JP4459394B2 - Method and apparatus for separating and refining high viscosity oil by evaporating waste oil of high viscosity oil - Google Patents

Method and apparatus for separating and refining high viscosity oil by evaporating waste oil of high viscosity oil Download PDF

Info

Publication number
JP4459394B2
JP4459394B2 JP2000188774A JP2000188774A JP4459394B2 JP 4459394 B2 JP4459394 B2 JP 4459394B2 JP 2000188774 A JP2000188774 A JP 2000188774A JP 2000188774 A JP2000188774 A JP 2000188774A JP 4459394 B2 JP4459394 B2 JP 4459394B2
Authority
JP
Japan
Prior art keywords
heat transfer
oil
heated
blade
transfer surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000188774A
Other languages
Japanese (ja)
Other versions
JP2002003859A (en
Inventor
金井正夫
Original Assignee
金井 正夫
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金井 正夫 filed Critical 金井 正夫
Priority to JP2000188774A priority Critical patent/JP4459394B2/en
Publication of JP2002003859A publication Critical patent/JP2002003859A/en
Application granted granted Critical
Publication of JP4459394B2 publication Critical patent/JP4459394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、高粘度油の廃油及びオイルサンドから油分、水分、固形分を分離して高粘度油を精製し、再利用に供するための高粘度油を分離、精製する方法及び装置に関する。
【0002】
【従来の技術】
近年においては、不純物を含む種々の石油類のうち、オイルタンカーや石油基地からの流出油事故等によって海岸や河川岸などに打ち上げられる多量の漂着油は、海岸線等の環境を破壊するため、その処理が社会的な問題となっている。
【0003】
現在、流出油事故等の際の処理方法としては、オイルフェンスの展張、油処理剤の散布、油吸着材による回収、さらに漂着油が付着した砂利、岩石及び消波ブロックなどに対しては、人海戦術による付着物の掻き落としなどの方法が挙げられる。
【0004】
【発明が解決しようとする課題】
しかしながら流出油は、風波の働きと油中に含まれている天然の乳化剤により安定化し、数日の内に水分を70〜80%含む安定なエマルジョン、ムースとなり、油吸着材もまったく使用できない程度に粘度が高くなって、その処理は極めて困難である。また、浜辺に打ち上げられた漂着油は、砂に含侵した状態で回収されてはいるが、それらの回収物から油と砂を効果的に分離する方法は知られていない。
【0005】
また、原油については、一般的に塩水及びガスと共に埋蔵しているため、ほとんどの石油掘削現場では、塩分を含んだ多量の水と共に原油が汲み上げられ、通常は静置タンクやガンバレルにより原油を脱水処理している。しかし、上記の方法により処理した原油中には、微細な水粒子として安定な油中水型エマルジョンを形成して原油中に分散している。このエマルジョンは、水滴のまわりにアスファルト、アスファルテン、レジン、窒素化合物、硫黄化合物、硫化鉄、泥、粘土及びパラフィンなどの固形物が強固な膜を構成してエマルジョンをさらに安定化しており、静置分離などの簡単な処理では除去することができないことが多い。
【0006】
さらに汚泥油では、石油タンクや石油備蓄タンク底部、オイルセパレータ及びタンカー船底に蓄積された油と無機物粒子、有機物及び水からなる汚泥との混合物であり、高い粘性を有するペースト状物質で、遠心分離器による処理が不可能であった。例えば、特開昭59−112808号公報には、汚泥油も凝集剤としてナトリウムジアルキルサルホサクシネートとカチオン界面活性剤を添加、攪拌しながら加熱して凝集フロックを形成し、次いで分離剤としてポリオキシエチレンアルキルエーテルを添加した後、三相遠心分離機によりスラッジケーキ、油、分離水の3相に分離する方法が提案されているが、この方法では、凝集剤を添加する工程、分離剤を添加する工程と、2工程を必要とする処理方法が採用されており合理的な方法ではない。
【0007】
また、オイルサンドについては、重質油を砂や砂岩で、その埋蔵量は膨大ではあるが、その含油量が5〜10%と低く、流動性がないため採油法に問題が有り、効果的かつ経済的に油を分離する方法の開発が要望されている。
【0008】
廃油は、機械を使用するほとんどの生産現場や工場から発生するもので、潤滑油などの油類に各種の水溶性無機塩類や非水溶性無機粒子、水分などの夾雑物が混ざったものであり、その合理的な処理方法が知られていない。その多くは、工場跡地に存在して油臭や油膜を発生し、そのままでは埋め立てて処分することはできないため、その経済的な処理方法の開発が要望されている。
【0009】
上記の通り、漂着油、オイルレイク、オイルサンド、油汚染土砂類、汚泥油、廃油等の様々な石油類に含まれる水溶性塩類や、非水溶性無機粒子、水分等の不純物を効率よく分離、精製する方法はまだ見出されていない。
【0010】
従って、本発明の目的とする所は、高粘度油の廃油及びオイルサンドから油分、水分、固形分を効率よく分離して高粘度油を精製し、再利用に供する高粘度油を分離、精製する方法及び装置を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成する為に、本発明は次の技術的手段を有する。即ち、発明の実施の形態に対応する添付図面中の符号を用いてこれを説明すると、本発明は、被加熱物3を投入する内部が円筒形状の伝熱面となす加熱槽4と、伝熱手段からの熱を被加熱物3に伝える加熱槽4の円筒形状の内壁面の伝熱面2と、上記加熱槽4の周囲に位置し、上記伝熱面2に熱を伝える伝熱手段と、上記加熱槽4内に於いて重力方向に沿って配設された回転軸5bに取付けられ回転可能に配設されていて、それぞれが平面から見て360度の円周範囲内の長さに定められた複数の基羽根5aから成る回転巻上羽根5とからなる加熱装置1であって、上記回転巻上羽根5の各基羽根5aが、上記被加熱物3を各基羽根5aの一端部18から他端部19に移動させ、この他端部19から巻き上げる長さの平坦面8を有し、この平坦面8の外周端10aと上記伝熱面2との間に各基羽根5aの回転を許容する為のクリアランスUが形成されるように、上記外周端10aが伝熱面2に沿って形成され、上記回転巻上羽根5の各基羽根5aの平坦面8が、その回転方向Rと逆方向に向かって斜め上方に伸びるように形成され、而も複数枚の基羽根5aの内の、一つの基羽根5aの他端部19の高さ位置が、上記回転方向と逆方向に向かって隣りに位置する他の基羽根5aの一端部18の高さ位置より高い位置に位置し、上記被加熱物3を複数枚の各基羽根5a上に載せて巻き上げつつ、遠心力によって伝熱面に押し付けて上記被加熱物3を加熱させるよう構成された加熱装置1を用いた加熱方法に於いて、
上記被加熱物3が高粘度油の廃油であって、上記伝熱手段により加熱される伝熱面2を介して上記廃油3を加熱、蒸発させて、上記加熱槽4に切換弁を介して接続される第1凝縮槽24に水蒸気を導入し冷却して水を分離し、次に廃油3の昇温の検知により上記切換弁を切り換えて、高粘度油の沸点まで加熱し発生した加熱蒸気を第2凝縮槽26に導入し冷却して高粘度油を分離、精製するようにしたことを特徴とする高粘度油を分離、精製する方法である。
上記によると、上記加熱装置1を用いることにより、高粘度油の廃油3を、伝熱手段により加熱される加熱槽4の伝熱面2を介して上記廃油3を加熱、蒸発させて、第1凝縮槽24に水蒸気を導入し冷却して水を分離し、次に廃油3の昇温の検知により上記切換弁を切り換えて、高粘度油の沸点まで加熱し発生した加熱蒸気を第2凝縮槽26に導入し冷却して高粘度油Hを分離、精製する。
従って、上記加熱装置1を用いることにより、高粘度の廃油3及びオイルサンドから油分、水分、固形分を効率よく分離して高粘度油を精製し、再利用に供する高粘度油を分離、精製することができる。
【0012】
また、本発明は、被加熱物3を投入する内部が円筒形状の伝熱面となす加熱槽4と、伝熱手段からの熱を被加熱物3に伝える加熱槽4の円筒形状の内壁面の伝熱面2と、上記加熱槽4の周囲に位置し、上記伝熱面2に熱を伝える伝熱手段と、上記加熱槽4内に於いて重力方向に沿って配設された回転軸5bに取付けられ回転可能に配設されていて、それぞれが平面から見て360度の円周範囲内の長さに定められた複数の基羽根5aから成る回転巻上羽根5とからなる加熱装置1であって、上記回転巻上羽根5の各基羽根5aが、上記被加熱物3を各基羽根5aの一端部18から他端部19に移動させ、この他端部19から巻き上げる長さの平坦面8を有し、この平坦面8の外周端10aと上記伝熱面2との間に各基羽根5aの回転を許容する為のクリアランスUが形成されるように、上記外周端10aが伝熱面2に沿って形成され、上記回転巻上羽根5の各基羽根5aの平坦面8が、その回転方向と逆方向に向かって斜め上方に伸びるように形成され、而も複数枚の基羽根5aの内の、一つの基羽根5aの他端部19の高さ位置が、上記回転方向Rと逆方向に向かって隣りに位置する他の基羽根5aの一端部18の高さ位置より高い位置に位置し、上記被加熱物3を複数枚の各基羽根5a上に載せて巻き上げつつ、遠心力によって伝熱面2に押し付けて上記被加熱物3を加熱させるよう構成された加熱装置1に於いて、
上記被加熱物が高粘度油の廃油3であって、加熱蒸気を媒体とする上記伝熱手段により加熱される伝熱面2を介して上記廃油3を加熱、蒸発させて、上記加熱槽4から導入される水蒸気を冷却して水を分離するための第1凝縮槽24が切換弁22aを介して上記加熱槽4に接続されると共に、沸点まで加熱された高粘度油Hの加熱蒸気を冷却して高粘度油Hを分離、精製するための第2凝縮槽26が切換弁22bを介して上記加熱槽4に接続され、上記廃油3の昇温を検知して上記切換弁を切換え制御する制御装置30を有していることを特徴とする高粘度油を分離、精製する装置である。
上記によると、高粘度油の廃油3を、伝熱手段により加熱される加熱槽4の伝熱面を介して上記廃油3を加熱、蒸発し、加熱槽4から切換弁を介して第1凝縮槽24に導入された水蒸気を冷却して水を分離生成し、上記廃油3の昇温を検知して上記切換弁を切換え制御装置30により切換え、沸点まで加熱された高粘度油Hの加熱蒸気を第2凝縮槽26に導入し冷却して高粘度油Hを分離、精製する。従って、高粘度油の廃油3及びオイルサンドから油分、水分、固形分を効率よく分離、精製することができ、これを再び高粘度油として使用したり、燃料として再利用できるようにして公害の発生を抑制することができる。
【0013】
【発明の実施の形態】
次に、添付図面、図1及び図2により、本発明の実施形態を順次詳細に説明する。図1は本発明の第1実施形態に係り、高粘度油の廃油を加熱、蒸発させて高粘度油を分離、精製するフロー図であり、図2は本発明の第1実施形態で示した3枚の基羽根から成る回転巻上羽根の平面図である。
【0014】
本発明の加熱装置で使用される高粘度油は、オイルタンカーや石油基地からの流出油事故等によって海岸や河川岸などに打ち上げられる多量の漂着油や、石油タンクや石油備蓄タンク底部、オイルセパレータ及びタンカー船底に蓄積された油と無機物粒子、有機物及び水からなる汚泥との混合物であって高い粘性を有するペースト状物質からなる汚泥油、及び土や砂が混ざった重質石油としてのオイルサンドである。
【0015】
本発明の加熱装置では、内部に水分やスラッジなどの固形分が含まれた高粘度油の廃油、原油及びオイルサンド等から高粘度油を分離、精製するものである。
【0016】
最初に、高粘度油の廃油、原油及びオイルサンドを加熱、蒸発させて、この高粘度油から水及びスラッジを分離、精製するために使用される加熱装置につき説明する。図1、図2は第1実施形態を示し、4は円筒形状の加熱槽であり、円筒状の内壁面が伝熱手段からの熱を被加熱物3である高粘度油の廃油、原油及びオイルサンド(以下廃油3と称する)に伝える伝熱面2とから成っている。上記伝熱手段は、上記加熱槽4の周囲に形成したジャケット6と、このジャケット6に連なり、ジャケット6内に加熱蒸気7を送り込むボイラー(図示せず)とを備える。上記ジャケット6には、加熱蒸気7をジャケット6内に導く蒸気流入部11と、加熱蒸気をジャケット6外に排出する蒸気排出部12とが設けられている。
【0017】
また、上記加熱槽4の底部4a側壁には、廃油供給管13が連設されていて、廃油投入槽14に貯留された廃油3を、ポンプ16を介して廃油供給管13より加熱槽4の底部4aに供給する。また、上部4bの側壁には、廃油導出管15が連設されていて、加熱槽4内で加熱させながら上昇させることにより加熱槽4内で粉状に乾燥分離されたスラッジなどは図示しない導出スクリューによってスラッジ蓄積槽内から導出されるようになっている。
【0018】
上記加熱槽4底部4aの外側に取り付けたモータ17には、複数の回転巻上羽根5が連設されており、このモータ17により回転軸5bを中心として回転可能となっている。
【0019】
次に、上記回転巻上羽根5に着目すると、上記回転巻上羽根5は、複数枚の基羽根5aから成り、この実施形態では3枚の基羽根から成る。それぞれの基羽根5aは同一形状であり、上記基羽根5aは、それぞれが平面から見て360度の円周範囲内の長さに定められている。
【0020】
そして、複数枚の基羽根5aは廃油を一方から他方へ移動する為の一端部18と他端部19を有する。そして、この一端部18と他端部19の間に形成されていて、伝熱面2に沿って細長い平坦面8を有する。加えて、上記伝熱面2に沿って細長い平坦面8の外周端10aと上記伝熱面との間に、各基羽根5aの回転を許容する為のクリアランスUが形成されるように、上記細長い平坦面8の外周端10aは、上記伝熱面2の円筒形状に沿った弧状に形成されているものである。
【0021】
更に、上記平坦面8は、その回転方向Rと逆方向に向かって一端部18から他端部19に向かって斜め上方に伸びるように形成されて成り、特に複数枚の基羽根5aの内の、一つの基羽根5aの他端部19の高さ位置は、上記回転方向Rと逆方向に向って隣りに位置する他の基羽根5aの一端部18の高さ位置より高い位置に位置し、上記廃油3を複数枚の基羽根5a上に載せて巻き上げつつ、遠心力Pによって伝熱面2に押し付け、廃油3を加熱させるよう構成されている。
【0022】
また、上記基羽根5aは、平面から見て360度の円周範囲内の長さを有するということは、その一端部18から他端部19までの回転中心点を中心とする角度は360度以下で有るが、上記各基羽根5aの一端部18は、上記回転軸5bに固定されたかき取り部20に連続している。
【0023】
尚、上記ジャケット6とボイラーとから成る伝熱手段の例として、ジャケット6とジャケット6内に収容した熱媒体と、ジャケット6外周に配設した電気ヒーターとから成る伝熱手段が考えられ、上記電気ヒーターの熱は伝熱面2に伝えられる。
【0024】
上記のように構成された加熱槽4は、その上端にはパイプP1、P2を介して第1凝縮槽24並びに第2凝縮槽26がそれぞれ接続されている。
【0025】
第1凝縮槽24は、加熱槽4内で100℃(常圧)で蒸発した加熱水蒸気を凝縮して水Wを生成するもので、第1凝縮槽24の入口と加熱槽4との間を接続するパイプP1には、切換弁22aとブロアー23が接続されており、第1凝縮槽24の出口には生成された水Wを貯留槽25に導くためのパイプP4が接続されている。
【0026】
第2凝縮槽26は、加熱槽4内で高温下(340〜400℃)で蒸発したは廃油の加熱蒸気を凝縮して高粘度油を精製するもので、第2凝縮槽26の入口と加熱槽4との間を接続するパイプP2には切換弁22bが接続されており、切換弁22a、切換弁22bは制御装置30の制御により開閉制御されるようになっている。
【0027】
詳しくは、上記制御装置30は、加熱槽4内に設置された図示しない温度検出器からの検出信号として水蒸気が発生する温度領域では切換弁22aの開弁状態が維持され、更に昇温して所定温度(高粘度油の沸点温度)に達した際には温度検出装置からの検出信号により切換弁22aを閉弁すると同時に切換弁22bを開弁するように制御されている。
【0028】
次に、第2凝縮槽26の出口には精製された高粘度油Hを高粘度油貯留槽28に導くためのパイプP4がポンプ27を介して接続されている。貯留槽25に貯留された高粘度油Hは再利用するためにポンプ29により適宜外部に供給されるようになっている。
【0029】
上述した加熱装置は、図2に示されるような3枚の基羽根から成る回転巻上羽根として説明した。図3は回転巻上羽根の変形例を示すもので、4枚の基羽根から成る回転巻上羽根の平面図である。このように、基羽根5aの枚数を増加することにより、乱流の発生箇所が増え、廃油3の伝熱面2への接触速度が速くなる。
【0030】
つまり、乱流領域を形成することにより、高粘度油の廃油3は、巻き上げ時の回転による或る接触速度をもった接触が伝熱面に対して行われ、双方の接触による相乗効果により廃油3が伝熱面2に接触し易く、伝熱面2からの熱が廃油3に伝わり易くなる。
【0031】
次に、高粘度油の廃油を蒸発させて高粘度油を分離、精製する方法につき図1を参照しつつ説明する。
【0032】
先ず、廃油投入槽14内に貯留された廃油3を、ポンプ16により廃油供給管13を介して加熱槽4の底部4aに供給する。そして、モータ17を駆動して上記回転巻上羽根5の各基羽根5aを回転させる。同時に上記ボイラーを駆動し、ジャケット6内に2kg/cm2の蒸気を導き伝熱面2を加熱する。
【0033】
上記回転巻上羽根5の基羽根5aの回転により、上記廃油3が基羽根5aごとに、その一端部18から基羽根5aの平坦面8上に載り基羽根5aに沿って他端部側へ移動してゆく。このとき、上記廃油3は、各基羽根5aの長い平坦面8によって回転しつつ上方へ向かわせしめられる作用が働き、その結果、廃油3は巻き上げられると共に、巻き上げによる遠心力によって伝熱面2に押し付けられる。
【0034】
これを詳述すると、廃油3に巻き上げ作用を与え、且つ伝熱面2に遠心力によって押し付け作用を与える基羽根5aの平坦面8は、その他端部19の幅より長く、且つその平坦面8の外周端10aは伝熱面2との間にクリアランスUを保って弧状に形成されているから、単に廃油3に衝撃を与えるのではなく、上記回転方向Rと逆方向にい向かって伸びている。細長い平坦面8による上記廃油3への巻き上げ作用と伝熱面2への押し付け作用が効果的に行われる。
【0035】
そして、一つの連続した羽根によっては廃油3が加熱装置1内で移動せしめられるわけではなく、複数枚の基羽根5aの各々によって廃油3は上方へ押し付けられる。この為、粘性の強い被加熱物であっても伝熱面2に付着することがなく、伝熱面2上の特定箇所に被加熱物が滞留せしめられることがない。
【0036】
また、複数の基羽根5aの各々は、平面から見て360度の円周範囲内の長さしか有さず独立しているので、上記各基羽根5aの平坦面8の外周端10aと伝熱面2との間の上記クリアランスUも全羽根全体に連続していないから、廃油3中のスラッジなどの異物がクリアランスにカミ込むこともない。
【0037】
さらに、上記加熱槽4内の底部に位置した廃油3を、複数枚の基羽根5a各々ごとに巻き上げ上昇させることができるから、上記加熱槽4内底部に位置する廃油全量に比して上昇する廃油3の量が多く、早期に廃油3を伝熱面2に接触させ易い。また、上記各基羽根5aにより、上記廃油3を巻き上げつつ、伝熱面に押し付け、後から巻き上げる廃油3で先に巻き上げた廃油を上方へ押し、上記廃油3を連続して上昇させることによって、上記廃油3が伝熱面2全面に亘って上昇し、上記伝熱面2全面を使用して廃油3を加熱することができる。加えて、上記基羽根5aを回転させることで上記廃油3を巻き上げつつ伝熱面2に押し付けて加熱させることにより、上記基羽根5aの回転速度を上げることができる。これにより、上記廃油3が伝熱面2に沿ってより巻き上がり、上記伝熱面2全周に亘って薄膜状に拡がり、廃油3に熱が伝わり易い。
【0038】
本発明においては、上記回転巻上羽根5の各基羽根5a近傍の、廃油3の流れを側面からみると特徴が表れる。即ち、上記回転巻上羽根5が回転したとき、上記回転巻上羽根5が回転したとき、上記廃油3は、それぞれの基羽根5aによって巻き上げられ、その結果、廃油3が巻き上げられる状態となる。このときに、上記複数枚の基羽根5a内の、2枚の基羽根5a近傍の廃油3の動きに着目する。
【0039】
即ち、図2に示すように、2枚の基羽根5aのうち、一つの基羽根5aの平坦面8上部に位置する廃油3は、この基羽根5aの平坦面8から斜め上方に飛び出したとき、その重さによって下方に向かおうとする。一方、上記一つの基羽根5aに対し、回転方向Rと反対方向に向かって隣りに位置するもう一つの基羽根5aの平坦面8から斜め上方に飛び出ようとしている。即ち、上記2つの廃油3の流れが重なる部分が生じ重なった部分で乱流となる。
【0040】
この乱流領域では、廃油3の流れが激しく、同時に伝熱面2への接触速度が速くなる。そして、上記回転巻上羽根5の基羽根5aの回転数及び回転速度を増すほど上記乱流領域の発生箇所が増え、廃油3の伝熱面2への接触速度が速くなる。
【0041】
つまり、上記乱流領域を形成することにより、廃油3は、巻き上げ時の回転によるある接触速度をもった接触に加えて、乱流によるある接触速度をもった接触に加えて、乱流によるある接触速度をもった接触が伝熱面2に対して行われ、双方の接触による相乗効果で、より廃油3が伝熱面2に接触し易く、伝熱面2から熱が廃油3に伝わり易くなる。
【0042】
上記のようにして、加熱槽4内に供給された廃油は伝熱面2に接触しつつ効率良く加熱され、約100℃(常圧)で廃油3中の水分が蒸発し、この加熱水蒸気はブロアー23により吸引され切換弁22aを介して第1凝縮槽24に導入される。この第1凝縮槽24に導入された加熱水蒸気は冷却されると水Wが生成され、この水WはパイプP4を介して貯留槽25に貯留される。
【0043】
更に、伝熱面2を介して廃油3が昇温して340℃〜400℃となり、これを温度検出器が検出すると制御装置30からの指令で切換弁22aが閉弁されると、同時に切換弁22bが開弁し、加熱槽4内の廃油3が340℃〜400℃(670mmAq〜700mmAq)に昇温すると廃油3中の高粘度油が蒸発する。この加熱蒸気が切換弁22bよりパイプP2を介して第2凝縮槽26に導入され、この加熱蒸気が冷却されると高粘度油Hが抽出され、これが第2凝縮槽26の底面に貯留される。
【0044】
この高粘度油Hはポンプ27を介して高粘度油貯留槽28に導かれて貯留される。貯留された高粘度油Hを再利用する際にはポンプ29を介して適宜外部に排出することができる。
【0045】
このように、上記のような加熱装置を用いて高粘度油の廃油を蒸発させることによって、高粘度油の廃油中の高粘度油Hを効率よく分離、精製することができ、これを再び高粘度油として使用したり、燃料として再利用することができる。
【0046】
次に、本発明の第2実施形態につき、図4を参照して説明する。図4は本発明の第2実施形態に係り、高粘度油の廃油を加熱、蒸発させて高粘度油と水を分離するフロー図である。
【0047】
図4に示される加熱槽31は、回転巻上羽根の形態のみが上記実施形態と異なっている。従って、同一構成部分は同一符号を付して重複する説明を省略する。
【0048】
そこで、回転巻上羽根35に着目すると、この回転巻上羽根35は、複数枚の基羽根35aから成り、この実施形態では4枚の基羽根から成る。それぞれの基羽根35aは同一形状であり、上記各基羽根35aは同一形状であり、上記基羽根5aは、それぞれが平面から見て360度の円周範囲内の長さに定められている。
【0049】
そして、複数枚の基羽根35aは、廃油を一方から他方への移動する為の一端部37と他端部38を有する。そして、この一端部37と他端部38の間に形成されていて、伝熱面32に沿って細長い平坦面34を有する。加えて、上記伝熱面32に沿って細長い平坦面34の外周端36aと上記伝熱面32との間に、各基羽根5aの回転を許容する為のクリアランスUが形成されるように、上記細長い平坦面34の外周端36aは、上記伝熱面32の円筒形状に沿った弧状に形成されているものである。
【0050】
更に、上記平坦面34は、その回転方向Rと逆方向に向かって一端部37から他端部38に向かって斜め上方に伸びるように形成されて成り、特に複数枚の基羽根35aの内の、一つの基羽根35aの他端部38の高さ位置は、上記回転方向Rと逆方向に向って隣りに位置する他の基羽根35aの一端部37の高さ位置より高い位置に位置し、上記廃油3を複数枚の基羽根35a上に載せて巻き上げつつ、遠心力Pによって伝熱面32に押し付け、廃油3を加熱させるよう構成されている。
【0051】
また、上記基羽根35aは、平面から見て360度の円周範囲内の長さを有するということは、その一端部37から他端部38までの回転中心点を中心とする角度は360度以下で有るが、上記各基羽根35aの一端部37は、上記回転軸33に固定されたかき取り部41に連続している。
【0052】
上記のように構成された各基羽根35aの作用、並びに効果は第1実施形態と同一であり、この各基羽根35aを用いた加熱槽31に高粘度油の廃油3を投入し、ボイル加熱することにより第1実施形態と同様の工程で高粘度油を効率良く分離、精製することができる。
【0053】
【発明の効果】
本発明は次の効果を奏する。
【0054】
以上詳述した如く本願の請求項1記載の発明によると、上記加熱装置を用いて被加熱物を沸点別に加熱、蒸発させて、これらを個別に凝縮槽に導入し凝縮することにより、高粘度油の廃油から高粘度油を効率よく分離、精製することができ、これを高粘度油として再利用できるようにすることができる。
【0055】
本願の請求項2記載の発明によると、高粘度油の廃油から高粘度油を効率よく分離、精製することができ、これを高粘度油の再利用に供することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係り、高粘度油の廃油を加熱、蒸発させて高粘度油と水を分離するフロー図である。
【図2】本発明の第1実施形態で示した3枚の基羽根から成る回転巻上羽根の平面図である。
【図3】回転巻上羽根の変形例に係り、4枚の基羽根から成る回転巻上羽根の平面図である。
【図4】本発明の第2実施形態に係り、高粘度油の廃油を加熱、蒸発させて高粘度油と水を分離するフロー図である。
【符号の説明】
1 加熱装置
2 伝熱面
3 高粘度油の廃油(被加熱物)
4 加熱槽
4a 加熱槽の底部
4b 加熱槽の上部
5 回転巻上羽根
5a 基羽根
5b 回転軸
6 ジャケット
7 蒸気
8 平坦面
10a 外周端
11 蒸気流入部
12 蒸気排出部
13 廃油供給管
14 廃油投入槽
16 ポンプ
17 モータ
18 一端部
19 他端部
20 かき取り部
22a、22b 切換弁
23 ブロアー
24 第1凝縮槽
25 貯留槽
26 第2凝縮槽
27 ポンプ
28 高粘度油貯留槽
29 ポンプ
30 制御装置
31 加熱槽
32 伝熱面
33 回転軸
34 平坦面
35 回転巻上羽根
35a 基羽根
36a 外周端
37 一端部
38 他端部
41 かき取り部
H 高粘度油
P 遠心力
P1、P2 パイプ
P4、P5 パイプ
R 回転方向
U クリアランス
W 水
[0001]
[Industrial application fields]
The present invention relates to a method and an apparatus for separating and refining a high-viscosity oil for separation by refining the high-viscosity oil by separating the oil, water, and solids from waste oil and oil sand of the high-viscosity oil.
[0002]
[Prior art]
In recent years, out of various oils that contain impurities, a large amount of floating oil that is launched to the shore or river shore due to oil spills from oil tankers or oil bases destroys the environment such as coastlines. Processing has become a social issue.
[0003]
Currently, as a treatment method in the event of a spilled oil accident, etc., for the expansion of oil fences, spraying of oil treatment agents, recovery with oil adsorbents, gravel, rocks and wave-dissipating blocks to which stranded oil has adhered, Examples include scraping off deposits by human sea tactics.
[0004]
[Problems to be solved by the invention]
However, the spilled oil is stabilized by the action of the wind wave and the natural emulsifier contained in the oil, and becomes a stable emulsion and mousse containing 70 to 80% of water within a few days, and the oil adsorbent cannot be used at all. The viscosity becomes so high that the treatment is extremely difficult. Moreover, although the drifting oil launched on the beach is recovered in a state of being impregnated with sand, there is no known method for effectively separating the oil and sand from the recovered material.
[0005]
In addition, since crude oil is generally buried with salt water and gas, at most oil drilling sites, crude oil is pumped together with a large amount of salt-containing water, and the crude oil is usually dewatered by a stationary tank or gun barrel. Processing. However, the crude oil treated by the above method forms a stable water-in-oil emulsion as fine water particles and is dispersed in the crude oil. In this emulsion, solid matter such as asphalt, asphaltene, resin, nitrogen compound, sulfur compound, iron sulfide, mud, clay and paraffin forms a strong film around the water droplets, further stabilizing the emulsion and allowing it to stand. In many cases, it cannot be removed by a simple process such as separation.
[0006]
Furthermore, sludge oil is a mixture of oil accumulated at the bottom of oil tanks and oil storage tanks, oil separators and tanker ships, and sludge composed of inorganic particles, organic matter, and water. Processing with a vessel was impossible. For example, in Japanese Patent Application Laid-Open No. 59-112808, sludge oil is also added with sodium dialkylsulfosuccinate and a cationic surfactant as a flocculant and heated with stirring to form an agglomerate floc. After adding ethylene alkyl ether, a method of separating into three phases of sludge cake, oil, and separated water using a three-phase centrifuge has been proposed. In this method, a step of adding a flocculant and a separating agent are added. And a processing method that requires two steps is employed, which is not a rational method.
[0007]
In addition, as for oil sand, heavy oil is sand or sandstone, and its reserves are enormous, but its oil content is as low as 5-10% and there is no fluidity, so there is a problem in oil collection method and effective There is also a demand for the development of a method for separating oil economically.
[0008]
Waste oil is generated from most production sites and factories that use machinery, and is a mixture of various water-soluble inorganic salts, water-insoluble inorganic particles, and other contaminants such as moisture in oil such as lubricating oil. The rational processing method is not known. Many of them are present in the former factory site and generate oily odors and oil films that cannot be landfilled and disposed of as they are, so the development of an economical treatment method has been demanded.
[0009]
As described above, water-soluble salts, non-water-soluble inorganic particles, moisture and other impurities contained in various petroleums such as stranded oil, oil lake, oil sand, oil-contaminated earth and sand, sludge oil, and waste oil are efficiently separated. A method for purification has not yet been found.
[0010]
Accordingly, the object of the present invention is to efficiently separate oil, water and solids from waste oil and oil sand of high viscosity oil to purify high viscosity oil, and to separate and refine high viscosity oil for reuse. It is an object of the present invention to provide a method and apparatus.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following technical means. That is, this will be described using the reference numerals in the accompanying drawings corresponding to the embodiments of the present invention. The present invention relates to a heating tank 4 in which the inside into which the object to be heated 3 is introduced becomes a cylindrical heat transfer surface, and a heat transfer surface. A heat transfer surface 2 of the cylindrical inner wall surface of the heating tank 4 that transfers heat from the heat means to the article 3 to be heated, and a heat transfer means that is located around the heating tank 4 and transfers heat to the heat transfer surface 2. In the heating tank 4, they are attached to a rotating shaft 5b arranged along the direction of gravity and are rotatably arranged, each having a length within a circumferential range of 360 degrees when viewed from the plane. The heating device 1 is composed of a rotary upper blade 5 consisting of a plurality of base blades 5a, and each of the base blades 5a of the rotary upper blade 5 displaces the object to be heated 3 of each base blade 5a. The flat surface 8 has a length that is moved from the one end 18 to the other end 19 and wound up from the other end 19. The outer peripheral end 10a is formed along the heat transfer surface 2 so that a clearance U for allowing the rotation of each base blade 5a is formed between the outer peripheral end 10a of the surface 8 and the heat transfer surface 2. The flat surface 8 of each base blade 5a of the rotary winding upper blade 5 is formed so as to extend obliquely upward in the direction opposite to the rotation direction R, and one of the plurality of base blades 5a. The height position of the other end portion 19 of the one base blade 5a is positioned higher than the height position of the one end portion 18 of the other base blade 5a that is adjacent in the direction opposite to the rotation direction. In the heating method using the heating apparatus 1 configured to heat the object to be heated 3 by pressing it against the heat transfer surface by centrifugal force while winding the object 3 on each of the plurality of base blades 5a and winding it up. ,
The heated object 3 is waste oil of high viscosity oil, the waste oil 3 is heated and evaporated via the heat transfer surface 2 heated by the heat transfer means, and the heating tank 4 is connected via a switching valve. Steam that is generated by introducing water vapor into the connected first condensing tank 24 and cooling it to separate water, then switching the switching valve upon detection of the temperature rise of the waste oil 3 and heating to the boiling point of the high viscosity oil Is introduced into the second condensing tank 26 and cooled to separate and purify the high-viscosity oil.
According to the above, by using the heating device 1, the waste oil 3 of high-viscosity oil is heated and evaporated through the heat transfer surface 2 of the heating tank 4 heated by the heat transfer means. Water vapor is introduced into the condensing tank 24 and cooled to separate the water, and then the switching valve is switched by detecting the temperature rise of the waste oil 3, and the heated steam generated by heating to the boiling point of the high viscosity oil is second condensed. It introduce | transduces into the tank 26, it cools, and the high-viscosity oil H is isolate | separated and refine | purified.
Therefore, by using the heating device 1, the oil, water, and solids are efficiently separated from the high-viscosity waste oil 3 and oil sand to refine the high-viscosity oil, and the high-viscosity oil to be reused is separated and purified. can do.
[0012]
In addition, the present invention provides a heating tank 4 in which the inside to which the object to be heated 3 is charged becomes a cylindrical heat transfer surface, and a cylindrical inner wall surface of the heating tank 4 that transfers heat from the heat transfer means to the object to be heated 3. The heat transfer surface 2, the heat transfer means located around the heating tank 4, and the heat transfer means for transferring heat to the heat transfer surface 2, and the rotary shaft disposed in the heating tank 4 along the direction of gravity. A heating device comprising a rotating upper and lower blade 5 comprising a plurality of base blades 5a, each of which is attached to 5b and is rotatably arranged, each having a length within a circumferential range of 360 degrees when viewed from above. 1, each base blade 5a of the rotary winding upper blade 5 moves the heated object 3 from one end 18 to the other end 19 of each base blade 5a and winds up from the other end 19 The flat blade 8 is allowed to rotate between the outer peripheral edge 10a of the flat surface 8 and the heat transfer surface 2. The outer peripheral end 10a is formed along the heat transfer surface 2 so that a clearance U is formed, and the flat surface 8 of each base blade 5a of the rotary hoisting blade 5 is in a direction opposite to its rotational direction. The height position of the other end portion 19 of one base blade 5a among the plurality of base blades 5a is adjacent to the rotation direction R in the opposite direction. Is located at a position higher than the height position of the one end 18 of the other base blade 5a located on the heat transfer surface 2 by centrifugal force while the object to be heated 3 is placed on the plurality of base blades 5a and wound up. In the heating apparatus 1 configured to heat the object to be heated 3 by being pressed onto the object,
The heated object is waste oil 3 of high viscosity oil, and the waste oil 3 is heated and evaporated through the heat transfer surface 2 heated by the heat transfer means using heating steam as a medium, and the heating tank 4 The first condensing tank 24 for cooling the water vapor introduced from the water to separate the water is connected to the heating tank 4 through the switching valve 22a, and the heated steam of the high viscosity oil H heated to the boiling point is used. A second condensing tank 26 for cooling and separating and refining the high-viscosity oil H is connected to the heating tank 4 via a switching valve 22b, and detects the temperature rise of the waste oil 3 and controls the switching of the switching valve. It is the apparatus which isolate | separates and refines high-viscosity oil characterized by having the control apparatus 30 which performs.
According to the above, the waste oil 3 of high viscosity oil is heated and evaporated through the heat transfer surface of the heating tank 4 heated by the heat transfer means, and the first condensation is performed from the heating tank 4 through the switching valve. The steam introduced into the tank 24 is cooled to separate and produce water, the temperature rise of the waste oil 3 is detected, the switching valve is switched by the switching control device 30, and the heating steam of the high viscosity oil H heated to the boiling point Is introduced into the second condensing tank 26 and cooled to separate and purify the high viscosity oil H. Therefore, it is possible to efficiently separate and purify oil, moisture, and solids from waste oil 3 and oil sand of high viscosity oil, which can be used again as high viscosity oil or reused as fuel. Occurrence can be suppressed.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be sequentially described in detail with reference to the accompanying drawings and FIGS. 1 and 2. FIG. 1 relates to the first embodiment of the present invention, and is a flowchart for separating and refining the high-viscosity oil by heating and evaporating waste oil of the high-viscosity oil, and FIG. 2 is shown in the first embodiment of the present invention. It is a top view of the rotary winding upper blade which consists of three base blades.
[0014]
The high-viscosity oil used in the heating device of the present invention is a large amount of floating oil that is launched on the shore or river shore due to an oil spill from an oil tanker or oil base, etc., the bottom of an oil tank or an oil storage tank, an oil separator And oil sand as a heavy oil mixed with soil and sand, and a mixture of oil accumulated on the bottom of a tanker and sludge consisting of inorganic particles, organic matter and water and consisting of pasty substances with high viscosity It is.
[0015]
In the heating apparatus of the present invention, high-viscosity oil is separated and purified from waste oil of high-viscosity oil containing solids such as moisture and sludge, crude oil, and oil sand.
[0016]
First, a heating apparatus used for heating and evaporating waste oil, crude oil and oil sand of high viscosity oil to separate and purify water and sludge from the high viscosity oil will be described. 1 and 2 show a first embodiment, 4 is a cylindrical heating tank, and the cylindrical inner wall surface is a waste oil of high viscosity oil, crude oil and It consists of a heat transfer surface 2 that transmits oil sand (hereinafter referred to as waste oil 3). The heat transfer means includes a jacket 6 formed around the heating tank 4 and a boiler (not shown) that is connected to the jacket 6 and feeds the heating steam 7 into the jacket 6. The jacket 6 is provided with a steam inflow portion 11 that guides the heating steam 7 into the jacket 6 and a steam discharge portion 12 that discharges the heating steam to the outside of the jacket 6.
[0017]
Further, a waste oil supply pipe 13 is connected to the bottom 4 a side wall of the heating tank 4, and the waste oil 3 stored in the waste oil charging tank 14 is transferred from the waste oil supply pipe 13 via the pump 16 to the heating tank 4. Supply to the bottom 4a. Further, a waste oil outlet pipe 15 is continuously provided on the side wall of the upper part 4b, and sludge and the like that are dried and separated into powder in the heating tank 4 by being raised while being heated in the heating tank 4 are not shown. The screw is led out from the sludge accumulation tank.
[0018]
A plurality of rotary hoist blades 5 are connected to the motor 17 attached to the outside of the bottom 4a of the heating tank 4, and the motor 17 can rotate about the rotation shaft 5b.
[0019]
Next, paying attention to the above-described rotating upper blade 5, the above-described rotating upper blade 5 is composed of a plurality of base blades 5a, and in this embodiment is composed of three base blades. Each of the base blades 5a has the same shape, and each of the base blades 5a has a length within a circumferential range of 360 degrees when viewed from the plane.
[0020]
The plurality of base blades 5a have one end 18 and the other end 19 for moving the waste oil from one to the other. And it is formed between this one end part 18 and the other end part 19, and has the elongate flat surface 8 along the heat-transfer surface 2. As shown in FIG. In addition, the clearance U for allowing the rotation of the base blades 5a is formed between the outer peripheral end 10a of the elongated flat surface 8 along the heat transfer surface 2 and the heat transfer surface. An outer peripheral end 10 a of the elongated flat surface 8 is formed in an arc shape along the cylindrical shape of the heat transfer surface 2.
[0021]
Further, the flat surface 8 is formed so as to extend obliquely upward from the one end 18 toward the other end 19 in the direction opposite to the rotation direction R, and particularly in the plurality of base blades 5a. The height position of the other end portion 19 of one base blade 5a is positioned higher than the height position of the one end portion 18 of the other base blade 5a positioned adjacent to the rotation direction R in the opposite direction. The waste oil 3 is pressed against the heat transfer surface 2 by centrifugal force P while the waste oil 3 is wound on the plurality of base blades 5a and heated to heat the waste oil 3.
[0022]
In addition, the base blade 5a has a length within a circumferential range of 360 degrees when viewed from the plane, which means that the angle around the rotation center point from one end 18 to the other end 19 is 360 degrees. Although it is below, the one end part 18 of each said base blade 5a is following the scraping part 20 fixed to the said rotating shaft 5b.
[0023]
As an example of the heat transfer means including the jacket 6 and the boiler, a heat transfer means including a jacket 6, a heat medium accommodated in the jacket 6, and an electric heater disposed on the outer periphery of the jacket 6 can be considered. The heat of the electric heater is transferred to the heat transfer surface 2.
[0024]
As for the heating tank 4 comprised as mentioned above, the 1st condensation tank 24 and the 2nd condensation tank 26 are each connected to the upper end via the pipes P1 and P2.
[0025]
The first condensing tank 24 condenses the heated water vapor evaporated at 100 ° C. (normal pressure) in the heating tank 4 to generate water W. Between the inlet of the first condensing tank 24 and the heating tank 4, A switching valve 22 a and a blower 23 are connected to the pipe P <b> 1 to be connected, and a pipe P <b> 4 for guiding the generated water W to the storage tank 25 is connected to the outlet of the first condensing tank 24.
[0026]
The second condensing tank 26 purifies high-viscosity oil by condensing heated steam of waste oil that has evaporated in the heating tank 4 at a high temperature (340 to 400 ° C.). A switching valve 22 b is connected to the pipe P <b> 2 connecting the tank 4, and the switching valve 22 a and the switching valve 22 b are controlled to be opened and closed under the control of the control device 30.
[0027]
Specifically, the control device 30 maintains the open state of the switching valve 22a in a temperature region where water vapor is generated as a detection signal from a temperature detector (not shown) installed in the heating tank 4, and further raises the temperature. When the temperature reaches a predetermined temperature (boiling point temperature of the high-viscosity oil), the switching valve 22a is closed at the same time as the switching valve 22a is opened by the detection signal from the temperature detection device.
[0028]
Next, a pipe P4 for guiding the refined high-viscosity oil H to the high-viscosity oil storage tank 28 is connected to the outlet of the second condensing tank 26 via a pump 27. The high-viscosity oil H stored in the storage tank 25 is appropriately supplied to the outside by a pump 29 for reuse.
[0029]
The above-described heating device has been described as a rotating hoist blade composed of three base blades as shown in FIG. FIG. 3 shows a modification of the rotary hoist blade, and is a plan view of the rotary hoist blade composed of four base vanes. Thus, by increasing the number of base blades 5a, the number of places where turbulent flow is generated increases, and the contact speed of the waste oil 3 to the heat transfer surface 2 increases.
[0030]
In other words, by forming the turbulent flow region, the waste oil 3 of high viscosity oil is brought into contact with the heat transfer surface with a certain contact speed by the rotation at the time of winding, and the waste oil is caused by the synergistic effect of both contacts. 3 easily contacts the heat transfer surface 2, and heat from the heat transfer surface 2 is easily transferred to the waste oil 3.
[0031]
Next, a method for separating and refining the high viscosity oil by evaporating the waste oil of the high viscosity oil will be described with reference to FIG.
[0032]
First, the waste oil 3 stored in the waste oil charging tank 14 is supplied to the bottom 4 a of the heating tank 4 through the waste oil supply pipe 13 by the pump 16. And the motor 17 is driven and each base blade | wing 5a of the said rotary winding upper blade | wing 5 is rotated. At the same time, the above boiler is driven and 2 kg / cm in the jacket 6 2 Then, the heat transfer surface 2 is heated.
[0033]
Due to the rotation of the base blade 5a of the rotary hoisting blade 5, the waste oil 3 is placed on the flat surface 8 of the base blade 5a from the one end 18 to the other end side along the base blade 5a. Move. At this time, the waste oil 3 is rotated upward by the long flat surfaces 8 of the respective base blades 5a while acting upward, and as a result, the waste oil 3 is wound up and is applied to the heat transfer surface 2 by centrifugal force due to the winding. Pressed.
[0034]
More specifically, the flat surface 8 of the base blade 5 a that gives the waste oil 3 a winding action and presses the heat transfer surface 2 by centrifugal force is longer than the width of the other end 19 and the flat surface 8. Since the outer peripheral end 10a is formed in an arc shape with the clearance U between the heat transfer surface 2, it does not simply give an impact to the waste oil 3, but extends in the direction opposite to the rotational direction R. Yes. The winding action to the waste oil 3 and the pressing action to the heat transfer surface 2 by the elongated flat surface 8 are effectively performed.
[0035]
The waste oil 3 is not moved in the heating device 1 by one continuous blade, and the waste oil 3 is pressed upward by each of the plurality of base blades 5a. For this reason, even if it is a to-be-heated object with strong viscosity, it does not adhere to the heat-transfer surface 2, and a to-be-heated object does not remain in the specific location on the heat-transfer surface 2.
[0036]
In addition, each of the plurality of base blades 5a has only a length within a circumferential range of 360 degrees when viewed from the plane and is independent, so that the base blades 5a communicate with the outer peripheral end 10a of the flat surface 8 of each base blade 5a. Since the clearance U between the hot surface 2 and the entire blade is not continuous, foreign matter such as sludge in the waste oil 3 is not caught in the clearance.
[0037]
Furthermore, since the waste oil 3 located at the bottom in the heating tank 4 can be rolled up and raised for each of the plurality of base blades 5a, it rises compared to the total amount of waste oil located at the bottom in the heating tank 4. There is much quantity of the waste oil 3, and it is easy to make the waste oil 3 contact the heat-transfer surface 2 at an early stage. Further, by rolling up the waste oil 3 by the base blades 5a, the waste oil 3 is pressed against the heat transfer surface, the waste oil wound up earlier with the waste oil 3 to be wound up later is pushed upward, and the waste oil 3 is continuously raised, The waste oil 3 rises over the entire heat transfer surface 2, and the waste oil 3 can be heated using the entire heat transfer surface 2. In addition, the rotation speed of the base blade 5a can be increased by rotating the base blade 5a and pressing and heating the waste oil 3 against the heat transfer surface 2 while winding it up. Thereby, the waste oil 3 is further rolled up along the heat transfer surface 2, spreads in a thin film shape over the entire circumference of the heat transfer surface 2, and heat is easily transmitted to the waste oil 3.
[0038]
In the present invention, characteristics appear when the flow of the waste oil 3 in the vicinity of the base blades 5a of the rotary winding upper blade 5 is viewed from the side. That is, when the rotary hoisting blade 5 rotates or when the rotary hoisting blade 5 rotates, the waste oil 3 is wound up by the respective base blades 5a, and as a result, the waste oil 3 is wound up. At this time, attention is paid to the movement of the waste oil 3 in the vicinity of the two base blades 5a in the plurality of base blades 5a.
[0039]
That is, as shown in FIG. 2, when the waste oil 3 located above the flat surface 8 of one base blade 5a out of the two base blades 5a jumps obliquely upward from the flat surface 8 of the base blade 5a. , Trying to go downwards due to its weight. On the other hand, the one base blade 5a is projected obliquely upward from the flat surface 8 of another base blade 5a located adjacent to the rotation direction R in the opposite direction. That is, a portion where the flows of the two waste oils 3 are overlapped and a turbulent flow occurs at the overlapped portion.
[0040]
In this turbulent region, the flow of the waste oil 3 is intense, and at the same time, the contact speed with the heat transfer surface 2 is increased. Then, as the rotational speed and rotational speed of the base blade 5a of the rotary winding upper blade 5 are increased, the number of places where the turbulent flow region is generated increases, and the contact speed of the waste oil 3 to the heat transfer surface 2 increases.
[0041]
That is, by forming the turbulent flow region, the waste oil 3 is caused by turbulent flow in addition to contact having a certain contact speed due to rotation at the time of winding, and in addition to contact having a certain contact speed due to turbulent flow. Contact with a contact speed is performed on the heat transfer surface 2, and the waste oil 3 is more likely to contact the heat transfer surface 2 due to the synergistic effect of both contact, and heat is more likely to be transferred from the heat transfer surface 2 to the waste oil 3. Become.
[0042]
As described above, the waste oil supplied into the heating tank 4 is efficiently heated while in contact with the heat transfer surface 2, and the water in the waste oil 3 evaporates at about 100 ° C. (normal pressure). It is sucked by the blower 23 and introduced into the first condensing tank 24 through the switching valve 22a. When the heated steam introduced into the first condensing tank 24 is cooled, water W is generated, and the water W is stored in the storage tank 25 through the pipe P4.
[0043]
Further, the temperature of the waste oil 3 is increased to 340 ° C. to 400 ° C. via the heat transfer surface 2. When this is detected by the temperature detector, the switching is performed simultaneously when the switching valve 22 a is closed by a command from the control device 30. When the valve 22b is opened and the waste oil 3 in the heating tank 4 is heated to 340 ° C. to 400 ° C. (670 mmAq to 700 mmAq), the high viscosity oil in the waste oil 3 evaporates. This heated steam is introduced from the switching valve 22b into the second condensing tank 26 via the pipe P2, and when the heated steam is cooled, the high-viscosity oil H is extracted and stored in the bottom surface of the second condensing tank 26. .
[0044]
The high-viscosity oil H is guided and stored in the high-viscosity oil storage tank 28 via the pump 27. When the stored high-viscosity oil H is reused, it can be appropriately discharged outside via the pump 29.
[0045]
In this way, by evaporating the waste oil of high viscosity oil using the heating device as described above, the high viscosity oil H in the waste oil of high viscosity oil can be efficiently separated and purified. It can be used as a viscous oil or reused as a fuel.
[0046]
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a flowchart according to the second embodiment of the present invention, in which waste oil of high viscosity oil is heated and evaporated to separate the high viscosity oil and water.
[0047]
The heating tank 31 shown in FIG. 4 is different from the above-described embodiment only in the form of the rotary winding upper blade. Therefore, the same components are denoted by the same reference numerals, and redundant description is omitted.
[0048]
Therefore, paying attention to the rotary winding upper blade 35, the rotary winding upper blade 35 is composed of a plurality of base blades 35a, and in this embodiment, is composed of four base blades. Each of the base blades 35a has the same shape, each of the base blades 35a has the same shape, and each of the base blades 5a has a length within a circumferential range of 360 degrees when viewed from the plane.
[0049]
The plurality of base blades 35a have one end 37 and the other end 38 for moving the waste oil from one to the other. Further, it is formed between the one end portion 37 and the other end portion 38 and has an elongated flat surface 34 along the heat transfer surface 32. In addition, a clearance U for allowing rotation of each base blade 5a is formed between the outer peripheral end 36a of the elongated flat surface 34 along the heat transfer surface 32 and the heat transfer surface 32. The outer peripheral end 36 a of the elongated flat surface 34 is formed in an arc shape along the cylindrical shape of the heat transfer surface 32.
[0050]
Further, the flat surface 34 is formed so as to extend obliquely upward from the one end portion 37 toward the other end portion 38 in the direction opposite to the rotation direction R, and in particular among the plurality of base blades 35a. The height position of the other end portion 38 of one base blade 35a is positioned higher than the height position of the one end portion 37 of the other base blade 35a positioned adjacent to the rotation direction R in the opposite direction. The waste oil 3 is pressed against the heat transfer surface 32 by the centrifugal force P while the waste oil 3 is placed on a plurality of base blades 35a and wound up, and the waste oil 3 is heated.
[0051]
Further, the base blade 35a has a length within a circumferential range of 360 degrees when viewed from the plane. This means that the angle around the rotation center point from the one end 37 to the other end 38 is 360 degrees. As will be described below, one end portion 37 of each base blade 35 a is continuous with a scraping portion 41 fixed to the rotating shaft 33.
[0052]
The operations and effects of the respective base blades 35a configured as described above are the same as those of the first embodiment, and the waste oil 3 of high-viscosity oil is charged into the heating tank 31 using the respective base blades 35a, and boil heating is performed. By doing so, the high-viscosity oil can be efficiently separated and purified in the same process as in the first embodiment.
[0053]
【The invention's effect】
The present invention has the following effects.
[0054]
As described above in detail, according to the invention described in claim 1 of the present application, the object to be heated is heated and evaporated according to the boiling point by using the heating device, and these are individually introduced into a condensing tank and condensed to obtain a high viscosity. High-viscosity oil can be efficiently separated and refined from waste oil, and can be reused as high-viscosity oil.
[0055]
According to invention of Claim 2 of this application, high-viscosity oil can be efficiently isolate | separated and refined from waste oil of high-viscosity oil, and this can be used for reuse of high-viscosity oil.
[Brief description of the drawings]
FIG. 1 is a flowchart according to a first embodiment of the present invention, in which waste oil of high viscosity oil is heated and evaporated to separate the high viscosity oil and water.
FIG. 2 is a plan view of a rotary hoisting blade composed of three base blades shown in the first embodiment of the present invention.
FIG. 3 is a plan view of a rotary hoisting blade composed of four base blades according to a modification of the rotary hoisting blade.
FIG. 4 is a flowchart according to a second embodiment of the present invention, in which waste oil of high viscosity oil is heated and evaporated to separate the high viscosity oil and water.
[Explanation of symbols]
1 Heating device
2 Heat transfer surface
3 Waste oil of high viscosity oil (object to be heated)
4 Heating tank
4a The bottom of the heating tank
4b Upper part of heating tank
5 Rotating winding upper blade
5a Base feather
5b Rotating shaft
6 Jacket
7 Steam
8 flat surface
10a Outer edge
11 Steam inlet
12 Steam exhaust section
13 Waste oil supply pipe
14 Waste oil tank
16 pump
17 Motor
18 One end
19 The other end
20 Scraping section
22a, 22b selector valve
23 Blower
24 1st condensing tank
25 Reservoir
26 Second condensing tank
27 Pump
28 High viscosity oil storage tank
29 Pump
30 Control device
31 Heating tank
32 Heat transfer surface
33 Rotating shaft
34 Flat surface
35 Rotating winding upper blade
35a base blade
36a Outer edge
37 One end
38 Other end
41 Scraper
H High viscosity oil
P Centrifugal force
P1, P2 pipe
P4, P5 pipe
R direction of rotation
U clearance
W Water

Claims (2)

被加熱物3を投入する内部が円筒形状の伝熱面となす加熱槽4と、伝熱手段からの熱を被加熱物3に伝える加熱槽4の円筒形状の内壁面の伝熱面2と、上記加熱槽4の周囲に位置し、上記伝熱面2に熱を伝える伝熱手段と、上記加熱槽4内に於いて重力方向に沿って配設された回転軸5bに取付けられ回転可能に配設されていて、それぞれが平面から見て360度の円周範囲内の長さに定められた複数の基羽根5aから成る回転巻上羽根5とからなる加熱装置1であって、上記回転巻上羽根5の各基羽根5aが、上記被加熱物3を各基羽根5aの一端部18から他端部19に移動させ、この他端部19から巻き上げる長さの平坦面8を有し、この平坦面8の外周端10aと上記伝熱面2との間に各基羽根5aの回転を許容する為のクリアランスUが形成されるように、上記外周端10aが伝熱面2に沿って形成され、上記回転巻上羽根5の各基羽根5aの平坦面8が、その回転方向Rと逆方向に向かって斜め上方に伸びるように形成され、而も複数枚の基羽根5aの内の、一つの基羽根5aの他端部19の高さ位置が、上記回転方向と逆方向に向かって隣りに位置する他の基羽根5aの一端部18の高さ位置より高い位置に位置し、上記被加熱物3を複数枚の各基羽根5a上に載せて巻き上げつつ、遠心力によって伝熱面に押し付けて上記被加熱物3を加熱させるよう構成された加熱装置1を用いた加熱方法に於いて、
上記被加熱物3が高粘度油の廃油であって、上記伝熱手段により加熱される伝熱面2を介して上記廃油3を加熱、蒸発させて、上記加熱槽4に切換弁を介して接続される第1凝縮槽24に水蒸気を導入し冷却して水を分離し、次に廃油3の昇温の検知により上記切換弁を切り換えて、高粘度油の沸点まで加熱し発生した加熱蒸気を第2凝縮槽26に導入し冷却して高粘度油を分離、精製するようにしたことを特徴とする高粘度油を分離、精製する方法。
A heating tank 4 in which the inside of the object to be heated 3 is a cylindrical heat transfer surface, a heat transfer surface 2 of a cylindrical inner wall surface of the heating tank 4 that transfers heat from the heat transfer means to the object 3 to be heated, The heat transfer means is located around the heating tank 4 and transmits heat to the heat transfer surface 2, and the rotation axis 5b disposed in the heating tank 4 along the direction of gravity is rotatable. Each of which is a heating device 1 composed of a rotating hoist blade 5 composed of a plurality of base blades 5a each having a length within a circumferential range of 360 degrees when viewed from above. Each base blade 5a of the rotary winding upper blade 5 has a flat surface 8 of a length that moves the heated object 3 from one end 18 to the other end 19 of each base blade 5a and winds up from the other end 19 thereof. A clear run for allowing the rotation of each base blade 5a between the outer peripheral edge 10a of the flat surface 8 and the heat transfer surface 2 The outer peripheral edge 10a is formed along the heat transfer surface 2 so that U is formed, and the flat surface 8 of each base blade 5a of the rotary hoisting blade 5 is directed in the direction opposite to the rotation direction R. It is formed so as to extend obliquely upward, and the height position of the other end portion 19 of one base blade 5a among the plurality of base blades 5a is adjacent to the direction opposite to the rotation direction. It is located at a position higher than the height position of the one end portion 18 of the other base blade 5a, and the object 3 to be heated is placed on each of the plurality of base blades 5a and rolled up, and pressed against the heat transfer surface by centrifugal force. In the heating method using the heating device 1 configured to heat the article 3 to be heated,
The heated object 3 is waste oil of high viscosity oil, the waste oil 3 is heated and evaporated via the heat transfer surface 2 heated by the heat transfer means, and the heating tank 4 is connected via a switching valve. Steam that is generated by introducing water vapor into the connected first condensing tank 24 and cooling it to separate water, then switching the switching valve upon detection of the temperature rise of the waste oil 3 and heating to the boiling point of the high viscosity oil Is introduced into the second condensing tank 26 and cooled to separate and purify the high-viscosity oil, and a method for separating and refining the high-viscosity oil.
被加熱物3を投入する内部が円筒形状の伝熱面となす加熱槽4と、伝熱手段からの熱を被加熱物3に伝える加熱槽4の円筒形状の内壁面の伝熱面2と、上記加熱槽4の周囲に位置し、上記伝熱面2に熱を伝える伝熱手段と、上記加熱槽4内に於いて重力方向に沿って配設された回転軸5bに取付けられ回転可能に配設されていて、それぞれが平面から見て360度の円周範囲内の長さに定められた複数の基羽根5aから成る回転巻上羽根5とからなる加熱装置1であって、上記回転巻上羽根5の各基羽根5aが、上記被加熱物3を各基羽根5aの一端部18から他端部19に移動させ、この他端部19から巻き上げる長さの平坦面8を有し、この平坦面8の外周端10aと上記伝熱面2との間に各基羽根5aの回転を許容する為のクリアランスUが形成されるように、上記外周端10aが伝熱面2に沿って形成され、上記回転巻上羽根5の各基羽根5aの平坦面8が、その回転方向と逆方向に向かって斜め上方に伸びるように形成され、而も複数枚の基羽根5aの内の、一つの基羽根5aの他端部19の高さ位置が、上記回転方向Rと逆方向に向かって隣りに位置する他の基羽根5aの一端部18の高さ位置より高い位置に位置し、上記被加熱物3を複数枚の各基羽根5a上に載せて巻き上げつつ、遠心力によって伝熱面2に押し付けて上記被加熱物3を加熱させるよう構成された加熱装置1に於いて、
上記被加熱物が高粘度油の廃油3であって、加熱蒸気を媒体とする上記伝熱手段により加熱される伝熱面2を介して上記廃油3を加熱、蒸発させて、上記加熱槽4から導入される水蒸気を冷却して水を分離するための第1凝縮槽24が切換弁22aを介して上記加熱槽4に接続されると共に、沸点まで加熱された高粘度油Hの加熱蒸気を冷却して高粘度油Hを分離、精製するための第2凝縮槽26が切換弁22bを介して上記加熱槽4に接続され、上記廃油3の昇温を検知して上記切換弁を切換え制御する制御装置30を有していることを特徴とする高粘度油を分離、精製する装置。
A heating tank 4 in which the inside of the object to be heated 3 is a cylindrical heat transfer surface, a heat transfer surface 2 of a cylindrical inner wall surface of the heating tank 4 that transfers heat from the heat transfer means to the object 3 to be heated, The heat transfer means is located around the heating tank 4 and transmits heat to the heat transfer surface 2, and the rotation axis 5b disposed in the heating tank 4 along the direction of gravity is rotatable. Each of which is a heating device 1 composed of a rotating hoist blade 5 composed of a plurality of base blades 5a each having a length within a circumferential range of 360 degrees when viewed from above. Each base blade 5a of the rotary winding upper blade 5 has a flat surface 8 of a length that moves the heated object 3 from one end 18 to the other end 19 of each base blade 5a and winds up from the other end 19 thereof. A clear run for allowing the rotation of each base blade 5a between the outer peripheral edge 10a of the flat surface 8 and the heat transfer surface 2 The outer peripheral edge 10a is formed along the heat transfer surface 2 so that U is formed, and the flat surface 8 of each base blade 5a of the rotary hoisting blade 5 is inclined in the direction opposite to the rotation direction. It is formed so as to extend upward, and the height position of the other end portion 19 of one base blade 5a among the plurality of base blades 5a is adjacent to the rotation direction R in the opposite direction. It is located at a position higher than the height position of the one end portion 18 of the other base blade 5a, and the object to be heated 3 is placed on each of the plurality of base blades 5a and rolled up, and pressed against the heat transfer surface 2 by centrifugal force. In the heating apparatus 1 configured to heat the article to be heated 3,
The heated object is waste oil 3 of high viscosity oil, and the waste oil 3 is heated and evaporated through the heat transfer surface 2 heated by the heat transfer means using heating steam as a medium, and the heating tank 4 The first condensing tank 24 for cooling the water vapor introduced from the water to separate the water is connected to the heating tank 4 through the switching valve 22a, and the heated steam of the high viscosity oil H heated to the boiling point is used. A second condensing tank 26 for cooling and separating and refining the high-viscosity oil H is connected to the heating tank 4 via a switching valve 22b, and detects the temperature rise of the waste oil 3 and controls the switching of the switching valve. The apparatus which isolate | separates and refine | purifies the high-viscosity oil characterized by having the control apparatus 30 which performs.
JP2000188774A 2000-06-23 2000-06-23 Method and apparatus for separating and refining high viscosity oil by evaporating waste oil of high viscosity oil Expired - Fee Related JP4459394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000188774A JP4459394B2 (en) 2000-06-23 2000-06-23 Method and apparatus for separating and refining high viscosity oil by evaporating waste oil of high viscosity oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000188774A JP4459394B2 (en) 2000-06-23 2000-06-23 Method and apparatus for separating and refining high viscosity oil by evaporating waste oil of high viscosity oil

Publications (2)

Publication Number Publication Date
JP2002003859A JP2002003859A (en) 2002-01-09
JP4459394B2 true JP4459394B2 (en) 2010-04-28

Family

ID=18688507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000188774A Expired - Fee Related JP4459394B2 (en) 2000-06-23 2000-06-23 Method and apparatus for separating and refining high viscosity oil by evaporating waste oil of high viscosity oil

Country Status (1)

Country Link
JP (1) JP4459394B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5168751B2 (en) * 2004-03-30 2013-03-27 カシオ計算機株式会社 Vaporizer, reactor and power generator
JP4984237B2 (en) * 2007-03-28 2012-07-25 護 竹本 Desalination equipment using cavitation
US8997554B2 (en) * 2012-04-20 2015-04-07 Halliburton Energy Services, Inc. Method and apparatus for solid-liquid separation of drilling fluids for analysis
CN102977908B (en) * 2012-12-03 2014-08-06 杨建民 Heater for separating crude oil from asphalt oil sand ore
JP6571260B1 (en) * 2018-11-09 2019-09-04 エバークリーン株式会社 Method for producing oil and residue from tire piece
CN117658359A (en) * 2023-11-17 2024-03-08 奥波环境新能源(无锡)有限公司 NMP waste liquid recycling device

Also Published As

Publication number Publication date
JP2002003859A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
US7845314B2 (en) Submerged combustion disposal of produced water
US9939197B2 (en) Turbulent vacuum thermal separation methods and systems
WO2013091032A1 (en) Method for processing of oil sludge and oil sediments
CN104944619B (en) Electric Desalting Wastewater deoiling method in heavy crude process
US20150259231A1 (en) Process for Reducing Soluble Organic Content in Produced Waters Associated with the Recovery of Oil and Gas
JP2706994B2 (en) Method and apparatus for treating oil sludge and oil-containing wastewater
NO20150745A1 (en) Process for treatment of crude oil, sludges and emulsions
JP4459394B2 (en) Method and apparatus for separating and refining high viscosity oil by evaporating waste oil of high viscosity oil
CN102949866A (en) Oil removal method for petrochemical emulsified process water
TW301667B (en)
CN102226100A (en) Method and apparatus for high-efficient crude oil desalination / dehydration
AU2017260595B2 (en) Methods and systems for processing a vapor stream from a thermal desorption process
KR100288308B1 (en) Method and apparatus for removing petroleum contaminants from particle sieve
CA2091502C (en) Process to separate a mixture of water, solids or sludges, non-volatile hydrocarbons and other accompanying substances
JP5925189B2 (en) Oil recovery method in crude oil sludge
CN115403243B (en) Fatlute processing system
CN105000782A (en) Plate-type vaporizing drying system and technology for treating oily sludge
NO171710B (en) PROCEDURE FOR CLEANING OF POLLUTED MATERIAL AND PLANT FOR USING THE PROCEDURE
CN205035239U (en) Board -like processing oiliness sludge drying vaporization system
CN210530777U (en) Base oil recovery unit in drilling oil base mud detritus
CN201168464Y (en) Oil, water and slag separation apparatus
CA2091508C (en) Process to separate inorganic sludges containing non-volatile hydrocarbons
US3798158A (en) Process for removing oil and other organic contaminants from water
NL195054C (en) Process for the removal of hydrocarbons that are present in dissolved and / or emulsified state in water by stripping with water vapor.
KR102235719B1 (en) Wastewater regeneration device of oil sand plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100210

R150 Certificate of patent or registration of utility model

Ref document number: 4459394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees