JP4466091B2 - Metal soap manufacturing method - Google Patents

Metal soap manufacturing method Download PDF

Info

Publication number
JP4466091B2
JP4466091B2 JP2004023277A JP2004023277A JP4466091B2 JP 4466091 B2 JP4466091 B2 JP 4466091B2 JP 2004023277 A JP2004023277 A JP 2004023277A JP 2004023277 A JP2004023277 A JP 2004023277A JP 4466091 B2 JP4466091 B2 JP 4466091B2
Authority
JP
Japan
Prior art keywords
component
metal soap
aqueous solution
salt
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004023277A
Other languages
Japanese (ja)
Other versions
JP2005213217A (en
Inventor
一廣 前
伸治 長谷部
秀幸 野村
公平 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2004023277A priority Critical patent/JP4466091B2/en
Publication of JP2005213217A publication Critical patent/JP2005213217A/en
Application granted granted Critical
Publication of JP4466091B2 publication Critical patent/JP4466091B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、金属石鹸の製造方法に関する。   The present invention relates to a method for producing a metal soap.

金属石鹸は、電子印刷分野、粉末冶金分野、化粧品分野、塗料分野、樹脂加工分野など、多くの分野において幅広く用いられている。現在行われている代表的な金属石鹸の製造方法としては、脂肪酸と無機金属酸化物あるいは無機金属水酸化物とを反応する方法(直接法)、あるいは脂肪酸のアルカリ金属塩やアンモニウム塩の溶液と無機金属塩類とを反応する方法(複分解法)が挙げられる。   Metal soaps are widely used in many fields such as electronic printing, powder metallurgy, cosmetics, paint, and resin processing. As a typical method for producing a metal soap, a method of reacting a fatty acid with an inorganic metal oxide or an inorganic metal hydroxide (direct method), or a solution of an alkali metal salt or an ammonium salt of a fatty acid Examples include a method of reacting with inorganic metal salts (metathesis method).

複分解法は、直接法と比較して、未反応の原料脂肪酸や無機金属化合物の含有量が少なく、高純度で微細粒子の金属石鹸を得やすく、また色相が良好な金属石鹸を得ることができる。複分解法を利用した金属石鹸の製造方法としては、脂肪酸アルカリ塩や脂肪酸アンモニウム塩の水溶液と、無機金属塩類の水溶性とを連続的に反応装置内に供給して反応させ、金属石鹸含有スラリーを得る連続複分解法が知られている。   Compared to the direct method, the metathesis method has a low content of unreacted raw fatty acids and inorganic metal compounds, makes it easy to obtain metal soaps with high purity and fine particles, and can obtain metal soaps with good hues. . As a method for producing metal soap using the metathesis method, an aqueous solution of a fatty acid alkali salt or a fatty acid ammonium salt and a water solubility of an inorganic metal salt are continuously fed into a reaction device to cause a reaction. Obtained continuous metathesis methods are known.

例えば、オーバーフロー排出口でつながる4つの反応槽を用いて、第1槽に脂肪酸ナトリウム塩水溶液と硫酸アルミニウム水溶液とを供給し混合しながらオーバーフローさせ、第2槽以降で反応を完結しつつ粒子を熟成させることで脂肪酸アルミニウムのスラリーを得る方法(特許文献1参照)が知られている。しかし、この方法では、2つの原料を第1槽で反応させる際、各槽の内部やオーバーフロー排出口付近に金属石鹸が付着し、別槽にスラリーを安定に移動させることが難しい。そのため、原料脂肪酸や無機塩を金属石鹸の中に内包しやすく、金属石鹸の純度を上げることが難しい場合がある。     For example, using four reaction tanks connected to the overflow discharge port, supply the fatty acid sodium salt aqueous solution and the aluminum sulfate aqueous solution to the first tank and allow them to overflow while mixing, and mature the particles while completing the reaction in the second tank and beyond. There is known a method of obtaining a fatty acid aluminum slurry (see Patent Document 1). However, in this method, when the two raw materials are reacted in the first tank, metal soap adheres to the inside of each tank or the vicinity of the overflow outlet, and it is difficult to stably move the slurry to another tank. Therefore, it may be difficult to increase the purity of the metal soap because the raw fatty acids and inorganic salts are easily included in the metal soap.

これらの問題を解決するため、脂肪酸ナトリウム塩またはアンモニウム塩の水溶液と、無機金属塩の水溶液とを、フロージェットミキサー、片吸い込み式渦巻きポンプ、ラインホモミクサーなどの混合機に直接供給して両者を混合後、反応生成物を直ちに混合機から排出して金属石鹸のスラリーを得る方法(特許文献2、特許文献3参照)が知られている。しかし、この方法では、原料水溶液の反応の際に強力な機械的混合力がかけられるため、反応系内に大きな攪拌乱流が生じ、反応装置内の壁に金属石鹸の粒子が接触しやすい。そのため、製造装置内の壁で成長した金属石鹸粒子によって反応装置の内部が閉塞し、反応装置内に原料の水溶液が安定に供給できなくなり、生産効率が低下する場合がある。上述の方法では、いずれも金属石鹸を長時間にわたり連続的に製造することが困難であった。     In order to solve these problems, an aqueous solution of a fatty acid sodium salt or ammonium salt and an aqueous solution of an inorganic metal salt are directly supplied to a mixer such as a flow jet mixer, a single suction centrifugal pump, a line homomixer, etc. After mixing, a method is known in which a reaction product is immediately discharged from a mixer to obtain a metal soap slurry (see Patent Document 2 and Patent Document 3). However, in this method, since a strong mechanical mixing force is applied during the reaction of the raw material aqueous solution, a large stirring turbulent flow is generated in the reaction system, and the metal soap particles easily come into contact with the walls in the reaction apparatus. For this reason, the inside of the reaction apparatus is blocked by the metal soap particles grown on the walls in the production apparatus, and the aqueous solution of the raw material cannot be stably supplied into the reaction apparatus, which may reduce the production efficiency. In any of the above methods, it has been difficult to continuously produce metal soap over a long period of time.

英国特許第693741号公報British Patent No. 693741 特開平1−299247号公報JP-A-1-299247 特開平11−323396号公報JP-A-11-323396

反応装置内で合成される金属石鹸が反応容器内面へ付着するのを軽減し、反応装置内に原料水溶液の供給を安定に行うことで、長時間の連続製造が可能な金属石鹸の製造方法を提供することを目的とする。   A method for producing metal soap that can be manufactured continuously for a long period of time by reducing the amount of metal soap synthesized in the reactor from adhering to the inner surface of the reaction vessel and stably supplying the raw material aqueous solution into the reactor. The purpose is to provide.

発明者らは、上記課題を達成するために鋭意研究を重ねた結果、特定の構造を有する反応装置に2つの原料水溶液を供給することで、装置内面に金属石鹸が滞留し付着することなく金属石鹸を製造可能であることを見出した。そして、この反応方法を用いることで、反応装置内に閉塞を生じることなく、金属石鹸を長時間にわたり連続製造できることを見出し本発明に至った。   As a result of intensive studies to achieve the above-mentioned problems, the inventors have supplied two raw material aqueous solutions to a reactor having a specific structure, so that metal soap does not stay and adhere to the inner surface of the apparatus. We have found that soap can be manufactured. And by using this reaction method, it discovered that a metal soap could be continuously manufactured over a long time, without producing a blockade in a reaction apparatus, and came to this invention.

すなわち本発明は、
(1)脂肪酸のアルカリ金属塩またはアンモニウム塩の水溶液と、無機金属塩の水溶液とを反応させて金属石鹸を製造する製造方法であって、外筒の中に内筒を配置した内外筒間に環状空間を有する共軸筒型反応装置を用いて、a)炭素数4〜30の脂肪酸のアルカリ金属塩またはアンモニウム塩を0.001〜20重量%含有する水溶液と、b)無機金属塩を0.001〜20重量%含有する水溶液とを、b成分中の無機金属塩に対する、a成分中の脂肪酸塩の当量比(a/b)が0.5〜1.1となるよう、異なる供給口からそれぞれ供給する金属石鹸の製造方法である。
That is, the present invention
(1) A method for producing a metal soap by reacting an aqueous solution of an alkali metal salt or ammonium salt of a fatty acid with an aqueous solution of an inorganic metal salt, wherein the inner tube is disposed between the inner and outer cylinders. Using a coaxial cylindrical reactor having an annular space, a) an aqueous solution containing 0.001 to 20% by weight of an alkali metal salt or ammonium salt of a fatty acid having 4 to 30 carbon atoms, and b) 0 inorganic metal salt 0.001 to 20% by weight of aqueous solution containing different supply ports so that the equivalent ratio (a / b) of fatty acid salt in component a to inorganic metal salt in component b is 0.5 to 1.1 It is a manufacturing method of the metal soap each supplied from.

本発明の金属石鹸の製造方法を用いることにより、図1のような特定の構造を有する反応装置を用いる事により、反応装置内で合成される金属石鹸の反応容器内面への付着を大幅に軽減することができる。そして、反応装置内に供給される原料水溶液の反応比の変動を抑え、金属石鹸を長時間にわたり連続製造することができる。   By using the metal soap manufacturing method of the present invention, by using a reactor having a specific structure as shown in FIG. 1, the adhesion of the metal soap synthesized in the reactor to the inner surface of the reaction vessel is greatly reduced. can do. And the fluctuation | variation of the reaction ratio of the raw material aqueous solution supplied in the reaction apparatus can be suppressed, and a metal soap can be manufactured continuously over a long time.

本発明の金属石鹸の製造方法において用いる原料成分としては、a)脂肪酸塩水溶液とb)無機金属塩の水溶液が用いられる。
a成分の脂肪酸塩水溶液の調整に用いる脂肪酸塩としては、炭素数4〜30の脂肪酸のアルカリ金属塩またはアンモニウム塩が挙げられる。該脂肪酸は飽和、不飽和のいずれであってもよく、また、直鎖状、分岐状のいずれであってもよい。このような脂肪酸塩の例としては、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、ミリストレイン酸、パルミチン酸、イソパルミチン酸、パルミトレイン酸、ステアリン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン酸、イソステアリン酸、オレイン酸、アラキン酸、リシノレイン酸、リノレイン酸、ベヘニン酸やエルカ酸などに代表される単体脂肪酸のナトリウム、カリウムなどのアルカリ金属塩またはアンモニウム塩、あるいは、牛脂脂肪酸、大豆油脂肪酸、ヤシ油脂肪酸、パーム油脂肪酸などに代表される動植物油脂由来の脂肪酸のナトリウム、カリウムなどのアルカリ金属塩またはアンモニウム塩が挙げられる。
これらの中で、特に炭素数12〜22を有する脂肪酸のアルカリ金属塩またはアンモニウム塩が好ましい。これらの脂肪酸塩は単独で用いてもよく、二種類以上を組み合わせて用いてもよい。炭素数3以下の脂肪酸のアルカリ金属塩やアンモニウム塩を用いた場合、得られる金属石鹸の水に対する溶解度が高いので、収率が低下する。一方、炭素数31以上の脂肪酸のアルカリ金属塩やアンモニウム塩を用いた場合、水に対する溶解度が低すぎて、水溶液濃度が低くなり、生産効率が低下する。
As raw material components used in the method for producing a metal soap of the present invention, a) an aqueous solution of a fatty acid salt and b) an aqueous solution of an inorganic metal salt are used.
Examples of the fatty acid salt used for preparing the fatty acid salt aqueous solution of component a include alkali metal salts or ammonium salts of fatty acids having 4 to 30 carbon atoms. The fatty acid may be saturated or unsaturated, and may be linear or branched. Examples of such fatty acid salts include caprylic acid, capric acid, lauric acid, myristic acid, myristoleic acid, palmitic acid, isopalmitic acid, palmitoleic acid, stearic acid, behenic acid, lignoceric acid, serotic acid, montanic acid Isostearic acid, oleic acid, arachinic acid, ricinoleic acid, linolenic acid, simple fatty acids represented by sodium, potassium, and other alkali metal salts such as behenic acid and erucic acid, or beef tallow fatty acid, soybean oil fatty acid, Examples thereof include alkali metal salts such as sodium and potassium, or ammonium salts of fatty acids derived from animal and vegetable oils and fats typified by coconut oil fatty acid and palm oil fatty acid.
Among these, an alkali metal salt or an ammonium salt of a fatty acid having 12 to 22 carbon atoms is particularly preferable. These fatty acid salts may be used alone or in combination of two or more. When an alkali metal salt or an ammonium salt of a fatty acid having 3 or less carbon atoms is used, the yield of the metal soap is reduced because the resulting metal soap has high solubility in water. On the other hand, when an alkali metal salt or ammonium salt of a fatty acid having 31 or more carbon atoms is used, the solubility in water is too low, the aqueous solution concentration is lowered, and the production efficiency is lowered.

本発明の製造方法に用いるa成分の脂肪酸塩水溶液において、脂肪酸のアルカリ金属塩またはアンモニウム塩の含有量は、0.001〜20重量%の範囲である。含有量が0.001重量%未満では、得られる金属石鹸量が反応液量に対して著しく低く生産効率が悪い。また、20重量%を超えると、反応後の金属石鹸分散液の濃度が高すぎ、反応装置内の金属石鹸の付着が生じやすくなる。反応装置内の金属石鹸の付着が少なく、より効率的に連続して金属石鹸を製造する場合、水溶液中の上記脂肪酸のアルカリ金属塩またはアンモニウム塩の好ましい含有量は、0.01〜10重量%の範囲である。     In the fatty acid salt aqueous solution of component a used in the production method of the present invention, the content of the alkali metal salt or ammonium salt of the fatty acid is in the range of 0.001 to 20% by weight. When the content is less than 0.001% by weight, the amount of metal soap obtained is remarkably low with respect to the amount of the reaction solution, and the production efficiency is poor. On the other hand, if it exceeds 20% by weight, the concentration of the metal soap dispersion after the reaction is too high, and the metal soap in the reaction apparatus tends to adhere. In the case of producing metal soap more efficiently and continuously with less metal soap adhesion in the reaction apparatus, the preferable content of the alkali metal salt or ammonium salt of the fatty acid in the aqueous solution is 0.01 to 10% by weight. Range.

本発明の製造方法に用いるb成分の無機金属塩の水溶液の調整に用いる無機金属塩の例としては、カルシウム、バリウム、マグネシウムなどのアルカリ土類金属の塩化物、硫酸塩、炭酸塩、硝酸塩、燐酸塩など、あるいは、チタン、亜鉛、銅、マンガン、カドミウム、水銀、ジルコニウム、鉛、鉄、アルミニウム、コバルト、ニッケル、銀などの金属の塩化物、硫酸塩、炭酸塩、硝酸塩、燐酸塩などが挙げられる。これらの物質は単独で用いてもよく、二種類以上を組み合わせて用いてもよい。   Examples of the inorganic metal salt used for preparing the aqueous solution of the inorganic metal salt of component b used in the production method of the present invention include chlorides, sulfates, carbonates, nitrates of alkaline earth metals such as calcium, barium, and magnesium. Phosphate, etc., or titanium, zinc, copper, manganese, cadmium, mercury, zirconium, lead, iron, aluminum, cobalt, nickel, silver, and other metal chlorides, sulfates, carbonates, nitrates, phosphates, etc. Can be mentioned. These substances may be used alone or in combination of two or more.

本発明の製造方法に用いるb成分の無機金属塩の水溶液において、無機金属塩の含有量は0.001〜20重量%の範囲である。含有量が0.001重量%未満では、得られる金属石鹸量が反応液量に対して著しく低く、生産効率が悪い。また、20重量%を超えると、得られる金属石鹸粒子の凝集が進みやすく、反応装置内面への金属石鹸の付着が促進され、連続的な製造が困難な場合がある。反応装置内の金属石鹸の付着が少なく、より効率的に連続して金属石鹸を製造する場合、水溶液中の無機金属塩の好ましい含有量は、0.01〜10重量%の範囲である。     In the aqueous solution of the inorganic metal salt of component b used in the production method of the present invention, the content of the inorganic metal salt is in the range of 0.001 to 20% by weight. When the content is less than 0.001% by weight, the amount of metal soap obtained is remarkably low with respect to the amount of the reaction solution, and the production efficiency is poor. On the other hand, if it exceeds 20% by weight, aggregation of the obtained metal soap particles tends to proceed, the adhesion of the metal soap to the inner surface of the reactor is promoted, and continuous production may be difficult. When metal soap is less likely to adhere to the reaction apparatus and is produced more efficiently and continuously, the preferred content of the inorganic metal salt in the aqueous solution is in the range of 0.01 to 10% by weight.

a成分およびb成分の調整に用いられる水としては特に制限はなく、一般的に使用されるものを用いても良いが、イオン交換水、精製水、または蒸留水などのように、金属イオンなどの不純物の少ないものが好ましい。また、水溶性金属イオン等の不純物を含有する水を用いる場合は、エチレンジアミン四酢酸ナトリウム(EDTA)などの水溶性キレート剤を添加して水中の金属イオンを水溶性錯塩としてから反応させることが好ましい。このように処理された水を用いた場合、脂肪酸アルカリ塩やアンモニウム塩に対して水中の不純金属イオンが反応しにくくなり、反応時における金属石鹸の凝集が発生し難くなり、その結果、応装置内での金属石鹸の付着が生じにくい。また、水洗により金属石鹸から水溶性の不純金属錯体を除去することができるため、不純分の少ない金属石鹸が得られる。   The water used for the adjustment of the a component and the b component is not particularly limited, and commonly used water may be used. However, metal ions such as ion-exchanged water, purified water, or distilled water may be used. Those having less impurities are preferred. In addition, when water containing impurities such as water-soluble metal ions is used, it is preferable to add a water-soluble chelating agent such as sodium ethylenediaminetetraacetate (EDTA) and react the metal ions in water as water-soluble complex salts. . When water treated in this way is used, it becomes difficult for impure metal ions in water to react with fatty acid alkali salts and ammonium salts, and it is difficult for metal soap to agglomerate during the reaction. It is difficult for metal soap to adhere inside. In addition, since the water-soluble impure metal complex can be removed from the metal soap by washing with water, a metal soap with less impure content can be obtained.

本発明には、外筒の中に内筒が配置された、内外筒間に環状空間を有する図1に示す共軸筒型反応装置を用いる。図1において、1は内筒、2は外筒をそれぞれ表し、3および4は各原料水溶液の供給口であり、5はa成分とb成分を反応して得られる金属石鹸スラリーの吐出口であり、R1は外筒の内径であり、R2は内筒の内径を示し、nは外筒において内筒が挿入されていない、a成分とb成分が接触する外筒部分である。   In the present invention, the coaxial cylindrical reactor shown in FIG. 1 having an annular space between the inner and outer cylinders, in which the inner cylinder is disposed in the outer cylinder, is used. In FIG. 1, 1 represents an inner cylinder, 2 represents an outer cylinder, 3 and 4 are supply ports for each raw material aqueous solution, and 5 is a discharge port for a metal soap slurry obtained by reacting the component a and component b. Yes, R1 is the inner diameter of the outer cylinder, R2 is the inner diameter of the inner cylinder, and n is the outer cylinder part where the inner cylinder is not inserted in the outer cylinder and where the a component and b component are in contact.

本発明では、この反応装置を用いて、内外筒間の環状空間3および内筒内の空間4から、a成分とb成分をそれぞれ流し、外筒のnの領域にてa成分とb成分を接触させ、その結果、5から金属石鹸スラリーを得る。a成分とb成分は、反応装置内にポンプを用いて3と4からそれぞれ反応装置内に圧入しても良く、または5から反応装置を減圧し、a成分とb成分を3と4からそれぞれ反応装置内に吸引しても良い。また本発明に用いられる反応装置は、均一にa成分とb成分を接触させ反応させる上で円筒管であることが好ましいが、各原料の反応状態や所望の粒子径の金属石鹸を調整するために、管断面を楕円や多角形など、形状を円筒形以外のものに変更することができる。   In the present invention, by using this reaction apparatus, the a component and the b component are respectively flowed from the annular space 3 between the inner and outer cylinders and the space 4 in the inner cylinder, and the a component and the b component are flown in the n region of the outer cylinder. As a result, a metal soap slurry is obtained from 5. The a component and the b component may be press-fitted into the reactor from 3 and 4 respectively using a pump in the reactor, or the reactor is depressurized from 5 and the a and b components from 3 and 4 respectively. It may be sucked into the reactor. In addition, the reactor used in the present invention is preferably a cylindrical tube for uniformly contacting and reacting the a component and the b component, but in order to adjust the reaction state of each raw material and metal soap having a desired particle size. In addition, the tube cross section can be changed to a shape other than a cylinder, such as an ellipse or a polygon.

本発明の製造方法においては、a成分とb成分は、3および4のいずれから供給してもよく、例えば、a成分を3から供給する場合にはb成分を4から供給し、a成分を4から供給する場合にはb成分を3から供給するといった方法が用いられる。その中でも、特にa成分を3から供給し、b成分を4から供給することが好ましい。このような送液方法を用いた場合、反応装置内面に金属石鹸がより付着しにくくなり、各原料をより均一に反応させることができる。その結果、反応装置内に閉塞がより生じ難く、また均一な粒子形状の金属石鹸を連続して製造できる。   In the production method of the present invention, the a component and the b component may be supplied from either 3 or 4. For example, when the a component is supplied from 3, the b component is supplied from 4, and the a component is supplied. When supplying from 4, the method of supplying b component from 3 is used. Among these, it is particularly preferable to supply the a component from 3 and the b component from 4. When such a liquid feeding method is used, metal soap is less likely to adhere to the inner surface of the reaction apparatus, and each raw material can be reacted more uniformly. As a result, clogging is less likely to occur in the reaction apparatus, and a metal soap having a uniform particle shape can be continuously produced.

本発明の製造方法に用いる反応装置は何れの材質で構成されても良く、例えば高圧にてa成分とb成分とを反応する場合には耐久性のある金属や硬質樹脂などの材質を用いることが好ましい。
外筒の内径(図1におけるR1)、内筒の内径(図1におけるR2)および外筒において内筒が挿入されていない部分(図1におけるn)は、原料の送液能力、各原料の反応状態や所望の粒子径の金属石鹸を調整するために適宜選定すればよい。また、本装置の内筒において、吐出口に段差を有さないよう鋭角に加工されていることが好ましい。このような形状を有する内筒を用いた場合、内筒の吐出口付近における原料の乱流が生じ難くなり、より均一にa成分とb成分とが会合分散し、反応装置内面に金属石鹸が滞留し付着することなく反応することができる。その結果、反応装置内の閉塞がより生じ難く、均一な粒子形状の金属石鹸を連続して製造できる。
また、反応装置の具体例としては、例えば、R1およびR2がそれぞれ1〜5mmと0.1mm〜2mmであり、かつ、R1/R2の値が2〜20であり、nの部分の長さが15mm以上のものを用いることができる。そして、この条件を満たす装置に、0.1〜5重量%の濃度を有するa成分とb成分を1〜500ml/minの速度で供給することで、反応装置内壁への金属石鹸粒子の付着を抑えたまま、連続的に金属石鹸を反応させることができる。加えて、内筒の先端を鋭角に削ることで、内筒におけるa成分とb成分との接触状態をスムーズにし、さらに反応装置の内壁に金属石鹸が付着しにくくすることができる。
The reaction apparatus used in the production method of the present invention may be composed of any material. For example, when the a component and the b component are reacted at a high pressure, a material such as a durable metal or hard resin is used. Is preferred.
The inner diameter of the outer cylinder (R1 in FIG. 1), the inner diameter of the inner cylinder (R2 in FIG. 1), and the portion of the outer cylinder in which the inner cylinder is not inserted (n in FIG. 1) What is necessary is just to select suitably in order to adjust the reaction state and the metal soap of a desired particle diameter. Moreover, it is preferable that the inner cylinder of the apparatus is processed at an acute angle so that the discharge port does not have a step. When the inner cylinder having such a shape is used, the turbulent flow of the raw material near the discharge port of the inner cylinder is less likely to occur, and the a component and the b component are more uniformly associated and dispersed. It can react without staying and adhering. As a result, clogging in the reaction apparatus is less likely to occur, and a metal soap having a uniform particle shape can be continuously produced.
As specific examples of the reactor, for example, R1 and R2 are 1 to 5 mm and 0.1 mm to 2 mm, respectively, the value of R1 / R2 is 2 to 20, and the length of the n portion is The thing of 15 mm or more can be used. Then, by supplying a component having a concentration of 0.1 to 5% by weight and a component b at a rate of 1 to 500 ml / min to an apparatus satisfying this condition, the metal soap particles adhere to the inner wall of the reactor. The metal soap can be continuously reacted while being suppressed. In addition, by sharpening the tip of the inner cylinder at an acute angle, the contact state between the a component and the b component in the inner cylinder can be made smooth, and metal soap can be made difficult to adhere to the inner wall of the reactor.

本発明の製造方法では、共軸筒型反応装置にする供給するa成分とb成分との混合割合において、b成分中の無機金属塩に対する、a成分中の脂肪酸塩の当量比(a/b)は0.5〜1.1の範囲である。この条件を満たすために、a成分とb成分の濃度や送液量、内筒と外筒の内径の比率を調整することが必要である。当量比(a/b)が1.1よりも大きい場合、反応後の金属石鹸スラリー中に未反応の脂肪酸可溶塩が多量に存在するようになり、金属石鹸の水に対する親和性が上がる。そのため、金属石鹸スラリーを濾過して金属石鹸を単離する際に、著しく濾過効率が低下する。一方、当量比(a/b)が0.5よりも小さい場合、反応中に反応装置の外筒内部に金属石鹸が付着しやすくなる。そのため、各原料を安定に反応させることができなくなることがある。残存不純物を少なくし、生成する金属石鹸スラリーの濾過工程と洗浄工程をより効率的に行うためには、該当量比は0.95〜1.05の範囲が特に好ましい。   In the production method of the present invention, the equivalent ratio of the fatty acid salt in the a component to the inorganic metal salt in the b component (a / b) in the mixing ratio of the a component and the b component to be supplied to the coaxial cylindrical reactor. ) Is in the range of 0.5 to 1.1. In order to satisfy this condition, it is necessary to adjust the concentration of the a component and the b component, the liquid feeding amount, and the ratio of the inner diameter of the inner cylinder to the outer cylinder. When the equivalent ratio (a / b) is larger than 1.1, a large amount of unreacted fatty acid-soluble salt is present in the metal soap slurry after the reaction, and the affinity of the metal soap for water increases. Therefore, when the metal soap slurry is filtered to isolate the metal soap, the filtration efficiency is significantly reduced. On the other hand, when the equivalent ratio (a / b) is smaller than 0.5, metal soap tends to adhere to the inside of the outer cylinder of the reactor during the reaction. Therefore, it may be impossible to react each raw material stably. In order to reduce the residual impurities and more efficiently perform the filtration step and the washing step of the resulting metal soap slurry, the amount ratio is particularly preferably in the range of 0.95 to 1.05.

本発明の製造方法においては、a成分が反応装置中のnの部分を移動する線速度(m/s)と、b成分が反応装置中のnの部分を移動する線速度(m/s)との比率は、前述した当量比を満たすことができれば特に制約はない。
本発明の製造方法において、共軸二重筒型反応装置を用いてa成分とb成分を反応することにより得られた金属石鹸スラリーは、一般的な濾過装置を使用して金属石鹸ケーキと濾液に分離することができる。この金属石鹸ケーキは、水溶性無機塩などの不純物量を低下させるために、温水などで充分に洗浄した後、乾燥処理することにより、金属石鹸微粒子が得られる。なお、濾過水洗により水溶性無機塩などの不純物を除去することが困難な場合は、浸透膜などを用いて金属石鹸スラリーや金属石鹸ケーキから不純物を除去するなどの方法を用いてもよい。
この操作により得られた金属石鹸スラリーや金属石鹸ケーキを乾燥処理して、金属石鹸の粉体を得ることができる。また、乾燥後の金属石鹸の凝集が高い場合は、通常の粉砕機を用いて所望の粒子径にまで解砕することができる。乾燥は常圧で行ってもよいが、より効率的に乾燥するために、減圧乾燥、真空乾燥、凍結乾燥を行ってもよい。また、低沸点溶剤などで金属石鹸ケーキを洗浄処理した後、得られた金属石鹸ケーキを乾燥してもよい。この際用いられる低沸点溶剤としては、金属石鹸から水を効率よく除去しうるものが好ましく、例えばメタノール、エタノール、アセトン、塩化メチレンなどが挙げられる。
In the production method of the present invention, the linear velocity (m / s) at which the a component moves through the n portion in the reactor, and the linear velocity (m / s) at which the b component moves through the n portion in the reactor. The ratio is not particularly limited as long as the above-described equivalent ratio can be satisfied.
In the production method of the present invention, a metal soap slurry obtained by reacting the component a and the component b using a coaxial double cylinder reactor is obtained by using a general filter device and a metal soap cake and a filtrate. Can be separated. In order to reduce the amount of impurities such as water-soluble inorganic salts, the metal soap cake is sufficiently washed with warm water and then dried to obtain metal soap fine particles. In addition, when it is difficult to remove impurities such as water-soluble inorganic salt by filtration water washing, a method of removing impurities from a metal soap slurry or metal soap cake using a permeable membrane or the like may be used.
The metal soap slurry or metal soap cake obtained by this operation can be dried to obtain metal soap powder. Moreover, when the aggregation of the metal soap after drying is high, it can be crushed to a desired particle size using a normal pulverizer. Drying may be performed at normal pressure, but in order to dry more efficiently, drying under reduced pressure, vacuum drying, or freeze drying may be performed. Further, after the metal soap cake is washed with a low boiling point solvent or the like, the obtained metal soap cake may be dried. As the low boiling point solvent used in this case, those which can efficiently remove water from a metal soap are preferable, and examples thereof include methanol, ethanol, acetone, methylene chloride and the like.

本発明の製造方法は、平均粒子径が3〜100μmである金属石鹸を安定に連続製造できるほか、特に平均粒子径が0.01μm〜3μmの微細な金属石鹸をも効率的に連続製造できる。0.01μm〜3μmの微細な金属石鹸は表面積が大きいため反応装置内への付着性が高く、かつ凝集性が特に高い。そのため反応装置内へ付着した金属石鹸粒子の周辺に、粒子が更に付着蓄積しやすい。そのため、既知の製造方法を用いて0.01μm〜3μmの微細な金属石鹸を製造した場合、長時間にわたる安定製造が困難な場合がある。このような微細な金属石鹸を製造するにあたり本発明の製造方法は有効であり、平均粒子径が0.01μm〜3μmの微細な金属石鹸を連続製造する際に、反応装置内に金属石鹸が凝集し付着しにくい。   The production method of the present invention can stably and continuously produce a metal soap having an average particle diameter of 3 to 100 μm, and can also efficiently and continuously produce a fine metal soap having an average particle diameter of 0.01 to 3 μm. Since the fine metal soap of 0.01 μm to 3 μm has a large surface area, the adhesion to the reaction apparatus is high and the cohesion is particularly high. Therefore, the particles are more likely to adhere and accumulate around the metal soap particles adhering to the reactor. Therefore, when a fine metal soap of 0.01 μm to 3 μm is manufactured using a known manufacturing method, stable manufacturing over a long time may be difficult. In producing such a fine metal soap, the production method of the present invention is effective. When continuously producing a fine metal soap having an average particle size of 0.01 μm to 3 μm, the metal soap aggregates in the reactor. It is hard to adhere.

0.01μm〜3μmの微細な金属石鹸を製造する場合、a成分とb成分は、生成する金属石鹸の結晶転移開始温度以下で反応することが必要である。実際の反応時の温度は、得られる金属石鹸の脂肪酸鎖および金属の種類により異なるが、例えばカルシウムステアレートの微細粒子を製造する場合、94℃以下の温度で製造することが好ましい。94℃を超える温度で反応を行うと、金属石鹸の微細粒子同士の凝集が起こり、平均粒子径が大きくなることがある。また、平均粒子径が0.01μm〜1μmである微細な金属石鹸粒子を得るためには、70℃以下のできる限り低い温度条件にて反応から乾燥までを行うことが好ましい。   When manufacturing a fine metal soap of 0.01 μm to 3 μm, it is necessary that the a component and the b component react at a temperature lower than the crystal transition start temperature of the metal soap to be produced. The actual reaction temperature varies depending on the fatty acid chain and metal type of the resulting metal soap. For example, when producing calcium stearate fine particles, it is preferably produced at a temperature of 94 ° C. or lower. When the reaction is carried out at a temperature exceeding 94 ° C., the fine particles of the metal soap may aggregate and the average particle size may increase. Moreover, in order to obtain fine metal soap particles having an average particle diameter of 0.01 μm to 1 μm, it is preferable to carry out from reaction to drying under the lowest possible temperature condition of 70 ° C. or less.

以下、実施例および比較例により本発明を更に詳しく説明するが、本発明はこれらの実施例などにより何ら限定されるものではない。
実施例1
a成分として70℃に調整したステアリン酸カリウムの0.5重量%水溶液、b成分として70℃に調整した硫酸亜鉛の0.12重量%水溶液をそれぞれ用意した。また、外円筒の内径(R1)が2mm、内円筒の内径(R2)が0.3mm、および内円筒の外径が1.6mmであり(R1/R2が6.7であり)、外円筒のnの部分の長さが80mmである図1の反応装置を用意した。次に、定容ポンプを用いて、供給口3からb成分、供給口4からからa成分をそれぞれ供給した。反応装置に供給する際のa成分とb成分の供給速度は10ml/minとした。このような条件で各液を供給すると、b成分中の硫酸亜鉛に対する、a成分中のステアリン酸カリウムの当量比が1.0、またnの部分において、4から供給されたa成分と3から供給されたb成分の線速度比は16:1であった。
この条件で30分間製造を続けたところ、反応装置の内壁に金属石鹸は付着せず、a成分とb成分は詰まることなく安定に反応装置に供給できた。また、平均粒子径が0.27μmのステアリン酸亜鉛粒子が得られた。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited at all by these Examples.
Example 1
A 0.5 wt% aqueous solution of potassium stearate adjusted to 70 ° C. was prepared as component a, and a 0.12 wt% aqueous solution of zinc sulfate adjusted to 70 ° C. was prepared as component b. The inner diameter (R1) of the outer cylinder is 2 mm, the inner diameter (R2) of the inner cylinder is 0.3 mm, and the outer diameter of the inner cylinder is 1.6 mm (R1 / R2 is 6.7). The reactor of FIG. 1 in which the length of the n portion of 80 mm was 80 mm was prepared. Next, the component b was supplied from the supply port 3 and the component a was supplied from the supply port 4 using a constant volume pump. The supply rate of component a and component b when supplying to the reactor was 10 ml / min. When each liquid is supplied under such conditions, the equivalent ratio of potassium stearate in component a to zinc sulfate in component b is 1.0, and in portion n, component a and components 3 supplied from 4 The linear velocity ratio of the supplied b component was 16: 1.
When the production was continued for 30 minutes under these conditions, the metal soap did not adhere to the inner wall of the reactor, and the components a and b could be stably supplied to the reactor without clogging. In addition, zinc stearate particles having an average particle size of 0.27 μm were obtained.

実施例2
実施例1と同じ装置を用い、a成分として75℃に調整したミリスチン酸アンモニウムの1重量%水溶液、b成分として75℃に調整した塩化カルシウムの0.024重量%の水溶液をそれぞれ用意し、定容ポンプを用いて、供給口3からb成分、供給口4からからa成分をそれぞれ供給した。反応装置に供給する際のa成分の4への供給速度は1ml/minとし、b成分の3への供給速度は10ml/minとした。このような条件にて各液を供給すると、b成分中の塩化カルシウムに対する、a成分中のミリスチン酸アンモニウムの当量比が0.99〜1.00、またnの部分において、4から供給されたa成分と3から供給されたb成分の線速度比は5:3であった。
この条件で30分間製造を続けたところ、反応装置の内壁に金属石鹸が付着せず、a成分とb成分は詰まることなく安定に反応装置に供給できた。また、平均流子径が0.5μmのミリスチン酸カルシウム粒子が得られた。
Example 2
Using the same apparatus as in Example 1, a 1% by weight aqueous solution of ammonium myristate adjusted to 75 ° C. was prepared as component a, and a 0.024% by weight aqueous solution of calcium chloride adjusted to 75 ° C. was prepared as component b. The component b was supplied from the supply port 3 and the component a was supplied from the supply port 4 using a capacity pump. The supply rate of component a to 4 when supplied to the reactor was 1 ml / min, and the supply rate of component b to 3 was 10 ml / min. When each solution was supplied under such conditions, the equivalent ratio of ammonium myristate in component a to calcium chloride in component b was from 0.99 to 1.00, and was supplied from 4 in the portion n. The linear velocity ratio between the a component and the b component supplied from 3 was 5: 3.
When the production was continued for 30 minutes under these conditions, metal soap did not adhere to the inner wall of the reactor, and the components a and b could be stably supplied to the reactor without clogging. Moreover, calcium myristate particles having an average flow diameter of 0.5 μm were obtained.

実施例3
実施例1と同じ濃度と成分を含有する、60℃に液温を調整したa成分とb成分を用意した。一方、実施例1と同じ外円筒と内円筒の内径、内円筒の外径、およびnの部分長を有し、かつ内円筒におけるb成分の吐出口を鋭角に加工し、内円筒の先端における外径を0.7mmとした装置を用意した。そして定容ポンプにて供給口3からa成分、供給口4からからb成分をそれぞれ供給した。反応装置に供給する際のa成分とb成分の供給速度は10ml/minとした。このような条件にて各液を供給すると、b成分中の硫酸亜鉛に対する、a成分中のステアリン酸カリウムの当量比が1.0、またnの部分において、3から供給されたa成分と4から供給されたb成分の線速度比は1:31であった。
この条件で30分間製造を続けたところ、反応装置の内壁に金属石鹸が付着せず、a成分とb成分を詰まることなく安定に反応装置に供給することができた。また、平均粒子径が0.09μmのステアリン酸亜鉛粒子が得られた。
Example 3
The a component and b component which adjusted the liquid temperature to 60 degreeC containing the same density | concentration and component as Example 1 were prepared. On the other hand, it has the same inner cylinder, inner cylinder outer diameter, inner cylinder outer diameter, and n partial length as in Example 1, and the b component discharge port in the inner cylinder is processed into an acute angle, and at the tip of the inner cylinder. A device having an outer diameter of 0.7 mm was prepared. And a component and the b component were supplied from the supply port 3 and the b component from the supply port 4 with the constant volume pump, respectively. The supply rate of component a and component b when supplying to the reactor was 10 ml / min. When each solution is supplied under such conditions, the equivalent ratio of potassium stearate in component a to zinc sulfate in component b is 1.0, and in the portion n, component a and component 4 supplied from 3 The linear velocity ratio of the b component supplied from No. 1 was 1:31.
When the production was continued for 30 minutes under these conditions, metal soap did not adhere to the inner wall of the reactor, and the components a and b could be stably supplied to the reactor without clogging. Further, zinc stearate particles having an average particle diameter of 0.09 μm were obtained.

比較例1
実施例1と同じ条件で調整したa成分、b成分を用意した。そして、a成分とb成分の2つの液を同時に吸入し吐出できるラインホモミクサーを用い、a成分とb成分を同時にミキサーから吸入した。反応装置に吸入する際のa成分の供給速度は10ml/min、b成分の供給速度は25ml/min、このときのb成分中の硫酸亜鉛に対する、a成分中のステアリン酸カリウムの当量比は0.4であった。そしてa成分とb成分とを反応して得られた金属石鹸スラリーをラインホモミクサーから連続的に吐出した。このような製造方法を30分間続けたところ、ラインホモミクサーの内部とスラリーの吐出口付近にステアリン酸亜鉛が多量に付着し、a成分とb成分を安定して反応装置に供給できなかった。その結果、ステアリン酸亜鉛粒子を連続して製造することができなかった。
Comparative Example 1
The a component and b component adjusted under the same conditions as in Example 1 were prepared. Then, using a line homomixer capable of simultaneously sucking and discharging the two liquids of component a and component b, the components a and b were simultaneously sucked from the mixer. The supply rate of component a during inhalation into the reactor is 10 ml / min, the supply rate of component b is 25 ml / min, and the equivalent ratio of potassium stearate in component a to zinc sulfate in component b at this time is 0. .4. And the metal soap slurry obtained by reacting a component and b component was discharged continuously from the line homomixer. When such a production method was continued for 30 minutes, a large amount of zinc stearate adhered to the inside of the line homomixer and the vicinity of the discharge port of the slurry, and the components a and b could not be stably supplied to the reactor. As a result, the zinc stearate particles could not be produced continuously.

本発明に用いる共軸筒型反応装置の概略図Schematic diagram of coaxial cylindrical reactor used in the present invention

符号の説明Explanation of symbols

1:内筒、2:外筒、3:原料水溶液a成分またはb成分の供給口、4:原料水溶液a成分またはb成分の供給口、5:a成分およびb成分が反応した金属石鹸スラリーの吐出口、R1:外筒の内径、R2:内筒の内径、n:外筒において内筒が挿入されていない部分 1: Inner cylinder, 2: Outer cylinder, 3: Supply port of raw material aqueous solution a or b component, 4: Supply port of raw material aqueous solution a or b component, 5: Metal soap slurry in which a component and b component reacted Discharge port, R1: inner diameter of the outer cylinder, R2: inner diameter of the inner cylinder, n: portion of the outer cylinder where the inner cylinder is not inserted

Claims (1)

脂肪酸のアルカリ金属塩またはアンモニウム塩の水溶液と、無機金属塩の水溶液とを反応させて金属石鹸を製造する製造方法であって、外筒の中に内筒を配置した内外筒間に環状空間を有する共軸筒型反応装置を用いて、a)炭素数4〜30の脂肪酸のアルカリ金属塩またはアンモニウム塩を0.001〜20重量%含有する水溶液と、b)無機金属塩を0.001〜20重量%含有する水溶液とを、b成分中の無機金属塩に対する、a成分中の脂肪酸塩の当量比(a/b)が0.5〜1.1となるよう、異なる供給口からそれぞれ供給する金属石鹸の製造方法。     A method for producing a metal soap by reacting an aqueous solution of an alkali metal salt or an ammonium salt of a fatty acid with an aqueous solution of an inorganic metal salt, wherein an annular space is formed between the inner and outer cylinders arranged in the outer cylinder. A) an aqueous solution containing 0.001 to 20% by weight of an alkali metal salt or an ammonium salt of a fatty acid having 4 to 30 carbon atoms, and b) 0.001 to 0.001 of an inorganic metal salt. An aqueous solution containing 20% by weight is supplied from different supply ports so that the equivalent ratio (a / b) of the fatty acid salt in the component a to the inorganic metal salt in the component b is 0.5 to 1.1. To make metal soap.
JP2004023277A 2004-01-30 2004-01-30 Metal soap manufacturing method Expired - Lifetime JP4466091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004023277A JP4466091B2 (en) 2004-01-30 2004-01-30 Metal soap manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004023277A JP4466091B2 (en) 2004-01-30 2004-01-30 Metal soap manufacturing method

Publications (2)

Publication Number Publication Date
JP2005213217A JP2005213217A (en) 2005-08-11
JP4466091B2 true JP4466091B2 (en) 2010-05-26

Family

ID=34906363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004023277A Expired - Lifetime JP4466091B2 (en) 2004-01-30 2004-01-30 Metal soap manufacturing method

Country Status (1)

Country Link
JP (1) JP4466091B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1911357B1 (en) * 2005-07-29 2017-06-21 Nof Corporation Metal soap for addition to food and process for production thereof
JP4929818B2 (en) * 2006-04-26 2012-05-09 堺化学工業株式会社 Zinc 12-hydroxystearate having a novel structure and method for producing the same
KR101040470B1 (en) * 2011-03-29 2011-06-09 정재홍 Soap-scrub process
JP6098337B2 (en) * 2013-05-01 2017-03-22 日油株式会社 Anti-blocking agent for nitrogen fertilizer and nitrogen fertilizer composition
JP6729546B2 (en) 2015-02-17 2020-07-22 日油株式会社 Metal soap and method for producing the same
JP7419033B2 (en) * 2018-12-19 2024-01-22 花王株式会社 Method for producing fatty acid neutralized product

Also Published As

Publication number Publication date
JP2005213217A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
Fievet et al. Controlled nucleation and growth of micrometre-size copper particles prepared by the polyol process
RU2678585C2 (en) Method of continuous preparation of methionine crystals of high bulk density
WO2016023461A1 (en) Method for preparation of a metal powder
CN106029270B (en) The manufacture method of nickel powder
CA2939493C (en) Method for producing nickel powder
DE1592098B2 (en) PROCESS FOR THE PRODUCTION OF SPHERICAL ALUMINUM OXIDE PARTICLES
JP4466091B2 (en) Metal soap manufacturing method
CN112805242A (en) Lithium sulfate preparation device and preparation method thereof
JP2668941B2 (en) Continuous production method of metal soap
JPH02145422A (en) Production of fine copper oxide powder
CN210132055U (en) High-speed water atomizer for producing superfine powder
CN109851536B (en) Method for preparing florfenicol
CN106315685A (en) Preparation method and facility of nano manganese-zinc ferrite material
JPH10182164A (en) Production of metal hydroxide particle
JP2017155319A5 (en)
JP2017155319A (en) Manufacturing method of nickel powder
EP2238120B1 (en) Improved process for making triphenylboron-pyridine compound
JP2009541347A (en) Method for producing solid triphenylboron-pyridine
RU2747674C1 (en) Method for producing copper sulfate
JPS6217002B2 (en)
JPH0725603A (en) Purification of silicon nitride powder
WO2024095230A1 (en) Materials, methods and techniques for converting rare earth double sulfates into rare earth carbonates
JP2020132707A (en) Organic pigment production method
KR20230128533A (en) SYSTEMSAND METHODS FOR DIRECT OXIDE PRODUCTION
CN116475151A (en) Coarse salt washing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4466091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term