JP4458749B2 - Alkaline storage battery - Google Patents

Alkaline storage battery Download PDF

Info

Publication number
JP4458749B2
JP4458749B2 JP2003008975A JP2003008975A JP4458749B2 JP 4458749 B2 JP4458749 B2 JP 4458749B2 JP 2003008975 A JP2003008975 A JP 2003008975A JP 2003008975 A JP2003008975 A JP 2003008975A JP 4458749 B2 JP4458749 B2 JP 4458749B2
Authority
JP
Japan
Prior art keywords
alkaline storage
storage battery
nickel
alkaline
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003008975A
Other languages
Japanese (ja)
Other versions
JP2004220993A (en
Inventor
毅 小笠原
茂和 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003008975A priority Critical patent/JP4458749B2/en
Publication of JP2004220993A publication Critical patent/JP2004220993A/en
Application granted granted Critical
Publication of JP4458749B2 publication Critical patent/JP4458749B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
この発明は、ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池等のアルカリ蓄電池及びこのようなアルカリ蓄電池の正極に使用するアルカリ蓄電池用ニッケル極に係り、特に、水酸化ニッケル又は水酸化ニッケルを主成分とする活物質粒子の表面がナトリウム含有コバルト化合物で被覆された複合体粒子を導電性基体に充填させたアルカリ蓄電池用ニッケル極を改善して、十分な電池容量を有すると共に充放電サイクル特性に優れたアルカリ蓄電池が得られるようにした点に特徴を有するものである。
【0002】
【従来の技術】
従来、ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池に代表されるアルカリ蓄電池においては、その正極として、一般に水酸化ニッケルを活物質に用いたものが使用されている。
【0003】
ここで、このようなアルカリ蓄電池用ニッケル極においては、活物質として使用する水酸化ニッケルの導電性が低いため、一般に、芯金となる穿孔鋼鈑等にニッケル粉末を充填させて焼結させた焼結基板に、活物質の水酸化ニッケルを含浸させた焼結式のニッケル極が用いられている。
【0004】
しかし、このような焼結式のニッケル極の場合、ニッケル粉末における粒子間の結合が弱く、基板における多孔度を高くすると、ニッケル粉末が脱落しやすくなるため、実用上、基板の多孔度を80%程度とするのが限界で、活物質の水酸化ニッケルを多く充填させることができず、容量の大きなアルカリ蓄電池を得ることが困難であった。
【0005】
また、上記の焼結式ニッケル極の場合、穿孔鋼板等の芯金を使用するため、一般に活物質の充填密度が小さく、さらに、焼結により形成されたニッケル粉末の細孔は10μm以下と小さいため、活物質を充填させるにあたっては、煩雑な工程を数サイクルも繰り返す溶液含浸法を用いなければならず、その生産性が悪い等の問題もあった。
【0006】
このため、水酸化ニッケルからなる活物質粒子にメチルセルロース等の結合剤の水溶液を加えて混練させたペーストを、発泡ニッケル等の多孔度の大きい導電性基体に塗布し、これを乾燥させたペースト式のアルカリ蓄電池用ニッケル極が用いられるようになった。
【0007】
ここで、このようなペースト式のアルカリ蓄電池用ニッケル極の場合、多孔度が95%以上の導電性基体を用いることができ、導電性基体に多くの活物質を充填させて、容量の大きなアルカリ蓄電池を得ることができると共に、導電性基体に対して活物質を簡単に充填させることができて生産性も向上する。
【0008】
しかし、このようなペースト式のアルカリ蓄電池用ニッケル極において、導電性基体に多くの活物質を充填させるために、多孔度の大きい導電性基体を用いると、この導電性基体における集電性が悪くなって、活物質の利用率が低下するという問題があった。
【0009】
このため、従来においては、このようなペースト式のアルカリ蓄電池用ニッケル極において、上記の水酸化ニッケルからなる活物質粒子の表面を水酸化コバルトで被覆させて、電極内における導電性を高め、活物質の利用率を向上させることが提案されている(例えば、特許文献1参照。)。
【0010】
しかし、このように水酸化ニッケルからなる活物質粒子の表面を水酸化コバルトで被覆した場合においても、活物質の利用率を十分に向上させることが困難であった。
【0011】
また、近年においては、上記のアルカリ蓄電池用ニッケル極に、水酸化ニッケルからなる活物質粒子の表面をナトリウム等のアルカリを含むコバルト化合物で被覆させたものを用い、活物質の利用率を十分に向上させるようにしたものも提案されている(例えば、特許文献2〜4参照。)。
【0012】
しかし、上記のように水酸化ニッケルからなる活物質粒子の表面をナトリウム等のアルカリを含むコバルト化合物で被覆させたものを用いた場合においても、アルカリ蓄電池における容量を高めると共に、充放電サイクル特性を十分に向上させることができないという問題があった。
【0013】
【特許文献1】
特開昭62−234867号公報
【特許文献2】
特開平9−219192号公報
【特許文献3】
特開平10−334912号公報
【特許文献4】
特開2002−63898号公報
【0014】
【発明が解決しようとする課題】
この発明は、水酸化ニッケル又は水酸化ニッケルを主成分とする活物質粒子の表面がナトリウム含有コバルト化合物で被覆された複合体粒子を導電性基体に充填させてなるアルカリ蓄電池用ニッケル極及びこのアルカリ蓄電池用ニッケル極を正極に用いたアルカリ蓄電池における上記のような問題を解決することを課題とするものである。
【0015】
すなわち、この発明においては、上記のようなアルカリ蓄電池用ニッケル極を正極に用いたアルカリ蓄電池において、十分な電池容量及び充放電サイクル特性が得られるようにすることを課題とするものである。
【0016】
【課題を解決するための手段】
この発明においては、上記のような課題を解決するため、正極と負極と、アルカリ電解液とを備えたアルカリ蓄電池において、前記正極は水酸化ニッケル又は水酸化ニッケルを主成分とする活物質粒子の表面がナトリウム含有コバルト化合物で被覆された複合体粒子を導電性基体に充填させてなるアルカリ蓄電池用ニッケル極であって、上記の複合体粒子の比導電率が1.0×10−3〜1.0×10−2S・cm−1の範囲にすると共に、上記の導電性基体に対する複合体粒子の充填密度を3.0g/cm−void以上にしたのである。ここで、上記の充填密度は、アルカリ蓄電池用ニッケル極における導電性基体を除いた残空間(cm)に対する複合体粒子の充填質量(g)である。
【0017】
そして、この発明におけるアルカリ蓄電池用ニッケル極のように、水酸化ニッケル又は水酸化ニッケルを主成分とする活物質粒子の表面をナトリウム含有コバルト化合物で被覆させた複合体粒子を用いると、このナトリウム含有コバルト酸化物の電気伝導率が金属コバルトやコバルト化合物を用いた場合に比べて高いため、電極内における集電性が高くなって、活物質の利用率が向上すると共に、このアルカリ蓄電池用ニッケル極を用いたアルカリ蓄電池を高温環境下において充放電させた場合に、放電時にこのナトリウム含有コバルト酸化物が水酸化コバルトに還元されにくくなり、アルカリ電解液中に溶解するのが抑制される。
【0018】
また、この発明におけるアルカリ蓄電池用ニッケル極のように、導電性基体に対する上記の複合体粒子の充填密度を3.0g/cm−void以上にすると、アルカリ蓄電池の容量を大きくすることができると共に、このアルカリ蓄電池用ニッケル極内における空間が少なくなり、過充電時などに上記の複合体粒子がアルカリ電解液を取り込んで膨化するのが抑制され、アルカリ蓄電池における充放電サイクル特性も向上する。すなわち、導電性基体に対する上記の複合体粒子の充填密度が3.0g/cm−void未満になると、アルカリ蓄電池用ニッケル極における活物質粒子の量が少なくなって、アルカリ蓄電池の容量が低下すると共に、このアルカリ蓄電池用ニッケル極内における空間が多くなり、水酸化ニッケルが充電されて生成するβ−NiOOHが、過充電時などに上記の空間に存在するアルカリ電解液を取り込んで結晶の大きなγ−NiOOHに変化し、アルカリ蓄電池内におけるアルカリ電解液が不足して、アルカリ蓄電池の充放電サイクル特性も低下する。
【0019】
さらに、この発明におけるアルカリ蓄電池用ニッケル極のように、上記の複合体粒子の比導電率を1.0×10−3〜1.0×10−2S・cm−1の範囲にすると、アルカリ蓄電池の容量と充放電サイクル特性との両方が適切に向上されるようになる。すなわち、複合体粒子の比導電率が1.0×10−2S・cm−1を超えると、導電性が高くなって活物質の利用率が向上するが、充電受入れ性が高くなりすぎて、上記の複合体粒子が膨化しやすくなり、充放電サイクル特性が悪くなる。一方、複合体粒子の比導電率が1.0×10−3S・cm−1未満になると、充放電サイクル特性は向上するが、導電性が低いために、活物質の利用率が低くなってアルカリ蓄電池の容量が低下する。
【0020】
また、この発明におけるアルカリ蓄電池用ニッケル極において、上記の複合体粒子の他に、Y,Nb,W,Tiから選択される少なくとも1種の金属又はその化合物からなる添加物が添加させると、酸素過電圧が大きくなって、充電時に酸素が発生するのが抑制され、電池の内圧が高くなってアルカリ電解液が電池外に放出されるのが防止されるようになり、特に、空間が少ない高容量のアルカリ電池の場合においては、充放電サイクル特性がさらに向上する。
【0021】
ここで、上記のYの化合物としては、例えば、Y(OH),Y等を、Nbの化合物としては、例えば、Nb等を、Wの化合物としては、例えば、WO,WO,NaWO,LiWO等を、Tiの化合物としては、例えば、TiO,Ti,TiO,Ti(OH)等を用いることができる。
【0022】
また、アルカリ蓄電池用ニッケル極にこれらの添加物が添加させるにあたり、その量が多くなると、活物質である水酸化ニッケルの割合が低下して、容量が低下するため、これらの添加物の添加量を、水酸化ニッケルに対して3.0質量%以下することが望ましい。
【0023】
なお、この発明におけるアルカリ蓄電池は、上記のような正極を用いることを特徴とするものであり、この負極やアルカリ電解液については特に限定されず、負極の材料としては、例えば、カドミウムや水素吸蔵合金等を使用することができ、またアルカリ電解液として、例えば、KOH,LiOH,NaOHの少なくとも1種を含む電解液を使用することができる。
【0024】
【実施例】
以下、この発明に係るアルカリ蓄電池用ニッケル極及びこのアルカリ蓄電池用ニッケル極を正極に用いたアルカリ蓄電池について、実施例を挙げて具体的に説明すると共に、この実施例におけるアルカリ蓄電池においては、十分な電池容量及び充放電サイクル特性が得られることを、比較例を挙げて明らかにする。なお、この発明におけるアルカリ蓄電池用ニッケル極及びアルカリ蓄電池は、下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。
【0025】
(実施例1)
実施例1においては、アルカリ蓄電池用ニッケル極を作製するにあたり、硫酸ニッケルと硫酸亜鉛と硫酸コバルトとの混合溶液に、水酸化ナトリウム水溶液とアンモニア水溶液とを添加させて攪拌し、水酸化ニッケルに亜鉛が4質量%、コバルトが1質量%固溶された活物質粒子を得た。
【0026】
次に、上記の活物質粒子を硫酸コバルトの水溶液中に投入し、これを攪拌しながら水酸化ナトリウムを滴下し、上記の活物質粒子の表面に水酸化コバルトを被覆させた。
【0027】
そして、このように表面が水酸化コバルトで被覆された活物質粒子に対し、アグロマスター(商品名:ホソカワミクロン社製)を用いて、熱気流下で水酸化ナトリウム溶液を噴霧し、上記の水酸化コバルト中にナトリウムを含有させ、比導電率が5.0×10−3S・cm−1になった複合体粒子を得た。なお、この比導電率については、図1に示すように、中空状の絶縁体20内に上記の複合体粒子21を入れ、この複合体粒子21に上,下の金属製の押え部材22a,22bにより400kgf/cmの圧力を加えた状態で、抵抗計23によりその抵抗値を測定して算出した。
【0028】
次いで、上記のようにして得た複合体粒子を100質量部、0.2質量%のヒドロキシプロピルセルロース水溶液を30質量部の割合で混練させてスラリーを得た後、このスラリーを多孔度が95%、厚みが1.7mmの発泡ニッケルからなる導電性基体に充填し、これを乾燥させた後、厚み0.85mmになるように圧延して、アルカリ蓄電池用ニッケル極を作製した。なお、このアルカリ蓄電池用ニッケル極における複合体粒子の充填密度は3.0g/cm−voidであった。
【0029】
そして、このように作製したアルカリ蓄電池用ニッケル極を正極に使用する一方、負極に水素吸蔵合金電極を使用し、またアルカリ電解液としては、KOHが4.9mol/l、LiOHが1.4mol/l、NaOHが4.9mol/lになった水溶液を用い、設計容量が1800mAhになるようにして、図2に示すような円筒型のアルカリ蓄電池を作製した。
【0030】
ここで、このアルカリ蓄電池を作製するにあたっては、図2に示すように、上記の正極1と負極2との間にセパレータ3を介在させ、これらをスパイラル状に巻いて電池缶4内に収容させた後、この電池缶4内に上記のアルカリ電解液を電池容量1Ahに対して1.4gになるように注液して封口し、正極1を正極リード5を介して正極蓋6に接続させると共に、負極2を負極リード7を介して電池缶4に接続させ、電池缶4と正極蓋6とを絶縁パッキン8により電気的に分離させるようにした。
【0031】
また、正極蓋6と正極外部端子9との間にコイルスプリング10を設け、電池の内圧が異常に上昇した場合には、このコイルスプリング10が圧縮されて電池内部のガスが大気中に放出されるようにした。
【0032】
(実施例2)
実施例2においては、アルカリ蓄電池用ニッケル極を作製するにあたり、上記の実施例1において、表面が水酸化コバルトで被覆された活物質粒子に対し、熱気流下で水酸化ナトリウム溶液を噴霧させて、水酸化コバルト中にナトリウムを含有させた複合体粒子を得るにあたり、噴霧する水酸化ナトリウムの濃度・量・処理温度・処理時間を制御して、比導電率が1.0×10−3S・cm−1になった複合体粒子を得、それ以外は、上記の実施例1の場合と同様にして、アルカリ蓄電池用ニッケル極及びアルカリ蓄電池を作製した。
【0033】
(実施例3)
実施例3においては、アルカリ蓄電池用ニッケル極を作製するにあたり、上記の実施例1において、表面が水酸化コバルトで被覆された活物質粒子に対し、熱気流下で水酸化ナトリウム溶液を噴霧させて、水酸化コバルト中にナトリウムを含有させた複合体粒子を得るにあたり、噴霧する水酸化ナトリウムの濃度・量・処理温度・処理時間を制御して、比導電率が1.0×10−2S・cm−1になった複合体粒子を得、それ以外は、上記の実施例1の場合と同様にして、アルカリ蓄電池用ニッケル極及びアルカリ蓄電池を作製した。
【0034】
参考例1
参考例1においては、アルカリ蓄電池用ニッケル極を作製するにあたって、アルカリ蓄電池用ニッケル極における複合体粒子の充填密度を2.9g/cm−voidにし、それ以外は、上記の実施例1の場合と同様にして、アルカリ蓄電池用ニッケル極及びアルカリ蓄電池を作製した。
【0035】
参考例2
参考例2においては、アルカリ蓄電池用ニッケル極を作製するにあたって、アルカリ蓄電池用ニッケル極における複合体粒子の充填密度を2.8g/cm−voidにし、それ以外は、上記の実施例1の場合と同様にして、アルカリ蓄電池用ニッケル極及びアルカリ蓄電池を作製した。
【0036】
(比較例1)
比較例1においては、アルカリ蓄電池用ニッケル極を作製するにあたり、上記の実施例1において、表面が水酸化コバルトで被覆された活物質粒子に対し、熱気流下で水酸化ナトリウム溶液を噴霧させて、水酸化コバルト中にナトリウムを含有させた複合体粒子を得るにあたり、噴霧する水酸化ナトリウムの濃度・量・処理温度・処理時間を制御して、比導電率が5.0×10−4S・cm−1になった複合体粒子を得、それ以外は、上記の実施例1の場合と同様にして、アルカリ蓄電池用ニッケル極及びアルカリ蓄電池を作製した。
【0037】
(比較例2)
比較例2においては、アルカリ蓄電池用ニッケル極を作製するにあたり、上記の実施例1において、表面が水酸化コバルトで被覆された活物質粒子に対し、熱気流下で水酸化ナトリウム溶液を噴霧させて、水酸化コバルト中にナトリウムを含有させた複合体粒子を得るにあたり、噴霧する水酸化ナトリウムの濃度・量・処理温度・処理時間を制御して、比導電率が5.0×10−2S・cm−1になった複合体粒子を得、それ以外は、上記の実施例1の場合と同様にして、アルカリ蓄電池用ニッケル極及びアルカリ蓄電池を作製した。
【0038】
(比較例3)
比較例3においては、アルカリ蓄電池用ニッケル極を作製するにあたって、アルカリ蓄電池用ニッケル極における複合体粒子の充填密度を2.6g/cm−voidにし、それ以外は、上記の実施例1の場合と同様にして、アルカリ蓄電池用ニッケル極及びアルカリ蓄電池を作製した。
【0039】
そして、上記のように作製した実施例1〜3、参考例1,2及び比較例1〜3の各アルカリ蓄電池を用い、25℃の温度雰囲気中において180mAの電流で16時間充電した後、60℃の温度雰囲気中において360mAの電流で電池電圧が1Vになるまで放電し、これを2回繰り返した後、25℃の温度雰囲気中において1800mAの電流で1時間12分充電して、1時間休止した後、25℃の温度雰囲気中において1800mAの電流で電池電圧が1Vになるまで放電し、これを3回繰り返して行い、3回目の放電容量を初期容量として求めた。そして、上記の実施例1のアルカリ蓄電池における初期容量を100として指数で、各アルカリ蓄電池における初期容量を算出し、その結果を下記の表1に示した。
【0040】
次いで、上記の各アルカリ蓄電池を、さらに25℃の温度雰囲気中において1800mAの電流で1時間12分充電して、1時間休止した後、25℃の温度雰囲気中において1800mAの電流で電池電圧が1Vになるまで放電させ、これを1サイクルとして、充放電を繰り返して行い、それぞれ放電容量が上記の初期容量の60%になるまでのサイクル数を求めた。そして、上記の実施例1のアルカリ蓄電池におけるサイクル数を100として指数で、各アルカリ蓄電池におけるサイクル寿命を算出し、その結果を下記の表1に示した。
【0041】
【表1】

Figure 0004458749
【0042】
この結果、アルカリ蓄電池用ニッケル極に、比導電率が1.0×10−3〜1.0×10−2S・cm−1の範囲になった複合体粒子を用いると共に、この複合体粒子の充填密度を3.0g/cm−void以上にした実施例1〜の各アルカリ蓄電池においては、容量とサイクル寿命とがともに高くなっていた。
【0043】
これに対して、アルカリ蓄電池用ニッケル極に、比導電率が5.0×10−4S・cm−1になった複合体粒子を用いた比較例1のアルカリ蓄電池の場合、サイクル寿命は高くなっていたが、アルカリ蓄電池用ニッケル極における導電性が低くなって、容量が低下していた。
【0044】
また、比導電率が5.0×10−2S・cm−1になった複合体粒子を用いた比較例2のアルカリ蓄電池の場合、アルカリ蓄電池用ニッケル極における導電性が高くなって容量が高くなっていたが、サイクル寿命が大きく低下していた。これは、アルカリ蓄電池用ニッケル極がアルカリ電解液を吸収して膨化し、セパレータ中におけるアルカリ電解液が枯渇したためであると考えられる。
【0045】
また、アルカリ蓄電池用ニッケル極における複合体粒子の充填密度が3.0g/cm −void未満になった参考例1,2及び比較例3のアルカリ蓄電池の場合、容量及びサイクル寿命がともに低下した。これは、アルカリ蓄電池用ニッケル極中の空間が多く、アルカリ電解液の取り込みが容易になって、アルカリ蓄電池用ニッケル極が膨化したためであると考えられる。
【0046】
(実施例4〜10
実施例4〜10においては、上記の実施例1におけるアルカリ蓄電池用ニッケル極の作製において、上記の複合体粒子を用いてペーストを得るにあたり、この複合体粒子の他に添加物を加えるようにし、それ以外は、上記の実施例1の場合と同様にして、アルカリ蓄電池用ニッケル極及びアルカリ蓄電池を作製した。
【0047】
ここで、上記のように添加物を加えるにあたり、下記の表2に示すように、実施例ではYを水酸化ニッケルに対して1.5質量%の割合で、実施例ではNbを水酸化ニッケルに対して1.5質量%の割合で、実施例ではTiOを水酸化ニッケルに対して1.5質量%の割合で、実施例ではWOを水酸化ニッケルに対して1.5質量%の割合で、実施例ではYとNbとをそれぞれ水酸化ニッケルに対して0.75質量%の割合で、実施例ではYを水酸化ニッケルに対して3.0質量%の割合で、実施例10ではYを水酸化ニッケルに対して4.0質量%の割合で添加させるようにした。
【0048】
次いで、このようにして作製した実施例4〜10の各アルカリ蓄電池についても、上記の実施例1のアルカリ蓄電池の場合と同様にして、初期容量及び放電容量が初期容量の60%になるまでサイクル数を求め、上記の実施例1のアルカリ蓄電池における初期容量及びサイクル数を100とした指数で、各アルカリ蓄電池における初期容量及びサイクル寿命を算出し、その結果を下記の表2に示した。
【0049】
【表2】
Figure 0004458749
【0050】
この結果、上記のように複合体粒子の他に、Y,Nb,TiO,WO等のY,Nb,W,Tiから選択される少なくとも1種の金属又はその化合物を添加させると、アルカリ蓄電池におけるサイクル寿命が向上した。しかし、このような添加物の量が多くなると、アルカリ蓄電池における容量が次第に低下し、その量が水酸化ニッケル対して4.0質量%を越えると、アルカリ蓄電池における容量が大きく低下した。このため、上記のような添加物を添加させるにあたっては、その量を水酸化ニッケルに対して3.0質量%以下にすることが好ましかった。
【発明の効果】
以上詳述したように、この発明においては、水酸化ニッケル又は水酸化ニッケルを主成分とする活物質粒子の表面がナトリウム含有コバルト化合物で被覆された複合体粒子を導電性基体に充填させてなるアルカリ蓄電池用ニッケル極を備えたアルカリ蓄電池において、上記の複合体粒子の比導電率を1.0×10−3〜1.0×10−2S・cm−1の範囲にすると共に、上記の導電性基体に対する複合体粒子の充填密度を3.0g/cm−void以上にしたため、このアルカリ蓄電池用ニッケル極内における空間が少なくなって、複合体粒子がアルカリ電解液を取り込んで膨化するのが抑制され、アルカリ蓄電池における充放電サイクル特性が向上すると共に、アルカリ蓄電池における容量も大きくすることができた。
【図面の簡単な説明】
【図1】この発明において、複合体粒子の比導電率を測定する状態を示した概略説明図である。
【図2】この発明の実施例及び比較例において作製したアルカリ蓄電池の概略断面図である。
【符号の説明】
1 正極(アルカリ蓄電池用ニッケル極)
2 負極
21 複合体粒子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alkaline storage battery such as a nickel-hydrogen storage battery and a nickel-cadmium storage battery, and a nickel electrode for an alkaline storage battery used for a positive electrode of such an alkaline storage battery, and in particular, nickel hydroxide or nickel hydroxide as a main component. Alkaline battery with sufficient battery capacity and excellent charge / discharge cycle characteristics by improving the nickel electrode for alkaline storage batteries in which the active material particle surface is coated with composite particles coated with sodium-containing cobalt compound in a conductive substrate. It is characterized in that a storage battery can be obtained.
[0002]
[Prior art]
Conventionally, in alkaline storage batteries represented by nickel-hydrogen storage batteries and nickel-cadmium storage batteries, those using nickel hydroxide as an active material are generally used as the positive electrode.
[0003]
Here, in such a nickel electrode for an alkaline storage battery, since nickel hydroxide used as an active material has low conductivity, it is generally filled with nickel powder in a cored steel rod as a core metal and sintered. A sintered nickel electrode in which a sintered substrate is impregnated with nickel hydroxide as an active material is used.
[0004]
However, in the case of such a sintered nickel electrode, the bonding between the particles in the nickel powder is weak, and if the porosity in the substrate is increased, the nickel powder is likely to fall off. It is difficult to obtain an alkaline storage battery having a large capacity because it cannot be filled with a large amount of nickel hydroxide as an active material.
[0005]
In the case of the above sintered nickel electrode, since a cored bar such as a perforated steel plate is used, the packing density of the active material is generally small, and the pores of the nickel powder formed by sintering are as small as 10 μm or less. Therefore, when filling the active material, a solution impregnation method in which complicated steps are repeated for several cycles must be used, which causes problems such as poor productivity.
[0006]
For this reason, a paste type in which a paste obtained by adding an aqueous solution of a binder such as methylcellulose to active material particles made of nickel hydroxide and kneading it is applied to a conductive substrate having a large porosity such as foamed nickel, and then dried. Nickel electrodes for alkaline storage batteries have come to be used.
[0007]
Here, in the case of such a paste type nickel electrode for an alkaline storage battery, a conductive substrate having a porosity of 95% or more can be used. A battery can be obtained, and the conductive material can be easily filled with an active material, thereby improving productivity.
[0008]
However, in such a paste type nickel electrode for an alkaline storage battery, if a conductive substrate having a large porosity is used to fill the conductive substrate with a large amount of active material, the current collecting property of the conductive substrate is poor. Thus, there is a problem that the utilization factor of the active material is lowered.
[0009]
For this reason, conventionally, in such a paste-type nickel electrode for alkaline storage batteries, the surface of the active material particles made of nickel hydroxide is coated with cobalt hydroxide to increase the conductivity in the electrode, and It has been proposed to improve the utilization rate of substances (for example, see Patent Document 1).
[0010]
However, even when the surfaces of the active material particles made of nickel hydroxide are coated with cobalt hydroxide, it is difficult to sufficiently improve the utilization rate of the active material.
[0011]
Further, in recent years, the above-mentioned nickel electrode for alkaline storage batteries, in which the surface of active material particles made of nickel hydroxide is coated with a cobalt compound containing an alkali such as sodium, is used, and the utilization rate of the active material is sufficiently increased. An improvement has also been proposed (see, for example, Patent Documents 2 to 4).
[0012]
However, even when the surface of the active material particles made of nickel hydroxide is coated with a cobalt compound containing an alkali such as sodium as described above, the capacity of the alkaline storage battery is increased and the charge / discharge cycle characteristics are improved. There was a problem that it could not be improved sufficiently.
[0013]
[Patent Document 1]
Japanese Patent Laid-Open No. 62-234867 [Patent Document 2]
JP-A-9-219192 [Patent Document 3]
Japanese Patent Laid-Open No. 10-334912 [Patent Document 4]
Japanese Patent Laid-Open No. 2002-63898 [0014]
[Problems to be solved by the invention]
The present invention relates to a nickel electrode for an alkaline storage battery obtained by filling a conductive substrate with nickel hydroxide or composite particles in which the surface of active material particles mainly composed of nickel hydroxide is coated with a sodium-containing cobalt compound, and the alkali An object of the present invention is to solve the above problems in an alkaline storage battery using a nickel electrode for storage battery as a positive electrode.
[0015]
That is, an object of the present invention is to obtain sufficient battery capacity and charge / discharge cycle characteristics in an alkaline storage battery using the above-mentioned nickel electrode for alkaline storage batteries as a positive electrode.
[0016]
[Means for Solving the Problems]
In this invention, in order to solve the above problems, in an alkaline storage battery comprising a positive electrode, a negative electrode, and an alkaline electrolyte, the positive electrode is made of nickel hydroxide or active material particles mainly composed of nickel hydroxide. surface is a nickel electrode for an alkaline storage battery comprising by filling the composite particles coated with sodium-containing cobalt compound to the conductive substrate, the specific conductivity of the above-mentioned composite particles is 1.0 × 10 -3 to 1 In addition to the range of 0.0 × 10 −2 S · cm −1 , the packing density of the composite particles with respect to the conductive substrate is set to 3.0 g / cm 3 -void or more. Here, said packing density is the packing mass (g) of the composite particle with respect to the remaining space (cm < 3 >) except the electroconductive base | substrate in the nickel electrode for alkaline storage batteries.
[0017]
And if the composite particle | grains which coat | covered the surface of the active material particle which has nickel hydroxide or nickel hydroxide as a main component with the sodium containing cobalt compound like the nickel electrode for alkaline storage batteries in this invention are used, this sodium containing Since the electrical conductivity of cobalt oxide is higher than when metallic cobalt or a cobalt compound is used, the current collecting property in the electrode is increased, the utilization rate of the active material is improved, and the nickel electrode for alkaline storage batteries is improved. When the alkaline storage battery using the battery is charged and discharged in a high temperature environment, the sodium-containing cobalt oxide is not easily reduced to cobalt hydroxide at the time of discharge, and dissolution in the alkaline electrolyte is suppressed.
[0018]
Further, when the packing density of the composite particles with respect to the conductive substrate is set to 3.0 g / cm 3 -void or more like the nickel electrode for alkaline storage battery in the present invention, the capacity of the alkaline storage battery can be increased. At the same time, the space in the nickel electrode for the alkaline storage battery is reduced, and the above composite particles are prevented from taking in the alkaline electrolyte and expanding when overcharged, and the charge / discharge cycle characteristics in the alkaline storage battery are also improved. That is, when the packing density of the composite particles with respect to the conductive substrate is less than 3.0 g / cm 3 -void, the amount of the active material particles in the nickel electrode for the alkaline storage battery decreases, and the capacity of the alkaline storage battery decreases. At the same time, the space in the nickel electrode for alkaline storage batteries is increased, and β-NiOOH produced by charging nickel hydroxide takes in the alkaline electrolyte present in the above space during overcharge or the like and has a large crystal. It changes to (gamma) -NiOOH, the alkaline electrolyte in an alkaline storage battery runs short, and the charge / discharge cycle characteristic of an alkaline storage battery also falls.
[0019]
Furthermore, like the nickel electrode for alkaline storage batteries in this invention, when the specific conductivity of the composite particles is in the range of 1.0 × 10 −3 to 1.0 × 10 −2 S · cm −1 , alkali Both the capacity of the storage battery and the charge / discharge cycle characteristics are appropriately improved. That is, when the specific conductivity of the composite particles exceeds 1.0 × 10 −2 S · cm −1 , the conductivity becomes high and the utilization rate of the active material is improved, but the charge acceptability becomes too high. The composite particles are easily expanded, and the charge / discharge cycle characteristics are deteriorated. On the other hand, when the specific conductivity of the composite particles is less than 1.0 × 10 −3 S · cm −1 , the charge / discharge cycle characteristics are improved, but the utilization rate of the active material is low because the conductivity is low. As a result, the capacity of the alkaline storage battery decreases.
[0020]
Further, in the nickel electrode for alkaline storage battery according to the present invention, in addition to the composite particles, when an additive composed of at least one metal selected from Y, Nb, W, Ti or a compound thereof is added, oxygen Increased overvoltage suppresses the generation of oxygen during charging, increases the internal pressure of the battery and prevents the alkaline electrolyte from being discharged outside the battery, especially in high capacity with less space In the case of the alkaline battery, the charge / discharge cycle characteristics are further improved.
[0021]
Here, examples of the Y compound include Y (OH) 3 , Y 2 O 3 and the like, examples of the Nb compound include Nb 2 O 5 and the like, and examples of the W compound include WO 2 , WO 3 , Na 2 WO 4 , Li 2 WO 4 and the like, and as the Ti compound, for example, TiO 2 , Ti 2 O 3 , TiO, Ti (OH) 4 and the like can be used.
[0022]
In addition, when these additives are added to the nickel electrode for alkaline storage battery, if the amount thereof increases, the ratio of nickel hydroxide as the active material decreases and the capacity decreases. Is preferably 3.0% by mass or less based on nickel hydroxide.
[0023]
The alkaline storage battery according to the present invention is characterized by using the positive electrode as described above. The negative electrode and the alkaline electrolyte are not particularly limited, and examples of the negative electrode material include cadmium and hydrogen storage. An alloy or the like can be used, and as the alkaline electrolyte, for example, an electrolyte containing at least one of KOH, LiOH, and NaOH can be used.
[0024]
【Example】
Hereinafter, the alkaline storage battery according to the present invention and the alkaline storage battery using the alkaline storage battery nickel electrode as a positive electrode will be specifically described with reference to examples, and in the alkaline storage battery in this example, sufficient It will be clarified by giving a comparative example that the battery capacity and charge / discharge cycle characteristics can be obtained. In addition, the nickel electrode for alkaline storage batteries and alkaline storage battery in this invention are not limited to what was shown in the following Example, It can implement by changing suitably in the range which does not change the summary.
[0025]
Example 1
In Example 1, in preparing a nickel electrode for an alkaline storage battery, an aqueous sodium hydroxide solution and an aqueous ammonia solution were added to a mixed solution of nickel sulfate, zinc sulfate, and cobalt sulfate, and the mixture was stirred. 4% by mass and 1% by mass of cobalt were obtained.
[0026]
Next, the above active material particles were put into an aqueous solution of cobalt sulfate, and sodium hydroxide was added dropwise while stirring the mixture to coat the surface of the above active material particles with cobalt hydroxide.
[0027]
Then, the active material particles whose surfaces are coated with cobalt hydroxide are sprayed with a sodium hydroxide solution under a hot air stream using an Agromaster (trade name: manufactured by Hosokawa Micron Corporation), and the above cobalt hydroxide Sodium was contained therein to obtain composite particles having a specific conductivity of 5.0 × 10 −3 S · cm −1 . As for this specific conductivity, as shown in FIG. 1, the composite particles 21 are put in a hollow insulator 20, and the upper and lower metal pressing members 22a, In a state where a pressure of 400 kgf / cm 2 was applied by 22b, the resistance value was measured by the resistance meter 23 and calculated.
[0028]
Next, 100 parts by mass of the composite particles obtained as described above and 30 parts by mass of a 0.2% by mass hydroxypropyl cellulose aqueous solution were kneaded to obtain a slurry. The conductive substrate made of foamed nickel having a thickness of 1.7 mm and a thickness of 1.7 mm was filled, dried, and then rolled to a thickness of 0.85 mm to produce a nickel electrode for an alkaline storage battery. In addition, the packing density of the composite particles in the nickel electrode for alkaline storage battery was 3.0 g / cm 3 -void.
[0029]
And while using the nickel electrode for alkaline storage batteries produced in this way for a positive electrode, using a hydrogen storage alloy electrode for a negative electrode, as alkaline electrolyte, KOH is 4.9 mol / l, LiOH is 1.4 mol / l. A cylindrical alkaline storage battery as shown in FIG. 2 was produced using an aqueous solution with 1 and NaOH of 4.9 mol / l and a design capacity of 1800 mAh.
[0030]
Here, in producing this alkaline storage battery, as shown in FIG. 2, a separator 3 is interposed between the positive electrode 1 and the negative electrode 2 described above, and these are spirally wound and accommodated in the battery can 4. After that, the alkaline electrolyte is poured into the battery can 4 so as to be 1.4 g with respect to the battery capacity 1Ah and sealed, and the positive electrode 1 is connected to the positive electrode lid 6 through the positive electrode lead 5. At the same time, the negative electrode 2 was connected to the battery can 4 via the negative electrode lead 7, and the battery can 4 and the positive electrode lid 6 were electrically separated by the insulating packing 8.
[0031]
In addition, when a coil spring 10 is provided between the positive electrode lid 6 and the positive electrode external terminal 9 and the internal pressure of the battery rises abnormally, the coil spring 10 is compressed and the gas inside the battery is released into the atmosphere. It was to so.
[0032]
(Example 2)
In Example 2, when producing a nickel electrode for an alkaline storage battery, in Example 1 above, the active material particles whose surface is coated with cobalt hydroxide are sprayed with a sodium hydroxide solution in a hot air stream, In obtaining composite particles containing sodium hydroxide in cobalt hydroxide, the concentration, amount, treatment temperature, and treatment time of sodium hydroxide to be sprayed are controlled so that the specific conductivity is 1.0 × 10 −3 S · The composite particle | grains used as cm <-1 > were obtained, and except that, it carried out similarly to the case of said Example 1, and produced the nickel electrode for alkaline storage batteries, and the alkaline storage battery.
[0033]
(Example 3)
In Example 3, when producing a nickel electrode for an alkaline storage battery, in Example 1 above, the active material particles whose surfaces are coated with cobalt hydroxide are sprayed with a sodium hydroxide solution in a hot air stream, In obtaining composite particles containing sodium in cobalt hydroxide, the specific conductivity is 1.0 × 10 −2 S · by controlling the concentration, amount, treatment temperature, and treatment time of sodium hydroxide to be sprayed. The composite particle | grains used as cm <-1 > were obtained, and except that, it carried out similarly to the case of said Example 1, and produced the nickel electrode for alkaline storage batteries, and the alkaline storage battery.
[0034]
( Reference Example 1 )
In Reference Example 1 , when producing the nickel electrode for alkaline storage battery, the packing density of the composite particles in the nickel electrode for alkaline storage battery was set to 2.9 g / cm 3 -void, and otherwise, in the case of Example 1 above In the same manner, a nickel electrode for alkaline storage batteries and an alkaline storage battery were produced.
[0035]
( Reference Example 2 )
In Reference Example 2 , when producing the nickel electrode for alkaline storage battery, the packing density of the composite particles in the nickel electrode for alkaline storage battery was set to 2.8 g / cm 3 -void, and otherwise, in the case of Example 1 above In the same manner, a nickel electrode for alkaline storage batteries and an alkaline storage battery were produced.
[0036]
(Comparative Example 1)
In Comparative Example 1, in producing the nickel electrode for alkaline storage battery, in Example 1 above, the active material particles whose surfaces were coated with cobalt hydroxide were sprayed with a sodium hydroxide solution under a hot air flow, In obtaining composite particles containing sodium in cobalt hydroxide, the concentration, amount, treatment temperature, and treatment time of sodium hydroxide to be sprayed are controlled so that the specific conductivity is 5.0 × 10 −4 S · The composite particle | grains used as cm <-1 > were obtained, and except that, it carried out similarly to the case of said Example 1, and produced the nickel electrode for alkaline storage batteries, and the alkaline storage battery.
[0037]
(Comparative Example 2)
In Comparative Example 2, when preparing the nickel electrode for alkaline storage battery, in Example 1 above, the active material particles whose surface was coated with cobalt hydroxide was sprayed with a sodium hydroxide solution under a hot air flow, In obtaining composite particles containing sodium in cobalt hydroxide, the concentration, amount, treatment temperature, and treatment time of sodium hydroxide to be sprayed are controlled so that the specific conductivity is 5.0 × 10 −2 S · The composite particle | grains used as cm <-1 > were obtained, and except that, it carried out similarly to the case of said Example 1, and produced the nickel electrode for alkaline storage batteries, and the alkaline storage battery.
[0038]
(Comparative Example 3)
In Comparative Example 3, when producing the nickel electrode for alkaline storage battery, the packing density of the composite particles in the nickel electrode for alkaline storage battery was 2.6 g / cm 3 -void, otherwise, in the case of Example 1 above In the same manner, a nickel electrode for alkaline storage batteries and an alkaline storage battery were produced.
[0039]
Then, using each of the alkaline storage batteries of Examples 1 to 3, Reference Examples 1 and 2 and Comparative Examples 1 to 3 manufactured as described above, after charging for 16 hours at a current of 180 mA in a temperature atmosphere of 25 ° C., 60 Discharge until the battery voltage reaches 1 V at a current of 360 mA in a temperature atmosphere of ℃, and after repeating this twice, charge for 1 hour and 12 minutes at a current of 1800 mA in a temperature atmosphere of 25 ℃ and rest for 1 hour After that, the battery was discharged at a current of 1800 mA in a temperature atmosphere of 25 ° C. until the battery voltage became 1 V, and this was repeated three times to obtain the third discharge capacity as the initial capacity. Then, the initial capacity of each alkaline storage battery was calculated as an index with the initial capacity of the alkaline storage battery of Example 1 as 100, and the results are shown in Table 1 below.
[0040]
Next, each of the above alkaline storage batteries was further charged for 1 hour and 12 minutes at a current of 1800 mA in a temperature atmosphere of 25 ° C., and rested for 1 hour, and then the battery voltage was 1 V at a current of 1800 mA in a temperature atmosphere of 25 ° C. It was discharged until it became, and this was made into 1 cycle, charging / discharging was performed repeatedly, and the number of cycles until each discharge capacity became 60% of said initial capacity was calculated. And the cycle life in each alkaline storage battery was calculated by an index with the number of cycles in the alkaline storage battery of Example 1 as 100, and the results are shown in Table 1 below.
[0041]
[Table 1]
Figure 0004458749
[0042]
As a result, the composite particles having a specific conductivity in the range of 1.0 × 10 −3 to 1.0 × 10 −2 S · cm −1 were used for the nickel electrode for the alkaline storage battery. In each of the alkaline storage batteries of Examples 1 to 3 having a packing density of 3.0 g / cm 3 -void or more, both the capacity and the cycle life were high.
[0043]
On the other hand, in the case of the alkaline storage battery of Comparative Example 1 using the composite particles having a specific conductivity of 5.0 × 10 −4 S · cm −1 for the nickel electrode for alkaline storage battery, the cycle life is high. However, the conductivity in the nickel electrode for alkaline storage batteries was lowered, and the capacity was reduced.
[0044]
Moreover, in the case of the alkaline storage battery of Comparative Example 2 using the composite particles having a specific conductivity of 5.0 × 10 −2 S · cm −1 , the conductivity in the nickel electrode for alkaline storage battery is increased and the capacity is increased. Although it was high, the cycle life was greatly reduced. This is considered to be because the nickel electrode for alkaline storage battery absorbs the alkaline electrolyte and expands, and the alkaline electrolyte in the separator is depleted.
[0045]
In the case of the alkaline storage batteries of Reference Examples 1 and 2 and Comparative Example 3 in which the packing density of the composite particles in the nickel electrode for alkaline storage battery was less than 3.0 g / cm 3 -void , both the capacity and the cycle life decreased. . This is considered to be because there was a lot of space in the nickel electrode for alkaline storage batteries, the alkaline electrolyte was easily taken in, and the nickel electrode for alkaline storage batteries was expanded.
[0046]
(Examples 4 to 10 )
In Examples 4 to 10 , in the production of the nickel electrode for alkaline storage battery in Example 1 above, when obtaining a paste using the above composite particles, an additive is added in addition to the composite particles, Other than that was carried out similarly to the case of said Example 1, and produced the nickel electrode for alkaline storage batteries, and the alkaline storage battery.
[0047]
Here, in adding the additive as described above, as shown in Table 2 below, in Example 4 , Y 2 O 3 was added at a ratio of 1.5 mass% with respect to nickel hydroxide, and in Example 5 , Nb 2 O 5 in a proportion of 1.5% by mass with respect to nickel hydroxide, in Example 6 , TiO 2 in a proportion of 1.5% by mass with respect to nickel hydroxide, and in Example 7 , WO 3 is water. In a proportion of 1.5% by mass with respect to nickel oxide, in Example 8 , Y 2 O 3 and Nb 2 O 5 were each in a proportion of 0.75% by mass with respect to nickel hydroxide, and in Example 9 , Y 2 2 O 3 was added at a rate of 3.0% by mass with respect to nickel hydroxide, and in Example 10 , Y 2 O 3 was added at a rate of 4.0% by mass with respect to nickel hydroxide.
[0048]
Next, for each of the alkaline storage batteries of Examples 4 to 10 manufactured in this manner, the cycle was repeated until the initial capacity and the discharge capacity reached 60% of the initial capacity in the same manner as in the alkaline storage battery of Example 1 above. The initial capacity and cycle life of each alkaline storage battery were calculated using the index, with the initial capacity and cycle number of the alkaline storage battery of Example 1 as 100, and the results are shown in Table 2 below.
[0049]
[Table 2]
Figure 0004458749
[0050]
As a result, in addition to the composite particles as described above, at least one metal selected from Y, Nb, W, Ti such as Y 2 O 3 , Nb 2 O 5 , TiO 2 , WO 3 , or a compound thereof As a result, the cycle life of the alkaline storage battery was improved. However, when the amount of such an additive increases, the capacity of the alkaline storage battery gradually decreases. When the amount exceeds 4.0% by mass with respect to nickel hydroxide, the capacity of the alkaline storage battery greatly decreases. For this reason, when adding the above additives, it was preferable to make the amount into 3.0 mass% or less with respect to nickel hydroxide.
【The invention's effect】
As described in detail above, in the present invention, the conductive substrate is filled with the composite particles in which the surface of the active material particles mainly composed of nickel hydroxide or nickel hydroxide is coated with the sodium-containing cobalt compound. In the alkaline storage battery provided with the nickel electrode for alkaline storage battery , the specific conductivity of the composite particles is in the range of 1.0 × 10 −3 to 1.0 × 10 −2 S · cm −1 , and Since the packing density of the composite particles with respect to the conductive substrate is set to 3.0 g / cm 3 -void or more, the space in the nickel electrode for the alkaline storage battery is reduced, and the composite particles take in the alkaline electrolyte and expand. As a result, the charge / discharge cycle characteristics of the alkaline storage battery were improved, and the capacity of the alkaline storage battery could be increased.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing a state of measuring the specific conductivity of composite particles in the present invention.
FIG. 2 is a schematic cross-sectional view of alkaline storage batteries produced in Examples and Comparative Examples of the present invention.
[Explanation of symbols]
1 Positive electrode (nickel electrode for alkaline storage battery)
2 Negative electrode 21 Composite particles

Claims (4)

正極と負極と、アルカリ電解液とを備えたアルカリ蓄電池において、前記正極は水酸化ニッケル又は水酸化ニッケルを主成分とする活物質粒子の表面がナトリウム含有コバルト化合物で被覆された複合体粒子を導電性基体に充填させてなるアルカリ蓄電池用ニッケル極であって、上記の複合体粒子の比導電率が1.0×10−3〜1.0×10−2S・cm−1の範囲であると共に、上記の導電性基体に対する複合体粒子の充填密度が3.0g/cm−void以上であることを特徴とするアルカリ蓄電 In an alkaline storage battery comprising a positive electrode, a negative electrode, and an alkaline electrolyte, the positive electrode conducts a composite particle in which the surface of an active material particle mainly composed of nickel hydroxide or nickel hydroxide is coated with a sodium-containing cobalt compound. a nickel electrode for an alkaline storage battery comprising by filling sexually substrate, specific conductivity of the composite particles is in the range of 1.0 × 10 -3 ~1.0 × 10 -2 S · cm -1 together, alkaline electric storage batteries, characterized in that the packing density of the composite particles to the above conductive substrate is 3.0g / cm 3 -void or more. 請求項1に記載したアルカリ蓄電において、上記の複合体粒子の他に、Y,Nb,W,Tiから選択される少なくとも1種の金属又はその化合物からなる添加物が添加されてなることを特徴とするアルカリ蓄電In alkaline electric storage batteries according to claim 1, the above in addition to the composite particles, Y, Nb, W, that additive comprising at least one metal or compound thereof selected from Ti, which are added alkaline electric storage battery which is characterized. 請求項2に記載したアルカリ蓄電において、上記の添加物が、Y又はその化合物と、Nb又はその化合物とからなることを特徴とするアルカリ蓄電In alkaline electric storage batteries according to claim 2, said additives is, Y or its compounds, alkali electric storage batteries, characterized in that it consists of a Nb or a compound thereof. 請求項2又は請求項3に記載したアルカリ蓄電において、上記の添加物の添加量が水酸化ニッケルに対して3.0質量%以下であることを特徴とするアルカリ蓄電In alkaline electric storage batteries according to claim 2 or claim 3, alkali electric storage batteries, characterized in that the addition amount of the additives is not more than 3.0 mass% with respect to nickel hydroxide.
JP2003008975A 2003-01-17 2003-01-17 Alkaline storage battery Expired - Lifetime JP4458749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003008975A JP4458749B2 (en) 2003-01-17 2003-01-17 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003008975A JP4458749B2 (en) 2003-01-17 2003-01-17 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2004220993A JP2004220993A (en) 2004-08-05
JP4458749B2 true JP4458749B2 (en) 2010-04-28

Family

ID=32898600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003008975A Expired - Lifetime JP4458749B2 (en) 2003-01-17 2003-01-17 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP4458749B2 (en)

Also Published As

Publication number Publication date
JP2004220993A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP2004221057A (en) Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP4849854B2 (en) Hydrogen storage alloy electrode, alkaline storage battery, and production method of alkaline storage battery
JP2011233423A (en) Alkaline storage battery
JP2012069510A (en) Cylindrical nickel-hydrogen storage battery
JP4698291B2 (en) Alkaline storage battery
JP5142428B2 (en) Method for producing hydrogen storage alloy electrode for nickel metal hydride storage battery
JP3976482B2 (en) Method for producing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JP4458725B2 (en) Alkaline storage battery
JP4420767B2 (en) Nickel / hydrogen storage battery
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP3925963B2 (en) Alkaline secondary battery
JP4458749B2 (en) Alkaline storage battery
JP4127990B2 (en) Nickel electrode for alkaline storage battery, method for producing nickel electrode for alkaline storage battery, and alkaline storage battery
JP3543601B2 (en) Alkaline storage battery
JP3183073B2 (en) Active material for nickel electrode and method for producing the same
JP3895984B2 (en) Nickel / hydrogen storage battery
JP3851022B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JPH11176432A (en) Non-sintered nickel electrode for alkaline storage battery
JP4357133B2 (en) Hydrogen storage alloy for electrode, hydrogen storage alloy electrode and alkaline storage battery
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP3619703B2 (en) Method for producing nickel electrode for alkaline storage battery
JP3954822B2 (en) Nickel electrode for alkaline storage battery, method for producing nickel electrode for alkaline storage battery, and alkaline storage battery
JP3384109B2 (en) Nickel plate
JP3233013B2 (en) Nickel electrode for alkaline storage battery
JP4118991B2 (en) Manufacturing method of nickel metal hydride storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100209

R151 Written notification of patent or utility model registration

Ref document number: 4458749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

EXPY Cancellation because of completion of term