JP4465509B2 - Epicenter distance estimation apparatus, epicenter distance estimation system, and epicenter distance estimation method - Google Patents

Epicenter distance estimation apparatus, epicenter distance estimation system, and epicenter distance estimation method Download PDF

Info

Publication number
JP4465509B2
JP4465509B2 JP2007126417A JP2007126417A JP4465509B2 JP 4465509 B2 JP4465509 B2 JP 4465509B2 JP 2007126417 A JP2007126417 A JP 2007126417A JP 2007126417 A JP2007126417 A JP 2007126417A JP 4465509 B2 JP4465509 B2 JP 4465509B2
Authority
JP
Japan
Prior art keywords
epicenter distance
incident angle
epicenter
time series
series data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007126417A
Other languages
Japanese (ja)
Other versions
JP2008281462A (en
Inventor
洋光 中村
卓 ▲功▼刀
真 青井
Original Assignee
独立行政法人防災科学技術研究所
真 青井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人防災科学技術研究所, 真 青井 filed Critical 独立行政法人防災科学技術研究所
Priority to JP2007126417A priority Critical patent/JP4465509B2/en
Publication of JP2008281462A publication Critical patent/JP2008281462A/en
Application granted granted Critical
Publication of JP4465509B2 publication Critical patent/JP4465509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Description

本発明は、単独観測点で得た地震動のP波初動のデータから、震央距離(観測点から震央までの距離)を推定する震央距離推定装置、震央距離推定システム及び震央距離推定方法に関する。   The present invention relates to an epicenter distance estimation apparatus, epicenter distance estimation system, and epicenter distance estimation method for estimating epicenter distance (distance from an observation point to an epicenter) from P wave initial motion data obtained at a single observation point.

従来、地震計から得られる地震波初動部分の波形形状の特徴に注目し、該波形形状を関数でフィッティングすることで定量化し、得られたパラメータから、震央距離を推定する震央距離推定方法であって、地震計から得られる地震波初動部分のディジタル波形データ(時系列データ)をメモリに記憶し、該時系列データのオフセットを除去し、該時系列データの絶対値をV(t)となし〔ここで、tは時間(秒)〕、地震を検知した時刻を時間原点(t=0)として、該時間原点から、数秒間のデータに関数y=Bt・e-At を当てはめ、V(t)=Bt exp(−At)とし(ここで、Bは地震波形の初動振幅の時間変化に関するパラメータ、Aは初動部分の最大振幅に関係するパラメータ)、上記式の両辺の常用対数をとって、log〔V(t)/t〕=logB−A・loge・tを得て、これにより、前記パラメータA,Bを線形化し、該パラメータA,Bを通常の最小二乗法を用いて算出し、前記パラメータBから震央距離を求めることを特徴とする震央距離推定方法があった(特許文献1)。
特許第3695579号公報 横田崇,自動検測手法の研究, 気象研究所技術報告, No16,P56-P100, 1985
Conventionally, an epicenter distance estimation method for estimating the epicenter distance from parameters obtained by focusing on the characteristics of the waveform shape of the seismic wave initial motion part obtained from a seismometer, quantifying the waveform shape by function fitting, The digital waveform data (time series data) of the initial seismic wave obtained from the seismometer is stored in the memory, the offset of the time series data is removed, and the absolute value of the time series data is V (t) [here T is time (seconds)], the time when the earthquake was detected is the time origin (t = 0), and the function y = Bt · e- At is applied to the data for a few seconds from the time origin, V (t) = Bt exp (-At) (where B is a parameter related to the temporal change of the initial motion amplitude of the seismic waveform, A is a parameter related to the maximum amplitude of the initial motion portion), and logarithm of both sides of the above equation is taken as log [ (T) / t] = logB−A · log · t, thereby linearizing the parameters A and B, calculating the parameters A and B using a normal least squares method, and the parameter B There was an epicenter distance estimation method characterized in that the epicenter distance was obtained from (Patent Document 1).
Japanese Patent No. 3695579 Takashi Yokota, Research on automatic inspection method, Technical Report of Meteorological Research Institute, No16, P56-P100, 1985

上記特許文献1に記載された従来技術では、係数Bのみから震央距離を推定している。しかしながら、係数Bは、地震動が地中を伝播してくる過程で減衰や散乱の影響を受けて観測点に到達するので、震央距離の影響だけではなく、震源深さも考慮した震源距離(観測点から震源までの距離)の方がより相関性がある。震央距離と震源距離は、図9に示すように、入射角Θincを無視すると、震源距離は等しいが、震央距離が異なる場合がある。したがって、ある程度深い地震のデータで震央距離を推定する際に、震央距離を大きく推定する場合があり、更に震央に近い観測点ほどその傾向が強い。早期地震検知の観点から、最も早く地震諸元の推定が行える震源に近い観測点ほど推定誤差が大きくなる。   In the prior art described in Patent Document 1, the epicenter distance is estimated only from the coefficient B. However, since the coefficient B reaches the observation point under the influence of attenuation and scattering in the process of seismic motion propagating through the ground, the source distance (observation point) considering not only the epicenter distance but also the epicenter depth. Is more correlated). As shown in FIG. 9, the epicenter distance and the epicenter distance are the same, but the epicenter distance may be different if the incident angle Θinc is ignored. Therefore, when the epicenter distance is estimated from earthquake data that is deep to some extent, the epicenter distance may be estimated to be large, and the observation points closer to the epicenter are more likely. From the viewpoint of early earthquake detection, the estimation error becomes larger as the observation point is closer to the epicenter where the earthquake specifications can be estimated earliest.

本発明は、このような早期の地震諸元推定において重要な震源に近い観測点における震央距離の推定精度を向上させる震央距離推定装置、震央距離推定システム及び震央距離推定方法を提供することを目的とする。   An object of the present invention is to provide an epicenter distance estimation device, an epicenter distance estimation system, and an epicenter distance estimation method that improve the estimation accuracy of epicenter distances at observation points close to an important epicenter in such early earthquake specification estimation. And

上記課題を解決するために、本発明の震央距離推定装置は、地震波を検知する検知手段と、前記地震波の初動部分の時系列データを記憶する記憶手段と、前記記憶手段の時系列データの絶対値をとり、エンベロープを計算し、地震を検知した時刻を時間原点(t=0)として、
y(t)=Bt・exp(−At) ・・・(1)
をエンベロープにフィッティングし、係数Bを求めると共に、地震波の初動部分の時系列データから入射角θincを求め、前記係数Bと前記入射角θincとを式
logΔ=C1・logB+C2・f(θinc)+C3 ・・・(2)
ただし、C1,C2及びC3:統計的に求める定数、f(θinc):入射角θincの関数、に適用し、震央距離を求める処理部と、を備えたことを特徴とする。
In order to solve the above problems, the epicenter distance estimation apparatus of the present invention includes a detecting means for detecting a seismic wave, a storing means for storing time series data of an initial motion part of the seismic wave, and an absolute value of the time series data of the storing means. Take the value, calculate the envelope, the time when the earthquake was detected as the time origin (t = 0),
y (t) = Bt · exp (−At) (1)
To the envelope, the coefficient B is obtained, the incident angle θ inc is obtained from the time series data of the initial motion part of the seismic wave, and the coefficient B and the incident angle θ inc are expressed by the equation logΔ = C 1 · log B + C 2 · f ( θ inc ) + C 3 (2)
However, the present invention is characterized by comprising a processing unit that applies to C 1 , C 2, and C 3 : a statistically determined constant, f (θ inc ): a function of incident angle θ inc , and calculates an epicenter distance. .

また、本発明の震央距離推定システムは、地震波の情報を送受信するセンター通信部と、前記地震波の初動部分の時系列データを記憶する記憶手段と、前記記憶手段の時系列データの絶対値をとり、エンベロープを計算し、地震を検知した時刻を時間原点(t=0)として、
y(t)=Bt・exp(−At) ・・・(1)
をエンベロープにフィッティングし、係数Bを求めると共に、地震波の初動部分の時系列データから入射角θincを求め、前記係数Bと前記入射角θincとを式
logΔ=C1・logB+C2・f(θinc)+C3 ・・・(2)
ただし、C1,C2及びC3:統計的に求める定数、f(θinc):入射角θincの関数、に適用し、震央距離を求めるセンター処理部と、を有するデータセンターと、前記データセンターと地震情報を送受信する地震計と、を備え、前記データセンターは、前記センター通信部により前記震央距離を前記地震計に送信することを特徴とする。
The epicenter distance estimation system of the present invention includes a center communication unit that transmits and receives seismic wave information, a storage unit that stores time series data of an initial motion portion of the seismic wave, and an absolute value of the time series data of the storage unit. , The envelope is calculated, the time when the earthquake is detected is the time origin (t = 0),
y (t) = Bt · exp (−At) (1)
To the envelope, the coefficient B is obtained, the incident angle θ inc is obtained from the time series data of the initial motion part of the seismic wave, and the coefficient B and the incident angle θ inc are expressed by the equation logΔ = C 1 · log B + C 2 · f ( θ inc ) + C 3 (2)
Where C 1 , C 2, and C 3 are statistically determined constants, and f (θ inc ) is a function of incident angle θ inc , and a data center having a center processing unit that determines an epicenter distance; A seismometer that transmits and receives earthquake information to and from the data center, and the data center transmits the epicenter distance to the seismometer by the center communication unit.

さらに、本発明の震央距離推定方法は、地震波の初動部分の時系列データの絶対値をとり、エンベロープを計算し、地震を検知した時刻を時間原点(t=0)として、
y(t)=Bt・exp(−At) ・・・(1)
をエンベロープにフィッティングし、係数Bを求めると共に、地震波の初動部分の時系列データから入射角θincを求め、前記係数Bと前記入射角θincとを式
logΔ=C1・logB+C2・f(θinc)+C3 ・・・(2)
ただし、C1,C2及びC3:統計的に求める定数、f(θinc):入射角θincの関数、に適用し、震央距離を求めることを特徴とする。
Furthermore, the epicenter distance estimation method of the present invention takes the absolute value of the time series data of the initial motion part of the seismic wave, calculates the envelope, and sets the time when the earthquake is detected as the time origin (t = 0),
y (t) = Bt · exp (−At) (1)
To the envelope, the coefficient B is obtained, the incident angle θ inc is obtained from the time series data of the initial motion part of the seismic wave, and the coefficient B and the incident angle θ inc are expressed by the equation logΔ = C 1 · log B + C 2 · f ( θ inc ) + C 3 (2)
However, C 1 , C 2 and C 3 are statistically determined constants, and f (θ inc ) is a function of incident angle θ inc to determine the epicenter distance.

このような震央距離推定装置、震央距離推定システム及び震央距離推定方法により、震央距離を入射角により補正して推定したので、推定精度が向上し、特に、早期の地震諸元推定において重要な震源に近い観測点における震央距離の推定精度を向上することができる。   By using the epicenter distance estimation device, epicenter distance estimation system, and epicenter distance estimation method, the epicenter distance was estimated by correcting the incident angle. It is possible to improve the accuracy of epicenter distance estimation at observation points close to.

本発明の実施の形態を図により説明する。図1は、本発明の第1実施形態の地震計の主要構成を示す図である。図中、1は地震計、2は通信部、3は計測部、31はセンサ、32はA/D変換器、4は処理部、41は処理装置、42は記憶手段としてのリングバッファ、43は記憶手段としてのデータ記録装置、5は時計部、6は電源部、7はGPSアンテナである。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a main configuration of the seismometer according to the first embodiment of the present invention. In the figure, 1 is a seismometer, 2 is a communication unit, 3 is a measurement unit, 31 is a sensor, 32 is an A / D converter, 4 is a processing unit, 41 is a processing device, 42 is a ring buffer as storage means, 43 Is a data recording device as storage means, 5 is a clock unit, 6 is a power supply unit, and 7 is a GPS antenna.

地震計1は、通信部2、計測部3、処理部4、時計部5及び電源部6等を有する。通信部2は、気象庁からの緊急地震速報又はそれを加工した情報等(以下、緊急地震速報等という)を受信し、処理部4に出力すると共に、地震データを外部に伝送するものである。計測部3は、センサ31及びA/D変換器32等を有し、センサ31で計測した加速度等をA/D変換器32で処理した信号を、処理部4に出力するものである。処理部4は、処理装置41、リングバッファ42及びデータ記録装置43等を有し、通信部2及び計測部3からの入力信号を処理することで、地震データを記録するものである。処理装置41は、通信部2又は計測部3から入力された情報から観測点から震央までの距離である震央距離を推定するものであり、リングバッファ42は、ある一定時間のみの一時記憶を連続して繰り返し実行するものであり、データ記録装置43は、リングバッファ42上のデータのうち地震と推定される震動データを記録する装置である。時計部5は、GPSアンテナ7等から正確な時刻を取得するものであり、電源部6は、地震計1の電源を取得するものである。   The seismometer 1 includes a communication unit 2, a measurement unit 3, a processing unit 4, a clock unit 5, a power supply unit 6, and the like. The communication unit 2 receives an emergency earthquake bulletin from the Japan Meteorological Agency or information obtained by processing the earthquake (hereinafter referred to as an emergency earthquake bulletin) and outputs it to the processing unit 4 and transmits the earthquake data to the outside. The measurement unit 3 includes a sensor 31, an A / D converter 32, and the like, and outputs a signal obtained by processing the acceleration measured by the sensor 31 by the A / D converter 32 to the processing unit 4. The processing unit 4 includes a processing device 41, a ring buffer 42, a data recording device 43, and the like, and records earthquake data by processing input signals from the communication unit 2 and the measurement unit 3. The processing device 41 estimates the epicenter distance, which is the distance from the observation point to the epicenter, from the information input from the communication unit 2 or the measurement unit 3, and the ring buffer 42 continuously stores temporary storage only for a certain period of time. The data recording device 43 is a device for recording the vibration data estimated as an earthquake out of the data on the ring buffer 42. The clock unit 5 acquires accurate time from the GPS antenna 7 or the like, and the power source unit 6 acquires the power source of the seismometer 1.

なお、図1に示す実施形態では、通信部2、計測部3及び処理部4等を一体型とした地震計を示したが、図1に示す実施形態の変形例として図2に示すように、通信部2又は計測部3を独立させ、通信装置20又は計測装置30としてもよい。   In the embodiment shown in FIG. 1, the seismometer in which the communication unit 2, the measurement unit 3, the processing unit 4, and the like are integrated is shown, but as a modification of the embodiment shown in FIG. 1, as shown in FIG. 2. The communication unit 2 or the measurement unit 3 may be made independent and may be used as the communication device 20 or the measurement device 30.

このような構成の地震計1の動作について説明する。図3は、地震計1の震央距離推定方法のフローを示す図である。まず、ST1で、地震計1は震動のディジタル波形を取得する(ST1)。次に、ST2で、ステップ1において取得したデータからオフセットを除去する(ST2)。   The operation of the seismometer 1 having such a configuration will be described. FIG. 3 is a diagram illustrating a flow of the epicenter distance estimation method of the seismometer 1. First, in ST1, the seismometer 1 acquires a digital waveform of the vibration (ST1). Next, in ST2, the offset is removed from the data acquired in step 1 (ST2).

続いて、ST3−1で、エンベロープ作成用のディジタルフィルタ処理を実行する(ST3−1)。本実施形態では、高周波数帯を通過させるようなバンドパス(あるいはハイパス)フィルタである10−20Hzを通過させるようなFIRフィルタを適用する。   Subsequently, in ST3-1, a digital filter process for creating an envelope is executed (ST3-1). In the present embodiment, an FIR filter that passes 10-20 Hz, which is a band pass (or high pass) filter that passes a high frequency band, is applied.

次に、ST4−1で、データの絶対値をとり、エンベロープを計算する(ST4−1)。続いて、ST5−1で、地震を検知した時刻を時間原点(t=0)として、式(1)をエンベロープにフィッティングし、係数A,Bを求める(ST5−1)。   Next, in ST4-1, the absolute value of the data is taken and the envelope is calculated (ST4-1). Subsequently, in ST5-1, the time when the earthquake is detected is set as the time origin (t = 0), and the equation (1) is fitted to the envelope to obtain the coefficients A and B (ST5-1).

y(t)=Bt・exp(−At) ・・・(1)
これらステップ1からステップ5までは、特許文献1に記載されたものを参考にする。
y (t) = Bt · exp (−At) (1)
For these steps 1 to 5, reference is made to what is described in Patent Document 1.

また、係数を求めるステップ3−1からステップ5に並行して、入射角θを推定するステップ3−2からステップ4−2を実行する。   In parallel with steps 3-1 to 5 for obtaining the coefficients, steps 3-2 to 4-2 for estimating the incident angle θ are executed.

ステップ3−2で、入射角演算用のディジタルフィルタ処理を実行する(ST3−2)。本実施形態では、低周波数帯を通過させるようなバンドパス(あるいはローパス)フィルタである1−2Hzを通過させるようなFIRフィルタを適用する。   In step 3-2, an incident angle calculation digital filter process is executed (ST3-2). In this embodiment, an FIR filter that passes 1-2 Hz, which is a bandpass (or lowpass) filter that passes a low frequency band, is applied.

次に、ST4−2で、入射角θincの推定を実行する(ST4−2)。本実施形態では、P波初動のデータから地震動の入射角θincを推定する方法として、図4に示すように、P波検知から1秒程度の地震動の粒子軌跡に楕円体を当てはめ、最大主軸の方向を求める主成分分析により、観測点から見た震央の方向と共に入射角を求める非特許文献1の方法を参考にする。 Next, in ST4-2, the incidence angle θ inc is estimated (ST4-2). In this embodiment, as a method for estimating the incident angle θ inc of the earthquake motion from the P wave initial motion data, as shown in FIG. 4, an ellipsoid is applied to the particle trajectory of the earthquake motion of about 1 second from the P wave detection, and the maximum principal axis The method of Non-Patent Document 1 for obtaining the incident angle together with the direction of the epicenter as seen from the observation point by the principal component analysis for obtaining the direction is referred to.

続いて、ステップ6で、ステップ5において求めた係数Bとステップ4−2において求めた入射角θincとから震央距離を求める(ST6)。本実施形態では、震央距離の推定式として、式(2)を適用する。 Subsequently, in step 6, the epicenter distance is obtained from the coefficient B obtained in step 5 and the incident angle θ inc obtained in step 4-2 (ST6). In the present embodiment, Expression (2) is applied as the epicenter distance estimation expression.

logΔ=C1・logB+C2・f(θinc)+C3 ・・・(2)
ただし、C1,C2及びC3は、統計的に求める定数である。また、f(θinc)は、入射角θincの関数である。
log Δ = C 1 · log B + C 2 · f (θ inc ) + C 3 (2)
However, C 1 , C 2 and C 3 are statistically determined constants. F (θ inc ) is a function of the incident angle θ inc .

次に、本実施形態の式(2)で推定した震央距離と、従来の特許文献1の方法である式(3)で推定した震央距離の精度の比較をする。   Next, the accuracy of the epicenter distance estimated by equation (2) of this embodiment and the epicenter distance estimated by equation (3), which is the method of the conventional Patent Document 1, will be compared.

logΔ=A1・logB+A2 ・・・(3)
比較の対象となるデータは、図5に示すもので、本出願人である防災科学技術研究所の基盤強震観測網の観測点MYGH03の地中で得た実際の地震によるものである。図5に示すように、横軸を震源距離、縦軸を震央距離とし、震源距離のうち約100kmの辺りにおける震央距離にばらつきがあり、実際の地震において、震源距離が等しく震央距離が異なる場合の多いことがわかる。
log Δ = A 1 · log B + A 2 (3)
Data to be compared is shown in FIG. 5 and is based on an actual earthquake obtained in the ground of the observation point MYGH03 of the base strong motion observation network of the National Research Institute for Earth Science and Disaster Prevention. As shown in Fig. 5, when the horizontal axis is the epicenter distance and the vertical axis is the epicenter distance, the epicenter distance varies around 100 km of the epicenter distance. You can see that there are many.

図6及び図7は、本実施形態の方法で推定した震央距離と、従来の特許文献1の方法で推定した震央距離の精度の比較を示す図である。図6が本実施形態の方法で推定した震央距離の精度、図7が従来の特許文献1の方法で推定した震央距離の精度である。なお、ここでは、本実施形態の式(2)における入射角θincの関数f(θinc)として、f(θinc)=sin(θinc)を適用した。 6 and 7 are diagrams showing a comparison of the accuracy of the epicenter distance estimated by the method of the present embodiment and the epicenter distance estimated by the conventional method of Patent Document 1. FIG. FIG. 6 shows the accuracy of the epicenter distance estimated by the method of the present embodiment, and FIG. 7 shows the accuracy of the epicenter distance estimated by the conventional method of Patent Document 1. Here, f (θ inc ) = sin (θ inc ) is applied as the function f (θ inc ) of the incident angle θ inc in the equation (2) of the present embodiment.

推定した震央距離の精度は、log推定Δ−log真Δを求め、この値が0に近いほど精度が良いものとする。   As for the accuracy of the estimated epicenter distance, log estimation Δ-log true Δ is obtained, and the closer this value is to 0, the better the accuracy.

図7よりも図6の方が、0に近い値にグラフが集まっているのがわかる。実際の対数誤差は、図7の従来の特許文献1の方法で推定した震央距離が0.40であるのに対し、図6の本実施形態の方法で推定した震央距離が0.32であり、本実施形態の方法で推定したものの方が、精度良く推定することができる。   It can be seen that graphs are gathered closer to 0 in FIG. 6 than in FIG. The actual logarithmic error is that the epicenter distance estimated by the method of the conventional patent document 1 in FIG. 7 is 0.40, whereas the epicenter distance estimated by the method of the present embodiment in FIG. 6 is 0.32. The one estimated by the method of the present embodiment can be estimated with higher accuracy.

このように、入射角θによる補正項の導入により、震央距離の推定精度が向上し、特に、早期の地震諸元推定において重要な震源に近い観測点における震央距離の推定精度を向上することができる。   In this way, the introduction of the correction term based on the incident angle θ improves the epicenter distance estimation accuracy, and in particular, improves the epicenter distance estimation accuracy at observation points close to the epicenter that is important for early earthquake parameter estimation. it can.

次に、第2実施形態について説明する。図8は、第2実施形態の震央距離推定システムを示す図である。図中、100は震央距離推定システム、101はデータセンター、102はセンター通信部、103はセンター処理部、104はセンター記憶手段としてのとしてのセンターリングバッファ、105はセンター記憶手段としてのセンターデータ記録装置である。地震計1に関しては、第1実施形態と同様のものを用いる。   Next, a second embodiment will be described. FIG. 8 is a diagram illustrating the epicenter distance estimation system of the second embodiment. In the figure, 100 is an epicenter distance estimation system, 101 is a data center, 102 is a center communication unit, 103 is a center processing unit, 104 is a centering buffer as a center storage means, and 105 is a center data record as a center storage means. Device. As for the seismometer 1, the same one as in the first embodiment is used.

本実施形態では、データセンター101では、センター通信部102で緊急地震速報や各地震計等からの地震波の情報を送受信し、センター処理部103のセンターリングバッファ104又はセンターデータ記録装置105が地震波の初動部分の時系列データを記憶する。そして、センター処理部103は、センターリングバッファ104又はセンターデータ記録装置105の時系列データの絶対値をとり、エンベロープを計算し、地震を検知した時刻を時間原点(t=0)として、
y(t)=Bt・exp(−At) ・・・(1)
をエンベロープにフィッティングし、係数Bを求めると共に、地震波の初動部分の時系列データから地震動の粒子軌跡に楕円体を当てはめ、最大主軸の方向を求める主成分分析により、観測点から見た震央の方向と共に入射角θincを求め、前記係数Bと前記入射角θincとを式
logΔ=C1・logB+C2・f(θinc)+C3 ・・・(2)
ただし、C1,C2及びC3:統計的に求める定数、f(θinc):入射角θincの関数に適用し、震央距離を求める。
In the present embodiment, in the data center 101, the center communication unit 102 transmits / receives earthquake early warnings and seismic wave information from each seismometer, and the centering buffer 104 or the center data recording device 105 of the center processing unit 103 The time series data of the initial movement part is stored. Then, the center processing unit 103 takes the absolute value of the time series data of the centering buffer 104 or the center data recording device 105, calculates the envelope, and sets the time when the earthquake is detected as the time origin (t = 0),
y (t) = Bt · exp (−At) (1)
Fitting to the envelope, obtaining the coefficient B, applying an ellipsoid to the particle trajectory of the seismic motion from the time series data of the initial motion part of the seismic wave, and the direction of the epicenter as seen from the observation point by principal component analysis to obtain the direction of the maximum principal axis Then, the incident angle θ inc is obtained, and the coefficient B and the incident angle θ inc are expressed by the following equation: log Δ = C 1 · log B + C 2 · f (θ inc ) + C 3 (2)
However, C 1 , C 2 and C 3 are statistically determined constants, and f (θ inc ) is applied to a function of incident angle θ inc to determine the epicenter distance.

また、震央距離推定システム100は、データセンター101と地震情報を送受信する地震計1を備え、データセンター101は、センター通信部102により震央距離を地震計1等に送信する。   The epicenter distance estimation system 100 includes a seismometer 1 that transmits and receives earthquake information to and from the data center 101, and the data center 101 transmits the epicenter distance to the seismometer 1 and the like by the center communication unit 102.

このように、震央距離推定システム100は、データセンター101において緊急地震速報や各地震計1等からの地震波の情報を本実施形態のように処理し、各地震計1等に送信するので、地震計1等の負担が軽くなり、地震計1等を小型化することができる。   In this way, the epicenter distance estimation system 100 processes the earthquake early warning and the information of the seismic wave from each seismometer 1 in the data center 101 as in this embodiment, and transmits it to each seismometer 1 etc. The burden on the total 1 and the like is reduced, and the seismometer 1 and the like can be downsized.

第1実施形態の地震計を示す図である。It is a figure which shows the seismometer of 1st Embodiment. 図1の実施形態の変形例を示す図である。FIG. 6 is a diagram showing a modification of the embodiment of FIG. 第1実施形態の震央距離の推定のフローチャート図である。It is a flowchart figure of estimation of the epicenter distance of 1st Embodiment. 入射角の推定の概念図である。It is a conceptual diagram of estimation of an incident angle. 本実施形態と従来技術との比較で適用した地震データを示す図である。It is a figure which shows the earthquake data applied by the comparison with this embodiment and a prior art. 本実施形態の方法で推定した震央距離の精度を示す図である。It is a figure which shows the accuracy of the epicenter distance estimated by the method of this embodiment. 従来の特許文献1の方法で推定した震央距離の精度を示す図である。It is a figure which shows the precision of the epicenter distance estimated by the method of the conventional patent document 1. FIG. 第2実施形態の震央距離推定システムを示す図である。It is a figure which shows the epicenter distance estimation system of 2nd Embodiment. 震央距離と震源距離の関係を示す図である。It is a figure which shows the relationship between epicenter distance and epicenter distance.

符号の説明Explanation of symbols

1…地震計、2…通信部、3…計測部、31…センサ、32…A/D変換器、4…処理部、41…処理装置、42…リングバッファ、43…データ記録装置、5…時計部、6…電源部、7…GPSアンテナ、20…通信装置、30…計測装置、100…震動データ記録システム、101…データセンター、102…センター通信部、103…センター処理部   DESCRIPTION OF SYMBOLS 1 ... Seismograph, 2 ... Communication part, 3 ... Measurement part, 31 ... Sensor, 32 ... A / D converter, 4 ... Processing part, 41 ... Processing apparatus, 42 ... Ring buffer, 43 ... Data recording apparatus, 5 ... Clock unit, 6 ... Power supply unit, 7 ... GPS antenna, 20 ... Communication device, 30 ... Measurement device, 100 ... Vibration data recording system, 101 ... Data center, 102 ... Center communication unit, 103 ... Center processing unit

Claims (3)

地震波を検知する検知手段と、
前記地震波の初動部分の時系列データを記憶する記憶手段と、
前記記憶手段の時系列データの絶対値をとり、エンベロープを計算し、地震を検知した時刻を時間原点(t=0)として、
y(t)=Bt・exp(−At) ・・・(1)
をエンベロープにフィッティングし、係数Bを求めると共に、
地震波の初動部分の時系列データから入射角θincを求め、
前記係数Bと前記入射角θincとを式
logΔ=C1・logB+C2・f(θinc)+C3 ・・・(2)
ただし、C1,C2及びC3:統計的に求める定数、
f(θinc):入射角θincの関数
に適用し、震央距離を求める処理部と、を備えたことを特徴とする震央距離推定装置。
Detection means for detecting seismic waves;
Storage means for storing time series data of the initial motion part of the seismic wave;
The absolute value of the time series data in the storage means is taken, the envelope is calculated, and the time when the earthquake is detected is the time origin (t = 0),
y (t) = Bt · exp (−At) (1)
To the envelope to obtain the coefficient B,
Find the incident angle θ inc from the time series data of the initial motion part of the seismic wave,
The coefficient B and the incident angle θ inc are expressed by the following equation: log Δ = C 1 · log B + C 2 · f (θ inc ) + C 3 (2)
Where C 1 , C 2 and C 3 are statistically determined constants,
f (θ inc ): An epicenter distance estimation apparatus comprising: a processing unit that is applied to a function of an incident angle θ inc to obtain an epicenter distance.
地震波の情報を送受信するセンター通信部と、
前記地震波の初動部分の時系列データを記憶する記憶手段と、
前記記憶手段の時系列データの絶対値をとり、エンベロープを計算し、地震を検知した時刻を時間原点(t=0)として、
y(t)=Bt・exp(−At) ・・・(1)
をエンベロープにフィッティングし、係数Bを求めると共に、
地震波の初動部分の時系列データから入射角θincを求め、
前記係数Bと前記入射角θincとを式
logΔ=C1・logB+C2・f(θinc)+C3 ・・・(2)
ただし、C1,C2及びC3:統計的に求める定数、
f(θinc):入射角θincの関数
に適用し、震央距離を求めるセンター処理部と、
を有するデータセンターと、
前記データセンターと地震情報を送受信する地震計と、を備え、
前記データセンターは、前記センター通信部により前記震央距離を前記地震計に送信することを特徴とする震央距離推定システム。
A center communication unit that transmits and receives seismic wave information,
Storage means for storing time series data of the initial motion part of the seismic wave;
The absolute value of the time series data in the storage means is taken, the envelope is calculated, and the time when the earthquake is detected is the time origin (t = 0),
y (t) = Bt · exp (−At) (1)
To the envelope to obtain the coefficient B,
Find the incident angle θ inc from the time series data of the initial motion part of the seismic wave,
The coefficient B and the incident angle θ inc are expressed by the following equation: log Δ = C 1 · log B + C 2 · f (θ inc ) + C 3 (2)
Where C 1 , C 2 and C 3 are statistically determined constants,
f (θ inc ): a center processing unit that applies the function of the incident angle θ inc to obtain the epicenter distance;
A data center having
A seismometer that transmits and receives earthquake information to and from the data center;
The epicenter distance estimation system, wherein the data center transmits the epicenter distance to the seismometer by the center communication unit.
地震波の初動部分の時系列データの絶対値をとり、エンベロープを計算し、地震を検知した時刻を時間原点(t=0)として、
y(t)=Bt・exp(−At) ・・・(1)
をエンベロープにフィッティングし、係数Bを求めると共に、
地震波の初動部分の時系列データから入射角θincを求め、
前記係数Bと前記入射角θincとを式
logΔ=C1・logB+C2・f(θinc)+C3 ・・・(2)
ただし、C1,C2及びC3:統計的に求める定数、
f(θinc):入射角θincの関数
に適用し、震央距離を求めることを特徴とする震央距離推定方法。
Take the absolute value of the time series data of the initial motion part of the seismic wave, calculate the envelope, the time when the earthquake was detected as the time origin (t = 0),
y (t) = Bt · exp (−At) (1)
To the envelope to obtain the coefficient B,
Find the incident angle θ inc from the time series data of the initial motion part of the seismic wave,
The coefficient B and the incident angle θ inc are expressed by the following equation: log Δ = C 1 · log B + C 2 · f (θ inc ) + C 3 (2)
Where C 1 , C 2 and C 3 are statistically determined constants,
f (θ inc ): An epicenter distance estimation method characterized in that it is applied to a function of an incident angle θ inc to obtain an epicenter distance.
JP2007126417A 2007-05-11 2007-05-11 Epicenter distance estimation apparatus, epicenter distance estimation system, and epicenter distance estimation method Active JP4465509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007126417A JP4465509B2 (en) 2007-05-11 2007-05-11 Epicenter distance estimation apparatus, epicenter distance estimation system, and epicenter distance estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007126417A JP4465509B2 (en) 2007-05-11 2007-05-11 Epicenter distance estimation apparatus, epicenter distance estimation system, and epicenter distance estimation method

Publications (2)

Publication Number Publication Date
JP2008281462A JP2008281462A (en) 2008-11-20
JP4465509B2 true JP4465509B2 (en) 2010-05-19

Family

ID=40142394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007126417A Active JP4465509B2 (en) 2007-05-11 2007-05-11 Epicenter distance estimation apparatus, epicenter distance estimation system, and epicenter distance estimation method

Country Status (1)

Country Link
JP (1) JP4465509B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083134A (en) * 2010-10-07 2012-04-26 Railway Technical Research Institute Epicenter distance estimation method with improved immediate responsiveness
JP5591759B2 (en) * 2011-05-12 2014-09-17 公益財団法人鉄道総合技術研究所 Epicenter distance estimation method for single station processing
WO2013027664A1 (en) * 2011-08-19 2013-02-28 日本電気株式会社 Magnitude estimation device, magnitude estimation method, and computer-readable recording medium
JP6433376B2 (en) * 2015-05-26 2018-12-05 公益財団法人鉄道総合技術研究所 Epicenter distance estimation method using slope of initial motion of P wave
CN111830556B (en) * 2020-07-15 2023-03-28 湖北文理学院 Earthquake sequence generation method and system and earthquake-resistant safety and stability evaluation method
JP7512139B2 (en) 2020-09-14 2024-07-08 清水建設株式会社 Earthquake motion evaluation model providing method and earthquake motion evaluation model providing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4301659B2 (en) * 1999-11-05 2009-07-22 株式会社フジタ Earthquake warning system
JP3695579B2 (en) * 2001-03-21 2005-09-14 財団法人鉄道総合技術研究所 Epicenter distance and magnitude estimation method and apparatus therefor
JP4509865B2 (en) * 2005-06-02 2010-07-21 東京電力株式会社 Layer structure estimation method and analysis apparatus for analyzing layer structure

Also Published As

Publication number Publication date
JP2008281462A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
JP4465509B2 (en) Epicenter distance estimation apparatus, epicenter distance estimation system, and epicenter distance estimation method
US9032801B2 (en) Ultrasonic measurement apparatus and method
JP2016194530A (en) Earthquake warning system
WO2021033547A1 (en) Seismic observation device, seismic observation method, and recording medium
US20230333272A1 (en) Quality control and preconditioning of seismic data
GB2479299A (en) Processing seismic data
US20150160333A1 (en) Method of calibrating an infrasound detection apparatus and system for calibrating the infrasound detection apparatus
US11255990B2 (en) Internal structure detection system
JP2007071707A (en) Earthquake motion intensity prediction method and disaster prevention system, using real-time earthquake information
US20120130643A1 (en) Identifying invalid seismic data
US20210096110A1 (en) Structure evaluation system, structure evaluation apparatus, and structure evaluation method
JP4509837B2 (en) Early earthquake specifications estimation method and system
JP6765809B2 (en) Positioning device, position measuring method and program
JP2002277557A (en) Estimation method for epicentral distance and magnitude and device therefor
RU2550576C1 (en) Method to measure distance to noisy object
JP4160033B2 (en) Early measurement seismic intensity prediction method and apparatus therefor
US20200133250A1 (en) Method and system for providing quality controlled data from a redundant sensor system
CN110426740B (en) Seismic noise imaging exploration method and device and storage medium
US8917573B2 (en) Measuring far field signature of a seismic source
CN114200016B (en) Double-channel nondestructive testing method and related equipment for rock anchor rod
US11726064B2 (en) Acoustic pipe condition assessment using coherent averaging
US11959798B2 (en) System and a method for noise discrimination
YAMAMOTO et al. Development of seismograph equipped with improved algorithm for earthquake early warning
Wang et al. Exploring magnitude estimation for earthquake early warning using available P-wave time windows based on Chinese strong-motion records
US20240094166A1 (en) Structure evaluation system, structure evaluation apparatus, structure evaluation method, and non-transitory computer readable recording medium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100205

R150 Certificate of patent or registration of utility model

Ref document number: 4465509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250