JP4462999B2 - Method for producing cyclic diglutamyl peptide - Google Patents

Method for producing cyclic diglutamyl peptide Download PDF

Info

Publication number
JP4462999B2
JP4462999B2 JP2004138652A JP2004138652A JP4462999B2 JP 4462999 B2 JP4462999 B2 JP 4462999B2 JP 2004138652 A JP2004138652 A JP 2004138652A JP 2004138652 A JP2004138652 A JP 2004138652A JP 4462999 B2 JP4462999 B2 JP 4462999B2
Authority
JP
Japan
Prior art keywords
diglutamyl
peptide
cyclic
reaction
glutamic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004138652A
Other languages
Japanese (ja)
Other versions
JP2005320272A (en
Inventor
龍一郎 田中
Original Assignee
龍一郎 田中
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 龍一郎 田中 filed Critical 龍一郎 田中
Priority to JP2004138652A priority Critical patent/JP4462999B2/en
Publication of JP2005320272A publication Critical patent/JP2005320272A/en
Application granted granted Critical
Publication of JP4462999B2 publication Critical patent/JP4462999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)

Description

本発明は環状ジグルタミルペプチドの製造方法、特に高純度化に関する。   The present invention relates to a method for producing a cyclic diglutamyl peptide, and particularly to high purification.

2以上のアミノ酸が結合した環状ペプチドは、さまざまな生理機能を有することが明らかになりつつある。特にグルタミン酸ならびにアスパラギン酸は生体での神経伝達に関与する物質と考えられ、それらを含むオリゴペプチド類の作用と受容体に関する研究が盛んであり、例えばカイコ蛹エキスの鎮痛活性を示す画分からは環状ジグルタミルペプチドが単離される。一方、ジ、トリペプチド類など比較的低分子量のペプチドは膜透過性を有しているため、早くより各種生理現象を検討するマテリアルとして天然あるいは合成品が供給されてきた。   It is becoming clear that a cyclic peptide in which two or more amino acids are bonded has various physiological functions. In particular, glutamic acid and aspartic acid are considered to be substances involved in neurotransmission in the body, and studies on the action and receptors of oligopeptides containing them are active. For example, from the fraction showing the analgesic activity of silkworm cocoon extract, Diglutamyl peptide is isolated. On the other hand, relatively low molecular weight peptides such as di- and tripeptides have membrane permeability, and therefore natural or synthetic products have been supplied as materials for studying various physiological phenomena more quickly.

これまで、グルタミン酸のみで構成された環状ジグルタミルペプチドの合成については、α−カルボニル位で結合されたもの(化2)あるいはγ−カルボニル位で結合されたもの(化3)が報告されているが、これらの合成方法は数種の保護基の導入を必要とするため副産物が多く、環化時にトリ、テトラペプチドの混成も伴うため、クロマトグラフィーなどによる精製を必要とする。この結果、最終目的物の収率が極めて少なく、高純度のジグルタミルペプチドを必要とする場合、製造コストが嵩む。

Figure 0004462999
Figure 0004462999
さらに、特開2003−252896などにも、比較的簡易なオリゴペプチドの製造方法が開示されているが、収率、純度の点で改善の余地が残されており、また前記化3に示すような環状γ−ジペプチドの選択的な調製は考慮されていない。
特開2003−252896 So far, regarding the synthesis of cyclic diglutamyl peptides composed only of glutamic acid, those linked at the α-carbonyl position (Chemical Formula 2) or those linked at the γ-carbonyl position (Chemical Formula 3) have been reported. However, these synthetic methods require the introduction of several kinds of protecting groups, so there are many by-products, and there is a need for purification by chromatography or the like because they involve the mixing of tri- and tetrapeptides during cyclization. As a result, when the yield of the final target product is extremely small and a high-purity diglutamyl peptide is required, the production cost increases.
Figure 0004462999
Figure 0004462999
Furthermore, JP 2003-252896 discloses a relatively simple method for producing an oligopeptide, but there is still room for improvement in terms of yield and purity. The selective preparation of cyclic γ-dipeptides is not considered.
JP2003-252896

このように、アミノ酸、特にグルタミン酸の環状γ−ジペプチドに関しては、高純度、高収率での製造が技術的、コスト的に困難であり、生化学的、製薬的分野での要望に十分応えることができないものであった。 In this way, amino acids, particularly cyclic γ-dipeptides of glutamic acid, are difficult to produce in high purity and high yield due to technical and cost difficulties, and fully meet the demands in the biochemical and pharmaceutical fields. It was something that could not be done.

本発明は前記従来技術の課題に鑑みなされたものであり、その目的は環状γ−ジグルタミルペプチドを簡易な方法で高純度に得ることのできる製造方法を提供することにある。
前記目的を達成するため、本発明者が鋭意検討を行った結果、グルタミン酸又はその塩に対し、炭酸水素塩の存在下、一定温度に保つことにより、きわめて高純度の環状ジグルタミルペプチドが得られることを見出し、本発明を完成するに至った。
すなわち本発明にかかる環状γ−ジグルタミルペプチド又はその塩の製造方法は、グルタミン酸又はその塩に、アルカリ性炭酸水素塩XHCO(Xはアルカリ金属)を添加し、100〜145℃で加熱処理することを特徴とする。
This invention is made | formed in view of the subject of the said prior art, The objective is to provide the manufacturing method which can obtain a cyclic | annular (gamma) -diglutamyl peptide with high purity by a simple method.
As a result of intensive studies by the present inventor in order to achieve the above-mentioned object, extremely high-purity cyclic diglutamyl peptide can be obtained by maintaining glutamic acid or a salt thereof at a constant temperature in the presence of bicarbonate. As a result, the present invention has been completed.
That is, in the method for producing a cyclic γ-diglutamyl peptide or a salt thereof according to the present invention, an alkaline hydrogen carbonate XHCO 3 (X is an alkali metal) is added to glutamic acid or a salt thereof, and heat treatment is performed at 100 to 145 ° C. It is characterized by.

また、前記方法において、アルカリ性炭酸水素塩は、該炭酸水素塩の水溶液がpH7.5〜9.5となる濃度で添加されることが好適である。
また、前記方法において、炭酸水素塩は炭酸水素ナトリウムであることが好適である。
また、前記方法において、炭酸水素ナトリウムは0.04〜0.7mol/lとなるように添加されることが好適である。
このように本発明にかかる製造方法は、水系、すなわち有機溶媒を一切使用せずに環状ジグルタミルペプチドの製造が可能であるため、環境に調和した新しい物質変換プロセスの開発への扉を開くクリーンクリーンケミストリーの一例でもある。
Moreover, in the said method, it is suitable for alkaline hydrogencarbonate to be added in the density | concentration from which the aqueous solution of this hydrogencarbonate becomes pH7.5-9.5.
In the above method, the bicarbonate is preferably sodium bicarbonate.
Moreover, in the said method, it is suitable to add sodium hydrogencarbonate so that it may become 0.04-0.7 mol / l.
As described above, the production method according to the present invention can produce cyclic diglutamyl peptides without using an aqueous system, that is, without using any organic solvent. Therefore, a clean process that opens the door to the development of a new material conversion process in harmony with the environment. It is also an example of clean chemistry.

以上説明したように本発明にかかる環状ジグルタミルペプチドの製造方法によれば、グルタミン酸を炭酸水素塩とともに100〜145℃に維持するのみで、きわめて高純度の環状ジグルタミルペプチドを製造することが可能となる。   As described above, according to the method for producing a cyclic diglutamyl peptide according to the present invention, it is possible to produce an extremely high-purity cyclic diglutamyl peptide only by maintaining glutamic acid together with a bicarbonate at 100 to 145 ° C. It becomes.

本発明者は、有機溶媒を一切使用しないL−グルタミン酸(あるいはD−グルタミン酸)の環状γ−ジグルタミルペプチドの調整を試み、トータル収率98%以上で主目的物LL体(あるいはDD体)を選択的に得る製造法を確立した。生成物は種々の測定モードによるMS、NMR、IR、CDスペクトルから高純度の環状γ−グルタミルジグルタミルペプチドと確認された。   The present inventor tried to prepare a cyclic γ-diglutamyl peptide of L-glutamic acid (or D-glutamic acid) without using any organic solvent, and obtained the main target LL form (or DD form) in a total yield of 98% or more. A selective production method was established. The product was confirmed to be a highly pure cyclic γ-glutamyl diglutamyl peptide from MS, NMR, IR and CD spectra by various measurement modes.

図1に示す反応式により環状γ−ジグルタミルペプチドの製造を行った。すなわち、市販L−グルタミン酸を2.7%NaHCO水溶液(pH7.8)に加え、封管中118〜120℃で72時間加熱した。冷却後、この反応溶液をアンバーライトIRC−50弱陽イオン交換樹脂に通じ、未反応のNaHCOを除き、得られた溶出液を減圧乾固し、主生成物(1a)を得た。図2に主生成物1aのFD−MSチャートを示す(HR-MS:m/z 325.0385 Na付加分子イオンとして)。
また、これを1.0%KHSO(pH2.0)に溶解し、同量のブタノールで分配してNaフリー(pH2.2−2.3)のペプチド(1)を調製した。図3にNaフリーペプチド1のMSチャートを示す(ESI-MS negative mode:m/z 257 [M-H]-)。
A cyclic γ-diglutamyl peptide was produced according to the reaction formula shown in FIG. That is, commercially available L-glutamic acid was added to a 2.7% aqueous NaHCO 3 solution (pH 7.8) and heated in a sealed tube at 118 to 120 ° C. for 72 hours. After cooling, the reaction solution was passed through an Amberlite IRC-50 weak cation exchange resin to remove unreacted NaHCO 3 and the obtained eluate was dried under reduced pressure to obtain a main product (1a). FIG. 2 shows an FD-MS chart of the main product 1a (as HR-MS: m / z 325.0385 Na addition molecular ion).
Further, this was dissolved in 1.0% KHSO 4 (pH 2.0), and partitioned with the same amount of butanol to prepare Na-free (pH 2.2-2.3) peptide (1). FIG. 3 shows an MS chart of Na-free peptide 1 (ESI-MS negative mode: m / z 257 [MH] ).

一方、D−グルタミン酸から得られたものは、前記L−グルタミン酸から得られたものと全く同一のMS、NMR−DATAを与え、比旋光度は逆の符号を示した。また、L−、D−グルタミン酸の1:1混合物を同じく処理したところ、前記同様のMS、NMR−DATAを与える主生成物が得られたが、このものは旋光性を示さなかった。
次に本発明者は炭酸水素塩濃度、及び反応条件を変え反応結果(混合物)中の原料、中間体、目的物の比率を定量した。定量は、反応結果の与える1H-NMR(D2O, 45℃)スペクトル中のメチンプロトンシグナル(OC-CH-NH)の与える面積比により行った。
分解物については分子構造が特定できていないので、そのシグナルから原料、中間体、生成物との比較のための生成モル比は推定できない。
On the other hand, what was obtained from D-glutamic acid gave the same MS and NMR-DATA as those obtained from L-glutamic acid, and the specific rotation showed the opposite sign. Moreover, when the 1: 1 mixture of L- and D-glutamic acid was processed similarly, the main product which gave the same MS and NMR-DATA as the above was obtained, but this thing did not show optical activity.
Next, the inventor varied the bicarbonate concentration and the reaction conditions, and quantified the ratios of the raw material, intermediate, and target product in the reaction result (mixture). The quantification was performed by the area ratio given by the methine proton signal (OC—C H —NH) in the 1 H-NMR (D 2 O, 45 ° C.) spectrum given by the reaction result.
Since the molecular structure of the decomposed product has not been specified, the product molar ratio for comparison with the raw material, intermediate, and product cannot be estimated from the signal.

なお、用いた試薬は以下のとおりである。
グルタミン酸(メルク社製 特級)--------- Glu
炭酸水素ナトリウム (和光純薬製 特級)---NaHCO3
H2O (蒸留水 pH 6.5-7.5)---H2O
以上を沸石とともに耐熱製ガラスチューブ(15 ml入り)に入れフッ素樹脂製ネジ口キャップで密封後、所定の温度と時間により処理し、脱塩後、NMRの測定を行った。
以下に、各種反応条件の検討結果を示す。
The reagents used are as follows.
Glutamic acid (special grade by Merck) -------- Glu
sodium hydrogen carbonate (Special grade manufactured by Wako Pure Chemicals) --- NaHCO 3
H 2 O (Distilled water pH 6.5-7.5) --- H 2 O
The above was put together with zeolite in a heat-resistant glass tube (containing 15 ml), sealed with a fluorine resin screw cap, treated at a predetermined temperature and time, desalted, and then subjected to NMR measurement.
Below, the examination result of various reaction conditions is shown.

[反応条件の検討]
(表1)
試験例 1 2 3 4 5
原料
グルタミン酸 60mg 60mg 60mg 60mg 60mg
炭酸水素ナトリウム 240mg 240mg 240mg 240mg 240mg
水 9ml 9ml 9ml 9ml 9ml
反応条件
温度 110℃ 120℃ 135℃ 140℃ 145℃
時間 48h 48h 48h 20h 14h
生成物
原料 1.83 0.01 0.01 0 0
中間体 1.0 0.0 0.0 0 0
目的物 2.79 1.0 1.0 1.0 12.71
分解物 5.62 N.D N.D 0.04 5.67
[Examination of reaction conditions]
(Table 1)
Test example 1 2 3 4 5
Raw material Glutamic acid 60mg 60mg 60mg 60mg 60mg
Sodium bicarbonate 240mg 240mg 240mg 240mg 240mg
Water 9ml 9ml 9ml 9ml 9ml
Reaction conditions
Temperature 110 ° C 120 ° C 135 ° C 140 ° C 145 ° C
Time 48h 48h 48h 20h 14h
Product
Raw material 1.83 0.01 0.01 0 0
Intermediate 1.0 0.0 0.0 0 0
Target 2.79 1.0 1.0 1.0 12.71
Decomposed product 5.62 ND ND 0.04 5.67

上記結果より明らかなように、グルタミン酸の環化は100℃以上で進行するが、収率、分解物の生成量を考慮すると110〜140℃が好ましく、145℃になると収率は良好であるが大量の分解物が生成する傾向にある。
原料、中間体については下記化4〜6に示すように構造が明らかであり、除去が容易であるが、分解産物については構造不明の物質が多く、除去が困難である。
したがって、反応温度は100〜145℃、好ましくは110〜140℃であり、本発明者の詳細な検討によれば118〜120℃がもっとも好ましい。

Figure 0004462999
Figure 0004462999
Figure 0004462999
As is clear from the above results, the cyclization of glutamic acid proceeds at 100 ° C. or higher, but it is preferably 110 to 140 ° C. in consideration of the yield and the amount of decomposition products, and the yield is good at 145 ° C. There is a tendency to produce a large amount of decomposition products.
The raw materials and intermediates have clear structures as shown in the following chemical formulas 4 to 6 and can be easily removed, but the decomposition products are difficult to remove because there are many substances whose structures are unknown.
Therefore, the reaction temperature is 100 to 145 ° C., preferably 110 to 140 ° C., and 118 to 120 ° C. is most preferable according to the detailed examination of the present inventors.
Figure 0004462999
Figure 0004462999
Figure 0004462999

次に本発明者は、反応温度と反応時間の関係についてさらに検討を行った。
(表2)
試験例 6 7 8
原料
グルタミン酸 60mg 60mg 60mg
炭酸水素ナトリウム 60mg 60mg 60mg
水 9ml 9ml 9ml
反応条件
温度 100℃ 100℃ 100℃
時間 24h 48h 72h
生成物
原料 0.1 0 0
中間体 11.28 5.96 4.24
目的物 1.0 1.0 1.56
分解物 N.D N.D N.D
Next, the present inventor further examined the relationship between the reaction temperature and the reaction time.
(Table 2)
Test example 6 7 8
Raw material Glutamic acid 60mg 60mg 60mg
Sodium bicarbonate 60mg 60mg 60mg
Water 9ml 9ml 9ml
Reaction conditions
Temperature 100 100 100 ℃
Time 24h 48h 72h
Product
Raw material 0.1 0 0
Intermediate 11.28 5.96 4.24
Target 1.0 1.0 1.56
Decomposed product ND ND ND

表2より明らかなように、反応温度が低い場合には分解物の生成は少ないが、目的物の収率は反応時間を長くしてもさほど上昇しない。
(表3)
試験例 9 10 11
原料
グルタミン酸 60mg 60mg 60mg
炭酸水素ナトリウム 240mg 240mg 240mg
水 9ml 9ml 9ml
反応条件
温度 120℃ 120℃ 120℃
時間 6h 24h 48h
生成物
原料 1.0 1.0 1.0
中間体 0.0 0.0 0.0
目的物 3.7 5.95 14.3
分解物 N.D. N.D. N.D
As is clear from Table 2, when the reaction temperature is low, the generation of decomposition products is small, but the yield of the target product does not increase so much even if the reaction time is increased.
(Table 3)
Test example 9 10 11
Raw material Glutamic acid 60mg 60mg 60mg
Sodium bicarbonate 240mg 240mg 240mg
Water 9ml 9ml 9ml
Reaction conditions
Temperature 120 120 120 ℃
Time 6h 24h 48h
Product
Raw material 1.0 1.0 1.0
Intermediate 0.0 0.0 0.0
Target 3.7 5.95 14.3
Decomposed product NDNDND

表3より明らかなように、反応温度120℃では収率、純度の両観点から極めて良好な結果が得られ、特に24〜72時間の反応で良好な収率が得られた。
(表4)
試験例 12 13 14 15 5
原料
グルタミン酸 60mg 60mg 60mg 60mg 60mg
炭酸水素ナトリウム 240mg 240mg 240mg 240mg 240mg
水 9ml 9ml 9ml 9ml 9ml
反応条件
温度 145℃ 145℃ 145℃ 145℃ 145℃
時間 0.5h 1.0h 2.0h 6.0h 14.0h
生成物
原料 1.07 1.00 0.11 0 0
中間体 1.82 3.00 0.22 0 0
目的物 1.00 3.81 1.0 12.71 12.71
分解物 5.79 9.00 0.78 5.67 5.71
As is apparent from Table 3, a very good result was obtained at a reaction temperature of 120 ° C. from both viewpoints of yield and purity, and a good yield was obtained particularly in a reaction for 24 to 72 hours.
(Table 4)
Test example 12 13 14 15 5
Raw material Glutamic acid 60mg 60mg 60mg 60mg 60mg
Sodium bicarbonate 240mg 240mg 240mg 240mg 240mg
Water 9ml 9ml 9ml 9ml 9ml
Reaction conditions
Temperature 145 ° C 145 ° C 145 ° C 145 ° C 145 ° C
Time 0.5h 1.0h 2.0h 6.0h 14.0h
Product
Raw material 1.07 1.00 0.11 0 0
Intermediate 1.82 3.00 0.22 0 0
Target 1.00 3.81 1.0 12.71 12.71
Decomposed product 5.79 9.00 0.78 5.67 5.71

以上のように、反応温度を上昇させると短時間で反応が進行するようになり、145℃においては6時間で98%以上の収率が得られるが、分解物も多くなる傾向にある。
このため、反応効率の観点からは100℃以上、特に110℃以上が好ましく、収率を向上させるという観点からは145℃以下、また純度を向上させるという観点からは140℃以下で反応させることが好ましい。
As described above, when the reaction temperature is raised, the reaction proceeds in a short time, and at 145 ° C., a yield of 98% or more is obtained in 6 hours, but the decomposition products tend to increase.
Therefore, from the viewpoint of reaction efficiency, 100 ° C. or higher, particularly 110 ° C. or higher is preferable. From the viewpoint of improving the yield, the reaction is performed at 145 ° C. or lower, and from the viewpoint of improving purity, the reaction may be performed at 140 ° C. or lower. preferable.

[炭酸水素塩の添加量]
本発明者はさらに炭酸水素塩の添加量について検討した。結果を次の表に示す。
(表5)
試験例 16 17 18 19 20
原料
グルタミン酸 60mg 60mg 60mg 60mg 60mg
炭酸水素ナトリウム 120mg 240mg 480mg 960mg 60mg
水 9ml 9ml 9ml 9ml 9ml
反応条件
温度 110℃ 110℃ 110℃ 110℃ 140℃
時間 48h 48h 48h 48h 20h
生成物
原料 7.16 1.83 0.62 0.60 0
中間体 9.50 1.0 0.17 定量不能 0
目的物 10.38 2.79 1.00 1.18 1.0
分解物 N.D 5.62 1.79 >>100 0.04
[Addition amount of bicarbonate]
The inventor further examined the amount of bicarbonate added. The results are shown in the following table.
(Table 5)
Test example 16 17 18 19 20
Raw material Glutamic acid 60mg 60mg 60mg 60mg 60mg
Sodium bicarbonate 120mg 240mg 480mg 960mg 60mg
Water 9ml 9ml 9ml 9ml 9ml
Reaction conditions
Temperature 110 ° C 110 ° C 110 ° C 110 ° C 140 ° C
Time 48h 48h 48h 48h 20h
Product
Raw material 7.16 1.83 0.62 0.60 0
Intermediate 9.50 1.0 0.17 Not quantifiable 0
Target 10.38 2.79 1.00 1.18 1.0
Degradation product ND 5.62 1.79 >> 100 0.04

なお、試験例19については中間体は分解物のシグナルと重複し、定量不能であった。
さらに詳細な検討の結果、炭酸水素ナトリウム(炭酸水素塩)は60mg/9ml(0.04mol/L)から480mg/9ml(1.28mol/L)で反応は進行するが、特に良好には120mg/9ml(0.32mol/L;pH8.1(単独水溶液))〜240mg/9ml(0.64mol/L;pH9.0)の場合に特に良好である。960mg/L(略飽和濃度)になると分解産物が大量に生じるようになる。
さらに詳細な検討の結果、炭酸水素塩は単独水溶液でpH7.5〜9.5程度となるように調整することで、目的物の製造が可能であり、特に高純度、高効率を図る場合にはpH8〜9が好ましい。
In Test Example 19, the intermediate was overlapped with the signal of the decomposition product and could not be quantified.
As a result of further detailed examination, the reaction proceeds from 60 mg / 9 ml (0.04 mol / L) to 480 mg / 9 ml (1.28 mol / L) of sodium hydrogen carbonate (bicarbonate). It is particularly favorable in the case of 9 ml (0.32 mol / L; pH 8.1 (single aqueous solution)) to 240 mg / 9 ml (0.64 mol / L; pH 9.0). When it reaches 960 mg / L (substantially saturated concentration), a large amount of degradation products are generated.
As a result of further detailed examination, the bicarbonate can be adjusted to a pH of about 7.5 to 9.5 with a single aqueous solution, whereby the target product can be produced, particularly when high purity and high efficiency are to be achieved. Is preferably pH 8-9.

以上のように、グルタミン酸(MW 147, 0.045mol/L=60mg/9mL)に対しNaHCO3(特に好ましくはMW 83, 0.321mol/L=240mg/9ml〜0.642mol/L=480mg/9mL;平均0.48 mol/L)を加え、密封反応試験管中で118-120℃に加熱すると72hr.で目的物がほぼ98%以上で生成する。
また反応温度をこれより上げれば生成時間は短縮する(145℃で6hr、98%生成、原料消失)が同時に分解物も生成し始めるため、反応後の単純な精製操作が可能な条件(135℃で48hr、140℃で20hr、いずれも98%生成)としては140℃までが好ましいと思われる。
As described above, NaHCO 3 (particularly preferably MW 83, 0.321 mol / L = 240 mg / 9 ml to 0.642 mol / L = 480 mg / 9 mL; average 0.48 with respect to glutamic acid (MW 147, 0.045 mol / L = 60 mg / 9 mL) mol / L) is added and heated to 118-120 ° C in a sealed reaction tube, the target product is produced in almost 98% in 72 hr.
If the reaction temperature is raised above this, the production time will be shortened (6 hr at 145 ° C, 98% production, disappearance of raw materials), but at the same time, decomposition products will start to be produced. 48 hours, 20 hours at 140 ° C., and 98% production in both cases) up to 140 ° C. seems preferable.

アルカリ濃度については本条件[NaHCO3 aq.; 0.321 mol/L(pH8.1、室温)〜0.642 mol/L(pH9.0、室温)]を超えると加熱時に反応溶液のpHが理論上pH9.5-10以上となる為、これによる原料のラセミ化が危惧され採用しがたい。
一方、アルカリ濃度あるいは反応温度が本条件より低い場合は、目的物の生成は少なく、中間体の生成に留まる傾向にある。すなわち中間体が反応溶液の加熱によって精製する炭酸-グルタミン酸Na複合体と推定されるため、中間体から目的物へ遷移するエネルギーが不足するためか目的物の生成が不良となり、結果、実質的な反応時間での反応完了は望めない。
When the alkali concentration exceeds this condition [NaHCO 3 aq .; 0.321 mol / L (pH 8.1, room temperature) to 0.642 mol / L (pH 9.0, room temperature)], the pH of the reaction solution is theoretically pH 9. Since it becomes 5-10 or more, it is feared that the racemization of the raw material by this will be difficult to adopt.
On the other hand, when the alkali concentration or the reaction temperature is lower than this condition, the production of the target product is small and the production of the intermediate tends to remain. In other words, since the intermediate is presumed to be a carbonate-glutamate Na complex that is purified by heating the reaction solution, the production of the target becomes poor because of the lack of energy to transition from the intermediate to the target. The reaction cannot be completed in the reaction time.

なお、本発明において、アミノ酸はα位以外にカルボニル基を有すれば特に限定されるものではないが、特にグルタミン酸が好ましい。
また、炭酸水素塩も特に限定されるものではないが、炭酸水素カリウム、炭酸水素ナトリウムなどのアルカリ性炭酸水素塩、特に炭酸水素ナトリウムが好ましい。
なお、炭酸水素カリウムを用いた場合の結果を以下に示す。
(表6)
試験例 21 22 23
原料
グルタミン酸 60mg 60mg 60mg
炭酸水素カリウム 286mg 286mg 286mg
水 9ml 9ml 9ml
反応条件
温度 120℃ 120℃ 120℃
時間 6h 24h 48h
生成物
原料 1.0 1.0 1.0
中間体 0.0 0.0 0.0
目的物 6.76 10.17 15.9
分解物 0.6 0.6 0.6
In the present invention, the amino acid is not particularly limited as long as it has a carbonyl group other than the α-position, but glutamic acid is particularly preferable.
The hydrogen carbonate is not particularly limited, but alkaline hydrogen carbonate such as potassium hydrogen carbonate and sodium hydrogen carbonate, particularly sodium hydrogen carbonate is preferable.
In addition, the result at the time of using potassium hydrogencarbonate is shown below.
(Table 6)
Test example 21 22 23
Raw material Glutamic acid 60mg 60mg 60mg
Potassium bicarbonate 286mg 286mg 286mg
Water 9ml 9ml 9ml
Reaction conditions
Temperature 120 120 120 ℃
Time 6h 24h 48h
Product
Raw material 1.0 1.0 1.0
Intermediate 0.0 0.0 0.0
Target 6.76 10.17 15.9
Decomposed product 0.6 0.6 0.6

炭酸水素ナトリウムを用いた場合と比較し、やや分解物の生成が多い傾向にあるが、収率は良好であり、炭酸水素塩を広く用いることが可能である。
また、本発明により製造された環状γ−ジグルタミルペプチドは、必要に応じて各種金属塩(Na、K、Znなど)として提供することができる。
Compared with the case where sodium hydrogen carbonate is used, there is a tendency that somewhat more decomposed products are produced, but the yield is good, and a wide range of hydrogen carbonates can be used.
Moreover, the cyclic γ-diglutamyl peptide produced according to the present invention can be provided as various metal salts (Na, K, Zn, etc.) as necessary.

本発明の反応式の説明図である。It is explanatory drawing of the reaction formula of this invention. 本発明により製造された環状γ−ジグルタミルペプチドのNa塩のMSチャートである。1 is an MS chart of Na salt of cyclic γ-diglutamyl peptide produced according to the present invention. 本発明により製造された環状γ−ジグルタミルペプチドのNaフリー体のMSチャートである。2 is an MS chart of Na-free γ-diglutamyl peptide produced according to the present invention.

Claims (4)

グルタミン酸又はその塩に、アルカリ性炭酸水素塩XHCO(Xはアルカリ金属)を添加し、100〜145℃で加熱処理することを特徴とする、下記化1に示す環状ジグルタミルペプチド又はその塩の製造方法。
Figure 0004462999
Production of cyclic diglutamyl peptide represented by the following chemical formula 1 or a salt thereof, characterized in that an alkaline hydrogen carbonate XHCO 3 (X is an alkali metal) is added to glutamic acid or a salt thereof and heat-treated at 100 to 145 ° C. Method.
Figure 0004462999
請求項1に記載の方法において、アルカリ性炭酸水素塩は、該炭酸水素塩の水溶液がpH7.5〜9.5となる濃度で添加されることを特徴とする環状ジグルタミルペプチド又はその塩の製造方法。   2. The method according to claim 1, wherein the alkaline hydrogen carbonate is added at a concentration such that the aqueous solution of the hydrogen carbonate has a pH of 7.5 to 9.5. Method. 請求項2に記載の方法において、炭酸水素塩は炭酸水素ナトリウムであることを特徴とする環状ジグルタミルペプチド又はその塩の製造方法。   The method according to claim 2, wherein the bicarbonate is sodium bicarbonate, or a method for producing a cyclic diglutamyl peptide or a salt thereof. 請求項3記載の方法において、炭酸水素ナトリウムは0.04〜0.7mol/lとなるように添加されることを特徴とする環状ジグルタミルペプチド又はその塩の製造方法。   4. The method for producing a cyclic diglutamyl peptide or a salt thereof according to claim 3, wherein sodium bicarbonate is added so as to be 0.04 to 0.7 mol / l.
JP2004138652A 2004-05-07 2004-05-07 Method for producing cyclic diglutamyl peptide Expired - Fee Related JP4462999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004138652A JP4462999B2 (en) 2004-05-07 2004-05-07 Method for producing cyclic diglutamyl peptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004138652A JP4462999B2 (en) 2004-05-07 2004-05-07 Method for producing cyclic diglutamyl peptide

Publications (2)

Publication Number Publication Date
JP2005320272A JP2005320272A (en) 2005-11-17
JP4462999B2 true JP4462999B2 (en) 2010-05-12

Family

ID=35467798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004138652A Expired - Fee Related JP4462999B2 (en) 2004-05-07 2004-05-07 Method for producing cyclic diglutamyl peptide

Country Status (1)

Country Link
JP (1) JP4462999B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0597893A (en) * 1991-10-09 1993-04-20 Kyowa Hakko Kogyo Co Ltd Production of peptide
JPH05247087A (en) * 1992-03-04 1993-09-24 Kyowa Hakko Kogyo Co Ltd Production of peptide
JP2003252896A (en) * 2002-02-26 2003-09-10 Toyohashi University Of Technology Method of synthesis for cyclic peptide utilizing high- temperature and high-pressure water

Also Published As

Publication number Publication date
JP2005320272A (en) 2005-11-17

Similar Documents

Publication Publication Date Title
PAUL et al. Some side reactions of nitro-L-arginine
CN110642753A (en) Amino acid derivative
JP4462999B2 (en) Method for producing cyclic diglutamyl peptide
AU2001281827B2 (en) Method for producing 5-aminosalicyclic acid
CN106565607A (en) Synthetic method of L-carnosine
CN1145638C (en) Novel aspartyldipeptideamide derivatives and sweetener
BG107234A (en) Novel method for synthesis of n-[(s)-1-carboxybutyl]-(s)-alanine esters and use in synthesis of perindopril
JP4922152B2 (en) Method for producing fluorinated proline derivative
CU23171A3 (en) PROCEDURE FOR THE PREPARATION OF CALCIUM SALT OF ZOFENOPRIL
CN112876502B (en) Preparation method of N-trimethylsiloxyethoxycarbonyl-N-methyl-L/D-leucine
LV13705B (en) Process for producing high purity intermolecular salt of 3-carboxy-n,n,n-trimethyl-propane-1-amine hydroxide
CN100453537C (en) Process for preparing amino-acid with dual protection
JP4211339B2 (en) Inorganic salt treatment method
RU2541790C1 (en) Method of obtaining glycolic acid
JP2531501B2 (en) N-chloroacetyl glutamic acid γ-lower alkyl ester ammonium salt
JPS6259274A (en) Production of optically active phenylserine derivative
JPH01197465A (en) Novel alginine derivative, its production and use thereof in synthesis of peptide
Shiraiwa et al. Optical resolution by preferential crystallization of (RS)-α-amino-γ-butyrolactone hydrochloride
SU924038A1 (en) Process for producing optically active alpha-amino acids or their alpha-phenylethylamides
CN109438550A (en) Application of the novel carbonium ion polypeptide condensing agent in Peptide systhesis
Ghirardelli I. The Stereochemistry of the Opening of the Imine Ring with Various Reagents. II. The Attempted Reduction of Naturally Occurring Threonine to 3-Amino-2-Butanol
JPS63141995A (en) Novel active peptide
JPS6036447A (en) Preparation of phenylalanine
JPH0892197A (en) Production of 2-sulfoethylaminocarboxylic acid and its alkali metal salt and biodegradable chelating agent containing the same
JPS611669A (en) 5-benzylidenehydantoin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4462999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160226

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees