JP4463709B2 - Cold-working steel and method for producing engine valve made of the steel - Google Patents

Cold-working steel and method for producing engine valve made of the steel Download PDF

Info

Publication number
JP4463709B2
JP4463709B2 JP2005064900A JP2005064900A JP4463709B2 JP 4463709 B2 JP4463709 B2 JP 4463709B2 JP 2005064900 A JP2005064900 A JP 2005064900A JP 2005064900 A JP2005064900 A JP 2005064900A JP 4463709 B2 JP4463709 B2 JP 4463709B2
Authority
JP
Japan
Prior art keywords
cold
steel
hardness
strength
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005064900A
Other languages
Japanese (ja)
Other versions
JP2006249466A (en
Inventor
正雄 石田
裕之 桶谷
斎 木下
幹男 桐山
章 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Nittan Valve Co Ltd
Original Assignee
Honda Motor Co Ltd
Nittan Valve Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Nittan Valve Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005064900A priority Critical patent/JP4463709B2/en
Publication of JP2006249466A publication Critical patent/JP2006249466A/en
Application granted granted Critical
Publication of JP4463709B2 publication Critical patent/JP4463709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)

Description

本発明は、冷間鍛造などの冷間加工に使用される冷間加工用鋼に関し、該鋼は、使用温度が高い部品、例えば内燃機関の機関弁や高温用ボルトの材料として使用される。   The present invention relates to a cold work steel used for cold working such as cold forging, and the steel is used as a material for parts having a high operating temperature, for example, engine valves and high-temperature bolts for internal combustion engines.

内燃機関の吸気弁または排気弁である機関弁など、使用温度が高い部品の材料としてマルテンサイト系ステンレス鋼が使用される場合、高温での焼入れおよび焼戻しを行うことにより、使用温度での所要硬度が確保される。   When martensitic stainless steel is used as a material for parts with high operating temperatures, such as engine valves that are intake valves or exhaust valves of internal combustion engines, the required hardness at the operating temperature by quenching and tempering at high temperatures Is secured.

また、機関弁に使用される耐熱鋼として、例えば特許文献1に開示されたFe基耐熱合金がある。このFe基耐熱合金は、Niを可能な限り低減することにより冷間加工性を良好にし、Al,Ti,Nb等の合金元素の量をバランス良く添加して、長時間加熱を行った際の析出物の量を厳密に制御することにより、高温強度を良好にするものであり、重量%でC:0.1以下、Si:1.0以下、Mn:1.0以下、Ni:18〜25、Cr:10〜16、Al:0.7〜1.8、Ti:0.6〜2.0およびNb:0.1〜1.5と、Zr、Hf、V、Taの1種または2種以上をTi、Nbとの合計で1.2〜6.5を含み、視野面積率で0.1〜6.0%のη相組織を有する。
特開2000−204449号公報
Moreover, as a heat-resistant steel used for an engine valve, for example, there is an Fe-based heat-resistant alloy disclosed in Patent Document 1. This Fe-based heat-resistant alloy improves the cold workability by reducing Ni as much as possible, and when the amount of alloy elements such as Al, Ti and Nb is added in a well-balanced manner and is heated for a long time. By strictly controlling the amount of the precipitate, the high temperature strength is improved, and C: 0.1 or less, Si: 1.0 or less, Mn: 1.0 or less, Ni: 18 to 25, Cr: 10 to 16, Al: 0.7 to 1.8, Ti: 0.6 to 2.0 and Nb: 0.1 to 1.5, or one of Zr, Hf, V and Ta Two or more types include 1.2 to 6.5 in total with Ti and Nb, and have a η phase structure of 0.1 to 6.0% in terms of the field area ratio.
JP 2000-204449 A

ところで、使用温度が高い部品の材料としてのマルテンサイト系ステンレス鋼は、硬度が高いために加工性が悪いことから、寸法精度が高い成形品が得られる冷間鍛造などの冷間加工が困難である。また、高温での硬度を確保するための熱処理が必要になり、しかも高価なCrの含有量が多いことから、コストが高くなる。また、特許文献1のFe基耐熱合金は、Niの含有量が多いために冷間鍛造などの冷間加工時の変形抵抗が大きくなることから、冷間加工性の点で改善の余地があり、さらに高価なNi、Cr、Moの含有量が多いため、コスト削減の点でも改善の余地がある。   By the way, martensitic stainless steel as a material for parts with high operating temperatures is difficult to work with because cold work such as cold forging, which can produce molded products with high dimensional accuracy, due to its high hardness. is there. In addition, heat treatment is required to ensure hardness at high temperature, and the cost is high because of the high content of expensive Cr. In addition, since the Fe-based heat-resistant alloy of Patent Document 1 has a large Ni content, deformation resistance during cold working such as cold forging increases, so there is room for improvement in terms of cold workability. Furthermore, since there is much content of expensive Ni, Cr, and Mo, there is room for improvement also in terms of cost reduction.

本発明は、このような事情に鑑みてなされたものであり、請求項1,2記載の発明は、高温強度に優れた冷間加工用鋼の冷間加工性の向上およびコストの削減を図ることを目的とする。そして、請求項3,4記載の発明は、高温強度に優れた機関弁を低コストで提供することを目的とし、請求項4記載の発明は、さらに、機関弁の高温強度の一層の向上を図ることを目的とする。   This invention is made | formed in view of such a situation, and the invention of Claim 1, 2 aims at the improvement of the cold workability of the steel for cold work excellent in high temperature strength, and reduction of cost. For the purpose. The invention described in claims 3 and 4 aims to provide an engine valve excellent in high temperature strength at low cost, and the invention described in claim 4 further improves the high temperature strength of the engine valve. The purpose is to plan.

請求項1記載の発明は、必須合金元素が、重量%でC:0.20〜1.10、Si:1.00以下、Mn:1.50以下、Ni:1.00以下、Cr:0.50〜2.00、Mo:0.10〜1.00であり、任意合金元素が、重量%でV:0.00〜0.50であり、前記各合金元素の添加量は、以下の冷間加工性パラメータX1および強度パラメータX2を満足し、残部がFeである組成の冷間加工用鋼である。
X1≦1.30
X2≧2.00
ここで、冷間加工性パラメータX1は、前記各合金元素を重量%での数値として、次式で定義され強度パラメータX2は、500°Cで、低負荷環境で所要硬度160HV以上の硬度を、また高負荷環境で所要硬度200HV以上の硬度を得るためのパラメータであって、前記各合金元素を重量%での数値として、次式で定義される。
X1=C+(3/8)Si+(1/5)Mn+(1/6)Ni+(1/22)Cr+ (1/3)Mo+(7/9)V
X2=(1/3)C+(4/5)Si+(2/5)Mn+(3/20)Ni+
(8/7)Cr+(8/5)Mo+(3/2)V
In the invention according to claim 1, the essential alloy elements are C: 0.20 to 1.10, Si: 1.00 or less, Mn: 1.50 or less, Ni: 1.00 or less, Cr: 0 by weight%. .50 to 2.00, Mo: 0.10 to 1.00, arbitrary alloy elements are V: 0.00 to 0.50 in weight%, and the amount of each alloy element added is as follows: It is a steel for cold work having a composition satisfying the cold workability parameter X1 and the strength parameter X2 and the balance being Fe .
X1 ≦ 1.30
X2 ≧ 2.00
Here, the cold workability parameter X1 is defined by the following formula using the values of each alloy element in weight%, and the strength parameter X2 is 500 ° C. and has a required hardness of 160 HV or higher in a low load environment. Further, it is a parameter for obtaining a required hardness of 200 HV or higher in a high load environment, and each alloy element is defined as a numerical value in weight% and is defined by the following equation.
X1 = C + (3/8) Si + (1/5) Mn + (1/6) Ni + (1/22) Cr + (1/3) Mo + (7/9) V
X2 = (1/3) C + (4/5) Si + (2/5) Mn + (3/20) Ni +
(8/7) Cr + (8/5) Mo + (3/2) V

これによれば、本発明の冷間加工用鋼は、冷間加工性を劣化させるNi、Cr、MoおよびVの含有量が少ないことから冷間加工性に優れるので、熱間加工を要することなく冷間加工のみで塑性加工による最終加工品を得ることができる。しかも、C、MoおよびVが適量だけ添加されることにより500°Cでの硬度が所要硬度以上となって、高温強度に優れるので、硬度を確保するための焼入れ焼戻しなどの熱処理工程を省略することができる。さらに、高価なNi、Cr、MoおよびVの含有量が少ない。   According to this, the steel for cold work according to the present invention is excellent in cold workability because it has a low content of Ni, Cr, Mo and V, which deteriorate the cold workability, and therefore requires hot working. In addition, a final processed product by plastic working can be obtained only by cold working. Moreover, by adding appropriate amounts of C, Mo and V, the hardness at 500 ° C. is equal to or higher than the required hardness and is excellent in high-temperature strength, so that heat treatment steps such as quenching and tempering to ensure hardness are omitted. be able to. Furthermore, the contents of expensive Ni, Cr, Mo and V are small.

請求項2記載の発明は、請求項1記載の冷間加工用鋼において、30%以上の冷間加工による加工率で、硬度が前記所要硬度を越えた状態で飽和するものである。   According to a second aspect of the present invention, in the cold work steel according to the first aspect, the steel is saturated when the hardness exceeds the required hardness at a working rate by cold working of 30% or more.

これによれば、30%以上の加工率での冷間加工後にも所要硬度が確実に安定して確保されて、部位に応じて加工率が異なる部品においても、該部品の部位によらず安定した高温強度が確保される。   According to this, even after cold working at a working rate of 30% or more, the required hardness is ensured stably and stably even for parts with different working rates depending on the parts, regardless of the parts of the parts. High temperature strength is ensured.

請求項3記載の発明は、請求項1または請求項2記載の冷間加工用鋼からなる素材に冷間鍛造を施すことにより内燃機関の機関弁を製造する機関弁の製造方法である。   The invention described in claim 3 is a method for manufacturing an engine valve for manufacturing an engine valve of an internal combustion engine by performing cold forging on the material made of cold work steel according to claim 1 or claim 2.

これによれば、高温強度に優れ、しかも低コストの本発明の冷間加工用鋼により機関弁が形成される。   According to this, the engine valve is formed by the cold work steel of the present invention which is excellent in high temperature strength and low in cost.

請求項4記載の発明は、請求項3記載の機関弁の製造方法において、前記冷間鍛造後に窒化処理を施すものである。   According to a fourth aspect of the present invention, in the method of manufacturing an engine valve according to the third aspect, nitriding is performed after the cold forging.

これによれば、窒化処理により、機関弁の高温強度が一層向上する。   According to this, the high temperature strength of the engine valve is further improved by the nitriding treatment.

請求項1記載の発明によれば、次の効果が奏される。すなわち、500°Cでの使用温度における高温強度に優れた冷間加工用鋼は、加工性を劣化させる合金元素の含有量が少ないことから冷間加工性が向上する。そして、熱間加工および熱処理工程が不要になり、しかも高価な合金元素の含有量が少ないので、コストが削減される。   According to invention of Claim 1, the following effect is show | played. That is, the cold workability of steel for cold work excellent in high-temperature strength at a use temperature of 500 ° C. is improved because the content of the alloy element that deteriorates workability is small. Further, the hot working and heat treatment steps become unnecessary, and the content of expensive alloy elements is small, so that the cost is reduced.

請求項2記載の発明によれば、引用された請求項記載の発明の効果に加えて、次の効果が奏される。すなわち、高温強度に優れ、しかも低コストの本発明の冷間加工用鋼を、部位により加工率が異なる部品や加工率が異なる多様な部品に使用することが可能になる。   According to invention of Claim 2, in addition to the effect of the invention of the cited claim, there exists the following effect. That is, it is possible to use the steel for cold working of the present invention, which is excellent in high-temperature strength and low in cost, for various parts having different working rates and various parts having different working rates.

請求項3記載の発明によれば、次の効果が奏される。すなわち、高温強度に優れた機関弁が低コストで得られる。   According to invention of Claim 3, the following effect is show | played. That is, an engine valve excellent in high temperature strength can be obtained at low cost.

請求項4記載の発明によれば、次の効果が奏される。すなわち、高温強度が一層向上した機関弁が得られる。   According to invention of Claim 4, the following effect is show | played. That is, an engine valve with further improved high temperature strength can be obtained.

以下、本発明の実施形態を図1〜図3を参照して説明する。
本発明が適用された冷間加工用鋼(以下、「発明鋼」という。)は、使用温度が高い部品、例えば内燃機関の吸気弁または排気弁である機関弁、または高温用ボルトの材料として使用されるものであり、この実施形態では冷間鍛造が施される冷間鍛造用鋼である。
Embodiments of the present invention will be described below with reference to FIGS.
Cold-working steel to which the present invention is applied (hereinafter referred to as “invention steel”) is used as a material for parts having high operating temperatures, for example, engine valves that are intake valves or exhaust valves of internal combustion engines, or high-temperature bolts. In this embodiment, it is a steel for cold forging to which cold forging is applied.

発明鋼は、使用温度が500°Cに達する部品(以下、「適用部品」という。)の材料として好適なものであり、500°Cでの引張り強度および耐摩耗性などの要求特性を満足するために、適用部品は、冷間鍛造を含む冷間加工終了後に、500°Cでの硬度(以下、「500°C硬度」という。)が所要硬度(以下、「所要硬度」という。)以上となる高温強度が確保される必要がある。
所要硬度は、適用部品の熱負荷により異なり、使用温度が500°C付近になる頻度が高い高熱負荷環境で適用部品が使用される場合には200HVであり、使用温度が500°C付近になる頻度が前記高熱負荷環境よりも低い低熱負荷環境で適用部品が使用される場合には160HVである。適用部品が内燃機関の吸気弁である場合、所要硬度は、燃焼温度が比較的高く、吸気弁が前記高熱負荷環境で使用される高負荷内燃機関では200であり、燃焼温度が比較的低く、吸気弁が前記低熱負荷環境で使用される低負荷内燃機関では160である。
Invented steel is suitable as a material for parts (hereinafter referred to as “applied parts”) whose operating temperature reaches 500 ° C., and satisfies the required properties such as tensile strength and wear resistance at 500 ° C. Therefore, the applied part has a hardness at 500 ° C. (hereinafter referred to as “500 ° C. hardness”) equal to or higher than a required hardness (hereinafter referred to as “required hardness”) after completion of cold working including cold forging. It is necessary to ensure high temperature strength.
The required hardness varies depending on the heat load of the application part, and is 200 HV when the application part is used in a high heat load environment in which the use temperature is frequently around 500 ° C., and the use temperature is around 500 ° C. When the application part is used in a low heat load environment whose frequency is lower than that of the high heat load environment, it is 160 HV. When the applied part is an intake valve of an internal combustion engine, the required hardness is 200 for a high load internal combustion engine where the combustion temperature is relatively high and the intake valve is used in the high heat load environment, and the combustion temperature is relatively low, The intake valve is 160 in a low load internal combustion engine used in the low heat load environment.

一方で、発明鋼には、冷間鍛造を含む冷間加工(以下、特に断らない限り、冷間鍛造を含む冷間加工を、冷間鍛造で代表させて記載する。)により加工率30%以上の加工が施されるために、50%以上で、かつ最大の加工率である85%以下での加工で割れが発生しないこと、および変形抵抗を低下させて冷間鍛造性を含む冷間加工性(以下、特に断らない限り、冷間鍛造性を含む冷間加工性を、冷間鍛造性で代表させて記載する。)を向上させると共に冷間鍛造などの冷間加工時の金型への負荷を低減するために、硬度が低いことが必要になる。   On the other hand, the invention steel has a working rate of 30% by cold working including cold forging (hereinafter, unless otherwise specified, cold working including cold forging is represented by cold forging). Since the above processing is performed, no cracks are generated in processing at 50% or more and the maximum processing rate of 85% or less, and cold including cold forgeability by reducing deformation resistance. Molds for cold work such as cold forging while improving workability (hereinafter, unless otherwise noted, cold workability including cold forgeability is represented by cold forgeability) In order to reduce the load on the steel, it is necessary that the hardness is low.

そこで、冷間鍛造性の向上および冷間鍛造後の硬度の確保という、相反する特性を両立させるために、発明者は、Feに添加される各合金元素の添加量が冷間鍛造性および冷間鍛造後の硬度に与える影響について研究を重ね、各合金元素のFeへの添加量を限定すると共に、各合金元素の添加量の間に特定の関係(以下、「パラメータ」という。)を持たせることにより、冷間鍛造性および高温強度の要求特性を満たすことができることを見出した。   Therefore, in order to achieve both contradictory properties of improving cold forgeability and ensuring hardness after cold forging, the inventors have determined that the amount of each alloy element added to Fe is cold forgeability and cold. Research has been conducted on the influence on the hardness after hot forging to limit the addition amount of each alloy element to Fe and have a specific relationship (hereinafter referred to as “parameter”) between the addition amounts of each alloy element. It has been found that the required characteristics of cold forgeability and high temperature strength can be satisfied.

以下、Feに添加される各合金元素C、Cr、Mo、Si、Mn、Ni、Vの添加量の限定根拠について説明する。なお、各合金元素についての数値は重量%である。また、発明鋼において、前記各合金元素以外の残部は実質上Feである。   Hereinafter, the grounds for limiting the amount of each alloy element C, Cr, Mo, Si, Mn, Ni, and V added to Fe will be described. In addition, the numerical value about each alloy element is weight%. Moreover, in invention steel, the remainder other than each said alloy element is substantially Fe.

C:0.20〜1.10
Cは、強度の向上と、500°C硬度に必要な炭化物の生成とに必要な元素であり、0.20未満では強度および炭化物の生成が不足する。また、1.10を越えると冷間鍛造前の硬度が高くなって、冷間鍛造性が低下する。
C: 0.20 to 1.10.
C is an element necessary for improving the strength and generating carbide necessary for 500 ° C. hardness. If it is less than 0.20, the strength and the generation of carbide are insufficient. Moreover, when it exceeds 1.10, the hardness before cold forging becomes high and cold forgeability falls.

Si:1.00以下
Siは、フェライト強化元素であり、冷間鍛造前の熱処理である焼鈍による強度を高める。Siの添加により冷間鍛造後の強度は向上するが、1.00を越えると冷間鍛造性が著しく低下する。
Si: 1.00 or less Si is a ferrite strengthening element, and increases the strength by annealing, which is a heat treatment before cold forging. The strength after cold forging is improved by the addition of Si, but if it exceeds 1.00, the cold forgeability is significantly reduced.

Mn:1.50以下
Mnは、Siと同様にフェライト強化元素であり、冷間鍛造前の焼鈍による強度を高める。Mnの添加により冷間鍛造後の強度は向上するが、1.50を越えると冷間鍛造性が著しく低下する。
Mn: 1.50 or less Mn is a ferrite strengthening element like Si, and increases the strength by annealing before cold forging. The strength after cold forging is improved by the addition of Mn, but if it exceeds 1.50, the cold forgeability is significantly lowered.

Ni:1.00以下
Niは、Siと同様にフェライト強化元素であり、冷間鍛造前の焼鈍による強度を高める。Niの添加により、冷間鍛造後の強度は向上するが、1.00を越えると冷間鍛造性が著しく低下し、しかも高価なNiの増加によりコスト高となる。
Ni: 1.00 or less Ni, like Si, is a ferrite strengthening element, and increases the strength by annealing before cold forging. The addition of Ni improves the strength after cold forging, but if it exceeds 1.00, the cold forgeability is significantly lowered, and the cost increases due to the increase in expensive Ni.

Cr:0.50〜2.00
Crは、炭化物の生成に必要な元素であり、冷間鍛造前の焼鈍により炭化物を微細に分散させる効果がある。これにより、冷間鍛造性を向上させ、割れが発生しない最大の加工率である限界加工率を高めることができる。0.50%未満では、この効果が不十分であり、2.00を越えると冷間鍛造性が低下し、しかも高価なCrの増加によりコスト高となる。
Cr: 0.50 to 2.00
Cr is an element necessary for the formation of carbide, and has an effect of finely dispersing the carbide by annealing before cold forging. Thereby, the cold forgeability can be improved, and the limit processing rate which is the maximum processing rate at which cracks do not occur can be increased. If it is less than 0.50%, this effect is insufficient, and if it exceeds 2.00, the cold forgeability decreases, and the cost increases due to an increase in expensive Cr.

Mo:0.10〜1.00
Moは、強度の向上と、500°C硬度に必要な炭化物の生成とに必要な元素であり、0.10未満では、強度および炭化物の生成が不足する。また、1.00を越えると冷間鍛造性が低下し、しかも高価なMoの増加によりコスト高となる。
Mo: 0.10 to 1.00
Mo is an element necessary for improvement of strength and generation of carbide necessary for 500 ° C. hardness. When it is less than 0.10, strength and generation of carbide are insufficient. Moreover, when it exceeds 1.00, cold forgeability will fall, and also it will become high-cost by increase in expensive Mo.

V:0.00〜0.50
Vは、Moと同様に、強度の向上と、500°C硬度に必要な炭化物の生成とに必要な元素であり、0.50を越えると冷間鍛造性が低下し、しかも高価なVの増加によりコスト高となる。0.05未満では、強度および炭化物の生成が減少する。強度および炭化物の生成についてより優れた効果を得るためには、下限値は0.05以上であることが好ましい。
V: 0.00 to 0.50
V, like Mo, is an element necessary for improving the strength and generating carbide necessary for 500 ° C. hardness. If it exceeds 0.50, cold forgeability is reduced, and expensive V Increase in cost. Below 0.05, strength and carbide formation are reduced. In order to obtain more excellent effects on strength and carbide generation, the lower limit value is preferably 0.05 or more.

また、パラメータは、冷間鍛造を含む冷間加工による良好な加工性に関する冷間加工性パラメータX1と、500°C以下の使用温度での所要硬度を得るための強度パラメータX2とであり、両パラメータX1,X2は次式で定義される。
X1=C+(3/8)Si+(1/5)Mn+(1/6)Ni+(1/22)Cr+ (1/3)Mo+(7/9)V
X2=(1/3)C+(4/5)Si+(2/5)Mn+(3/20)Ni+
(8/7)Cr+(8/5)Mo+(3/2)V
ここで、各合金元素は、重量%での添加量の数値である。
The parameters are a cold workability parameter X1 relating to good workability by cold working including cold forging, and a strength parameter X2 for obtaining a required hardness at a use temperature of 500 ° C. or lower. Parameters X1 and X2 are defined by the following equations.
X1 = C + (3/8) Si + (1/5) Mn + (1/6) Ni + (1/22) Cr + (1/3) Mo + (7/9) V
X2 = (1/3) C + (4/5) Si + (2/5) Mn + (3/20) Ni +
(8/7) Cr + (8/5) Mo + (3/2) V
Here, each alloy element is a numerical value of the addition amount in weight%.

次に、各パラメータX1,X2の数値の限定根拠について説明する。
冷間加工性パラメータX1:1.30以下
冷間加工性パラメータX1は、冷間鍛造性の指標であり、1.30を越えると、冷間鍛造を含む冷間加工時の変形抵抗が大きくなって、冷間鍛造性が低下する。
Next, the grounds for limiting the numerical values of the parameters X1 and X2 will be described.
Cold workability parameter X1: 1.30 or less The cold workability parameter X1 is an index of cold forgeability, and if it exceeds 1.30, deformation resistance during cold work including cold forging increases. As a result, cold forgeability is reduced.

強度パラメータX2:2.00以上
強度パラメータX2は、高温強度としての500°Cでの硬度の指標であり、2.00未満では、低熱負荷環境で使用される適用部品に必要とされる所要硬度(160HV)以上の硬度が得られない。また、3.00未満では、高熱負荷環境で使用される適用部品に必要とされる所要硬度(200HV)以上の硬度が得られない。
Strength parameter X2: 2.00 or more The strength parameter X2 is an index of hardness at 500 ° C. as a high-temperature strength. If it is less than 2.00, the required hardness required for the application parts used in a low thermal load environment Hardness of (160HV) or higher cannot be obtained. Moreover, if it is less than 3.00, the hardness more than required hardness (200HV) required for the application components used in a high heat load environment cannot be obtained.

また、このような組成からなる発明鋼は、30%以上の冷間鍛造による加工率で、500°C硬度が所要硬度を越えた状態で飽和する。このため、適用部品が製造される際の30%〜85%に渡る加工率での冷間鍛造後も、所要硬度が確実に確保される。   Inventive steel having such a composition saturates when the hardness at 500 ° C. exceeds the required hardness at a processing rate by cold forging of 30% or more. For this reason, the required hardness is reliably ensured even after cold forging at a processing rate of 30% to 85% when the applied part is manufactured.

そして、発明鋼を使用して製造される適用部品については、発明鋼からなる素材に冷間鍛造が施されて得られた塑性加工による最終加工品は、加工硬化により高められた強度を有することから、研削加工や切削加工などの仕上げ加工が施された後、そのまま製品として使用され得る。また、一層向上した高温強度が要求される場合においては、冷間鍛造後に、仕上げ加工が施された前記最終加工品に窒化処理が施される。   And for applied parts manufactured using invention steel, the final processed product by plastic working obtained by subjecting the material made of invention steel to cold forging has the strength increased by work hardening. Therefore, after finishing processing such as grinding and cutting, the product can be used as it is. In the case where a further improved high-temperature strength is required, after the cold forging, the final processed product that has been finished is subjected to nitriding.

このことを、図1を参照して、発明鋼により形成される内燃機関の吸気弁の製造について説明する。
ポペット弁からなる吸気弁を製造するにあたり、発明鋼からなる線材から切断加工により素材1(図1(A)参照)が切り出される。素材1には冷間加工である押出し加工が施されて第1中間加工品2(図1(B)参照)が成形され、次いで第1中間加工品2に冷間加工である冷間鍛造としての据込み加工が施されて第2中間加工品3(図1(C)参照)が成形され、第2中間加工品3にさらに据込み加工が施されて、塑性加工による最終加工品4(図1(D)参照)が成形される。その後、最終加工品4に研削加工などの仕上げ加工が施された後、窒化処理が施されて、適用部品としての吸気弁が製造される。そして、前述の押出加工および2回の据込み加工を含む全冷間加工(ここでは全塑性加工)の工程において、素材1には30%〜85%の範囲での加工率の冷間加工が施され、500°C硬度が所要硬度以上の吸気弁が得られる。
This will be described with reference to FIG. 1 for the manufacture of an intake valve for an internal combustion engine formed of inventive steel.
In manufacturing an intake valve composed of a poppet valve, a material 1 (see FIG. 1 (A)) is cut out from a wire composed of inventive steel by cutting. The raw material 1 is subjected to extrusion processing which is cold processing to form a first intermediate processed product 2 (see FIG. 1B), and then the first intermediate processed product 2 is subjected to cold forging as cold processing. The second intermediate processed product 3 (see FIG. 1 (C)) is formed, and the second intermediate processed product 3 is further subjected to upsetting, so that the final processed product 4 by plastic processing ( 1D) is formed. Then, after finishing processing such as grinding is performed on the final processed product 4, nitriding is performed, and an intake valve as an applicable part is manufactured. And in the process of all the cold processing (here all plastic processing) including the above-mentioned extrusion processing and two upsetting processes, the raw material 1 is cold-worked with the processing rate in the range of 30%-85%. As a result, an intake valve having a hardness of 500 ° C. or higher is obtained.

表1に示す組成を有する鋼を溶製して得られた鋼塊をφ25mmに圧延し、次いで焼鈍処理を施して得られた鋼材から圧縮試験片(φ14×21)を採取し、圧縮試験を行った。冷間鍛造性の評価として50%圧縮時の変形抵抗を測定した。また、高温強度の評価として、50%圧縮した試験片を500°Cで200時間保持した後、500°C硬度を測定した。その結果を表2に示す。   A steel ingot obtained by melting steel having the composition shown in Table 1 is rolled to φ25 mm, and then subjected to an annealing treatment, a compression test piece (φ14 × 21) is taken from the steel material, and a compression test is performed. went. As an evaluation of cold forgeability, deformation resistance at 50% compression was measured. Further, as an evaluation of the high-temperature strength, a test piece compressed by 50% was held at 500 ° C. for 200 hours, and then the hardness at 500 ° C. was measured. The results are shown in Table 2.

Figure 0004463709
Figure 0004463709

Figure 0004463709
Figure 0004463709

試験片No1〜3(発明鋼)では、強度パラメータX2≧2であり、所要硬度(160HV)以上の500°C硬度が得られる。また、試験片No4,5(発明鋼)では、強度パラメータX2≧3であり、所要硬度(200HV)以上の500°C硬度が得られる。   In test pieces Nos. 1 to 3 (invention steel), the strength parameter X2 ≧ 2, and a 500 ° C. hardness of not less than the required hardness (160 HV) is obtained. Further, in the test pieces Nos. 4 and 5 (invention steel), the strength parameter X2 ≧ 3, and a 500 ° C. hardness not less than the required hardness (200 HV) is obtained.

試験片No6〜8(比較鋼)では、強度パラメータX2<2であり、必要な500°硬度が得られない。また、試験片No9,10(比較鋼)では、冷間加工性パラメータX1≧1.3であり、50%圧縮時の変形抵抗が高くなり、冷間加工性が劣ることがわかる。   In test pieces Nos. 6 to 8 (comparative steel), the strength parameter X2 <2, and the necessary 500 ° hardness cannot be obtained. Moreover, in test piece No. 9 and 10 (comparative steel), it is understood that the cold workability parameter X1 ≧ 1.3, the deformation resistance at the time of 50% compression is increased, and the cold workability is inferior.

冷間鍛造による加工率の影響を調査した結果を図2に示す。試験片No2,5(発明鋼)および試験片No6(比較鋼)を85%まで圧縮し、500°Cで200時間保持した後、500°C硬度を測定した。その結果、加工率としての圧縮率が30%以上で、85%以下の範囲において、500°C硬度が、所要硬度(160HVまたは200HV)を越えた状態で飽和し、所要硬度が維持されることがわかる。   The result of investigating the influence of the processing rate by cold forging is shown in FIG. Test pieces Nos. 2 and 5 (invention steel) and test piece No. 6 (comparative steel) were compressed to 85%, held at 500 ° C. for 200 hours, and then measured for 500 ° C. hardness. As a result, when the compression ratio as the processing rate is 30% or more and 85% or less, the 500 ° C hardness is saturated in the state exceeding the required hardness (160HV or 200HV), and the required hardness is maintained. I understand.

冷間鍛造後に窒化処理(窒化温度580°C)が施されたときの500°C硬度の変化を図3に示す。強度パラメータX2が2.00以上で3.00以下の試験片No2(発明鋼)、強度パラメータX2が3.00以上の試験片No5(発明鋼)および試験片No6(比較鋼)に、窒化処理を施した後の500°C硬度を測定した。その結果、強度パラメータX2が3.00以上である発明鋼は、窒化処理が施されない場合に比べて、500°C硬度が増加することわかり、さらに疲労強度も向上する。   FIG. 3 shows a change in hardness at 500 ° C. when nitriding treatment (nitriding temperature 580 ° C.) is performed after cold forging. Test specimen No. 2 (invention steel) with strength parameter X2 of 2.00 or more and 3.00 or less, nitriding treatment for test specimen No. 5 (invention steel) and specimen No. 6 (comparative steel) with strength parameter X2 of 3.00 or more The hardness at 500 ° C. after applying was measured. As a result, it can be seen that the invention steel having the strength parameter X2 of 3.00 or more has an increased hardness of 500 ° C. as compared with the case where the nitriding treatment is not performed, and further improves the fatigue strength.

以上のように発明鋼は、冷間加工性を劣化させるNi、Cr、MoおよびVの含有量が少ないことから冷間加工性に優れるので、熱間加工を要することなく冷間加工のみで塑性加工による最終加工品を得ることができる。しかも、C、MoおよびVが適量だけ添加されることにより500°C硬度が所要硬度以上となって、高温強度に優れるので、硬度を確保するための焼入れ焼戻しなどの熱処理工程を省略することができる。この結果、発明鋼は、500°Cでの使用温度における高温強度に優れること、および加工性を劣化させる合金元素の含有量が少ないことから冷間加工性が向上することから、熱間加工および熱処理工程が不要になるので、コストが削減される。さらに、高価なNi、Cr、MoおよびVの含有量が少ないので、コストが削減される。   As described above, the inventive steel is excellent in cold workability because it has a low content of Ni, Cr, Mo and V, which deteriorates cold workability, so that it is plastic only by cold work without requiring hot work. A final processed product by processing can be obtained. Moreover, by adding appropriate amounts of C, Mo and V, the 500 ° C hardness becomes equal to or higher than the required hardness and is excellent in high-temperature strength, so that heat treatment steps such as quenching and tempering to ensure hardness can be omitted. it can. As a result, the invention steel is excellent in high temperature strength at a use temperature of 500 ° C., and the cold workability is improved because the content of the alloy element that deteriorates the workability is small. Since the heat treatment process is not necessary, the cost is reduced. Furthermore, since the content of expensive Ni, Cr, Mo and V is small, the cost is reduced.

発明鋼は、30%以上で85%以下の冷間加工による加工率で、500°硬度が前記所要硬度を越えた状態で飽和することにより、30%以上で85%以下の加工率での冷間加工後にも所要硬度が確実に安定して確保されて、例えば機関弁などのように部位に応じて加工率が異なる適用部品においても、該適用部品の部位によらず安定した高温強度が確保される。この結果、高温強度に優れ、しかも低コストの発明鋼を、部位により加工率が異なる適用部品や加工率が異なる多様な適用部品に使用することが可能になる。   Invented steel has a working rate by cold working of 30% or more and 85% or less, and is saturated at a working rate of 30% or more and 85% or less by saturation when the 500 ° hardness exceeds the required hardness. The required hardness is ensured stably even after inter-machining, and stable high-temperature strength is ensured regardless of the part of the applied part, even in the applied part where the processing rate varies depending on the part, such as an engine valve. Is done. As a result, it is possible to use the invention steel having excellent high-temperature strength and low cost for application parts having different processing rates and various application parts having different processing rates.

発明鋼からなる素材に冷間鍛造を施すことにより内燃機関の吸気弁を製造することにより、500°Cでの高温強度に優れた吸気弁が低コストで得られ、しかも部位により加工率が異なる吸気弁において部位によらず安定した高温強度が確保される。さらに、仕上げ加工が施された前記最終加工品に窒化処理を施すことにより、高温強度が一層向上し、かつ疲労強度も向上した吸気弁が得られる。   By manufacturing the intake valve of the internal combustion engine by cold forging the material made of the steel of the invention, an intake valve excellent in high temperature strength at 500 ° C. can be obtained at low cost, and the processing rate varies depending on the part. Stable high-temperature strength is ensured regardless of the location of the intake valve. Furthermore, by subjecting the final processed product that has been subjected to the finishing process to nitriding treatment, an intake valve with improved high-temperature strength and improved fatigue strength can be obtained.

なお、前記実施形態では、冷間鍛造により成形される適用部品の材料として発明鋼が使用されたが、冷間鍛造以外の冷間加工のみにより成形される適用部品の材料として使用することもできる。   In addition, in the said embodiment, invention steel was used as a material of the application part shape | molded by cold forging, However, It can also be used as a material of the application part shape | molded only by cold processing other than cold forging. .

本発明が適用された冷間鍛造用鋼により形成される内燃機関の吸気弁の製造工程での成形品を示し、(A)は、冷間鍛造用鋼からなる線材から切断加工により切り出された素材を示し、(B)は、素材に押出し加工が施された第1中間加工品を示し、(C)は、第1中間加工品に据込み加工が施された第2中間加工品を示し、(D)は、第2中間加工品に据込み加工が施された最終加工品を示す。The molded product in the manufacturing process of the intake valve of the internal combustion engine formed of the steel for cold forging to which the present invention is applied is shown, and (A) is cut out from the wire made of steel for cold forging by cutting. (B) shows a first intermediate processed product obtained by extruding the raw material, and (C) shows a second intermediate processed product obtained by performing upsetting on the first intermediate processed product. , (D) shows a final processed product obtained by performing upsetting on the second intermediate processed product. 本発明が適用された冷間鍛造用鋼および比較鋼に対して、冷間鍛造を施したときの500°C硬度と圧縮率との関係を示すグラフである。It is a graph which shows the relationship between 500 degreeC hardness when a cold forging is performed with respect to the steel for cold forging to which this invention was applied, and comparative steel, and a compressibility. 本発明が適用された冷間鍛造用鋼および比較鋼に対して、窒化処理が施されたときの500°C硬度の変化を示すグラフである。It is a graph which shows the change of 500 degreeC hardness when the nitriding process is performed with respect to the steel for cold forging to which this invention was applied, and comparative steel.

符号の説明Explanation of symbols

1…素材、2,3…中間加工品、4…最終加工品。
1 ... Material, 2, 3 ... Intermediate processed product, 4 ... Final processed product.

Claims (4)

必須合金元素が、重量%でC:0.20〜1.10、Si:1.00以下、Mn:1.50以下、Ni:1.00以下、Cr:0.50〜2.00、Mo:0.10〜1.00であり、任意合金元素が、重量%でV:0.00〜0.50であり、
前記各合金元素の添加量は、以下の冷間加工性パラメータX1および強度パラメータX2を満足し、残部がFeである組成の冷間加工用鋼。
X1≦1.30
X2≧2.00
ここで、冷間加工性パラメータX1は、前記各合金元素を重量%での数値として、次式で定義され強度パラメータX2は、500°Cで、低負荷環境で所要硬度160HV以上の硬度を、また高負荷環境で所要硬度200HV以上の硬度を得るためのパラメータであって、前記各合金元素を重量%での数値として、次式で定義される。
X1=C+(3/8)Si+(1/5)Mn+(1/6)Ni+(1/22)Cr+ (1/3)Mo+(7/9)V
X2=(1/3)C+(4/5)Si+(2/5)Mn+(3/20)Ni+
(8/7)Cr+(8/5)Mo+(3/2)V
The essential alloy elements are C: 0.20 to 1.10, Si: 1.00 or less, Mn: 1.50 or less, Ni: 1.00 or less, Cr: 0.50 to 2.00, Mo by weight%. : 0.10 to 1.00, optional alloying elements in weight% V: 0.00 to 0.50,
The amount of each alloy element added satisfies the following cold workability parameter X1 and strength parameter X2, and the steel for cold work has a composition in which the balance is Fe .
X1 ≦ 1.30
X2 ≧ 2.00
Here, the cold workability parameter X1 is defined by the following formula using the values of each alloy element in weight%, and the strength parameter X2 is 500 ° C. and has a required hardness of 160 HV or higher in a low load environment. Further, it is a parameter for obtaining a required hardness of 200 HV or higher in a high load environment, and is defined by the following equation as a numerical value in terms of weight% for each of the alloy elements.
X1 = C + (3/8) Si + (1/5) Mn + (1/6) Ni + (1/22) Cr + (1/3) Mo + (7/9) V
X2 = (1/3) C + (4/5) Si + (2/5) Mn + (3/20) Ni +
(8/7) Cr + (8/5) Mo + (3/2) V
30%以上の冷間加工による加工率で、硬度が前記所要硬度を越えた状態で飽和する請求項1記載の冷間加工用鋼。   The steel for cold work according to claim 1, wherein the steel is saturated when the hardness exceeds the required hardness at a working rate by cold working of 30% or more. 請求項1または請求項2記載の冷間加工用鋼からなる素材に冷間鍛造を施すことにより内燃機関の機関弁を製造する機関弁の製造方法。   A method for manufacturing an engine valve for manufacturing an engine valve of an internal combustion engine by performing cold forging on a material made of cold work steel according to claim 1 or 2. 前記冷間鍛造後に窒化処理を施すことを特徴とする請求項3記載の機関弁の製造方法。   4. The method for manufacturing an engine valve according to claim 3, wherein nitriding is performed after the cold forging.
JP2005064900A 2005-03-09 2005-03-09 Cold-working steel and method for producing engine valve made of the steel Active JP4463709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005064900A JP4463709B2 (en) 2005-03-09 2005-03-09 Cold-working steel and method for producing engine valve made of the steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005064900A JP4463709B2 (en) 2005-03-09 2005-03-09 Cold-working steel and method for producing engine valve made of the steel

Publications (2)

Publication Number Publication Date
JP2006249466A JP2006249466A (en) 2006-09-21
JP4463709B2 true JP4463709B2 (en) 2010-05-19

Family

ID=37090262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005064900A Active JP4463709B2 (en) 2005-03-09 2005-03-09 Cold-working steel and method for producing engine valve made of the steel

Country Status (1)

Country Link
JP (1) JP4463709B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108441757A (en) * 2018-02-09 2018-08-24 浙江英洛华装备制造有限公司 High-pressure hydrogenation valve carbon steel and manufacturing method
JP7258678B2 (en) * 2019-07-08 2023-04-17 株式会社東芝 steel, turbine rotors and steam turbines

Also Published As

Publication number Publication date
JP2006249466A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
CN103348029B (en) The wearability titanium alloy member of fatigue strength excellence
US10060003B2 (en) Austenitic stainless steel sheet and metal gasket
CN108350548B (en) Wire rod having excellent cold forgeability and method for producing same
US20100139813A1 (en) Two-way shape-recovery alloy
JP7478685B2 (en) Precipitation-strengthened carburizable and nitridable alloy steels.
JP5648947B1 (en) Steel for mold and manufacturing method thereof
JP4860774B1 (en) Cold work tool steel
JPWO2017006843A1 (en) Thin plate and manufacturing method thereof
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP4463709B2 (en) Cold-working steel and method for producing engine valve made of the steel
JP5858422B2 (en) Iron-based material and manufacturing method thereof
JP5400140B2 (en) Heat resistant steel for engine valves with excellent high temperature strength
JP2010163648A (en) Cold work die steel and die
EP2503012A1 (en) Precipitation hardened heat-resistant steel
JP6485692B2 (en) Heat resistant alloy with excellent high temperature strength, method for producing the same and heat resistant alloy spring
JP5999751B2 (en) Manufacturing method of ferrous materials
JP4180753B2 (en) Fe-base heat-resistant alloy with excellent cold workability and high-temperature heat stability
JP6787246B2 (en) Alloy original plate for heat-resistant parts, alloy plate for heat-resistant parts, and gasket for exhaust system parts of engine
JP2008179864A (en) METHOD FOR MANUFACTURING Ni-BASE ALLOY
JP7167482B2 (en) Non-heat treated steel for nitriding and crankshaft
JPH11199987A (en) Heat resistant alloy suitable for cold working
JP6745050B2 (en) Ni-based alloy and heat-resistant plate material using the same
JPH1068050A (en) Stainless steel for spring excellent in thermal settling resistance
JPH10130790A (en) Heat resistant alloy excellent in cold workability and overaging characteristic
WO2021206142A1 (en) Seal member and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4463709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250