JP4459727B2 - Air conditioning control system for buildings - Google Patents

Air conditioning control system for buildings Download PDF

Info

Publication number
JP4459727B2
JP4459727B2 JP2004175088A JP2004175088A JP4459727B2 JP 4459727 B2 JP4459727 B2 JP 4459727B2 JP 2004175088 A JP2004175088 A JP 2004175088A JP 2004175088 A JP2004175088 A JP 2004175088A JP 4459727 B2 JP4459727 B2 JP 4459727B2
Authority
JP
Japan
Prior art keywords
air
temperature
flow rate
cold water
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004175088A
Other languages
Japanese (ja)
Other versions
JP2005351587A (en
Inventor
貴裕 朝井
豊 堀井
国彦 蓑島
史八 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Panasonic Ecology Systems Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Panasonic Ecology Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd, Panasonic Ecology Systems Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2004175088A priority Critical patent/JP4459727B2/en
Publication of JP2005351587A publication Critical patent/JP2005351587A/en
Application granted granted Critical
Publication of JP4459727B2 publication Critical patent/JP4459727B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02B30/746

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、建築等に採用される空調制御システムに係り、特に、省エネルギーを目的としたビルディング用空調制御システムに関するものである。   The present invention relates to an air-conditioning control system employed in buildings and the like, and more particularly to a building air-conditioning control system for energy saving purposes.

従来のこの種の空調制御システムにおいて、空調設備では空調空間内の快適性を確保しながら外気冷房、給気温度制御、VAV制御および風量制御等により省エネルギーを図る一方、熱源設備においても熱源機器の容量制御および台数制御、ポンプの台数制御、インバータ制御およびVWV制御等による省エネルギーを図っている。   In this type of conventional air-conditioning control system, air-conditioning equipment is designed to conserve energy by maintaining the comfort of the air-conditioned space, while cooling outside air, controlling supply air temperature, controlling VAV, and controlling air volume. Energy saving is achieved through capacity control and unit control, pump unit control, inverter control, VWV control, and the like.

このような空調制御システムでは、熱源設備において、冷房負荷の高い日の起動時には、電動2方弁の開度が全開になるためポンプ装置は次々増段する。そして、一般的にポンプの揚程および電動2方弁の口径等に余裕があり、かつ前記空調設備の熱交換器は、計算列数に対して最大負荷よりも余裕を持っている。それらにより、前記電動2方弁が全開になれば最大負荷時の2倍から3倍等の流量が前記全熱交換器を流れる状態になり、還り側冷水の温度が熱源の適正な温度に対して低い状態で冷凍機に還っていく。また、冷房負荷が軽くなると、熱源機器における熱媒としての冷水の流量制御が熱量に対して適正になされていない状態が生じている。従って、空調空間内の快適な空調が確保されていても、冷水の送り・還り温度差が一定に維持されず、熱源設備において搬送動力のみならず冷凍機の成績係数を低下させ、省エネルギーが適正にされていないのが実情である。   In such an air conditioning control system, when the heat source facility is started on a day when the cooling load is high, the opening degree of the electric two-way valve is fully opened, and therefore the pump device is increased in stages. In general, there is a margin in the pump head, the diameter of the electric two-way valve, and the like, and the heat exchanger of the air conditioning equipment has a margin over the maximum load with respect to the number of calculation columns. As a result, when the electric two-way valve is fully opened, the flow rate of 2 to 3 times the maximum load flows through the total heat exchanger, and the temperature of the return side cold water is less than the appropriate temperature of the heat source. And return to the refrigerator in a low state. Further, when the cooling load is lightened, there is a state where the flow rate control of the cold water as the heat medium in the heat source device is not properly performed with respect to the amount of heat. Therefore, even if comfortable air conditioning in the air-conditioned space is ensured, the difference in temperature between the supply and return of chilled water is not maintained constant, and the coefficient of performance of the refrigerator as well as the conveyance power is reduced in the heat source equipment, so that energy saving is appropriate. The fact is that it has not been made.

このため、下記非特許文献1により開示されているように、空調制御システムの中で冷水の送り・還りの温度差制御を適正に行うという提案がなされている。
「オールインワン型空調機の開発−冷温水の往・返温度差を確保する空調機」社団法人空気調和・衛生工学会による平成15年9月発行空気調和・衛生工学第77巻第9号769頁〜770頁
For this reason, as disclosed by Non-Patent Document 1 below, a proposal has been made to appropriately control the temperature difference between the feeding and returning of cold water in the air conditioning control system.
"Development of an all-in-one type air conditioner-Air conditioner that secures the difference in the temperature between the return and return of cold and hot water" issued by the Japan Society for Air Conditioning and Hygiene Engineering, September 2003 ~ 770 pages

このような従来の空調制御システムでは、冷房負荷の高い日の起動時において、空気調和装置の熱交換器の設計流量である最大流量値を大きく超えることになり、熱交換器の送りと還り側冷水の温度差が確保できないため、熱源設備の省エネルギーを図れないという課題があった。   In such a conventional air-conditioning control system, the maximum flow rate value, which is the design flow rate of the heat exchanger of the air conditioner, is greatly exceeded at the start of the day when the cooling load is high, and the heat exchanger feed and return side Since the temperature difference of cold water could not be secured, there was a problem that energy saving of the heat source facility could not be achieved.

また冷房負荷が軽くなってきた場合には、空調空間内の温度を設定温度に維持する制御をおこなっているが、冷水の送り・還りの温度差を確保する制御はおこなわれていないため、還り側冷水の温度は成り行きとなり冷凍機への還り側冷水の温度が不安定となるため、熱源設備の省エネルギーを図れないという課題があった。   In addition, when the cooling load becomes lighter, control is performed to maintain the temperature in the air-conditioned space at the set temperature, but control is not performed to ensure the temperature difference between the feed and return of the chilled water. Since the temperature of the side chilled water becomes a course and the temperature of the chilled water returned to the refrigerator becomes unstable, there is a problem that energy saving of the heat source facility cannot be achieved.

また上記非特許文献1にも、冷水の送り・還りの温度差制御を適正に行うための具体的な提案が十分にはなされていない。   Moreover, the non-patent document 1 does not sufficiently provide a specific proposal for appropriately controlling the temperature difference between the feeding and returning of cold water.

そこで、本発明は、このような観点から、空調空間内の冷房負荷に併せ、送り側冷水と還り側冷水との温度差を適正に維持して、冷凍機への還り側冷水の温度が適正に行なわれるようにするビルディング用空調制御システムを提供することを目的とする。   Therefore, the present invention, from such a point of view, in accordance with the cooling load in the air-conditioned space, appropriately maintains the temperature difference between the feed side cold water and the return side cold water, and the temperature of the return side cold water to the refrigerator is appropriate. An object of the present invention is to provide a building air-conditioning control system to be carried out.

上記課題の解決にあたり、本発明に係るビルディング用空調制御システムは、請求項1の記載によれば、複数の空気調和装置(U)と、冷凍機(R)と、この冷凍機により冷却される冷水を送り側冷水として複数の空気調和装置に供給するポンプ装置(Pu)とを備え、各空気調和装置は、熱交換器(30)と、給気送風機(40)とを有し、熱交換器に流入する空気流と上記送り側冷水とを熱交換器にて熱交換させた後、上記送り側冷水を還り側冷水として冷凍機に還流するとともに上記空気流を給気送風機によりその回転数に応じた量にて給気風量として空調空間(F)内に給気する。   In solving the above-described problems, a building air conditioning control system according to the present invention is cooled by a plurality of air conditioners (U), a refrigerator (R), and the refrigerator according to claim 1. A pump device (Pu) for supplying cold water to the plurality of air conditioners as feed side cold water, each air conditioner having a heat exchanger (30) and an air supply blower (40), and heat exchange After heat exchange between the air flow flowing into the cooler and the feed side cold water in a heat exchanger, the feed side cold water is returned to the refrigerator as return side cold water and the air flow is rotated at the rotational speed by the air supply blower. The air is supplied into the air-conditioned space (F) as an air supply amount with an amount corresponding to the above.

当該ビルディング用空調制御システムにおいて、各空気調和装置は、上記空調空間から空気調和装置にて還気される還気温度を検出する還気温センサ(80a)と、給気送風機から熱交換器での熱交換後の給気温度を検出する給気温センサ(80b)と、上記送り側或いは還り側の冷水の流量を冷水流量として検出する流量センサ(52)と、上記送り側冷水の温度を送り側冷水温として検出する送り側水温センサ(53)と、上記還り側冷水の温度を還り側冷水温として検出する還り側水温センサ(54)とを有し、弁本体(60a)及びこの弁本体を駆動する弁駆動手段(60b)を有する電動2方弁(60)と、インバータ(70a)と、データ処理手段を有する空調制御器(70b)とを備える。   In the air conditioning control system for buildings, each air conditioner includes a return air temperature sensor (80a) for detecting a return air temperature returned from the air-conditioned space by the air conditioner, and a supply air blower to a heat exchanger. A supply air temperature sensor (80b) for detecting the supply air temperature after heat exchange, a flow rate sensor (52) for detecting the flow rate of the cooling water on the feed side or return side as a cold water flow rate, and the temperature on the feed side cold water on the feed side A feed-side water temperature sensor (53) that detects the cold water temperature, and a return-side water temperature sensor (54) that detects the temperature of the return-side cold water as the return-side cold water temperature. The valve body (60a) and the valve body An electric two-way valve (60) having a valve driving means (60b) for driving, an inverter (70a), and an air conditioning controller (70b) having a data processing means are provided.

ここで、データ処理手段は、前記流量センサからの検出冷水流量が最大流量を超えるとき前記弁本体の開度を絞る最大流量設定手段(102)と、前記送り側水温センサ及び還り側水温センサからの上記検出送り側水温及び上記検出還り側水温の間の水温差が設定水温度差と異なるとき、この設定水温度差を維持するように弁本体の開度を決定する温度差流量制限手段(110)と、還気温センサからの検出温度に基づき空調空間内の温度を設定温度にするように給気送風機の回転数を決定する回転数決定手段(120)と、前記給気送風機の回転数が軽負荷に対応する値になったとき、前記空調空間内の温度を設定温度に維持するように前記弁本体の開度を決定する空間内温度制御手段(150)とを備え、前記弁駆動手段は、前記流量センサからの検出冷水流量が最大流量を超えるときには、前記最大流量設定手段により前記弁本体の開度を調節し、前記流量センサからの検出冷水流量が最大流量を下回るときには、前記温度差流量制限手段による決定開度となるように前記弁本体を駆動し、この駆動後、前記インバータは、前記回転数決定手段による前記給気送風機の決定回転数に基づき当該給気送風機の回転数を制御し、この制御に伴い前記給気送風機の回転数が軽負荷に対応する値になったとき、前記弁駆動手段は、前記空間内温度制御手段による決定開度となるように前記弁本体を駆動することを特徴とする。 Here, the data processing means includes a maximum flow rate setting means (102) for restricting an opening degree of the valve body when a detected cold water flow rate from the flow rate sensor exceeds a maximum flow rate, and a feed side water temperature sensor and a return side water temperature sensor. When the water temperature difference between the detected feed side water temperature and the detected return side water temperature is different from the set water temperature difference, a temperature difference flow rate restricting means for determining the opening of the valve body so as to maintain the set water temperature difference ( 110), a rotation speed determining means (120) for determining the rotation speed of the supply air blower so that the temperature in the air-conditioned space is set to the set temperature based on the temperature detected from the return air temperature sensor, and the rotation speed of the supply air blower And a temperature control means (150) in the space for determining the opening of the valve body so as to maintain the temperature in the air-conditioned space at a set temperature when the value becomes a value corresponding to a light load. It means the flow cell When the detection coolant flow rate from the difference exceeds the maximum flow rate, the maximum by the flow rate setting means adjusts the degree of opening of the valve body, when the detected coolant flow rate from the flow sensor is below a maximum flow rate, the temperature difference flow restriction The valve body is driven so that the determined opening becomes, and after this driving, the inverter controls the rotation speed of the supply air blower based on the determined rotation speed of the supply air blower by the rotation speed determination means, When the rotational speed of the air supply blower becomes a value corresponding to a light load in accordance with this control, the valve driving means drives the valve main body so as to have an opening determined by the in-space temperature control means. It is characterized by.

これにより、当該空調制御システムの起動時において空調空間内が高負荷状態にあるとき、熱交換器を流れる冷水流量が熱交換器の最大流量値を超えないように電動2方弁が制御される。その結果、ポンプ装置は過剰運転を生じることなく最適流量の供給を行い搬送動力の低減を図ると同時に、熱交換器への送り側冷水の過剰な量の流入、換言すれば、熱交換器の熱交換能力を超えるような冷水の当該熱交換器への流入を招くことなく、熱交換器の熱交換能力を有効に発揮させ得るため、冷凍機への還り温度が適正に行なわれ、冷凍機の成績係数を高めることができ熱源系統の省エネルギー化を確保できる。   Thus, when the air-conditioned space is in a high load state when the air-conditioning control system is activated, the electric two-way valve is controlled so that the flow rate of cold water flowing through the heat exchanger does not exceed the maximum flow rate value of the heat exchanger. . As a result, the pump device supplies the optimum flow rate without causing excessive operation to reduce the conveyance power, and at the same time, an excessive amount of feed side cold water flows into the heat exchanger, in other words, the heat exchanger. In order to effectively exhibit the heat exchange capacity of the heat exchanger without causing inflow of cold water exceeding the heat exchange capacity into the heat exchanger, the return temperature to the refrigerator is appropriately performed, and the refrigerator The coefficient of performance can be increased and energy saving of the heat source system can be secured.

そして、上述のように最大流量設定値以上の冷水が流れないようになった場合、その流量の範囲内において、熱交換器への送り側冷水の温度と当該熱交換器からの還り側冷水の温度との水温差が設定水温度差と異なれば、電動2方弁の弁本体の開度が上記検出送り側水温及び上記検出還り側水温に応じて上記設定水温度差を維持するように制御される。そして、このように設定水温度差を維持するように電動2方弁の弁本体の開度が制御されるに伴い、給気送風機の回転数が還気温センサの検出温度に基づき空調空間内の実際の温度を設定温度にするように制御される。そのため、上記送り側水温と上記還り側水温との間の温度差を上記設定水温度差に維持することで熱交換器を流れる冷水の量が適正に制御され、その結果、空調空間内の温度を設定温度に維持しつつ、熱交換器の熱交換能力を有効に利用し得ることとなる。よって、空調空間内の快適な空調の維持に併せ、冷却装置への還り温度が適正に行なわれるため、成績係数を高めることができ熱源系統の省エネルギー化を確保できる。   When the chilled water exceeding the maximum flow rate set value does not flow as described above, the temperature of the feed side chilled water to the heat exchanger and the return side chilled water from the heat exchanger are within the range of the flow rate. If the water temperature difference from the temperature is different from the set water temperature difference, the opening degree of the valve body of the electric two-way valve is controlled so as to maintain the set water temperature difference according to the detected feed side water temperature and the detected return side water temperature. Is done. And as the opening degree of the valve body of the electric two-way valve is controlled so as to maintain the set water temperature difference in this way, the rotation speed of the supply air blower is adjusted in the conditioned space based on the detected temperature of the return air temperature sensor. The actual temperature is controlled to be the set temperature. Therefore, the amount of cold water flowing through the heat exchanger is appropriately controlled by maintaining the temperature difference between the feed-side water temperature and the return-side water temperature at the set water temperature difference. The heat exchange capability of the heat exchanger can be effectively utilized while maintaining the temperature at the set temperature. Therefore, since the return temperature to the cooling device is appropriately performed along with the maintenance of comfortable air conditioning in the air-conditioned space, the coefficient of performance can be increased and energy saving of the heat source system can be ensured.

また、このような空調制御処理を行なう中で空調空間内が軽負荷状態になった後は、給気送風機の回転数を一定回転数に制限し、電動2方弁の弁本体の開度が、還気温センサからの検出温度に応じて空調空間内の温度を設定温度に維持するように制御される。このため、空調空間内が冷えすぎることもなく快適な空調の維持に併せ、上記送り側水温と上記還り側水温との間の温度差を上記設定水温度差に実質的に維持することで、冷凍機への還り温度が適正に行なわれるため、成績係数を高め当該空調制御システムにおける熱源系統の省エネルギー化を実現できる。   Further, after the air-conditioned space is lightly loaded while performing such air conditioning control processing, the rotational speed of the air supply blower is limited to a constant rotational speed, and the opening degree of the valve body of the electric two-way valve is The temperature in the conditioned space is controlled to be maintained at the set temperature in accordance with the detected temperature from the return air temperature sensor. For this reason, in addition to maintaining the comfortable air conditioning without being too cold in the air-conditioned space, by substantially maintaining the temperature difference between the feed-side water temperature and the return-side water temperature at the set water temperature difference, Since the return temperature to the refrigerator is appropriately performed, it is possible to increase the coefficient of performance and realize energy saving of the heat source system in the air conditioning control system.

また、本発明に係るビルディング用空調制御システムは、請求項2の記載によれば、複数の空気調和装置(U)と、冷凍機(R)と、この冷凍機により冷却される冷水を送り側冷水として複数の空調装置に供給するポンプ装置(Pu)とを備え、各空気調和装置は、熱交換器(30)と、給気送風機(40)とを有し、熱交換器に流入する空気流と上記送り側冷水とを熱交換器にて熱交換させた後、上記送り側冷水を還り側冷水として冷凍機に還流するとともに上記空気流を給気送風機によりその回転数に応じた量にて給気風量として空調空間(F)内に給気する。   According to the second aspect of the present invention, the air conditioning control system for buildings includes a plurality of air conditioners (U), a refrigerator (R), and cold water cooled by the refrigerator. A pump device (Pu) that supplies cold air to a plurality of air conditioners, and each air conditioner has a heat exchanger (30) and an air supply blower (40), and flows into the heat exchanger. After the flow and the feed side cold water are heat-exchanged in a heat exchanger, the feed side cold water is returned to the refrigerator as return side cold water and the air flow is adjusted to an amount corresponding to the number of rotations by the supply air blower. Then, air is supplied into the air-conditioned space (F) as the supply air volume.

当該ビルディング用空調制御システムにおいて、各空気調和装置は、上記空調空間から空気調和装置によって還気される還気温度を検出する還気温センサ(80a)と、給気送風機からの給気温度を検出する給気温センサ(80b)と、上記送り側或いは還り側の冷水の流量を冷水流量として検出する流量センサ(52)と、上記送り側冷水の温度を送り側冷水温として検出する送り側水温センサ(53)と、上記還り側冷水の温度を還り側冷水温として検出する還り側水温センサ(54)とを有し、上記検出冷水流量、検出送り側水温及び検出還り側水温を出力複合検出装置(50)と、弁本体の最大流量設定を保有する最大流量設定手段の処理に加え、弁本体(60a)及びこの弁本体の開度を制御し、複合検出装置からの検出冷水流量が最大流量を超えるとき弁本体の開度を絞る弁制御手段(60c)を有する電動2方弁(60)と、インバータ(70a)及びデータ処理手段を有するインバータ装置(70)とを備え、
前記最大流量設定手段は、前記複合検出装置からの検出冷水流量が最大流量を超えるとき前記弁本体の開度を絞り調節し、そして、前記データ処理手段は、前記給気温センサからの検出温度に基づき空調空間内への給気流の温度を所定給気温度に維持するように電動2方弁の弁本体の開度を決定する給気温度制御手段(320)と、還気温センサからの検出温度に基づき空調空間内の温度を設定温度にするように給気送風機の回転数を決定する回転数決定手段(330)と、還気温センサからの検出温度に基づき空調空間内の温度を設定温度に維持するように弁本体の開度を決定する空間内温度制御手段(350)とを備え、前記弁制御手段は、前記流量センサからの検出冷水流量が最大流量を超えるときには、前記最大流量設定手段により複合検出装置からの上記最大流量設定値になるように弁本体の開度を調節し、前記流量センサからの検出冷水流量が最大流量を下回るときには、給気温度制御手段による決定開度となるように弁本体の開度を制御し、この制御後、インバータは、回転数決定手段による給気送風機の決定回転数に基づき当該給気送風機の回転数を制御し、この制御に伴い給気送風機の回転数が軽負荷に対応する値になったとき、弁制御手段は、空調空間内の温度を設定温度に維持するように弁本体の開度を空間内温度制御手段による決定開度に制御することを特徴とする。
In the building air conditioning control system, each air conditioner detects a return air temperature sensor (80a) that detects the return air temperature returned from the air-conditioned space by the air conditioner, and the supply air temperature from the supply air blower. A supply air temperature sensor (80b), a flow rate sensor (52) for detecting the flow rate of the cold water on the feed side or the return side as a cold water flow rate, and a feed water temperature sensor for detecting the temperature of the feed side cold water as the feed side cold water temperature (53) and a return-side water temperature sensor (54) for detecting the return-side cold water temperature as the return-side cold water temperature, and outputting the detected cold water flow rate, the detected feed-side water temperature, and the detected return-side water temperature. (50), in addition to the processing of the maximum flow rate setting means that holds the maximum flow rate setting of the valve body, the valve body (60a) and the opening degree of the valve body are controlled, and the detected cold water flow rate from the composite detection device An electric 2-way valve (60) having a valve control means for throttling the opening degree of the valve body (60c) when exceeding the maximum flow rate, and an inverter device (70) having an inverter (70a) and the data processing means,
The maximum flow rate setting means throttles and adjusts the opening of the valve body when the detected cold water flow rate from the composite detection device exceeds the maximum flow rate, and the data processing means adjusts the detected temperature from the air temperature sensor. Based on the supply air temperature control means (320) for determining the opening degree of the valve body of the electric two-way valve so as to maintain the temperature of the air supply air flow into the air-conditioned space at a predetermined supply air temperature, and the detected temperature from the return air temperature sensor Rotational speed determination means (330) for determining the rotational speed of the air supply blower so that the temperature in the conditioned space becomes the set temperature based on the temperature, and the temperature in the conditioned space is set to the set temperature based on the temperature detected from the return air temperature sensor. An internal space temperature control means (350) for determining the opening of the valve body so as to maintain the valve control means, when the detected cold water flow rate from the flow sensor exceeds the maximum flow rate , the maximum flow rate setting means By The opening of the valve body so that the maximum flow rate set point from the multiplexer detector was adjusted, when the detected coolant flow rate from the flow sensor is below a maximum flow rate, so that a decision opening by the supply air temperature control unit After the control, the inverter controls the rotation speed of the supply air blower based on the determined rotation speed of the supply air blower by the rotation speed determining means. When the rotational speed reaches a value corresponding to a light load, the valve control means controls the opening degree of the valve body to a determined opening degree by the in-space temperature control means so as to maintain the temperature in the conditioned space at the set temperature. It is characterized by that.

これにより、当該空調制御システムの起動時において空調空間内が高負荷状態にあるとき、熱交換器を流れる冷水流量が熱交換器の最大流量値を超えると、最大流量値になるように電動2方弁の弁本体の開度が設定される。その結果、ポンプ装置は過剰運転を生じることなく最適流量の供給を行い搬送動力の低減を図ると同時に、熱交換器への送り側冷水の過剰な量の流入、換言すれば、熱交換器の熱交換能力を超えるような冷水の当該熱交換器への流入を招くことなく、熱交換器の熱交換能力を有効に発揮させ得るため、冷凍機への還り温度が適正に行なわれ、冷凍機の成績係数を高めることができ熱源系統の省エネルギー化を確保できる。   Thus, when the air-conditioned space is in a high load state when the air-conditioning control system is activated, when the flow rate of chilled water flowing through the heat exchanger exceeds the maximum flow rate value of the heat exchanger, the electric 2 The opening of the valve body of the direction valve is set. As a result, the pump device supplies the optimum flow rate without causing excessive operation to reduce the conveyance power, and at the same time, an excessive amount of feed side cold water flows into the heat exchanger, in other words, the heat exchanger. In order to effectively exhibit the heat exchange capacity of the heat exchanger without causing inflow of cold water exceeding the heat exchange capacity into the heat exchanger, the return temperature to the refrigerator is appropriately performed, and the refrigerator The coefficient of performance can be increased and energy saving of the heat source system can be secured.

そして、上述のように最大流量設定値を超える冷水が流れないようになった場合、その流量の範囲内において、電動2方弁の弁本体の開度が、給気温センサからの検出温度に応じて空調空間内への給気温度を所定給気温度に維持するように制御されるとともに、給気送風機の回転数が還気温センサの検出温度に基づき空調空間内の温度を設定温度にするように制御される。このため、空調空間内の快適な空調を図ると共に、送り側水温と還り側水温との間の温度差を設定水温度差に実質的に維持して熱源系統の省エネルギー化を確保できる。   When the chilled water exceeding the maximum flow rate set value does not flow as described above, the opening degree of the valve body of the electric two-way valve corresponds to the detected temperature from the air temperature sensor within the range of the flow rate. The air supply temperature in the air-conditioned space is controlled to be maintained at a predetermined air supply temperature, and the rotation speed of the air supply fan is set to the set temperature based on the temperature detected by the return air temperature sensor. To be controlled. As a result, comfortable air conditioning in the air-conditioned space can be achieved, and the temperature difference between the feed-side water temperature and the return-side water temperature can be substantially maintained at the set water temperature difference to ensure energy saving in the heat source system.

また、このような空調制御処理をおこなう中で空調空間内が軽負荷状態になった後は、給気送風機の回転数を一定回転数に制限し、電動2方弁の弁本体の開度が、空調空間内の温度を設定温度に維持するように還気温センサからの検出温に応じ制御されるとともに、検出送り水温及び検出還り水温に応じて設定水温度差を維持するように制御される。このため、空調空間内の快適な空調の維持に併せ、送り側水温と還り側水温との間の温度差を設定水温度差に維持することで熱交換器、ひいては当該空調制御システムにおける熱源系統の省エネルギー化を確保できる。   In addition, after the air-conditioned space is lightly loaded while performing such air conditioning control processing, the rotational speed of the air supply blower is limited to a constant rotational speed, and the opening degree of the valve body of the electric two-way valve is The temperature in the air-conditioned space is controlled according to the detected temperature from the return air temperature sensor so as to maintain the set temperature, and the set water temperature difference is controlled according to the detected feed water temperature and the detected return water temperature. . For this reason, in addition to maintaining comfortable air conditioning in the air-conditioned space, the temperature difference between the feed-side water temperature and the return-side water temperature is maintained at the set water temperature difference, and thus the heat source system in the air-conditioning control system. Energy saving.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

そこで、本発明は、空調空間内が高負荷状態の場合に、電動2方弁の最大流量制御をすることにより、熱交換器への送り側冷水の過剰な量の流入を防ぎ熱交換能力を有効に発揮する。つまり、ポンプ装置は過剰な流量を流すことなく最適流量を供給し、冷凍機への還り側冷水の温度が適正に行なわれるようになる。   Therefore, the present invention prevents the inflow of an excessive amount of feed-side cold water into the heat exchanger by controlling the maximum flow rate of the electric two-way valve when the air-conditioned space is in a high load state, thereby improving the heat exchange capability. Demonstrate effectively. That is, the pump device supplies the optimum flow rate without flowing an excessive flow rate, and the temperature of the return side cold water to the refrigerator is appropriately performed.

また、空調空間内の冷房負荷に併せ、送り側冷水と還り側冷水との温度差を適正に維持して、冷凍機への還り側冷水の温度が適正に行なわれるようにすることにより、熱交換器の熱交換能力を有効に発揮させ得るため、冷凍機への還り温度が適正に行なわれ、冷凍機の成績係数を高めることができるため熱源系統の省エネルギー化を確保できる。   In addition, in accordance with the cooling load in the air-conditioned space, the temperature difference between the feed-side chilled water and the return-side chilled water is appropriately maintained so that the temperature of the return-side chilled water to the refrigerator is appropriately controlled. Since the heat exchange capability of the exchanger can be effectively exhibited, the return temperature to the refrigerator is appropriately performed, and the coefficient of performance of the refrigerator can be increased, so that energy saving of the heat source system can be ensured.

以下、本発明の各実施形態を図面により説明する。   Hereinafter, each embodiment of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は、本発明に係るビルディング用空調制御システムの第1実施形態を示している。当該空調制御システムは、冷凍機Rと、ポンプ装置Puと、複数の空気調和装置Uと、中央監視装置Mとを備えている。
(First embodiment)
FIG. 1 shows a first embodiment of a building air conditioning control system according to the present invention. The air conditioning control system includes a refrigerator R, a pump device Pu, a plurality of air conditioners U, and a central monitoring device M.

冷凍機Rは、各空気調和装置Uから各個還り配管P4(以下、還り側配管P4ともいう)及び共通還り配管P5を通り流入する還り側冷水を冷却し送り側冷水として送り配管P1内に流出させる。   The refrigerator R cools the return side cold water flowing from each air conditioner U through the individual return pipes P4 (hereinafter also referred to as return side pipes P4) and the common return pipe P5, and flows out into the feed pipes P1 as the feed side cold water. Let

ポンプ装置Puは、冷凍機Rを出た直後の送り配管P1内の送り側冷水をヘッダを経てポンプで流量制御した後、空気調和装置Uに送出する共通送り配管P2及び各送り配管P3(以下、送り側配管P3ともいう)を介し各空気調和装置Uに圧送する。本第1実施形態では、当該ポンプ装置Puは、三台のポンプPuaを並列接続して構成されており、当該ポンプ装置Puによる冷水の圧送量は、当該ポンプPuaの駆動台数の変動でもって変化する。また、当該ポンプPuaの駆動台数は、当該空調制御システムにおける冷水の全流量の使用状況に伴い変動するように制御される。   The pump device Pu controls the flow rate of feed-side chilled water in the feed pipe P1 immediately after leaving the refrigerator R by a pump through the header, and then feeds it to the air conditioner U and the common feed pipe P2 and each feed pipe P3 (hereinafter referred to as the feed pipe P3). , Also referred to as feed-side piping P3). In the first embodiment, the pump device Pu is configured by connecting three pumps Pua in parallel, and the pumping amount of cold water by the pump device Pu changes due to fluctuations in the number of driven pumps Pua. To do. Further, the number of pumps Pua driven is controlled so as to fluctuate with the use state of the total flow rate of the cold water in the air conditioning control system.

各空気調和装置Uは、例えば、建物の各階の室F(図2参照)にそれぞれ付設されているもので、これら各空気調和装置Uは共に同一の構成を有するように構成されている。   Each air conditioner U is attached to, for example, a room F (see FIG. 2) on each floor of a building, and each of these air conditioners U is configured to have the same configuration.

ここで、当該各空気調和装置Uのうちの一空気調和装置Uを例に挙げてその構成につき図2に基づき説明する。当該空気調和装置Uは、装置本体Bと、制御装置Eとにより構成されている。   Here, one air conditioner U of the air conditioners U will be described as an example with reference to FIG. The air conditioner U is composed of a device main body B and a control device E.

装置本体Bは、ハウジング10内にてその上流側から下流側にかけて順次配設したフィルタ20、冷水コイルからなる熱交換器30及び給気送風機40を備えている。フィルタ20は外気ダンパー10aを介しハウジング10内にその外気導入口11から導入される外気OAの風量或いはハウジング10内にその還気吸込口12を通し導入される還気RAの風量を清浄して清浄空気流として熱交換器30に流入する。なお、外気ダンパー10aが開くことにより、外気OAの風量をハウジング10の外気導入口11内に導入してそれが閉じることにより、外気OAの風量の外気導入口11内への導入を遮断する。また、図2において、符号10bは、排気ダンパーを示しており、この排気ダンパー10bが開くことにより、室Fからの還気RAの風量を外部に排出する。また、当該排気ダンパー10bが閉じることにより、室Fから外部への還気RAの風量の排出を遮断し、還気RAの風量をフィルタ20、熱交換器30に流通させた後、給気送風機40により室Fに給気する。   The apparatus main body B includes a filter 20, a heat exchanger 30 including a cold water coil, and an air supply blower 40 that are sequentially arranged in the housing 10 from the upstream side to the downstream side. The filter 20 cleans the air volume of the outside air OA introduced into the housing 10 from the outside air introduction port 11 through the outside air damper 10a or the air volume of the return air RA introduced into the housing 10 through the return air suction port 12. It flows into the heat exchanger 30 as a clean air stream. When the outside air damper 10a is opened, the air volume of the outside air OA is introduced into the outside air introduction port 11 of the housing 10 and closed, whereby the introduction of the air volume of the outside air OA into the outside air introduction port 11 is blocked. Further, in FIG. 2, reference numeral 10 b indicates an exhaust damper. When the exhaust damper 10 b is opened, the air volume of the return air RA from the chamber F is discharged to the outside. Further, by closing the exhaust damper 10b, the discharge of the return air RA from the chamber F to the outside is shut off, and the return air RA is circulated through the filter 20 and the heat exchanger 30, and then the supply air blower 40 is used to supply air to the room F.

熱交換器30は、流水入口31にて、送り側配管P3から送り側冷水を流入されて、この流入冷水を流水出口32に向け流動させて、この流動冷水でもってフィルタ20からの清浄空気流と熱交換し、そして熱交換された清浄空気流は給気送風機40により室内に流出するともに、流動冷水を流水出口32から還り側配管P4内に流出する。   The heat exchanger 30 receives feed side cold water from the feed side pipe P3 at the flowing water inlet 31 and causes the inflow cold water to flow toward the flowing water outlet 32, and the clean air flow from the filter 20 with the flowing cold water. The clean air flow that has been heat-exchanged with and out of the room flows out into the room by the air supply blower 40, and the flowing cold water flows out from the water outlet 32 into the return side pipe P4.

給気送風機40は、交流電動機41(以下、給気ファンモータ41ともいう)と、この給気ファンモータ41により駆動される給気ファン42とを備えており、給気ファンモータ41は、制御装置Eによる制御に基づき回転数制御される。給気ファン42は、給気ファンモータ41によりその制御回転数に応じて駆動されて、熱交換器30からの流出空気流を、上記制御回転数に比例する量にて、給気SAの風量として、ハウジング10の給気吹出口13から上記建物の対応室F内に供給する。   The air supply blower 40 includes an AC motor 41 (hereinafter also referred to as an air supply fan motor 41) and an air supply fan 42 driven by the air supply fan motor 41. The air supply fan motor 41 is controlled. The rotational speed is controlled based on the control by the device E. The air supply fan 42 is driven by the air supply fan motor 41 in accordance with its control rotation speed, and the air flow rate of the supply air SA is changed by an amount proportional to the control rotation speed of the outflow air flow from the heat exchanger 30. As described above, the air is supplied from the air supply outlet 13 of the housing 10 into the corresponding room F of the building.

制御装置Eは、複合検出装置50と、電動2方弁60と、インバータ70aと、空調制御器70bとを備えている。複合検出装置50は、データ処理器51と、電磁流量センサ52と、送り側水温センサ53と、還り側水温センサ54とを備えている。   The control device E includes a composite detection device 50, an electric two-way valve 60, an inverter 70a, and an air conditioning controller 70b. The composite detection device 50 includes a data processor 51, an electromagnetic flow sensor 52, a feed-side water temperature sensor 53, and a return-side water temperature sensor 54.

データ処理器51は、その表示部(図示しない)にて、電磁流量センサ52並びに両水温センサ53及び54の各検出出力をデータとして一定期間(例えば、60日間)記憶保持しかつ表示するとともに、当該各検出出力をケーブルを介しデータとして空調制御器70bに出力する。   The data processor 51 stores and displays the detection outputs of the electromagnetic flow sensor 52 and the water temperature sensors 53 and 54 as data for a certain period (for example, 60 days) on its display unit (not shown), Each detection output is output to the air conditioning controller 70b as data via a cable.

電磁流量センサ52は、送り側配管P3の下流部位に介装されており、この電磁流量センサ52は、当該送り側配管P3内を通り熱交換器30の流水入口31に向けて流れる送り側冷水の流量を電磁的に検出する。   The electromagnetic flow sensor 52 is interposed in the downstream part of the feed side pipe P3. The electromagnetic flow sensor 52 passes through the feed side pipe P3 and flows toward the flowing water inlet 31 of the heat exchanger 30. The flow rate is detected electromagnetically.

送り側水温センサ53は、送り側配管P3の下流部位に付設されており、この水温センサ53は、当該送り側配管P3内の送り側冷水の温度を送り側水温Tsとして検出する。また、還り側水温センサ54は、還り側配管P4の空気調和装置U近くの上流部位に付設されており、この水温センサ54は、熱交換器30の流水出口32から流出して還り側配管P4内に流れる還り側冷水の温度を還り側水温Trとして検出する。   The feed-side water temperature sensor 53 is attached to the downstream part of the feed-side pipe P3, and the water temperature sensor 53 detects the temperature of the feed-side cold water in the feed-side pipe P3 as the feed-side water temperature Ts. Further, the return side water temperature sensor 54 is attached to an upstream portion of the return side pipe P4 near the air conditioner U, and the water temperature sensor 54 flows out from the outlet 32 of the heat exchanger 30 and returns to the return side pipe P4. The temperature of the return side cold water flowing inside is detected as the return side water temperature Tr.

電動2方弁60は、比例制御弁として機能するもので、この電動2方弁60は、弁本体60aと、駆動回路60bとを備えている。弁本体60aは、還り配管P4の下流部位に介装されており、当該弁本体60aは、その開度に応じて、還り配管P4内に流れる還り側冷水の流量を制御する。駆動回路60bは、空調制御器70bにより演算された開度信号に基づいて弁本体60aを駆動するものである。   The electric two-way valve 60 functions as a proportional control valve, and the electric two-way valve 60 includes a valve body 60a and a drive circuit 60b. The valve main body 60a is interposed in the downstream part of the return pipe P4, and the valve main body 60a controls the flow rate of the return side cold water flowing in the return pipe P4 according to the opening degree. The drive circuit 60b drives the valve body 60a based on the opening degree signal calculated by the air conditioning controller 70b.

インバータ70aは、三相交流電源PSの三相の電源電圧(200(V))を給電されて、空調制御器70bで決定される送風給気流の量に基づきこれに比例する制御周波数にて出力電圧を発生し給気ファンモータ41に出力する。   The inverter 70a is fed with the three-phase power supply voltage (200 (V)) of the three-phase AC power supply PS and outputs at a control frequency proportional to the amount of the air supply / air flow determined by the air conditioning controller 70b. A voltage is generated and output to the air supply fan motor 41.

空調制御器70bは、マイクロコンピュータ71を備えており、このマイクロコンピュータ71は、制御プログラムを図3にて示すフローチャートに従い実行する。この実行中において、当該マイクロコンピュータ71は、複合検出装置50からの送り側水温Ts、還り側水温Tr、冷水流量q、還気温センサ80a検出出力や給気温センサ80bの検出出力に基づき電動2方弁60の比例開度制御及び給気送風機40による送風給気流量制御に要する処理を行うと共に、複合検出装置50のデータ処理器51からのデータをLONネットワークLN(図1参照)を介し中央監視装置Mに監視用データとして送信するための処理等を行う。   The air conditioning controller 70b includes a microcomputer 71, and the microcomputer 71 executes a control program according to the flowchart shown in FIG. During this execution, the microcomputer 71 performs the electric two-way operation based on the feed side water temperature Ts, the return side water temperature Tr, the cold water flow rate q, the detection output of the return air temperature sensor 80a and the detection output of the air temperature sensor 80b from the composite detection device 50. The processing required for the proportional opening control of the valve 60 and the air supply / flow rate control by the air supply blower 40 is performed, and the data from the data processor 51 of the composite detection device 50 is centrally monitored via the LON network LN (see FIG. 1). Processing for transmitting data to the apparatus M as monitoring data is performed.

なお、本第1実施形態では、上記制御プログラムは、マイクロコンピュータ71のROMに予め記憶されている。   In the first embodiment, the control program is stored in advance in the ROM of the microcomputer 71.

還気温センサ80aは、装置本体Bのハウジング10内にて還気吸込口12の風道内近傍に支持されており、この還気温センサ80aは、室Fからハウジング10内への還気RAの風量の温度を室内温として検出する。給気温センサ80bは、装置本体Bのハウジング10内にて給気吹出口13の近傍に支持されており、この給気温センサ80bは、ハウジング10から室F内への給気SAの風量の温度を給気温度として検出する。なお、各空気調和装置Uは、互いに独立的に起動或いは停止するようになっている。   The return air temperature sensor 80 a is supported in the housing 10 of the apparatus main body B in the vicinity of the air passage of the return air inlet 12, and the return air temperature sensor 80 a is an air volume of the return air RA from the chamber F into the housing 10. Is detected as the room temperature. The air temperature sensor 80b is supported in the vicinity of the air supply outlet 13 in the housing 10 of the apparatus main body B. The air temperature sensor 80b is the temperature of the air volume of the air supply SA from the housing 10 into the chamber F. Is detected as the supply air temperature. Each air conditioner U is started or stopped independently of each other.

以上のように構成した本第1実施形態において、当該空調制御システムが起動されると、ポンプ装置Puが冷凍機Rから送り配管P1を介し冷水を共通送り配管P2を通して各空気調和装置Uに圧送する。現段階において、全空気調和装置Uが当該空調制御システムの起動に伴い起動されるものとすれば、上述のようにポンプ装置Puから圧送される冷水は、空気調和装置U毎に、送り側配管P3及び電動2方弁60の弁本体60aを介し熱交換器30内にその流水入口31から流入し、然る後、当該熱交換器30の流水出口32から流出して還り側配管P4及び共通還り配管P5を通り冷凍機Rに還流する。   In the first embodiment configured as described above, when the air conditioning control system is activated, the pump device Pu pumps cold water from the refrigerator R through the feed pipe P1 to each air conditioner U through the common feed pipe P2. To do. At this stage, if the entire air conditioner U is activated in accordance with the activation of the air conditioning control system, the cold water pumped from the pump device Pu as described above is sent to the feed-side piping for each air conditioner U. P3 and the electric main body 60a of the electric two-way valve 60 flow into the heat exchanger 30 from the flowing water inlet 31 and then flow out from the flowing water outlet 32 of the heat exchanger 30 to the return side pipe P4. It returns to the refrigerator R through the return pipe P5.

このような状態では、複合検出装置50において、電磁流量センサ52が送り側配管P3中の冷水の流量qを検出し、送り側水温センサ53が送り側配管P3中の冷水の温度を送り側水温Tsとして検出し、還り側水温センサ54が還り側配管P4中の冷水の温度を還り側水温Trとして検出する。   In such a state, in the composite detection device 50, the electromagnetic flow sensor 52 detects the flow rate q of cold water in the feed side pipe P3, and the feed side water temperature sensor 53 determines the temperature of the cold water in the feed side pipe P3. The return side water temperature sensor 54 detects the temperature of the cold water in the return side pipe P4 as the return side water temperature Tr.

これに伴い、データ処理器51が、電磁流量センサ52の流量q及び各水温センサ53、54の検出水温を空調制御器70bに出力するとともに上記表示部にて表示する。   Along with this, the data processor 51 outputs the flow rate q of the electromagnetic flow sensor 52 and the detected water temperatures of the water temperature sensors 53 and 54 to the air conditioning controller 70b and displays them on the display unit.

ここで、夏期の外気の影響による冷房負荷の高い日および室内の冷房負荷が増加して、建物の各室Fの実際の室内温が設定温よりもかなり高い場合には、各空気調和装置Uは、共に、上述のような高い室内温に起因して高負荷の状態におかれる。   Here, when the cooling load on the day and the indoor cooling load due to the influence of outside air in summer increases and the actual indoor temperature of each room F in the building is considerably higher than the set temperature, each air conditioner U Both are placed in a high load state due to the high indoor temperature as described above.

ここで、各空気調和装置Uが起動されると、空気調和装置U毎に、空調制御器70bにおいて、マイクロコンピュータ71が図3のフローチャートに従い制御プログラムの実行を開始する。   Here, when each air conditioner U is activated, in each air conditioner U, in the air conditioning controller 70b, the microcomputer 71 starts executing the control program according to the flowchart of FIG.

そして、上記制御プログラムの実行を開始すると、ステップ101において、送り側配管P3内の冷水の検出流量qが最大流量qmaxを超えるか否かが判定される。この判定はデータ処理器51からの検出流量qに基づきなされる。例えば当該空調制御システムの起動時等で上記空調空間内が高負荷状態にあるとき、検出流量qが最大流量qmaxを超えれば、ステップ101においてYESと判定される。一方、上記空調空間内が通常負荷状態時の検出流量qが最大流量qmax以下の場合には、ステップ101においてNOと判定される。   When the execution of the control program is started, it is determined in step 101 whether or not the detected flow rate q of the cold water in the feed side piping P3 exceeds the maximum flow rate qmax. This determination is made based on the detected flow rate q from the data processor 51. For example, if the detected flow rate q exceeds the maximum flow rate qmax when the air-conditioned space is in a high load state, for example, when the air-conditioning control system is activated, YES is determined in step 101. On the other hand, if the detected flow rate q when the air-conditioned space is in a normal load state is less than or equal to the maximum flow rate qmax, NO is determined in step 101.

ここで、ステップ101でYESまたはNOと判定された場合について説明する。   Here, the case where YES or NO is determined in step 101 will be described.

ステップ101においてYESと判定された場合、すなわち上記空調空間内が高負荷状態にあるとき、次のステップ102において、最大流量qmaxに対応する開度への調節処理がなされる。つまり、電動2方弁60の弁本体60aの開度が最大流量設定値になるように制限される。ここで、最大流量とは、設計最大負荷に対応する熱交換器30の能力を発揮するために必要な流量をいう。これにより、熱交換器30への送り側冷水の過剰な量の流入により熱交換器30の熱交換能力を超えて、還り側冷水が低温状態のまま流出する(例えば冷水塊とよぶ)ことはなくなる。つまり、ポンプ装置Puは過剰な流量を流すことなく最適流量を供給し、熱交換器30からの熱交換能力を有効に発揮させ、冷凍機Rへの還り側冷水の温度が適正に行なわれるようになる。   When it is determined YES in step 101, that is, when the inside of the air-conditioned space is in a high load state, in the next step 102, an adjustment process to the opening corresponding to the maximum flow rate qmax is performed. That is, the opening degree of the valve main body 60a of the electric two-way valve 60 is limited to the maximum flow rate set value. Here, the maximum flow rate refers to a flow rate required to exhibit the ability of the heat exchanger 30 corresponding to the design maximum load. As a result, an excessive amount of feed-side cold water flowing into the heat exchanger 30 exceeds the heat exchange capacity of the heat exchanger 30 and the return-side cold water flows out in a low temperature state (for example, called cold water mass). Disappear. That is, the pump device Pu supplies the optimum flow rate without flowing an excessive flow rate, effectively exhibits the heat exchange capability from the heat exchanger 30 so that the temperature of the return side cold water to the refrigerator R is appropriately performed. become.

然る後、ステップ120において、室内温度に基づく給気ファン42の回転数制御処理がなされる。この回転数制御処理では、室F内の実際の温度を室F内の設定温度に調節するように室内Fへの給気SAの風量を制御するため、還気温センサ80aの検出室内温に基づき、上記検出室内温の上記設定温との差に基づき給気SAの風量が決定され、インバータ70aに出力される。   Thereafter, in step 120, the rotational speed control process of the air supply fan 42 based on the room temperature is performed. In this rotational speed control process, since the air volume of the supply air SA to the room F is controlled so that the actual temperature in the room F is adjusted to the set temperature in the room F, it is based on the detected room temperature of the return air temperature sensor 80a. The air volume of the supply air SA is determined based on the difference between the detected room temperature and the set temperature, and is output to the inverter 70a.

すると、インバータ70aは、上記決定給気SAの風量に比例する制御周波数にて出力電圧を発生し給気ファンモータ41に出力する。これに伴い、当該給気ファンモータ41は、上記制御周波数に対応する回転数にて回転するように制御され、給気ファン42がこの給気ファンモータ41の制御回転数に対応する量にて外気OAの風量或いは還気RAの風量をフィルタ20及び熱交換器30を通し吸引し、給気SAの風量として室F内に供給する。この場合、給気ファン42は高い回転数で運転している。   Then, the inverter 70a generates an output voltage at a control frequency proportional to the air volume of the determined supply air SA, and outputs the output voltage to the supply air fan motor 41. Accordingly, the air supply fan motor 41 is controlled to rotate at a rotational speed corresponding to the control frequency, and the air supply fan 42 is controlled in an amount corresponding to the control rotational speed of the air supply fan motor 41. The air volume of the outside air OA or the air volume of the return air RA is sucked through the filter 20 and the heat exchanger 30 and supplied into the chamber F as the air volume of the supply air SA. In this case, the air supply fan 42 is operating at a high rotational speed.

以上から、上述のように室F内が高負荷状態にあっても、熱交換器30を流れる冷水の量が適正に制御され、熱交換器30の熱交換能力を有効に利用し得ることとなる。よって、室F内の快適な空調の維持に併せ、熱交換器30ひいては当該空調制御システムにおける熱源系統の省エネルギー化を実現できる。   From the above, even when the inside of the chamber F is in a high load state as described above, the amount of cold water flowing through the heat exchanger 30 can be appropriately controlled, and the heat exchange capability of the heat exchanger 30 can be used effectively. Become. Therefore, in addition to maintaining comfortable air conditioning in the room F, it is possible to realize energy saving of the heat exchanger 30 and thus the heat source system in the air conditioning control system.

一方、ステップ101においてNOと判定された場合、すなわち検出流量qが最大流量qmaxの範囲内である通常負荷の場合には、次のステップ110において、熱交換器30の熱交換能力を良好に発揮し得る設定水温度差5(℃)を維持するための電動2方弁60の開度制御処理がなされる。ここでの設定水温度差とは、検出された還り側水温Trと送り側水温Tsの温度差(以下、水温差ΔTと呼ぶ)を所定の値に設定することをいい、設定水温度差はここでは5(℃)である。つまり、水温差ΔTが設定水温度差5(℃)より小さい場合には、電動2方弁60の弁本体60aの開度を絞り、設定水温度差5(℃)より大きい場合には、電動2方弁60の弁本体60aを開く制御をおこなう。これに伴い、電動2方弁60の弁本体60aの開度が、データ処理器51からの送り側水温Ts及び還り側水温Trに基づき、水温差ΔTを上記設定水温度差5(℃)に等しくするように決定されて、電動2方弁60の駆動回路60bに出力される。   On the other hand, when it is determined NO in step 101, that is, in the case of a normal load where the detected flow rate q is within the range of the maximum flow rate qmax, in the next step 110, the heat exchange capability of the heat exchanger 30 is exhibited well. An opening degree control process for the electric two-way valve 60 is performed to maintain a possible set water temperature difference 5 (° C.). The set water temperature difference here refers to setting a temperature difference between the detected return side water temperature Tr and the feed side water temperature Ts (hereinafter referred to as a water temperature difference ΔT) to a predetermined value. Here, it is 5 (° C.). That is, when the water temperature difference ΔT is smaller than the set water temperature difference 5 (° C.), the opening degree of the valve main body 60a of the electric two-way valve 60 is reduced, and when the water temperature difference ΔT is larger than the set water temperature difference 5 (° C.) Control to open the valve body 60a of the two-way valve 60 is performed. Accordingly, the opening degree of the valve body 60a of the electric two-way valve 60 is based on the feed water temperature Ts and the return water temperature Tr from the data processor 51, and the water temperature difference ΔT is set to the set water temperature difference 5 (° C.). It is determined to be equal and output to the drive circuit 60 b of the electric two-way valve 60.

すると、当該駆動回路60bは、弁本体60aの開度をマイクロコンピュータ71から上記決定開度にするように弁本体60aを駆動する。これにより、送り側配管P3から熱交換器30を通り還り側配管P4に流れる冷水の検出流量qが、水温差ΔTを設定水温度差5(℃)に維持するように制御される。   Then, the drive circuit 60b drives the valve body 60a so that the opening degree of the valve body 60a is set to the determined opening degree from the microcomputer 71. Thereby, the detected flow rate q of the cold water flowing from the feed side pipe P3 through the heat exchanger 30 to the return side pipe P4 is controlled so as to maintain the water temperature difference ΔT at the set water temperature difference 5 (° C.).

然る後、ステップ120において、上記と同様の処理がなされる。この場合の給気ファン42の回転数は、最高回転数から後述する最低回転数Naの範囲で増加減少を繰り返しながら運転をおこなっている。   Thereafter, in step 120, the same processing as described above is performed. In this case, the rotational speed of the air supply fan 42 is operated while repeating increasing and decreasing in the range from the maximum rotational speed to the minimum rotational speed Na described later.

従って、室F内の温度を設定温度差に維持して快適な空調の維持するとともに、水温差ΔTが設定水温度差を維持することにより、冷凍機Rへの還り側冷水の温度が適正に行なわれ、当該空調制御システムにおける熱源系統の省エネルギー化を実現できる。   Therefore, while maintaining the temperature in the room F at the set temperature difference to maintain comfortable air conditioning, the water temperature difference ΔT maintains the set water temperature difference, so that the temperature of the return side cold water to the refrigerator R is appropriately adjusted. It is possible to realize energy saving of the heat source system in the air conditioning control system.

次に、ステップ120における回転数制御処理が終了すると、ステップ130において、回転数出力に基づき給気ファン42の回転数N≦設定された最低回転数Naか否かが判定される。ここで、最小外気量を確保するための最低回転数Naは、給気ファン42の回転数Nの最大値の30(%)とする。ここで、N>Naであれば、ステップ130においてNOと判定されテップ101に戻り、上述の処理がなされる。   Next, when the rotational speed control process in step 120 is completed, it is determined in step 130 whether the rotational speed N of the air supply fan 42 is equal to or smaller than the set minimum rotational speed Na based on the rotational speed output. Here, the minimum rotation speed Na for securing the minimum amount of outside air is 30 (%), which is the maximum value of the rotation speed N of the air supply fan 42. Here, if N> Na, it is determined as NO in step 130, the process returns to step 101, and the above-described processing is performed.

ステップ130では、室F内の実際の温度を上記設定温度に維持した状態で、室F内の冷房負荷が軽負荷状態になった場合、回転数N≦設定された最低回転数Naが上記回転数の出力に基づき判断され、YESと判定される。これに伴い、次のステップ140において、回転数N=Naに基づく給気ファン42の回転数制御処理がなされる。この回転数制御処理では、インバータ70aが、マイクロコンピュータ71からの回転数N=Naに対応する制御周波数にて出力電圧を発生し給気ファンモータ41に出力し、給気ファン42は、回転数N=Naに対応する量にて外気OAの風量或いは還気RAの風量をフィルタ20及び熱交換器30を通し吸引し、給気SAの風量として室F内に供給する。   In Step 130, when the cooling load in the chamber F becomes a light load state with the actual temperature in the chamber F maintained at the set temperature, the rotation speed N ≦ the set minimum rotation speed Na is the rotation speed. Based on the output of the number, it is determined YES. Accordingly, in the next step 140, the rotation speed control process of the air supply fan 42 based on the rotation speed N = Na is performed. In this rotational speed control process, the inverter 70a generates an output voltage at a control frequency corresponding to the rotational speed N = Na from the microcomputer 71 and outputs the output voltage to the air supply fan motor 41. The air supply fan 42 The air volume of the outside air OA or the air volume of the return air RA is sucked through the filter 20 and the heat exchanger 30 in an amount corresponding to N = Na, and is supplied into the chamber F as the air volume of the supply air SA.

このようなステップ140における処理が終了すると、次のステップ150において、室内温度に基づく電動2方弁60の開度制御処理がなされる。これに伴い、電動2方弁60の開度が、還気温センサ80aの検出還気温に基づき、室F内の実際の温度を上記設定温度に維持するように決定されて電動2方弁60の駆動回路60bに出力される。このため、弁本体60aが当該決定出力開度に基づき駆動回路60bにより駆動される。従って、弁本体60aの開度が上記決定出力開度に制御され、熱交換器30を流れる冷水の量が当該弁本体60aの制御開度に応じて制御される。   When the processing in step 140 is completed, in step 150, the opening degree control process for the electric two-way valve 60 based on the room temperature is performed. Accordingly, the opening degree of the electric two-way valve 60 is determined based on the return air temperature detected by the return air temperature sensor 80a so as to maintain the actual temperature in the room F at the set temperature. It is output to the drive circuit 60b. For this reason, the valve body 60a is driven by the drive circuit 60b based on the determined output opening. Therefore, the opening degree of the valve body 60a is controlled to the determined output opening degree, and the amount of cold water flowing through the heat exchanger 30 is controlled according to the control opening degree of the valve body 60a.

このように、室F内が軽負荷状態になった後は電動2方弁60の弁本体60aの開度が、還気温センサ80aからの検出還気温に応じて室F内の実際の温度を上記設定温度に維持するように制御される。このため、室F内の快適な空調の維持に併せ、上記送り側水温と上記還り側水温との間の温度差を上記設定水温度差に実質的に維持することで熱交換器30、ひいては当該空調制御システムにおける熱源系統の省エネルギー化を実現できる。   Thus, after the inside of the room F is in a light load state, the opening degree of the valve body 60a of the electric two-way valve 60 changes the actual temperature in the room F according to the detected return temperature from the return temperature sensor 80a. Control is performed to maintain the set temperature. For this reason, in conjunction with the maintenance of comfortable air conditioning in the room F, the temperature difference between the feed-side water temperature and the return-side water temperature is substantially maintained at the set water temperature difference, so that the heat exchanger 30 and thus Energy saving of the heat source system in the air conditioning control system can be realized.

然る後、ステップ160(図3参照)において、水温差ΔT<5(℃)か否かが、データ処理器51からの送り水温Ts及び還り水温Trに基づき判定される。現段階において、水温差ΔT≧5(℃)が維持されておれば、ステップ160にてNOと判定され、再び、ステップ150において室内温度に基づく電動2方弁60の開度制御処理が上述と同様になされる。   Thereafter, in step 160 (see FIG. 3), whether or not the water temperature difference ΔT <5 (° C.) is determined based on the feed water temperature Ts and the return water temperature Tr from the data processor 51. If the water temperature difference ΔT ≧ 5 (° C.) is maintained at the present stage, it is determined NO in step 160, and the opening degree control process for the electric two-way valve 60 based on the room temperature is performed again in step 150. The same is done.

両ステップ150、160の繰り返し処理状態の後、室F内の冷房負荷が高くなった場合には、熱交換器30での熱交換は大きくなり電動2方弁60の弁本体60aの開度が開き、水温差ΔTが5(℃)よりも小さくなると、ステップ160における判定がYESになり、上記制御プログラムはスタートステップに戻る。そして、検出流量qが最大流量qmaxの範囲内であれば、ステップ101においてNOと判定され、次のステップ110において、熱交換器30の熱交換能力を良好に活用し得る値である設定水温度差5(℃)を維持するための電動2方弁60の開度制御処理がなされ、水温差ΔTを設定水温度差5(℃)に維持すべく、当該ステップ110以後の処理が上述と同様になされる。   When the cooling load in the chamber F becomes high after the repeated processing state of both steps 150 and 160, the heat exchange in the heat exchanger 30 becomes large and the opening degree of the valve body 60a of the electric two-way valve 60 becomes large. When the water temperature difference ΔT is smaller than 5 (° C.), the determination in step 160 is YES, and the control program returns to the start step. If the detected flow rate q is within the range of the maximum flow rate qmax, NO is determined in step 101, and in the next step 110, a set water temperature that is a value that can favorably utilize the heat exchange capability of the heat exchanger 30. The opening control process of the electric two-way valve 60 for maintaining the difference 5 (° C.) is performed, and the processing after step 110 is the same as described above in order to maintain the water temperature difference ΔT at the set water temperature difference 5 (° C.). To be made.

なお、還気温センサとしているが、室F内に設けた室内温センサで検出してもよい。   In addition, although it is set as the return temperature sensor, you may detect with the room temperature sensor provided in the room F. FIG.

(第2実施形態)
図4は、本発明の第2実施形態の要部を示している。この第2実施形態においては、マイクロコンピュータ71が、上記第1実施形態にて述べた制御プログラムを、図3のフローチャートに代えて、図4にて示すフローチャートに従い実行するように変更され、第一の実施例において、給気温度が14(℃)以下になった場合の処理が相違している。その他の構成については、上記第1実施形態と同様である。従って、第1実施形態のものと同じ部分については第1実施形態のものと同一の符号を用い、それらについての説明を省略する。
(Second Embodiment)
FIG. 4 shows a main part of the second embodiment of the present invention. In the second embodiment, the microcomputer 71 is modified to execute the control program described in the first embodiment in accordance with the flowchart shown in FIG. 4 instead of the flowchart in FIG. In this embodiment, the processing when the supply air temperature is 14 (° C.) or lower is different. Other configurations are the same as those in the first embodiment. Accordingly, the same parts as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof will be omitted.

このように構成した本第2実施形態において、上記第1実施形態にて述べたと同様に各空気調和装置Uが当該空調制御システムの起動に伴い起動されると、空調制御器70bのマイクロコンピュータ71が、上記制御プログラムを図4のフローチャートに従い実行を開始する。そして、ステップ101からステップ120の処理は、第1実施形態と同じであり、ステップ120の処理が終了すると、ステップ130において、給気ファン42の回転数がN≦Naか否かが判定される。ここで、上記第1実施形態と同様にステップ130における判定がNOになると、上記第1実施形態とは異なり、ステップ170において、給気温センサ80bの検出給気温度(以下、給気温度tsaともいう)に基づき、給気温度tsa≦所定温度か否かが判定される。所定温度はここでは14(℃)である。   In the second embodiment configured as described above, when each air conditioner U is activated in association with the activation of the air conditioning control system, as described in the first embodiment, the microcomputer 71 of the air conditioning controller 70b. However, the control program starts to be executed according to the flowchart of FIG. The processing from step 101 to step 120 is the same as that in the first embodiment. When the processing in step 120 is completed, it is determined in step 130 whether the rotation speed of the air supply fan 42 is N ≦ Na. . Here, if the determination in step 130 is NO as in the first embodiment, unlike the first embodiment, in step 170, the detected supply air temperature (hereinafter referred to as the supply air temperature tsa) of the air supply temperature sensor 80b. In other words, it is determined whether or not the supply air temperature tsa ≦ the predetermined temperature. Here, the predetermined temperature is 14 (° C.).

ここで、給気温度tsa>所定温度14(℃)が成立すれば、ステップ170においてNOと判定される。このことは、設定温度に向けての室F内の温度制御が両ステップ110、120の処理で適正になされていることを意味する。よって、ステップ170におけるNOとの判定に伴いステップ101に戻り、上述の第1実施形態と同様にステップ110以後の処理がなされる。   Here, if supply air temperature tsa> predetermined temperature 14 (° C.) is satisfied, NO is determined in step 170. This means that the temperature control in the chamber F toward the set temperature is properly performed in the processing of both steps 110 and 120. Therefore, the process returns to step 101 with the determination of NO in step 170, and the processing after step 110 is performed in the same manner as in the first embodiment.

一方、給気温度tsa≦所定温度14(℃)であるためにステップ170においてYESと判定される場合には、設定温度に向けての室F内の温度制御が両ステップ110、120の処理のもとでは給気温度の下がり過ぎとなり、両ステップ180、190の処理がなされる。   On the other hand, if YES in step 170 because supply air temperature tsa ≦ predetermined temperature 14 (° C.), the temperature control in the room F toward the set temperature is performed in both steps 110 and 120. Originally, the supply air temperature is too low, and both steps 180 and 190 are processed.

まず、ステップ180においては、上記設定水温度差5(℃)よりも1(℃)高い、新たな設定水温度差6(℃)を維持するための電動2方弁60の開度制御処理がなされる。つまり、水温差ΔTは5(℃)に対して設定水温度差6(℃)と温度差が生じるため、設定水温度差6(℃)になるように、電動2方弁60の弁本体60aの開度は絞る方向に決定され、駆動回路60bに出力されて閉方向に駆動する。これにより、冷水流量は減少し記熱交換器30に流れる空気流と冷水とを熱交換させる量が減り給気温度は上昇する。そして、送り側配管P3から熱交換器30を通り還り側配管P4に流れる冷水の流量qが、水温差ΔTを設定水温度差6(℃)に維持するように制御される。なお、設定水温度差6(℃)でも給気温度が上がらない場合には、更に設定水温度差7(℃)と段階的な制御を行なうようにしてもよい。   First, in step 180, the opening degree control process of the electric two-way valve 60 for maintaining a new set water temperature difference 6 (° C.) that is 1 (° C.) higher than the set water temperature difference 5 (° C.) is performed. Made. That is, the water temperature difference ΔT has a temperature difference of 6 (° C.) with a set water temperature difference of 6 (° C.) with respect to 5 (° C.), so that the valve main body 60a of the electric two-way valve 60 is set to 6 (° C.). Is determined in the direction of narrowing, and is output to the drive circuit 60b to drive in the closing direction. As a result, the flow rate of the cold water decreases, the amount of heat exchange between the air flow flowing through the heat exchanger 30 and the cold water decreases, and the supply air temperature rises. Then, the flow rate q of the cold water flowing from the feed side pipe P3 through the heat exchanger 30 to the return side pipe P4 is controlled so as to maintain the water temperature difference ΔT at the set water temperature difference 6 (° C.). If the supply air temperature does not rise even at the set water temperature difference 6 (° C.), stepwise control may be performed with the set water temperature difference 7 (° C.).

然る後、ステップ190において、室内温度に基づく給気ファン42の回転数増大制御処理がなされる。この回転数増大処理では、給気温度が上昇した分能力不足になり、室F内の実際の温度を設定温度に近づけるように室F内への給気風量を増大制御するため、還気温センサ80aの検出室内温に基づき、上記検出室内温の上記設定温との差に基づき給気風量が増大決定され、インバータ70aに出力される。   Thereafter, in step 190, the rotational speed increase control process of the air supply fan 42 based on the room temperature is performed. In this rotation speed increasing process, the supply air temperature rises, so that the capacity becomes insufficient, and the return air temperature sensor controls the increase in the air supply air volume into the room F so that the actual temperature in the room F approaches the set temperature. Based on the detected room temperature of 80a, the supply air volume is determined to be increased based on the difference between the detected room temperature and the set temperature, and is output to the inverter 70a.

すると、インバータ70aは、上記決定増大給気風量に比例する制御周波数にて出力電圧を発生し給気ファンモータ41に出力する。これに伴い、当該給気ファンモータ41は、上記制御周波数に対応する増大回転数にて回転するように制御され、給気ファン42がこの給気ファンモータ41の制御増大回転数に対応する増大量にて外気OAの風量或いは還気RAの風量をフィルタ20及び熱交換器30を通し吸引し、給気SAの風量として上記目標吹き出し温度にて室F内に供給する。   Then, the inverter 70 a generates an output voltage at a control frequency proportional to the determined increased supply air volume and outputs it to the supply fan motor 41. Accordingly, the air supply fan motor 41 is controlled to rotate at an increased rotational speed corresponding to the control frequency, and the air supply fan 42 is increased corresponding to the control increased rotational speed of the air supply fan motor 41. The air volume of the outside air OA or the air volume of the return air RA is sucked in a large amount through the filter 20 and the heat exchanger 30 and supplied into the chamber F as the air volume of the supply air SA at the target blowing temperature.

以上のように両ステップ180、190の処理がなされることで、給気温度が下がり過ぎることによる冷気による不快感および、室F内の吹出ノズル周辺または、空気調和装置の結露を防止して設定温度に向けての室F内の温度制御不足が補われ、その結果、室F内の温度の設定温度に向けての制御が円滑になされ得る。   By performing the processing of both steps 180 and 190 as described above, setting is made to prevent discomfort due to cold air due to excessive reduction in the supply air temperature, and condensation around the blowout nozzle in the room F or the air conditioner. Insufficient temperature control in the chamber F toward the temperature is compensated, and as a result, control toward the set temperature of the temperature in the chamber F can be smoothly performed.

上述のようにしてステップ190での処理が終了すると、ステップ130において、給気ファン42の回転数がN≦Naか否かが判定される。現段階にても、ステップ130での判定がNOとなる場合には、ステップ170以後の処理が再びなされる。   When the processing in step 190 is completed as described above, it is determined in step 130 whether or not the rotational speed of the air supply fan 42 is N ≦ Na. Even in the current stage, if the determination in step 130 is NO, the processing after step 170 is performed again.

然る後、ステップ130における判定がYESになると、室F内の実際の温度を上記設定温度に維持した状態で、上述した高負荷状態が軽負荷状態になったことから、ステップ140以後の処理が上記第1実施形態と同様になされる。   Thereafter, when the determination in step 130 is YES, the above-described high load state is changed to the light load state while the actual temperature in the room F is maintained at the set temperature. Is performed in the same manner as in the first embodiment.

(第3実施形態)
図5〜図7は、本発明に係る空調制御システムの第3実施形態の要部を示している。この第3実施形態では、上記第1実施形態に比べて以下の点が相違している。
(Third embodiment)
5-7 has shown the principal part of 3rd Embodiment of the air-conditioning control system which concerns on this invention. The third embodiment differs from the first embodiment in the following points.

複合検出装置50のデータ処理器51は、電動2方弁60の最大流量設定値をデータとしてケーブルを介し電動2方弁60に出力し、最大流量設定値の信号をデータ処理器51から電動2方弁60に伝達している点が相違している。なお、上記最大流量設定値は、熱交換30の能力がデータ処理器51に設けたメモリ(図示しない)に予め記憶されている。   The data processor 51 of the composite detection device 50 outputs the maximum flow rate setting value of the electric two-way valve 60 as data to the electric two-way valve 60 via a cable, and the signal of the maximum flow rate setting value is transmitted from the data processor 51 to the electric motor 2. The point of transmission to the way valve 60 is different. Note that the maximum flow rate setting value is stored in advance in a memory (not shown) provided in the data processor 51 with the capability of the heat exchange 30.

また、上記第1実施形態にて述べた電動2方弁60の駆動回路60bを、最大流量弁制御回路(以下、弁制御回路60cという)に変更した点が相違している。この弁制御回路60cは、前記駆動回路60bに弁制御マイクロコンピュータ61を備えたものであり、この弁制御マイクロコンピュータ61は、弁制御プログラムを図7にて示すフローチャートに従い実行する。この実行中において、当該弁制御マイクロコンピュータ61は、複合検出装置50からの上記最大流量設定値に応じて電動2方弁60の弁本体60bの開度調節処理を行う。弁制御回路60cは、弁制御マイクロコンピュータ61による開度調節出力に基づき弁本体60aの開度を上記最大流量設定値に調節する。なお、上記弁制御プログラムは弁制御マイクロコンピュータ61のROMに予め記憶されている。   Further, the difference is that the drive circuit 60b of the electric two-way valve 60 described in the first embodiment is changed to a maximum flow rate valve control circuit (hereinafter referred to as a valve control circuit 60c). The valve control circuit 60c includes a valve control microcomputer 61 in the drive circuit 60b, and the valve control microcomputer 61 executes a valve control program according to the flowchart shown in FIG. During this execution, the valve control microcomputer 61 performs opening degree adjustment processing of the valve main body 60b of the electric two-way valve 60 according to the maximum flow rate setting value from the composite detection device 50. The valve control circuit 60c adjusts the opening degree of the valve body 60a to the maximum flow rate setting value based on the opening degree adjustment output from the valve control microcomputer 61. The valve control program is stored in advance in the ROM of the valve control microcomputer 61.

また、上記第1実施形態にて述べたインバータ70aと、データ処理手段を有する空調制御器70bを別体で構成しているものを、インバータ70a及びデータ処理手段を有するデジタル制御器70cを一体にしてインバータ装置70の構成としている点が相違している。ここで、インバータ装置70に備えているデジタル制御器70cのマイクロコンピュータ71が、上記第1実施形態にて述べた制御プログラムを、図3フローチャートに代えて、図6に示すフローチャートに従い実行するように変更されている。   Further, the inverter 70a described in the first embodiment and the air conditioning controller 70b having data processing means are separately configured, and the inverter 70a and the digital controller 70c having data processing means are integrated. Thus, the configuration of the inverter device 70 is different. Here, the microcomputer 71 of the digital controller 70c provided in the inverter device 70 executes the control program described in the first embodiment according to the flowchart shown in FIG. 6 instead of the flowchart in FIG. has been edited.

その他の構成については、上記第1実施形態と同様である。従って、第1実施形態のものと同じ部分については第1実施形態のものと同一の符号を用い、それらについての説明を省略する。   Other configurations are the same as those in the first embodiment. Accordingly, the same parts as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof will be omitted.

このように構成した本第3実施形態において、上記第1実施形態で述べたと同様に各空気調和装置Uが当該空調制御システムの起動に伴い起動されると、デジタル制御器70cのマイクロコンピュータ71が、上記制御プログラムを図6のフローチャートに従い実行を開始し、弁制御回路60cの弁制御マイクロコンピュータ61が図7のフローチャートに従い実行を開始する。   In the third embodiment configured as described above, when each air conditioner U is activated in accordance with the activation of the air conditioning control system, as described in the first embodiment, the microcomputer 71 of the digital controller 70c is activated. The control program starts to be executed according to the flowchart of FIG. 6, and the valve control microcomputer 61 of the valve control circuit 60c starts to execute according to the flowchart of FIG.

上述のように弁制御マイクロコンピュータ61が図7のフローチャートに従い上記弁制御プログラムの実行を開始すると、ステップ400において、送り側配管P3内の冷水の流量qが最大流量qmax以上か否かが判定される。この判定はデータ処理器51からの検出流量qに基づきなされる。ここで、当該空調制御システムの起動時等において上記空調空間内が高負荷状態にあるとき、検出流量qが最大流量qmax以上であれば、ステップ400においてYESと判定され、次のステップ410において、最大流量qmaxに対応する開度への調節処理がなされる。具体的には、電動2方弁60の弁本体60aの開度が上記最大流量設定値に減少される。これにより、熱交換器30への送り側冷水の過剰な量の流入により熱交換器30の熱交換能力を超えて、還り側冷水が低温状態のまま流出する(例えば冷水塊とよぶ)ことはなくなる。つまり、ポンプ装置Puは過剰な流量を流すことなく最適流量を供給し、熱交換器30からの熱交換能力を有効に発揮させ、冷凍機Rへの還り側冷水の温度が適正に行なわれるようになる。   When the valve control microcomputer 61 starts executing the valve control program according to the flowchart of FIG. 7 as described above, it is determined in step 400 whether or not the flow rate q of the cold water in the feed side piping P3 is equal to or greater than the maximum flow rate qmax. The This determination is made based on the detected flow rate q from the data processor 51. Here, when the air-conditioned space is in a high load state at the time of starting the air-conditioning control system or the like, if the detected flow rate q is equal to or greater than the maximum flow rate qmax, YES is determined in step 400, and in the next step 410, An adjustment process to the opening corresponding to the maximum flow rate qmax is performed. Specifically, the opening degree of the valve body 60a of the electric two-way valve 60 is reduced to the maximum flow rate set value. As a result, an excessive amount of feed-side cold water flowing into the heat exchanger 30 exceeds the heat exchange capacity of the heat exchanger 30 and the return-side cold water flows out in a low temperature state (for example, called cold water mass). Disappear. That is, the pump device Pu supplies the optimum flow rate without flowing an excessive flow rate, effectively exhibits the heat exchange capability from the heat exchanger 30 so that the temperature of the return side cold water to the refrigerator R is appropriately performed. become.

ここで、弁制御回路60cの弁制御マイクロコンピュータ61には、後述するマイクロコンピュータ71で演算された弁開度信号と、前記ステップ410にて最大流量qmaxに対応する開度への調節された弁開度信号が入力される。そして、ステップ410で最大流量qmaxに対応する開度への調節された弁開度信号が有る場合には、ステップ410で調節された弁開度信号を優先し、ステップ410で調節された弁開度信号が無い場合には、マイクロコンピュータ71の開度信号に従って弁開度信号が駆動回路60bに出力し、弁本体60aが駆動される。   Here, the valve control microcomputer 61 of the valve control circuit 60c includes a valve opening signal calculated by the microcomputer 71 described later and a valve adjusted to the opening corresponding to the maximum flow rate qmax in the step 410. An opening signal is input. If there is a valve opening signal adjusted to the opening corresponding to the maximum flow rate qmax in step 410, the valve opening signal adjusted in step 410 is given priority, and the valve opening adjusted in step 410 is given priority. When there is no degree signal, the valve opening signal is output to the drive circuit 60b according to the opening signal of the microcomputer 71, and the valve body 60a is driven.

一方、マイクロコンピュータ71は図6のフローチャートに従い制御プログラムを開始する。まず、ステップ320において、給気温度に基づく電動2方弁60の開度制御処理がなされる。これに伴い、電動2方弁60の弁本体60aの開度が、給気温センサ80bからの検出給気温度に基づき当該検出給気温度を所定給気温度(例えば、16(℃))に維持するように決定され、電動2方弁60に出力される。このため、電動2方弁60では、弁本体60aの開度が上記所定給気温度に対応する値になるように、当該弁本体60aが弁制御手段60cにより制御される。   On the other hand, the microcomputer 71 starts a control program according to the flowchart of FIG. First, in step 320, an opening degree control process for the electric two-way valve 60 based on the supply air temperature is performed. Accordingly, the opening degree of the valve body 60a of the electric two-way valve 60 maintains the detected supply air temperature at a predetermined supply air temperature (for example, 16 (° C.)) based on the detected supply air temperature from the air supply temperature sensor 80b. And is output to the electric two-way valve 60. For this reason, in the electric two-way valve 60, the valve main body 60a is controlled by the valve control means 60c so that the opening degree of the valve main body 60a becomes a value corresponding to the predetermined supply air temperature.

その後、ステップ330において、室内温度に基づく給気ファン42の回転数制御処理がなされる。この回転数制御処理では、室F内の実際の温度を設定温度に近づけるように室F内への給気風量を制御するため、還気温センサ80aの検出室内温に基づき、上記検出室内温の上記設定温との差に基づき送風給気流量が決定され、インバータ70aに出力される。すると、インバータ70aは、上記決定給気流量に比例する制御周波数にて出力電圧を発生し給気ファンモータ41に出力する。これに伴い、当該給気ファンモータ41は、上記制御周波数に対応する回転数にて回転するように制御され、給気ファン42がこの給気ファンモータ41の制御回転数に対応する量にて外気OAの風量或いは還気RAの風量をフィルタ20及び熱交換器30を通し吸引し、給気SAの風量として上記目標吹き出し温度にて室F内に供給する。   Thereafter, in step 330, the rotation speed control process of the air supply fan 42 based on the room temperature is performed. In this rotational speed control process, the amount of air supplied to the room F is controlled so that the actual temperature in the room F approaches the set temperature, so that the detected room temperature is controlled based on the detected room temperature of the return air temperature sensor 80a. The air supply flow rate is determined based on the difference from the set temperature, and is output to the inverter 70a. Then, the inverter 70a generates an output voltage at a control frequency proportional to the determined supply air flow rate and outputs it to the supply air fan motor 41. Accordingly, the air supply fan motor 41 is controlled to rotate at a rotational speed corresponding to the control frequency, and the air supply fan 42 is controlled in an amount corresponding to the control rotational speed of the air supply fan motor 41. The air volume of the outside air OA or the air volume of the return air RA is sucked through the filter 20 and the heat exchanger 30 and supplied into the chamber F as the air volume of the supply air SA at the target blowing temperature.

従って、上述のような弁本体60aの開度調節のもと、電動2方弁60の弁本体60aの開度が、給気温センサ80bからの検出給気温度に応じて室F内へ給気SAの風量の温度を上記所定給気温度に維持するように制御されるとともに、給気送風機40の回転数が還気温センサ80aの検出温度に基づき室F内の実際の温度を設定温度にするように制御される。   Therefore, the opening degree of the valve body 60a of the electric two-way valve 60 is supplied into the chamber F according to the detected supply air temperature from the air supply temperature sensor 80b under the adjustment of the opening degree of the valve body 60a as described above. The temperature of the air volume of SA is controlled to be maintained at the predetermined supply air temperature, and the rotation speed of the supply air blower 40 is set to the actual temperature in the room F based on the temperature detected by the return air temperature sensor 80a. To be controlled.

そして、ステップ330の処理が終了すると、ステップ340において、図3のステップ130と同様に、上記インバータの回転数出力に基づき回転数N≦Naか否かが判定される。そして、N>Naであれば、ステップ340においてNOと判定され、ステップ320以後の処理がなされる。   When the processing of step 330 is completed, in step 340, as in step 130 of FIG. 3, it is determined whether or not the rotational speed N ≦ Na based on the rotational speed output of the inverter. If N> Na, it is determined as NO in step 340, and the processing after step 320 is performed.

ステップ340における判定がYESとなった場合、すなわち、室F内が軽負荷状態になった場合には、ステップ350において、室内温度に基づく電動2方弁60の開度制御処理がなされる。この開度制御処理では、弁本体60aの開度が、還気温センサ80aの検出室内温に基づき、室F内の実際の温度を上記設定温度に維持するように決定されて電動2方弁60の駆動回路60bに出力される。このため、弁本体60aの開度が、室F内の実際の温度を上記設定温度に維持する値となるように、当該弁本体60aが制御され、熱交換器30を流れる冷水の量が調節される。   If the determination in step 340 is YES, that is, if the inside of the room F is in a light load state, in step 350, the opening degree control process for the electric two-way valve 60 based on the room temperature is performed. In this opening degree control process, the opening degree of the valve body 60a is determined based on the detected room temperature of the return air temperature sensor 80a so as to maintain the actual temperature in the room F at the set temperature, and the electric two-way valve 60 is operated. To the driving circuit 60b. For this reason, the valve body 60a is controlled so that the opening degree of the valve body 60a becomes a value that maintains the actual temperature in the chamber F at the set temperature, and the amount of cold water flowing through the heat exchanger 30 is adjusted. Is done.

然る後、ステップ360において、データ処理器51からの送り側水温Ts及び還り側水温Trに基づき、水温差ΔT<設定水温度差5(℃)か否かが判定される。ここで、水温差ΔT≧設定水温度差5(℃)であれば、ステップ360にてNOと判定され、ステップ350の処理が再度なされる。   Thereafter, in step 360, it is determined whether or not the water temperature difference ΔT <the set water temperature difference 5 (° C.) based on the feed side water temperature Ts and the return side water temperature Tr from the data processor 51. Here, if the water temperature difference ΔT ≧ the set water temperature difference 5 (° C.), it is determined NO in Step 360 and the processing of Step 350 is performed again.

このように、室F内が軽負荷状態になった後は、電動2方弁60の弁本体60aの開度が、室F内の実際の温度を設定温度に維持するように還気温センサ80aからの検出還気温に応じ制御されるとともに、上記検出送り側水温及び検出還り側水温に応じて上記設定水温度差を維持するように制御される。このため、室F内の快適な空調の維持に併せ、上記送り側水温と上記還り側水温との間の温度差を上記設定水温度差に維持することで熱交換器30、ひいては当該空調制御システムにおける熱源系統の省エネルギー化を実現できる。なお、ステップ360における判定がYESになると、制御プログラムはスタートステップに戻る。   Thus, after the inside of the chamber F is in a light load state, the return air temperature sensor 80a so that the opening degree of the valve body 60a of the electric two-way valve 60 maintains the actual temperature in the chamber F at the set temperature. Is controlled in accordance with the detected return air temperature and the set water temperature difference is maintained in accordance with the detected feed side water temperature and the detected return side water temperature. Therefore, in addition to maintaining comfortable air conditioning in the room F, the temperature difference between the feed water temperature and the return water temperature is maintained at the set water temperature difference, so that the heat exchanger 30, and thus the air conditioning control. Energy saving of the heat source system in the system can be realized. When the determination in step 360 is YES, the control program returns to the start step.

当該空調制御システムにおいて、暖房負荷状態においても、室F内の快適空調制御に併せて、電動2方弁60の開度を、起動時の最大流量制御および熱交換器30の送り側及び還り側の各水温の差を適正に維持するように制御することで、当該空調制御システムの熱源設備の省エネルギーに役立つ。   In the air conditioning control system, even in a heating load state, the opening degree of the electric two-way valve 60 is adjusted to the maximum flow rate control at the time of start-up and the feed side and return side of the heat exchanger 30 together with the comfortable air conditioning control in the room F. By controlling to maintain the difference in water temperature appropriately, it is useful for energy saving of the heat source equipment of the air conditioning control system.

本発明の第1実施形態を示す全体構成図1 is an overall configuration diagram showing a first embodiment of the present invention. 同第1の実施の形態の空気調和装置のブロック図Block diagram of the air-conditioning apparatus of the first embodiment 同第1の実施の形態の空調制御器のマイクロコンピュータの作用を示すフローチャートThe flowchart which shows the effect | action of the microcomputer of the air-conditioning controller of the said 1st Embodiment 本発明の第2実施形態における空調制御器のマイクロコンピュータの作用を示すフローチャートThe flowchart which shows the effect | action of the microcomputer of the air-conditioning controller in 2nd Embodiment of this invention. 本発明の第3実施形態を示す空気調和装置のブロック図The block diagram of the air conditioning apparatus which shows 3rd Embodiment of this invention. 上記第3実施形態におけるデジタル制御器のマイクロコンピュータの作用を示すフローチャートThe flowchart which shows the effect | action of the microcomputer of the digital controller in the said 3rd Embodiment. 上記第3実施形態における電動2方弁のマイクロコンピュータの作用を示すフローチャートThe flowchart which shows the effect | action of the microcomputer of the electric two-way valve in the said 3rd Embodiment.

符号の説明Explanation of symbols

F 室
Pu ポンプ装置
R 冷凍機
U 空気調和装置
30 熱交換器
40 給気送風機
50 複合検出装置
51 データ処理器
52 流量センサ
53 送り側水温センサ
54 還り側水温センサ
60 電動2方弁
60a 弁本体
60b 駆動回路
60c 弁制御回路
61 弁制御マイクロコンピュータ
70 インバータ装置
70a インバータ
70b 空調制御器
70c デジタル制御器
71 マイクロコンピュータ
80a 還気温センサ
80b 給気温センサ
F room Pu pump device R refrigerator U air conditioner 30 heat exchanger
40 air supply blower 50 composite detection device 51 data processor 52 flow rate sensor 53 feed side water temperature sensor 54 return side water temperature sensor 60 electric two-way valve 60a valve body 60b drive circuit 60c valve control circuit 61 valve control microcomputer 70 inverter device 70a inverter 70b Air-conditioning controller 70c Digital controller 71 Microcomputer
80a Return air temperature sensor 80b Air supply temperature sensor

Claims (2)

複数の空気調和装置と、冷凍機と、この冷凍機により冷却される冷水を送り側冷水として前記複数の空気調和装置に供給するポンプ装置とを備え、前記各空気調和装置は、熱交換器と、給気送風機とを有し、前記熱交換器に流れる空気流と前記送り側冷水とを前記熱交換器にて熱交換させた後、前記送り側冷水を還り側冷水として前記冷凍機に還流するとともに前記給気送風機の回転数に応じた給気風量として空調空間内に給気するようにしたビルディング用空調制御システムにおいて、
前記各空気調和装置は、前記空調空間から前記空気調和装置によって還気される還気温度を検出する還気温センサと、
前記給気送風機からの前記熱交換器での熱交換後の給気温度を検出する給気温センサと、
前記送り側或いは還り側の冷水の流量を冷水流量として検出する流量センサと、
前記送り側冷水の温度を検出する送り側水温センサと、
前記還り側冷水の温度を検出する還り側水温センサとを有し、
弁本体及びこの弁本体を駆動する弁駆動手段を有する電動2方弁と、
インバータと、データ処理手段を有する空調制御器とを備え、
前記データ処理手段は、
前記流量センサからの検出冷水流量が最大流量を超えるとき前記弁本体の開度を絞る最大流量設定手段と、
前記送り側水温センサ及び還り側水温センサからの前記検出送り側水温及び前記検出還り側水温の間の水温差が設定水温度差と異なるとき、この設定水温度差を維持するように前記弁本体の開度を決定する温度差流量制限手段と、
前記還気温センサからの検出温度に基づき前記空調空間内の温度を設定温度にするように前記給気送風機の回転数を決定する回転数決定手段と、
前記給気送風機の回転数が軽負荷に対応する値になったとき、前記空調空間内の温度を設定温度に維持するように前記弁本体の開度を決定する空間内温度制御手段とを備え、
前記弁駆動手段は、
前記流量センサからの検出冷水流量が最大流量を超えるときには、前記最大流量設定手段により前記弁本体の開度を調節し、
前記流量センサからの検出冷水流量が最大流量を下回るときには、前記温度差流量制御手段による決定開度となるように前記弁本体を駆動し、
この駆動後、前記インバータは、前記回転数決定手段による前記給気送風機の決定回転数に基づき当該給気送風機の回転数を制御し、この制御に伴い前記給気送風機の回転数が軽負荷に対応する値になったとき、前記弁駆動手段は、前記空間内温度制御手段による決定開度となるように前記弁本体を駆動することを特徴とするビルディング用空調制御システム。
A plurality of air conditioners, a refrigerator, and a pump device that supplies cold water cooled by the refrigerator as feed-side cold water to the plurality of air conditioners, each of the air conditioners includes a heat exchanger, The air flow flowing through the heat exchanger and the feed side cold water are heat exchanged by the heat exchanger, and then the feed side cold water is returned to the refrigerator as return side cold water. In the air conditioning control system for buildings that supplies air into the air-conditioned space as the amount of air supplied according to the rotational speed of the air supply blower,
Each air conditioner detects a return air temperature returned from the air-conditioned space by the air conditioner, and a return air temperature sensor;
A supply air temperature sensor for detecting a supply air temperature after heat exchange in the heat exchanger from the supply air blower;
A flow rate sensor for detecting a flow rate of cold water on the feed side or return side as a cold water flow rate;
A feed-side water temperature sensor for detecting the temperature of the feed-side cold water;
A return side water temperature sensor for detecting the temperature of the return side cold water;
An electric two-way valve having a valve body and a valve driving means for driving the valve body;
Comprising an inverter and an air conditioning controller having data processing means;
The data processing means includes
Maximum flow rate setting means for reducing the opening of the valve body when the detected cold water flow rate from the flow rate sensor exceeds the maximum flow rate,
When the water temperature difference between the detected feed-side water temperature and the detected return-side water temperature from the feed-side water temperature sensor and the return-side water temperature sensor is different from the set water temperature difference, the valve body is maintained so as to maintain the set water-temperature difference. Temperature difference flow rate limiting means for determining the degree of opening;
Rotational speed determination means for determining the rotational speed of the air supply blower so that the temperature in the air-conditioned space is set to a set temperature based on the detected temperature from the return air temperature sensor;
In-space temperature control means for determining the opening degree of the valve body so as to maintain the temperature in the air-conditioned space at a set temperature when the rotation speed of the air supply blower reaches a value corresponding to a light load. ,
The valve driving means includes
When the detected cold water flow rate from the flow sensor exceeds the maximum flow rate , the maximum flow rate setting means adjusts the opening of the valve body,
When the detected cold water flow rate from the flow rate sensor is below the maximum flow rate, the valve body is driven so that the opening degree is determined by the temperature difference flow rate control means,
After this driving, the inverter controls the rotation speed of the supply air blower based on the determined rotation speed of the supply air blower by the rotation speed determination means, and the rotation speed of the supply air blower is reduced to light load along with this control. The air conditioning control system for buildings, wherein when the corresponding value is reached, the valve driving means drives the valve main body so that the opening degree determined by the in-space temperature control means is reached.
複数の空気調和装置と、冷凍機と、この冷凍機により冷却される冷水を送り側冷水として前記複数の空気調和装置に供給するポンプ装置とを備え、前記各空気調和装置は、熱交換器と、給気送風機とを有し、前記熱交換器に流れる空気流と前記送り側冷水とを前記熱交換器にて熱交換させた後、前記送り側冷水を還り側冷水として前記冷凍機に還流するとともに前記給気送風機の回転数に応じた給気風量として空調空間内に給気するようにしたビルディング用空調制御システムにおいて、
前記各空気調和装置は、前記空調空間から前記空気調和装置によって還気される還気温度を検出する還気温センサと、
前記給気送風機からの前記熱交換器での熱交換後の給気温度を検出する給気温センサと、
前記送り側或いは還り側の冷水の流量を冷水流量として検出する流量センサと、
前記送り側冷水の温度を検出する送り側水温センサと、
前記還り側冷水の温度を検出する還り側水温センサとを有し、
前記検出冷水流量、検出送り側水温及び検出還り側水温を出力する複合検出装置と、
弁本体及びこの弁本体の最大流量設定を保有する最大流量設定手段に加え、
前記弁本体の開度を制御する弁制御手段を有する電動2方弁と、
インバータ及びデータ処理手段を有するインバータ装置とを備え、
前記最大流量設定手段は、
前記複合検出装置からの検出冷水流量が最大流量を超えるとき前記弁本体の開度を絞り、
そして、前記データ処理手段は、前記給気温センサからの検出温度に基づき前記空調空間内への給気の温度を所定給気温度に維持するように前記電動2方弁の弁本体の開度を決定する給気温度制御手段と、
前記還気温センサからの検出温度に基づき前記空調空間内の温度を設定温度にするように前記給気送風機の回転数を決定する回転数決定手段と、
前記還気温センサからの検出温度に基づき前記空調空間内の温度を設定温度に維持するように前記弁本体の開度を決定する空間内温度制御手段とを備え、
前記弁制御手段は、
前記流量センサからの検出冷水流量が最大流量を超えるときには、最大流量設定手段により前記弁本体の開度を調節し、
前記流量センサからの検出冷水流量が最大流量を下回るときには、前記給気温度制御手段による決定開度となるように前記弁本体の開度を制御し、
この制御後、前記インバータは、前記回転数決定手段による前記給気送風機の決定回転数に基づき当該給気送風機の回転数を制御し、
この制御に伴い前記給気送風機の回転数が軽負荷に対応する値になったとき、
前記弁制御手段は、前記空調空間内の温度を設定温度に維持するように前記弁本体の開度を空間内温度制御手段による決定開度に制御することを特徴とするビルディング用空調制御システム。
A plurality of air conditioners, a refrigerator, and a pump device that supplies cold water cooled by the refrigerator as feed-side cold water to the plurality of air conditioners, each of the air conditioners includes a heat exchanger, The air flow flowing through the heat exchanger and the feed side cold water are heat exchanged by the heat exchanger, and then the feed side cold water is returned to the refrigerator as return side cold water. In the air conditioning control system for buildings that supplies air into the air-conditioned space as the amount of air supplied according to the rotational speed of the air supply blower,
Each air conditioner detects a return air temperature returned from the air-conditioned space by the air conditioner, and a return air temperature sensor;
A supply air temperature sensor for detecting a supply air temperature after heat exchange in the heat exchanger from the supply air blower;
A flow rate sensor for detecting a flow rate of cold water on the feed side or return side as a cold water flow rate;
A feed-side water temperature sensor for detecting the temperature of the feed-side cold water;
A return side water temperature sensor for detecting the temperature of the return side cold water;
A combined detection device for outputting the detected cold water flow rate, the detected feed side water temperature and the detected return side water temperature;
In addition to the valve body and the maximum flow rate setting means that holds the maximum flow rate setting of this valve body,
An electric two-way valve having valve control means for controlling the opening of the valve body;
An inverter device having an inverter and data processing means,
The maximum flow rate setting means includes
When the detected cold water flow rate from the composite detection device exceeds the maximum flow rate, the valve body opening is throttled,
The data processing means sets the opening degree of the valve body of the electric two-way valve so as to maintain the temperature of the air supply into the air-conditioned space at a predetermined air supply temperature based on the temperature detected by the air temperature sensor. A supply air temperature control means to determine;
Rotational speed determination means for determining the rotational speed of the air supply blower so as to set the temperature in the air-conditioned space to a set temperature based on the detected temperature from the return air temperature sensor;
In-space temperature control means for determining the opening of the valve body so as to maintain the temperature in the air-conditioned space at a set temperature based on the detected temperature from the return air temperature sensor,
The valve control means includes
When the detected cold water flow rate from the flow sensor exceeds the maximum flow rate, the opening degree of the valve body is adjusted by the maximum flow rate setting means,
When the detected cold water flow rate from the flow rate sensor is lower than the maximum flow rate, the opening degree of the valve body is controlled to be a determined opening degree by the supply air temperature control means,
After this control, the inverter controls the rotation speed of the supply air blower based on the determined rotation speed of the supply air blower by the rotation speed determination means,
With this control, when the rotation speed of the air supply blower becomes a value corresponding to a light load,
The building air conditioning control system characterized in that the valve control means controls the opening degree of the valve body to a determined opening degree by the space temperature control means so as to maintain the temperature in the air conditioned space at a set temperature.
JP2004175088A 2004-06-14 2004-06-14 Air conditioning control system for buildings Expired - Fee Related JP4459727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004175088A JP4459727B2 (en) 2004-06-14 2004-06-14 Air conditioning control system for buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004175088A JP4459727B2 (en) 2004-06-14 2004-06-14 Air conditioning control system for buildings

Publications (2)

Publication Number Publication Date
JP2005351587A JP2005351587A (en) 2005-12-22
JP4459727B2 true JP4459727B2 (en) 2010-04-28

Family

ID=35586213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004175088A Expired - Fee Related JP4459727B2 (en) 2004-06-14 2004-06-14 Air conditioning control system for buildings

Country Status (1)

Country Link
JP (1) JP4459727B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5209244B2 (en) * 2007-07-24 2013-06-12 アズビル株式会社 Air conditioning control system and air conditioning control method
JP2009030820A (en) * 2007-07-24 2009-02-12 Yamatake Corp Air-conditioning control device and its method
WO2010049999A1 (en) 2008-10-29 2010-05-06 三菱電機株式会社 Air conditioner
JP5178841B2 (en) 2008-10-29 2013-04-10 三菱電機株式会社 Air conditioner
CN102422093B (en) 2009-05-12 2014-03-19 三菱电机株式会社 Air conditioner
JP5537253B2 (en) * 2010-05-14 2014-07-02 東京瓦斯株式会社 Water supply control system and control method thereof
JP5216813B2 (en) * 2010-06-29 2013-06-19 リョービ株式会社 Control method for air conditioning system
JP5548052B2 (en) * 2010-07-02 2014-07-16 アズビル株式会社 Rotation speed control system and method for cold / hot water circulation pump
US8229597B2 (en) * 2011-09-27 2012-07-24 Jpmorgan Chase Bank, N.A. Heating, ventilation, and air conditioning management system and method
KR101454995B1 (en) * 2013-02-27 2014-10-27 키무라코우키 가부시키가이샤 Outdoor air conditioner having air conditioning function
JP6084737B1 (en) * 2015-10-06 2017-02-22 木村工機株式会社 Air conditioning system
US11199350B2 (en) 2017-09-22 2021-12-14 Mitsubishi Electric Corporation Air-conditioning apparatus with regulated flow of a heat medium
JP7217594B2 (en) * 2018-05-31 2023-02-03 三機工業株式会社 air conditioning system
JP7037095B2 (en) * 2020-01-29 2022-03-16 三菱重工冷熱株式会社 air conditioner
JP7439629B2 (en) * 2020-04-09 2024-02-28 三菱電機株式会社 air conditioning system
CN115899999B (en) * 2023-03-08 2023-07-14 宁德时代新能源科技股份有限公司 Air conditioner cabinet, control method thereof, storage medium and computer program product

Also Published As

Publication number Publication date
JP2005351587A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
JP4459727B2 (en) Air conditioning control system for buildings
JP4422572B2 (en) Cold / hot water control method for cold / hot heat source machine
JP2723953B2 (en) Air conditioner
JPH05149605A (en) Air conditioner
JP2012141113A (en) Air conditioning/water heating device system
JP4726664B2 (en) Air conditioner
JP2011202833A (en) Air conditioner
JP3828485B2 (en) Control device
JP6597955B2 (en) Air conditioner
JP6250589B2 (en) Air conditioning system
JP3733371B2 (en) Temperature control system
JP4694905B2 (en) Air conditioning system
KR20060012837A (en) A multi air conditioner and a driving method of it
JPH06159770A (en) Air conditioner
JP2008116163A (en) Heat medium conveying system
JP4477914B2 (en) Air conditioning system
JP2010181046A (en) Clean room air-conditioning system
JP2012141088A (en) Clean room air-conditioning system
US20200318880A1 (en) Refrigeration cycle apparatus
JPH08303877A (en) Air conditioner
JP3534048B2 (en) Air conditioning system
JP4594146B2 (en) Optimum control method for variable air volume of air conditioning system
WO2005100875A1 (en) Air conditioner control method and air conditioner system
KR101243227B1 (en) Ventilation System and control Method of the same of
JP5517645B2 (en) Air conditioner and control method of air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100210

R150 Certificate of patent or registration of utility model

Ref document number: 4459727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees