反応により、高い収率で第3級カルボン酸エステルを合成することができる。また、本発明によれば、安価に、かつ工業的に優れたプロセスにより、従来の合成法では達成し得なかった、カルボン酸、アルコール含まない高純度の第3級アルコールを提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high purity tertiary carboxylic acid ester. Tertiary carboxylic acid esters are useful compounds as synthetic intermediates and raw materials for agricultural chemicals, medicines, electronic materials and the like, and as solvents.
[0002]
[Prior art]
A conventional method for synthesizing a tertiary carboxylic acid ester is generally an esterification reaction by an acid catalyst of a tertiary carboxylic acid and an alcohol and base-catalyzed condensation, and is inexpensive. However, the above reaction is an equilibrium reaction, and either one or both of the raw carboxylic acid and alcohol remain in the reaction system. In particular, in the esterification reaction of pivalic acid, the boiling point of pivalic acid is 163 to 164 ° C., and the boiling point of butyl pivalate is very close to 165 ° C., which makes separation difficult. For this reason, it is necessary to perform troublesome procedures such as extraction treatment or distillation purification by adding water, and particularly when it is intended to produce a carboxylic acid ester that does not contain water, it requires a great deal of labor to remove water in the post-treatment. To do.
Moreover, since tertiary carboxylic acid has low acidity, it is difficult to completely remove it by washing with water. Furthermore, in distillation, the raw material alcohol and the product tertiary carboxylic acid ester are often easily azeotroped, and the raw material tertiary carboxylic acid and alcohol are completely removed from the target tertiary carboxylic acid ester. It is difficult to separate and purify. For example, in the esterification reaction of pivalic acid and n-hexanol, n-hexyl pivalate azeotropes with n-hexanol, and it becomes difficult to remove a trace amount of n-hexanol in n-hexyl pivalate.
[0003]
On the other hand, there is a method of synthesizing a target tertiary carboxylic acid ester by reacting a tertiary carboxylic acid ester with an alcohol in the presence of a metal alcoholate. In this case as well, the product is a tertiary ester. As in the case described above, it is difficult to completely separate the alcohol as a raw material, and the desired tertiary carboxylic acid ester can be obtained with high purity. Is difficult.
[0004]
Further, as a method for efficiently synthesizing an ester from a carboxylic acid and an alcohol without excessive use of one component, there is a method of reacting a tertiary carboxylic acid chloride with the alcohol. However, since this acid chloride is decomposed into carboxylic acid and hydrogen chloride by a very small amount of water, it is difficult to completely separate and purify the raw material tertiary carboxylic acid and alcohol as described above, and the high purity first acid chloride. It is not possible to synthesize tertiary carboxylic acid esters.
[0005]
Furthermore, as a method for efficiently synthesizing esters using equimolar amounts of carboxylic acid and alcohol, a method of using an excess of dehydrating agents such as trifluoroacetic anhydride, dicyclohexylcarbodiimide, and triphenylphosphine in an equimolar amount or more is known. (Comprehensive Organic Transformations; VCH: New York, 1989, pp 980-981). However, these dehydrating agents are expensive and difficult to obtain, and are not suitable for industrial production.
[0006]
[Problems to be solved by the invention]
As mentioned above, tertiary carboxylic acid ester is a compound useful as a synthetic intermediate / raw material of medical and agricultural chemicals and an electronic material, and contamination with impurities, especially carboxylic acid, alcohol, etc., leads to deterioration in quality. It is desired to provide a tertiary carboxylic acid ester that does not contain these impurities as much as possible. The object of the present invention is to solve the problem of mixing impurities such as carboxylic acid and alcohol as described above, using two kinds of carboxylic acid ester as a raw material, and producing and It is an object of the present invention to provide a method capable of producing a target high-purity pivalic acid ester with high yield, which is easy to process and separate and purify, and industrially inexpensive.
[0007]
[Means for Solving the Problems]
The present invention relates to the following general formula (I),
[0008]
[Chemical formula 5]
Figure 0004470348
[0009]
(Wherein R 1 , R 2 , R 3 and X each represent a methyl group ) and methyl pivalate represented by the following general formula (II),
[0010]
[Chemical 6]
Figure 0004470348
[0011]
(Wherein, R 5 represents a methyl group, R 4 is. Represents an alkyl group having 2 to 20 carbon atoms) represented by the following general formula by an ester exchange reaction between acetic acid ester represented by (III),
[0012]
[Chemical 7]
Figure 0004470348
[0013]
(Wherein, R 1, R 2, R 3 are each a methyl group, R 4 represents. An alkyl group having 2 to 20 carbon atoms) upon the production of pivalic acid ester represented by methyl pivalate and catalyst in acetic acid esters of the formula (II), a method of manufacturing a pivalic ester, which comprises causing an ester exchange reaction.
[0016]
In the carboxylic acid ester represented by the general formula (II) of the present invention , R 4 is ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, Alkyl groups having 2 to 20 carbon atoms such as dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group and eicosadecyl group are preferred. The alkyl group is iso-propyl group, iso-butyl group, tert-butyl group, iso-pentyl group, tert-pentyl group, iso-hexyl group, iso-heptyl, iso-octyl group, 2-ethylhexyl group, iso-nonyl. It may be a branched alkyl group such as a group, iso-decyl group, iso-dodecyl group, iso-octadecyl group .
[0017]
Specific examples of the acetic acid ester represented by the general formula (II) of the present invention, for example ethyl acetate [R 4 = ethyl] propyl acetate [R 4 = n-propyl group] acetate iso- propyl [R 4 = iso-propyl group], butyl acetate [R 4 = n-butyl group], iso-butyl acetate [R 4 = iso-butyl group], tert-butyl acetate [R 4 = tert-butyl group], pentyl acetate [R 4 = n-pentyl group], acetic iso- pentyl [R 4 = iso- pentyl] acetate tert- pentyl [R 4 = tert- pentyl] acetate, hexyl acetate [R 4 = n-hexyl group], acetate iso- hexyl [R 4 = iso- hexyl] acetic acid tert- hexyl [R 4 = tert- hexyl] heptyl acetate [R 4 = n-heptyl] acetate iso- Heptyl [R 4 = iso- heptyl], octyl acetate [R 4 = n-octyl group], acetic iso- octyl [R 4 = iso- octyl], nonyl acetate [R 4 = n-nonyl group], acetic acid iso-nonyl [R 4 = iso-nonyl group], decyl acetate [R 4 = n-decyl group], iso-decyl acetate [R 4 = iso-decyl group], undecyl acetate [R 4 = n-undecyl group] , acetic acid dodecyl [R 4 = n-dodecyl group], etc. octadecyl acetate [R 4 = n-octadecyl] and the like. These compounds are merely examples, and the carboxylic acid ester of the present invention can have various structures.
[0018]
In pivalic acid ester represented by the general formula (III) of the present invention, R 4 represents a hydrocarbon group having 2 to 20 carbon atoms. Specific examples of the pivalate represented by the general formula (III) include, for example, ethyl pivalate [R 4 = ethyl group], propyl pivalate [R 4 = n-propyl group], iso-propyl pivalate [R 4 = iso-propyl group], butyl pivalate [R 4 = n-butyl group], iso-butyl pivalate [R 4 = iso-butyl group], tert-butyl pivalate [R 4 = tert-butyl group] , Pentyl pivalate [R 4 = n-pentyl group], iso-pentyl pivalate [R 4 = iso-pentyl group], tert-pentyl pivalate [R 4 = tert-pentyl group], hexyl pivalate [R 4 = n-hexyl group], pivalate iso- hexyl [R 4 = iso- hexyl], pivalic acid tert- hexyl [R 4 = t rt- hexyl] heptyl pivalate [R 4 = n-heptyl] pivalate iso- heptyl [R 4 = iso- heptyl], pivalate octyl [R 4 = n-octyl group], pivalate iso -Octyl [R 4 = iso-octyl group], pionate nonyl [R 4 = n-nonyl group], pivalate iso-nonyl [R 4 = iso-nonyl group], pivalate decyl [R 4 = n-decyl Group], iso-decyl pivalate [R 4 = iso-decyl group], undecyl pivalate [R 4 = n-undecyl group], dodecyl pivalate [R 4 = n-dodecyl group], octadecyl pivalate [R 4 = n-octadecyl], etc. can be mentioned. These compounds are merely examples, and the pivalate ester that can be synthesized in the present invention can have various structures. In the general formula (III), when R 4 represents a hydrocarbon group having 3 to 12 carbon atoms, the carboxylic acid or alcohol and the general formula are compared with esterification using a normal carboxylic acid and an alcohol as a raw material. This is advantageous because it can be easily separated from the formula (III). In particular, it is further advantageous when R 4 represents a hydrocarbon group having 3 to 6 carbon atoms.
[0019]
In the present invention, a carboxylic acid ester represented by the following general formula (IV) is by-produced together with the general formula (III).
[0020]
[Chemical 8]
Figure 0004470348
[0021]
(In the formula, R 5 represents a methyl group, and X represents a methyl group .)
[0022]
Specific examples of the carboxylic acid ester represented by the general formula (IV) include, for example, methyl acetate [R 4 = methyl group] (boiling point 57.5 ° C.), ethyl acetate [R 4 = ethyl group] (boiling point 77 ° C. ). Is mentioned. In order to shift the equilibrium, the boiling point of the carboxylic acid ester of the general formula (IV) is lower than the boiling point of the tertiary carboxylic acid ester of the general formula (III). When distilled off, there is an advantage that the reaction proceeds more smoothly.
[0023]
The molar ratio of the general formula (I) and the general formula (II), which are the raw materials for the transesterification reaction, is preferably 1: 2 to 2: 1, and particularly preferably as close to 1: 1 as possible. A typical esterification reaction uses an excess of alcohol to shift the equilibrium to the production system. For this reason, there is a problem that the production efficiency is remarkably lowered, for example, the reaction vessel is enlarged or distillation takes time. However, according to the present invention, since the general formula (IV) produced as a by-product without azeotropic distillation can be distilled off, there is an advantage that the reaction vessel can be minimized and the distillation does not require wasted time.
[0024]
As the catalyst used in the present invention, various catalysts such as metal alcoholates, metal hydrides, mineral acids, aryl sulfonic acids and Lewis acids can be applied. Particularly effective catalysts include metal alcoholates such as sodium methylate, sodium ethylate and potassium tert-butoxide; metal hydrides such as sodium hydride and potassium hydride; mineral acids such as sulfuric acid and hydrochloric acid; benzenesulfonic acid and paratoluene Examples thereof include arylsulfonic acids such as sulfonic acids; boron halides such as tribromoboron and trifluoroboron, and Lewis acids such as tetraiso-propoxytitanium.
[0025]
The amount of the catalyst is preferably 0.1 mol% or more, particularly preferably in the range of 0.5 to 30 mol%, based on the total amount of the two kinds of carboxylic acid esters.
[0026]
The transesterification reaction proceeds in the liquid layer. In that case, since the carboxylic acid ester of the raw material plays the role of a solvent, it is not necessary to use another solvent in particular, and it is preferable not to use it from the viewpoint of increasing the reaction vessel, and ease of post-treatment, Any organic solvent that does not react with the raw material and the product may be used. Examples thereof include ethers such as dibutyl ether, diphenyl ether, 1,4-dioxane, dimethoxyethane, diethoxyethane, diglyme, and triglyme; n-heptane, iso-heptane, n-octane, iso-octane, n-nonane, linear or branched aliphatic hydrocarbons such as iso-nonane, n-decane and iso-decane; alicyclic hydrocarbons such as cyclohexane, cycloheptane, cyclooctane and cyclododecane; benzene, toluene, (o, m, p-) Aromatic hydrocarbons such as xylene, chlorobenzene and nitrobenzene; Halogenated hydrocarbons such as 1,2-dichloroethane and tetrachloroethylene; Nitriles such as acetonitrile and benzonitrile; Ketones such as 3-pentanone and cyclohexanone N, N-dimethylfo Muamido, N, N-amides of dimethyl acetamide and the like; etc. sulfoxides such as dimethyl sulfoxide. These organic solvents may be used alone or in combination.
[0027]
Although the reaction temperature in this invention is not restrict | limited in particular, Usually, it is made to react between 20-250 degreeC. From the viewpoint of reaction rate, it is preferably in the range of 60 to 250 ° C. The reaction time is 1 minute to 6 hours, preferably 10 minutes to 2 hours. The reaction pressure is usually 0.1 to 50 atmospheres, preferably 0.5 to 5 atmospheres.
[0028]
Distillation is preferred as a method for obtaining the general formula (III). Distillation may be carried out by distilling off the general formula (IV) while reacting, or may be carried out after the reaction after inactivating the catalyst. The distillation condition is preferably a reflux ratio of 0.01 to 10, more preferably 0.1 to 3. The number of theoretical plates is preferably 0 to 60, more preferably 5 to 30. Distillation can be carried out using known means such as atmospheric distillation, vacuum distillation, pressure distillation and the like, and is not particularly limited.
[0029]
In the distillation, the general formula (IV) is first distilled off, then the general formulas (I) and (II) are distilled off, and finally the target product represented by the general formula (III) is used. Since a tertiary carboxylic acid ester is obtained, even when a trace amount of alcohol is mixed in the raw material carboxylic acid ester of the general formula (I) or (II), the general formula (I), (II), It was possible to remove it during the distillation of (IV).
[0030]
The purity of the tertiary carboxylic acid ester represented by the above general formula (III) of the target product obtained by the present invention by gas chromatography is a high-purity product of 99.9% or more, and no pivalic acid or alcohol is detected. Was not. In particular, according to the present invention, the by-product of carboxylic acid and alcohol does not substantially occur, so that the desired tertiary carboxylic acid ester can be obtained with high purity and good yield, and unreacted raw material carboxylic acid can be obtained. The acid ester is characterized in that it can be recovered and reused.
[0031]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to a following example, unless the meaning is exceeded.
[0032]
Example 1
To a 300 mL reaction vessel, n-hexyl acetate (144 g, 1 mol), methyl pivalate (116 g, 1 mol), sodium methylate (powder, 1.08 g, 20 mmol) were added, and a distillation apparatus with 10 theoretical plates was assembled. The mixture was heated to reflux at 115 ° C. for 30 minutes at reflux and normal pressure. Next, the reaction was carried out while distilling methyl acetate at a reflux ratio of 1 under normal pressure. When methyl acetate was not distilled, methyl pivalate and n-hexyl acetate were removed by distillation under reduced pressure at 25 mmHg while maintaining a reflux ratio of 1. Subsequently, the target n-hexyl pivalate (distillation temperature: 93 ° C./16 mmHg) was purified by distillation to obtain 151.1 g (yield 81%). The purity of n-hexyl pivalate by gas chromatography was 99.9% or higher, and neither pivalic acid nor n-hexanol was detected.
[0033]
Example 2
To a 300 mL reaction vessel, n-hexyl acetate (144 g, 1 mol), methyl pivalate (116 g, 1 mol), sodium methylate (powder, 1.08 g, 20 mmol) containing 1% n-hexanol was added, and the number of theoretical plates was 10. A stage distillation apparatus was assembled, and the mixture was heated to reflux at 115 ° C. for 30 minutes at total reflux and normal pressure. Next, the reaction was carried out while distilling methyl acetate at a reflux ratio of 1 under normal pressure. When methyl acetate was not distilled, methyl pivalate and n-hexyl acetate were removed by distillation under reduced pressure at 25 mmHg while maintaining a reflux ratio of 1. Subsequently, the target n-hexyl pivalate (distillation temperature: 93 ° C./16 mmHg) was purified by distillation to obtain 150.3 g (yield 81%). The purity of n-hexyl pivalate by gas chromatography was 99.9% or higher, and neither pivalic acid nor n-hexanol was detected.
[0034]
Example 3
To a 1 L reaction vessel, n-butyl acetate (302 g, 2.6 mol), methyl pivalate (302 g, 2.6 mol), sodium methylate (powder, 2.70 g, 52 mmol) were added, and a distillation apparatus with 10 theoretical plates was added. The mixture was heated to reflux at 90 ° C. for 30 minutes at total reflux and normal pressure. Next, the reaction was carried out while distilling methyl acetate at a reflux ratio of 1 under normal pressure. When methyl acetate was not distilled, methyl pivalate and n-butyl acetate were removed by distillation under reduced pressure at 90 mmHg while maintaining a reflux ratio of 1. Subsequently, the target n-butyl pivalate (distillation temperature: 94 ° C./90 mmHg) was purified by distillation to obtain 330.4 g (yield 80%). The purity of n-butyl pivalate by gas chromatography was 99.9% or higher, and neither pivalic acid nor n-butanol was detected.
[0035]
Comparative Example 1
Pivalic acid (202 g, 2 mol), n-butanol (593 mg, 4 mol) and sulfuric acid (10 g, 5 mol%) were added to a 1 L reaction vessel, equipped with Dean-Stark, and refluxed for 9 hours while dehydrating. After cooling the reaction solution, 500 mL of a 15 wt% NaOH aqueous solution was added and stirred at room temperature. The organic layer was washed twice with saturated brine and then dried over magnesium sulfate. Subsequently, 231.1 g (yield 73%) of the target butyl pivalate was obtained from the reaction crude product by distillation under reduced pressure (94 ° C./90 mmHg). The result of the purity measurement by gas chromatography was 89%. The butyl acid contained 9% pivalic acid and 2% n-butanol.
[0036]
Comparative Example 2
Methyl pivalate (116 g, 1 mol), n-butanol (74 g, 1 mol) and sodium methylate (1.08 g, 20 mmol) were added to a 300 mL reaction vessel, and the reaction was carried out in the same manner as in Example 1. From distillation under reduced pressure, 124 g (78% yield) of butyl pivalate was obtained. The result of purity measurement by gas chromatography was 99.5%, and 0.4% butanol was mixed.
[0037]
【The invention's effect】
According to the present invention, a tertiary carboxylic acid ester can be synthesized in a high yield by transesterification of two kinds of carboxylic acid esters. In addition, according to the present invention, it is possible to provide a high-purity tertiary alcohol that does not contain a carboxylic acid and an alcohol, which cannot be achieved by a conventional synthesis method, by an inexpensive and industrially excellent process. .

Claims (3)

ピバリン酸メチルおよび下記一般式(II)、
Figure 0004470348
(式中、R は炭素数2〜20のアルキル基を示す。)で表される酢酸エステルとのエステル交換反応によって下記一般式(III)、
Figure 0004470348
(式中、R は炭素数2〜20のアルキル基を示す。)で表されるピバリン酸エステルを製造するに際し、ピバリン酸メチルおよび上記一般式(II)の酢酸エステルを金属アルコラート、金属水素化物、鉱酸、アリールスルホン酸およびルイス酸から選ばれる少なくとも1種の触媒存在下、エステル交換反応させることを特徴とするピバリン酸エステルの製造方法。
Methyl pivalate and the following general formula (II):
Figure 0004470348
(In the formula , R 4 represents an alkyl group having 2 to 20 carbon atoms.) By the transesterification reaction with an acetate ester represented by the following general formula (III),
Figure 0004470348
(In the formula , R 4 represents an alkyl group having 2 to 20 carbon atoms.) In producing the pivalate represented by the formula, methyl pivalate and the acetate of the general formula (II) are converted into metal alcoholate, metal hydrogen. A method for producing a pivalic acid ester, wherein a transesterification reaction is carried out in the presence of at least one catalyst selected from a chemical compound, a mineral acid, an arylsulfonic acid and a Lewis acid .
前記触媒の量が二種類のカルボン酸エステルの合計量に対して、0.1mol%以上である請求項1記載のピバリン酸エステルの製造方法。 The method for producing a pivalic acid ester according to claim 1, wherein the amount of the catalyst is 0.1 mol% or more based on the total amount of the two kinds of carboxylic acid esters. 前記触媒が、ナトリウムメチラート、ナトリウムエチラートおよびカリウムtert−ブトキシドから選ばれる金属アルコラートである請求項1記載のピバリン酸エステルの製造方法。 The method for producing a pivalic acid ester according to claim 1, wherein the catalyst is a metal alcoholate selected from sodium methylate, sodium ethylate and potassium tert-butoxide.
JP2001210301A 2001-07-11 2001-07-11 Method for producing tertiary carboxylic acid ester Expired - Fee Related JP4470348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001210301A JP4470348B2 (en) 2001-07-11 2001-07-11 Method for producing tertiary carboxylic acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001210301A JP4470348B2 (en) 2001-07-11 2001-07-11 Method for producing tertiary carboxylic acid ester

Publications (2)

Publication Number Publication Date
JP2003026631A JP2003026631A (en) 2003-01-29
JP4470348B2 true JP4470348B2 (en) 2010-06-02

Family

ID=19045794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001210301A Expired - Fee Related JP4470348B2 (en) 2001-07-11 2001-07-11 Method for producing tertiary carboxylic acid ester

Country Status (1)

Country Link
JP (1) JP4470348B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109503378A (en) * 2018-12-06 2019-03-22 沈阳化工大学 A method of passing through ester transesterification path synthesizing propionate

Also Published As

Publication number Publication date
JP2003026631A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
CN103201256B (en) For the method preparing carboxylic acid amide esters compound
JPH04225936A (en) Process for producing 1,3-diketone
JP6880249B2 (en) Method for producing 2-fluoroacrylate
JP4470348B2 (en) Method for producing tertiary carboxylic acid ester
JP5251875B2 (en) Method for producing fluoroamide and fluoronitrile
WO1988005773A1 (en) Process for preparing tetrakis (3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionyloxymethyl)methane
US20110190516A1 (en) Method for producing vinyl ether compound
JP6828500B2 (en) Method and composition for producing 2-methyl-2-hydroxy-1-propyl (meth) acrylate and / or 3-methyl-3-hydroxy-1-butyl (meth) acrylate
US7141693B2 (en) Process for producing β-oxonitrile compound or alkali metal salt thereof
EP1215192A2 (en) Preparation process of dicarboxylic acid compounds
EP1293495B1 (en) Process for the preparation of bromoisophthalic acid compounds
JP4519241B2 (en) Epoxide production method
JP4032861B2 (en) Process for producing β-oxonitrile derivative or alkali metal salt thereof
JP4030289B2 (en) Process for producing β-ketonitriles
JP2594826B2 (en) Method for producing p- or m-hydroxyphenethyl alcohol
TWI551592B (en) Preparation of 3,5-dioxo hexanoate ester in two steps
JP3864657B2 (en) Process for producing aromatic acrylonitrile
WO1998016495A1 (en) Processes for the preparation of dicarboxylic acid monoesters
JP2006312644A (en) METHOD FOR PRODUCING beta-KETONITRILES
KR20220073424A (en) In-situ method for preparing (meth)acrylic acid aryl ester
EP1810975A1 (en) Method for producing phosphonate having alcoholic hydroxy group
CN114516819A (en) Preparation method of N, N' -diacetyl hydrazine
JPH0321537B2 (en)
MXPA05004124A (en) Process for production of an acetylenic compound.
JP5476549B2 (en) Process for producing 2,3-dihydro-thieno [3,4-b] furan derivative and novel compound used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4470348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees