JP4456935B2 - Hydrogen utilization system - Google Patents

Hydrogen utilization system Download PDF

Info

Publication number
JP4456935B2
JP4456935B2 JP2004168551A JP2004168551A JP4456935B2 JP 4456935 B2 JP4456935 B2 JP 4456935B2 JP 2004168551 A JP2004168551 A JP 2004168551A JP 2004168551 A JP2004168551 A JP 2004168551A JP 4456935 B2 JP4456935 B2 JP 4456935B2
Authority
JP
Japan
Prior art keywords
hydrogen
facility
fuel cell
vehicle
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004168551A
Other languages
Japanese (ja)
Other versions
JP2005347209A (en
Inventor
国昭 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2004168551A priority Critical patent/JP4456935B2/en
Publication of JP2005347209A publication Critical patent/JP2005347209A/en
Application granted granted Critical
Publication of JP4456935B2 publication Critical patent/JP4456935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、燃料電池を搭載してなる燃料電池搭載車両、燃料電池を施設に設置してなる定置型燃料電池設備とで構成される水素利用システムに関する。 The present invention relates to a hydrogen utilization system including a fuel cell-equipped vehicle on which a fuel cell is mounted and a stationary fuel cell facility in which the fuel cell is installed in a facility.

燃料電池は、燃料極に供給される水素と空気極に供給される酸素との電気化学反応により発電するものであり、高効率でクリーンな発電システムとして期待されている。
かかる燃料電池は、車両に搭載して、その燃料電池が発生した電力により駆動用電気モータを駆動する用途や、家庭、ビル、店舗等の施設に設置して、その燃料電池が発生した電力を施設における電気機器に供給し、あわせてできる熱を給湯などで利用するという用途などが考えられている。
A fuel cell generates power by an electrochemical reaction between hydrogen supplied to a fuel electrode and oxygen supplied to an air electrode, and is expected as a highly efficient and clean power generation system.
Such a fuel cell is installed in a vehicle and used to drive an electric motor for driving with the electric power generated by the fuel cell, or installed in a facility such as a home, a building, or a store, and the electric power generated by the fuel cell is used. Applications such as supplying hot water to the electrical equipment in the facility and using the combined heat for hot water supply are considered.

燃料電池を搭載してなる燃料電池搭載車両は、燃料電池に供給される水素を圧縮した状態又は水素吸蔵合金に吸蔵させた状態で貯蔵する水素貯蔵タンクや、天然ガスやガソリンやメタノールなどの原燃料を改質して水素を生成する改質装置などの、燃料電池に水素を供給するための水素供給手段を搭載する必要がある。そして、上記水素供給手段のための水素や原燃料を、燃料電池搭載車両に供給するための水素ステーション等の車両用供給インフラを構築することが、燃料電池搭載車両普及の重要な課題である。   A fuel cell vehicle equipped with a fuel cell has a hydrogen storage tank for storing hydrogen supplied to the fuel cell in a compressed state or stored in a hydrogen storage alloy, or a raw material such as natural gas, gasoline or methanol. It is necessary to mount hydrogen supply means for supplying hydrogen to the fuel cell, such as a reformer that reforms the fuel to produce hydrogen. And, it is an important issue for the spread of vehicles equipped with fuel cells to construct a vehicle supply infrastructure such as a hydrogen station for supplying hydrogen and raw fuel for the hydrogen supply means to vehicles equipped with fuel cells.

一方、燃料電池を施設に設置してなる定置型燃料電池設備については、水素を都市ガスのように地中に埋設した供給管を通じて施設に搬送するという新たな施設用供給インフラを構築することがすぐには困難なことから、一般的には、従来の施設用供給インフラを利用して施設に供給される都市ガス等の原燃料を改質して水素を生成する改質装置が設置される(例えば、特許文献1及び2を参照。)。   On the other hand, with regard to stationary fuel cell equipment with fuel cells installed in the facility, it is possible to construct a new facility supply infrastructure that transports hydrogen to the facility through a supply pipe buried in the ground like city gas. Since it is difficult to do so soon, generally, a reformer that generates hydrogen by reforming raw fuel such as city gas supplied to the facility using the conventional facility supply infrastructure is installed. (For example, see Patent Documents 1 and 2.)

特開平6−333584号公報Japanese Patent Laid-Open No. 6-333584 特開2002−356305号公報JP 2002-356305 A

しかしながら、定置型燃料電池設備において、改質装置を施設に設置することにより、設備コストが高くなり、定置型燃料電池設備の普及が阻害されることが考えられる。   However, in a stationary fuel cell facility, it is conceivable that the installation of the reformer in the facility increases the facility cost and hinders the spread of the stationary fuel cell facility.

また、上記改質装置は、水素を生成すると同時に熱を発生することから、定置型燃料電池設備に改質装置を設置する場合には、その改質装置から発生した熱を燃料電池から発生した熱と共に回収して、温水として利用することで、高効率化を図ることができるが、熱回収のためのシステムが複雑となり、サイズアップ及びコストアップになることが考えられる   In addition, since the reformer generates heat at the same time as generating hydrogen, when the reformer is installed in a stationary fuel cell facility, the heat generated from the reformer is generated from the fuel cell. By recovering with heat and using it as hot water, high efficiency can be achieved, but the system for heat recovery becomes complicated, and it may be possible to increase the size and cost.

また、定置型燃料電池設備において、改質装置の故障時や起動時等において燃料電池に水素を供給できない場合などには、上記改質装置とは別に、予め水素を充填してある水素ボンベ等を準備し、その水素ボンベから燃料電池に水素を供給しなければ、運転できないということがある。   In addition, in a stationary fuel cell facility, when hydrogen cannot be supplied to the fuel cell when the reformer fails or starts up, a hydrogen cylinder previously charged with hydrogen, etc. separately from the reformer, etc. If the fuel cell is not supplied with hydrogen from the hydrogen cylinder, it cannot be operated.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、家庭、ビル、店舗等の施設に設置される定置型燃料電池設備において、新たな施設用供給インフラの構築を必要とせずに燃料電池に水素を供給可能とし、更には、改質装置を省略して低設備コスト化を図ることができる技術を提供する点にある。   The present invention has been made in view of the above problems, and its purpose is to require the construction of a new facility supply infrastructure in stationary fuel cell equipment installed in facilities such as homes, buildings, and stores. Accordingly, it is possible to provide a technique capable of supplying hydrogen to the fuel cell and further reducing the equipment cost by omitting the reformer.

上記目的を達成するための本発明に係る水素利用システムの第1特徴構成は、水素により電力を発生する施設側燃料電池と前記施設側燃料電池に供給される水素を貯蔵する施設側水素貯蔵部とを施設に設置してなる定置型燃料電池設備と、水素により電力を発生する車両側燃料電池と前記車両側燃料電池に水素を供給する車両側水素供給手段とを搭載してなる燃料電池搭載車両とで構成され、
前記車両側水素供給手段から前記施設側水素貯蔵部に水素を移送可能な水素移送手段を備え、
前記定置型燃料電池設備に、前記施設側水素貯蔵部の水素貯蔵量を検出する水素貯蔵量検出手段と、前記水素貯蔵量に関する水素貯蔵量情報を通信ネットワークを介して燃料電池搭載車両側に発信する水素貯蔵量情報発信手段とを備え、
前記燃料電池搭載車両に、前記通信ネットワークを介して前記水素貯蔵量情報発信手段から前記水素貯蔵量情報を受信する水素貯蔵量情報受信手段と、前記水素貯蔵量情報を搭乗者に通知する水素貯蔵量情報通知手段とを備えた点にある。
In order to achieve the above object, the first characteristic configuration of the hydrogen utilization system according to the present invention includes a facility-side fuel cell that generates power by hydrogen and a facility-side hydrogen storage unit that stores hydrogen supplied to the facility-side fuel cell. A fuel cell installation comprising a stationary fuel cell facility installed in a facility, a vehicle side fuel cell that generates power by hydrogen, and a vehicle side hydrogen supply means for supplying hydrogen to the vehicle side fuel cell Consisting of a vehicle,
E Bei hydrogen transfer means transportable hydrogen to the facility hydrogen storage unit from the vehicle side hydrogen supply means,
Hydrogen storage amount detection means for detecting the hydrogen storage amount of the facility-side hydrogen storage unit and hydrogen storage amount information related to the hydrogen storage amount are transmitted to the vehicle equipped with the fuel cell to the stationary fuel cell facility via a communication network. Hydrogen storage amount information transmission means
Hydrogen storage amount information receiving means for receiving the hydrogen storage amount information from the hydrogen storage amount information transmitting means via the communication network, and hydrogen storage for notifying a passenger of the hydrogen storage amount information to the vehicle equipped with the fuel cell And a quantity information notifying means .

上記特徴構成によれば、定置型燃料電池設備と燃料電池搭載車両とで水素利用システムを構成し、その水素利用システムに設けた上記水素移送手段により、燃料電池搭載車両の車両側接続部を定置型燃料電池の施設側接続部に接続した状態で、燃料電池搭載車両の車両側水素供給手段から定置型燃料電池の施設側水素貯蔵部に水素を移送することができる。よって、新たな施設用供給インフラを構築することなく、定置型燃料電池設備の施設側水素貯蔵部に水素を補給することができ、例えば、上記のような水素利用システムを構築することにより、定置型燃料電池設備及び燃料電池搭載車両の両方の普及を促進させることができる。   According to the above characteristic configuration, a stationary fuel cell facility and a fuel cell-equipped vehicle constitute a hydrogen utilization system, and the vehicle-side connection portion of the fuel cell-equipped vehicle is stationary by the hydrogen transfer means provided in the hydrogen utilization system. Hydrogen can be transferred from the vehicle-side hydrogen supply means of the vehicle equipped with the fuel cell to the facility-side hydrogen storage unit of the stationary fuel cell while being connected to the facility-side connection portion of the fuel cell. Therefore, hydrogen can be replenished to the facility-side hydrogen storage unit of the stationary fuel cell equipment without constructing a new facility supply infrastructure. For example, by constructing a hydrogen utilization system as described above, The spread of both fuel cell equipment and vehicles equipped with fuel cells can be promoted.

更に、上記のような水素利用システムでは、施設側水素貯蔵部に補給された水素を施設側燃料電池に供給することができるので、都市ガス等の原燃料を改質して水素を生成する改質装置を省略することができ、低設備コスト化、更には、熱利用率の向上による高効率化を図ることができる。また、改質装置を設置し、何らかの理由によりその改質装置から施設側燃料電池に水素が供給できない場合でも、施設側水素貯蔵部から施設側燃料電池へ水素を供給して、施設側燃料電池の運転を維持することができる。
また、上記特徴構成によれば、上記定置型燃料電池設備に上記水素貯蔵量検出手段と上記水素貯蔵量情報発信手段とを設け、一方、上記燃料電池搭載車両に上記水素貯蔵量情報受信手段と上記水素貯蔵量情報通知手段とを設けることで、燃料電池搭載車両に搭乗している搭乗者に対して、上記水素貯蔵量情報を通知して、施設における施設側水素貯蔵部の水素貯蔵量がどの程度であるかを認識させたり、施設側水素貯蔵部の水素貯蔵量が少なく水素の補充が必要である場合に、上記施設に出向き、上記水素移送手段により車両側水素供給手段から施設側水素貯蔵部へ水素を移送することを催促することができる。
Furthermore, in the hydrogen utilization system as described above, hydrogen replenished to the facility-side hydrogen storage unit can be supplied to the facility-side fuel cell, so that reforming of raw fuel such as city gas to generate hydrogen is possible. The quality device can be omitted, the equipment cost can be reduced, and the efficiency can be increased by improving the heat utilization rate. Even if a reformer is installed and hydrogen cannot be supplied from the reformer to the facility-side fuel cell for any reason, hydrogen is supplied from the facility-side hydrogen storage unit to the facility-side fuel cell. Can keep driving.
Further, according to the above characteristic configuration, the stationary fuel cell facility is provided with the hydrogen storage amount detecting means and the hydrogen storage amount information transmitting means, while the fuel cell vehicle is provided with the hydrogen storage amount information receiving means. By providing the hydrogen storage amount information notifying means, the hydrogen storage amount information is notified to a passenger boarding a vehicle equipped with a fuel cell, and the hydrogen storage amount of the facility-side hydrogen storage unit in the facility is determined. When the amount of hydrogen stored in the facility-side hydrogen storage unit is small and needs to be replenished with hydrogen, it goes to the facility and the facility-side hydrogen supply means transfers from the vehicle-side hydrogen supply means to the facility-side hydrogen. The transfer of hydrogen to the storage can be prompted.

本発明に係る水素利用システムの第2特徴構成は、前記車両側水素供給手段が、前記車両側燃料電池に供給される水素を貯蔵する車両側水素貯蔵部である点にある。   A second characteristic configuration of the hydrogen utilization system according to the present invention is that the vehicle-side hydrogen supply means is a vehicle-side hydrogen storage unit that stores hydrogen supplied to the vehicle-side fuel cell.

上記特徴構成によれば、上記車両側水素供給手段が上記車両側水素貯蔵部であることで、燃料電池搭載車両に供給するための水素ステーション等の車両用供給インフラが構築された場合に、燃料電池搭載車両は、従来のガソリン等と同様に、その車両用供給インフラから水素を受給し、その水素を車両側水素貯蔵部に貯蔵することができる。
そして、その車両側水素貯蔵部に貯蔵されている水素は車両側燃料電池の発電用として消費されるのであるが、定置型燃料電池設備の施設側水素貯蔵部への水素の補給が必要な場合には、上記水素移送手段により、車両側水素貯蔵部に貯蔵されている水素を、定置型燃料電池設備の施設側水素貯蔵部へ移送することができ、よって、上記車両用供給インフラから受給した水素を施設側燃料電池に供給し、施設側燃料電池を高効率且つ安定して運転させることができる。
According to the above characteristic configuration, when the vehicle-side hydrogen supply means is the vehicle-side hydrogen storage unit, a fuel supply infrastructure such as a hydrogen station for supplying fuel-vehicle-equipped vehicles is constructed. The battery-equipped vehicle can receive hydrogen from the vehicle supply infrastructure and store the hydrogen in the vehicle-side hydrogen storage unit, like conventional gasoline and the like.
The hydrogen stored in the vehicle-side hydrogen storage unit is consumed for power generation of the vehicle-side fuel cell, but it is necessary to supply hydrogen to the facility-side hydrogen storage unit of the stationary fuel cell facility The hydrogen transfer means can transfer the hydrogen stored in the vehicle-side hydrogen storage unit to the facility-side hydrogen storage unit of the stationary fuel cell facility, and is thus received from the vehicle supply infrastructure. Hydrogen can be supplied to the facility-side fuel cell, and the facility-side fuel cell can be operated efficiently and stably.

本発明に係る水素利用システムの第特徴構成は、前記定置型燃料電池設備に、原燃料を改質して前記施設側燃料電池に供給される水素を生成する施設側改質部を備え点にある。 A third characteristic configuration of the hydrogen utilization system according to the present invention includes the stationary fuel cell facility including a facility-side reforming unit that reforms raw fuel to generate hydrogen supplied to the facility-side fuel cell . In the point.

上記特徴構成によれば、上記定置型燃料電池設備に上記施設側改質部を設けることで、施設側水素貯蔵部から施設側燃料電池に水素を供給する状態、施設側改質部から施設側燃料電池に水素を供給する状態、施設側水素貯蔵部と施設側改質部との両方から施設側燃料電池に水素を供給する状態等のように、定置型燃料電池設備の運転状態等に応じて水素の供給状態を切り替えることができる。
例えば、通常時には、施設側改質部から施設側燃料電池に水素を供給する状態とし、施設側改質部の停止時や起動時などのように、施設側改質部から施設側燃料電池に十分な水素を供給できないときには、施設側水素貯蔵部から施設側燃料電池に水素を供給する状態とすることで、常に安定して水素を施設側燃料電池に供給することができる。また、施設側水素貯蔵部と施設側改質部との両方から施設側燃料電池に水素を供給する状態とすることで、比較的小規模の改質部を設置して設置コストの上昇を抑制しながら、小型の改質部を効率の高い出力で運転して、変動分の水素を施設側水素貯蔵部から供給して高効率化を図ったり、施設側水素貯蔵部の水素消費を節約して、水素移送手段により車両側水素供給手段から施設側水素貯蔵部へ水素を移送する回数を少なくすることができる。
According to the above characteristic configuration, by providing the facility-side reforming unit in the stationary fuel cell facility, a state in which hydrogen is supplied from the facility-side hydrogen storage unit to the facility-side fuel cell, from the facility-side reforming unit to the facility side Depending on the operating state of stationary fuel cell equipment, such as the state of supplying hydrogen to the fuel cell, the state of supplying hydrogen to the facility-side fuel cell from both the facility-side hydrogen storage unit and the facility-side reforming unit, etc. Thus, the supply state of hydrogen can be switched.
For example, in a normal state, hydrogen is supplied from the facility-side reforming unit to the facility-side fuel cell, and when the facility-side reforming unit is stopped or started, the facility-side reforming unit sends the hydrogen to the facility-side fuel cell. When sufficient hydrogen cannot be supplied, hydrogen can be supplied to the facility-side fuel cell in a stable manner by supplying hydrogen from the facility-side hydrogen storage unit to the facility-side fuel cell. In addition, by setting hydrogen to the facility-side fuel cell from both the facility-side hydrogen storage unit and the facility-side reforming unit, a relatively small reforming unit is installed to suppress an increase in installation costs. However, the small reforming unit is operated with high output power, and the hydrogen of the fluctuation is supplied from the facility-side hydrogen storage unit to improve efficiency, or the facility-side hydrogen storage unit saves hydrogen consumption. Thus, the number of times hydrogen is transferred from the vehicle-side hydrogen supply means to the facility-side hydrogen storage section by the hydrogen transfer means can be reduced.

本発明の実施の形態について、図面に基づいて説明する。
図1に示す水素利用システムは、施設1に設置された定置型燃料電池設備10と、例えばその施設1の居住者が所有する燃料電池搭載車両50とで構成されている。
Embodiments of the present invention will be described with reference to the drawings.
The hydrogen utilization system shown in FIG. 1 includes a stationary fuel cell facility 10 installed in a facility 1 and a fuel cell vehicle 50 owned by a resident of the facility 1, for example.

上記定置型燃料電池設備10は、水素により電力を発生する施設側燃料電池11と施設側燃料電池11に供給される水素を貯蔵する施設側水素貯蔵タンク12(施設側水素貯蔵部)とを施設1に設置してなる。   The stationary fuel cell facility 10 includes a facility-side fuel cell 11 that generates power by hydrogen and a facility-side hydrogen storage tank 12 (facility-side hydrogen storage unit) that stores hydrogen supplied to the facility-side fuel cell 11. 1 is installed.

上記施設側燃料電池11は、公知の燃料電池と同様に、配管18から供給された水素と空気中の酸素との電気化学反応により発電するように構成されており、例えば商用電源との間で系統連系する状態で、その発電電力を施設1の各種電気機器等の負荷13に供給するように構成されている。   The facility-side fuel cell 11 is configured to generate power by an electrochemical reaction between hydrogen supplied from the pipe 18 and oxygen in the air, similar to a known fuel cell. The system is configured to supply the generated power to a load 13 such as various electric devices in the facility 1 while being connected to the grid.

上記施設側水素貯蔵タンク12は、公知の水素貯蔵タンクと同様に、後述する接続管20に設けられたコンプレッサ22により圧縮された水素を配管14を介して受け入れて、その水素を圧縮した状態又は水素吸蔵合金に吸蔵させた状態で貯蔵するように構成されている。また、この施設側水素貯蔵タンク12は、配管14及び配管18を介して、施設側燃料電池11に接続されている。   The facility-side hydrogen storage tank 12 receives hydrogen compressed by a compressor 22 provided in a connecting pipe 20 described later via a pipe 14 and compresses the hydrogen, similarly to a known hydrogen storage tank. The hydrogen storage alloy is configured to store in a state of being stored. The facility-side hydrogen storage tank 12 is connected to the facility-side fuel cell 11 via a pipe 14 and a pipe 18.

そして、コンピュータからなる制御装置25は、後述する接続管20に設けられた開閉弁21を閉状態とすると共に、配管14に設けられた開閉弁15を開状態として、施設側水素貯蔵タンク12に貯蔵されている水素を配管14に設けられた減圧弁16により減圧した状態で、配管18を通じて施設側燃料電池11に供給して、施設側燃料電池11による発電を行うように構成されている。   And the control apparatus 25 which consists of computers makes the on-off valve 21 provided in the connection pipe 20 mentioned later into a closed state, and makes the on-off valve 15 provided in the piping 14 into an open state, and is in the facility side hydrogen storage tank 12 The stored hydrogen is supplied to the facility-side fuel cell 11 through the piping 18 in a state where the pressure is reduced by the pressure-reducing valve 16 provided in the piping 14, and the facility-side fuel cell 11 generates power.

配管14における施設側水素貯蔵タンク12と開閉弁15との間には、施設側水素貯蔵タンク12に貯蔵されている水素の圧力を検出する圧力センサ17が設けられており、制御装置25は、圧力センサ17の検出結果から施設側水素貯蔵タンク12の水素貯蔵量を検出する水素貯蔵量検出手段25aとして機能するように構成されている。   A pressure sensor 17 that detects the pressure of hydrogen stored in the facility-side hydrogen storage tank 12 is provided between the facility-side hydrogen storage tank 12 and the on-off valve 15 in the pipe 14. It is configured to function as hydrogen storage amount detection means 25 a that detects the hydrogen storage amount of the facility-side hydrogen storage tank 12 from the detection result of the pressure sensor 17.

更に、施設1には、定置型燃料電池設備10の運転操作や各種設定を行うためのリモコン27が設けられており、例えば、上記水素貯蔵量検出手段25aは、圧力センサ17の検出結果から検出した施設側水素貯蔵タンク12の水素貯蔵量を、リモコン27に設けられた表示部(図示せず)に表示することができる。   Further, the facility 1 is provided with a remote controller 27 for operating the stationary fuel cell facility 10 and performing various settings. For example, the hydrogen storage amount detection means 25a is detected from the detection result of the pressure sensor 17. The hydrogen storage amount of the facility-side hydrogen storage tank 12 can be displayed on a display unit (not shown) provided on the remote controller 27.

一方、燃料電池搭載車両50は、水素により電力を発生する車両側燃料電池51と、車両側燃料電池51に水素を供給する車両側水素供給手段Aとしての車両側水素貯蔵タンク52(車両側水素貯蔵部)を搭載してなる。   On the other hand, the fuel cell-equipped vehicle 50 includes a vehicle-side fuel cell 51 that generates electric power using hydrogen, and a vehicle-side hydrogen storage tank 52 (vehicle-side hydrogen) as vehicle-side hydrogen supply means A that supplies hydrogen to the vehicle-side fuel cell 51. It is equipped with a storage unit).

上記車両側燃料電池51は、公知の燃料電池と同様に、配管58から供給された水素と空気中の酸素との電気化学反応により発電するように構成されており、その発電電力を燃料電池搭載車両50の駆動用電気モータや各種電気機器等の負荷53に供給するように構成されている。   The vehicle-side fuel cell 51 is configured to generate electricity by an electrochemical reaction between hydrogen supplied from the pipe 58 and oxygen in the air, as in the known fuel cell, and the generated power is mounted on the fuel cell. It is configured to be supplied to a load 53 such as an electric motor for driving the vehicle 50 and various electric devices.

上記車両側水素貯蔵タンク52は、公知の水素貯蔵タンクと同様に、配管55から供給された水素を圧縮した状態又は水素吸蔵合金に吸蔵させた状態で貯蔵するように構成されている。また、この車両側水素貯蔵タンク52は、配管55及び配管58を介して、車両側燃料電池51に接続されている。   The vehicle-side hydrogen storage tank 52 is configured to store the hydrogen supplied from the pipe 55 in a compressed state or a state in which the hydrogen storage alloy is occluded in the same manner as a known hydrogen storage tank. The vehicle-side hydrogen storage tank 52 is connected to the vehicle-side fuel cell 51 via a pipe 55 and a pipe 58.

そして、コンピュータからなる制御装置65は、後述する接続管60に設けられた開閉弁61を閉状態とすると共に、配管55に設けられた開閉弁56及び配管58に設けられた開閉弁59を開状態として、車両側水素貯蔵タンク52に貯蔵されている水素を配管55及び配管58を順に通じて車両側燃料電池51に供給して、車両側燃料電池51に発電を行うように構成されている。   Then, the control device 65 comprising a computer closes the on-off valve 61 provided on the connecting pipe 60 described later, and opens the on-off valve 56 provided on the pipe 55 and the on-off valve 59 provided on the pipe 58. As a state, the hydrogen stored in the vehicle-side hydrogen storage tank 52 is supplied to the vehicle-side fuel cell 51 through the pipe 55 and the pipe 58 in order, and the vehicle-side fuel cell 51 is configured to generate power. .

燃料電池搭載車両50には、車両側水素貯蔵タンク52に接続された接続管60と、その接続管60を外部に接続するための車両側接続部62とが設けられている。そして、例えば、その車両側接続部62を、燃料電池搭載車両50に水素を供給するために構築された供給インフラである水素ステーション(図示せず)の水素供給部に接続した状態で、車両側燃料電池51側の配管58に設けられた開閉弁59を閉状態とすると共に、車両側水素貯蔵タンク52側の配管55に設けられた開閉弁56及び接続管60に設けられた開閉弁61を開状態として、その水素ステーションの水素供給部から車両側水素貯蔵タンク52に水素を受給することができる。   The fuel cell vehicle 50 is provided with a connection pipe 60 connected to the vehicle-side hydrogen storage tank 52 and a vehicle-side connection portion 62 for connecting the connection pipe 60 to the outside. For example, in the state where the vehicle side connecting portion 62 is connected to a hydrogen supply portion of a hydrogen station (not shown) which is a supply infrastructure constructed for supplying hydrogen to the fuel cell vehicle 50, the vehicle side The on-off valve 59 provided on the pipe 58 on the fuel cell 51 side is closed, and the on-off valve 56 provided on the pipe 55 on the vehicle-side hydrogen storage tank 52 side and the on-off valve 61 provided on the connection pipe 60 are provided. In the open state, hydrogen can be received from the hydrogen supply unit of the hydrogen station to the vehicle-side hydrogen storage tank 52.

配管55における車両側水素貯蔵タンク52と開閉弁56との間には、車両側水素貯蔵タンク52に貯蔵されている水素の圧力を検出する圧力センサ57が設けられており、制御装置65は、圧力センサ57の検出結果から車両側水素貯蔵タンク52の水素貯蔵量を検出する水素貯蔵量検出手段65aとして機能するように構成されている。   A pressure sensor 57 that detects the pressure of hydrogen stored in the vehicle-side hydrogen storage tank 52 is provided between the vehicle-side hydrogen storage tank 52 and the on-off valve 56 in the pipe 55. It is configured to function as hydrogen storage amount detection means 65a for detecting the hydrogen storage amount of the vehicle-side hydrogen storage tank 52 from the detection result of the pressure sensor 57.

更に、燃料電池搭載車両50には、運転者に対して各種通知を行うための表示部67が設けられており、例えば、上記水素貯蔵量検出手段65aは、圧力センサ57の検出結果から検出した車両側水素貯蔵タンク62の水素貯蔵量を、その表示部67に表示することができる。
よって、燃料電池搭載車両50の運転者は、上記表示部67に表示された車両側水素貯蔵タンク62の水素貯蔵量が少ないことを認識した際には、燃料電池搭載車両50を運転して、水素ステーションに出向き、車両側水素貯蔵タンク52を満タン状態(車両側水素貯蔵タンク52に最大水素貯蔵量の水素が貯蔵されている状態)にすることができる。
Further, the fuel cell vehicle 50 is provided with a display unit 67 for making various notifications to the driver. For example, the hydrogen storage amount detection means 65a is detected from the detection result of the pressure sensor 57. The amount of hydrogen stored in the vehicle-side hydrogen storage tank 62 can be displayed on the display unit 67.
Therefore, when the driver of the fuel cell vehicle 50 recognizes that the hydrogen storage amount of the vehicle-side hydrogen storage tank 62 displayed on the display unit 67 is small, the driver of the fuel cell vehicle 50 drives the vehicle 50, Going to the hydrogen station, the vehicle-side hydrogen storage tank 52 can be in a full tank state (a state in which the maximum hydrogen storage amount is stored in the vehicle-side hydrogen storage tank 52).

上述した定置型燃料電池設備10と燃料電池搭載車両50とで構成された水素利用システムは、車両側水素貯蔵タンク52から施設側水素貯蔵タンク12に水素を移送可能な水素移送手段Xを備え、以下、その詳細構成について説明を加える。   The hydrogen utilization system composed of the stationary fuel cell facility 10 and the fuel cell-equipped vehicle 50 described above includes a hydrogen transfer means X capable of transferring hydrogen from the vehicle-side hydrogen storage tank 52 to the facility-side hydrogen storage tank 12, The detailed configuration will be described below.

定置型燃料電池設備10には、配管14の開閉弁15よりも施設側水素貯蔵タンク12側に接続された接続管20と、その接続管20を外部に接続するための施設側接続部23とが設けられている。尚、上記施設側接続部23は、定置型燃料電池設備10から施設1の例えば駐車場側に延出する可撓性部材24の先端に設けられており、その施設側接続部23は、一定の範囲内で自由に変位可能となっている。   The stationary fuel cell facility 10 includes a connection pipe 20 connected to the facility-side hydrogen storage tank 12 side rather than the opening / closing valve 15 of the pipe 14, and a facility-side connection section 23 for connecting the connection pipe 20 to the outside. Is provided. In addition, the said facility side connection part 23 is provided in the front-end | tip of the flexible member 24 extended to the parking lot side of the facility 1 from the stationary fuel cell equipment 10, and the facility side connection part 23 is constant. It can be freely displaced within the range.

そして、施設側接続部23が、燃料電池搭載車両50に設けられた車両側接続部62に接続された状態で、車両側接続部62から施設側水素貯蔵タンク12に水素を受給可能に構成され、一方、燃料電池搭載車両50の車両側接続部62が、定置型燃料電池設備10に設けられた施設側接続部23に接続された状態で、車両側水素貯蔵タンク52から施設側接続部23に水素を供給可能に構成されていることにより、車両側水素貯蔵タンク52から施設側水素貯蔵タンク12に水素を移送可能な水素移送手段Xが構成されている。   The facility-side connecting portion 23 is configured to be able to receive hydrogen from the vehicle-side connecting portion 62 to the facility-side hydrogen storage tank 12 in a state where the facility-side connecting portion 23 is connected to the vehicle-side connecting portion 62 provided in the fuel cell vehicle 50. On the other hand, the vehicle-side connecting portion 62 of the fuel cell-equipped vehicle 50 is connected from the vehicle-side hydrogen storage tank 52 to the facility-side connecting portion 23 while being connected to the facility-side connecting portion 23 provided in the stationary fuel cell facility 10. Thus, the hydrogen transfer means X is configured to transfer hydrogen from the vehicle-side hydrogen storage tank 52 to the facility-side hydrogen storage tank 12.

上記水素移送手段Xによる水素の移送操作について説明を加えると、施設側貯蔵タンク12の水素貯蔵量が少なくなった場合に、例えば水素ステーションから水素の受給を受けて車両側水素貯蔵タンク52が満タン状態となった燃料電池搭載車両50を、施設1の駐車場に駐車した状態で、施設側接続部23を車両側接続部62に接続する。すると、施設1側の制御装置25と燃料電池搭載車両50側の制御装置65とが、施設側接続部23及び車両側接続部62を通じて通信を行って、互いの水素移送動作を実行することになる。   The hydrogen transfer operation by the hydrogen transfer means X will be further described. When the hydrogen storage amount in the facility-side storage tank 12 is reduced, for example, the vehicle-side hydrogen storage tank 52 is filled by receiving hydrogen from the hydrogen station. The facility-side connecting portion 23 is connected to the vehicle-side connecting portion 62 in a state where the fuel cell-equipped vehicle 50 in the tan state is parked in the parking lot of the facility 1. Then, the control device 25 on the facility 1 side and the control device 65 on the fuel cell-equipped vehicle 50 side communicate with each other through the facility-side connection unit 23 and the vehicle-side connection unit 62 to execute the mutual hydrogen transfer operation. Become.

即ち、施設1側の制御装置25は、上記水素移送動作において、施設側燃料電池11側の配管14に設けられた開閉弁15を閉状態とすると共に、接続管20に設けられた開閉弁21を開状態として、接続管20に設けられたコンプレッサ22を作動させて、燃料電池搭載車両50から施設側接続部23に受け入れた水素を施設側水素貯蔵タンク12に貯蔵させるように構成されている。
従って、定置型燃料電池設備10は、上記水素移送動作を行うことにより、施設側水素貯蔵タンク12に水素を補充することができ、その水素を施設側燃料電池11に供給して、発電を継続することができる。
That is, the control device 25 on the facility 1 side closes the on-off valve 15 provided on the piping 14 on the facility-side fuel cell 11 side and closes the on-off valve 21 provided on the connection tube 20 in the hydrogen transfer operation. Is opened, the compressor 22 provided in the connecting pipe 20 is operated, and the hydrogen received from the fuel cell-equipped vehicle 50 to the facility-side connecting portion 23 is stored in the facility-side hydrogen storage tank 12. .
Therefore, the stationary fuel cell facility 10 can replenish the facility-side hydrogen storage tank 12 with hydrogen by performing the above-described hydrogen transfer operation, and supply the hydrogen to the facility-side fuel cell 11 to continue power generation. can do.

一方、燃料電池搭載車両50側の制御装置65は、上記水素移送動作において、車両側燃料電池51側の配管58に設けられた開閉弁59を閉状態とすると共に、車両側水素貯蔵タンク52側の配管55に設けられた開閉弁56及び接続管60に設けられた開閉弁61を開状態として、車両側水素貯蔵タンク52に貯蔵されている水素を車両側接続部62から定置型燃料電池設備10側に供給するように構成されている。   On the other hand, the control device 65 on the fuel cell-equipped vehicle 50 side closes the open / close valve 59 provided in the pipe 58 on the vehicle-side fuel cell 51 side and closes the vehicle-side hydrogen storage tank 52 side in the hydrogen transfer operation. The open / close valve 56 provided in the pipe 55 and the open / close valve 61 provided in the connection pipe 60 are opened, and hydrogen stored in the vehicle-side hydrogen storage tank 52 is supplied from the vehicle-side connection portion 62 to the stationary fuel cell facility. It is configured to supply to the 10 side.

また、燃料電池搭載車両50側の制御装置65は、上記水素移送動作において、圧力センサ57の検出結果から検出した車両側水素貯蔵タンク52の水素貯蔵量が、設定量以下となった場合には、開閉弁61及び開閉弁56を閉状態として、上記水素移送動作を終了するように構成することができる。
即ち、燃料電池搭載車両50は、水素移送動作後においても、車両側水素貯蔵タンク52が空状態(車両側水素貯蔵タンク52に水素が貯蔵されていない状態)とならずに、車両側水素貯蔵タンク52に設定量の水素が貯蔵されている状態となるので、その水素を車両側燃料電池51に供給して、駆動用電気モータ等を駆動するための電力を発電し、燃料電池搭載車両50を運転して水素ステーションに出向くことができ、再び、車両側水素貯蔵タンク52を満タン状態にすることができる。
Further, the control device 65 on the fuel cell-equipped vehicle 50 side, when the hydrogen storage amount of the vehicle-side hydrogen storage tank 52 detected from the detection result of the pressure sensor 57 in the hydrogen transfer operation is less than the set amount. The on-off valve 61 and the on-off valve 56 can be closed to end the hydrogen transfer operation.
That is, in the fuel cell-equipped vehicle 50, even after the hydrogen transfer operation, the vehicle-side hydrogen storage tank 52 does not become empty (the hydrogen is not stored in the vehicle-side hydrogen storage tank 52). Since a set amount of hydrogen is stored in the tank 52, the hydrogen is supplied to the vehicle-side fuel cell 51 to generate electric power for driving an electric motor for driving and the like. And the vehicle-side hydrogen storage tank 52 can be filled again.

水素利用システムにおいて、燃料電池搭載車両50の搭乗者(運転者)に対して、施設側水素貯蔵タンク12の水素貯蔵量がどの程度であるかを認識させることができ、その構成について説明を加える。   In the hydrogen utilization system, the passenger (driver) of the fuel cell vehicle 50 can be made aware of the amount of hydrogen stored in the facility-side hydrogen storage tank 12, and the configuration will be described. .

定置型燃料電池設備10には、インターネット網や専用ネットワーク網等の通信ネットワーク70を介して他の通信装置との間で通信可能な通信装置26が設けられており、その通信装置26は、水素貯蔵量検出手段25aで検出した水素貯蔵量に関する水素貯蔵量情報を通信ネットワーク70を介して燃料電池搭載車両50側に発信する水素貯蔵量情報発信手段として機能するように構成されている。   The stationary fuel cell facility 10 is provided with a communication device 26 capable of communicating with other communication devices via a communication network 70 such as the Internet network or a dedicated network network. It is configured to function as hydrogen storage amount information transmitting means for transmitting hydrogen storage amount information related to the hydrogen storage amount detected by the storage amount detection means 25a to the fuel cell-equipped vehicle 50 side via the communication network 70.

一方、燃料電池搭載車両50には、同じく通信ネットワーク70を介して他の通信装置との間で無線通信可能な通信装置66が設けられており、その通信装置66は、通信ネットワーク70を介して水素貯蔵量情報発信手段としての通信装置26から発信された上記水素貯蔵量情報を受信する水素貯蔵量情報受信手段として機能すると共に、燃料電池搭載車両50の制御手段65は、その受信した水素貯蔵量情報を表示部67に表示することで搭乗者に通知する水素貯蔵量情報通知手段65bとして機能するように構成されている。   On the other hand, the fuel cell vehicle 50 is provided with a communication device 66 capable of wireless communication with other communication devices via the communication network 70, and the communication device 66 is connected via the communication network 70. While functioning as a hydrogen storage amount information receiving means for receiving the hydrogen storage amount information transmitted from the communication device 26 serving as a hydrogen storage amount information transmitting means, the control means 65 of the vehicle 50 equipped with the fuel cell has received the received hydrogen storage information. It is configured to function as a hydrogen storage amount information notifying unit 65 b that notifies the passenger by displaying the amount information on the display unit 67.

従って、燃料電池搭載車両50の搭乗者は、表示部67に表示された水素貯蔵量情報により、施設側水素貯蔵タンク12の水素貯蔵量がどの程度であるかを認識することができ、例えば、施設側水素貯蔵タンク12の水素貯蔵量が少なく水素の補充が必要であることを認識した場合には、例えば水素ステーションにおいて車両側水素貯蔵タンク52を満タン状態とした後に、上記施設1に出向き、上記水素移送手段Xにより車両側水素貯蔵タンク52から施設側水素貯蔵タンク12へ水素を移送することで、施設側水素貯蔵タンク12の水素貯蔵量の不足による施設側燃料電池11の不慮の停止等を回避することができる。   Therefore, the passenger of the fuel cell vehicle 50 can recognize how much the hydrogen storage amount of the facility-side hydrogen storage tank 12 is based on the hydrogen storage amount information displayed on the display unit 67. For example, When the facility-side hydrogen storage tank 12 recognizes that the amount of hydrogen stored is small and needs to be replenished with hydrogen, for example, the vehicle-side hydrogen storage tank 52 is filled at the hydrogen station and then goes to the facility 1 By the transfer of hydrogen from the vehicle-side hydrogen storage tank 52 to the facility-side hydrogen storage tank 12 by the hydrogen transfer means X, the facility-side fuel cell 11 is inadvertently stopped due to an insufficient amount of hydrogen stored in the facility-side hydrogen storage tank 12. Etc. can be avoided.

〔別実施形態〕
(1)
上記実施の形態では、定置型燃料電池設備10において、施設側燃料電池11に施設側水素貯蔵タンク12からのみ水素を供給するように構成したが、その施設側水素貯蔵タンク12に加えて、図2に示すように、施設1に供給される原燃料としての都市ガスを改質して施設側燃料電池11に供給される水素を生成する施設側改質装置40(施設側改質部)を設け、その改質装置40で生成した水素を配管41及び配管18を通じて施設側燃料電池11に供給可能に構成しても構わない。
[Another embodiment]
(1)
In the above embodiment, the stationary fuel cell facility 10 is configured to supply hydrogen only from the facility-side hydrogen storage tank 12 to the facility-side fuel cell 11, but in addition to the facility-side hydrogen storage tank 12, FIG. 2, a facility-side reformer 40 (facility-side reforming unit) that reforms city gas as raw fuel supplied to the facility 1 to generate hydrogen to be supplied to the facility-side fuel cell 11 is provided. The hydrogen generated by the reformer 40 may be supplied to the facility-side fuel cell 11 through the pipe 41 and the pipe 18.

また、施設側燃料電池11に水素を供給可能な水素供給部として、上述した施設側水素貯蔵タンク12に加えて施設側改質装置40を設ける場合には、施設側水素貯蔵タンク12側の配管14に設けられた開閉弁15を開状態とすると共に施設側改質装置40側の配管に設けられた開閉弁42を閉状態として、施設側水素貯蔵タンク12から施設側燃料電池11に水素を供給するタンク貯蔵水素供給状態と、上記開閉弁15を閉状態とすると共に上記開閉弁42を開状態として、施設側改質装置40から施設側燃料電池11に水素を供給する改質水素供給状態とを、定置型燃料電池設備10の運転状態等に応じて切り替えることができる。   When the facility-side reformer 40 is provided in addition to the facility-side hydrogen storage tank 12 as a hydrogen supply unit capable of supplying hydrogen to the facility-side fuel cell 11, piping on the facility-side hydrogen storage tank 12 side is provided. 14 is opened, and the on-off valve 42 provided in the piping on the facility-side reformer 40 side is closed to supply hydrogen from the facility-side hydrogen storage tank 12 to the facility-side fuel cell 11. Supply tank storage hydrogen supply state, and open / close valve 15 is closed and open / close valve 42 is opened, and a reformed hydrogen supply state in which hydrogen is supplied from the facility-side reformer 40 to the facility-side fuel cell 11 Can be switched according to the operating state of the stationary fuel cell facility 10 or the like.

例えば、通常時には、施設側改質装置40から施設側燃料電池11に水素を供給する上記改質水素供給状態とし、一方、故障又は点検等の理由で施設側改質装置40でを停止させる停止時や、起動時に施設側改質装置40から十分な水素が供給されないときには、施設側水素貯蔵タンク12から施設側燃料電池11に水素を供給するタンク貯蔵水素供給状態とすることで、常に安定して水素を施設側燃料電池11に供給することができる。
また、施設側水素貯蔵タンク12と施設側改質装置40との両方から施設側燃料電池11に水素を供給するように構成することで、施設側改質装置40を比較的安価な小規模のものとしながら、施設側改質装置40を効率の高い出力で運転して、変動分(施設側燃料電池11に供給すべき水素量から施設側改質装置40から供給する水素量を差し引いた分)の水素を施設側水素貯蔵タンク12から供給して高効率化を図ったり、施設側水素貯蔵タンク12の水素消費を節約して、水素移送手段Xにより車両側水素供給手段Aから施設側水素貯蔵タンク12へ水素を移送する回数を少なくすることができる。
For example, in the normal state, the reformed hydrogen supply state in which hydrogen is supplied from the facility-side reformer 40 to the facility-side fuel cell 11 is brought to a stop, while the facility-side reformer 40 is stopped due to a failure or inspection. When sufficient hydrogen is not supplied from the facility-side reformer 40 at the time of start-up, the tank storage hydrogen supply state for supplying hydrogen from the facility-side hydrogen storage tank 12 to the facility-side fuel cell 11 is always stable. Thus, hydrogen can be supplied to the facility-side fuel cell 11.
In addition, by configuring the facility-side hydrogen storage tank 12 and the facility-side reformer 40 to supply hydrogen to the facility-side fuel cell 11, the facility-side reformer 40 can be made to be a relatively inexpensive, small-scale. However, the facility-side reformer 40 is operated at a high-efficiency output, and the fluctuation amount (the amount obtained by subtracting the amount of hydrogen supplied from the facility-side reformer 40 from the amount of hydrogen to be supplied to the facility-side fuel cell 11). ) Is supplied from the facility-side hydrogen storage tank 12 to improve efficiency, or the facility-side hydrogen storage tank 12 is conserved in hydrogen, and the hydrogen transfer means X supplies the facility-side hydrogen from the vehicle-side hydrogen supply means A. The number of times of transferring hydrogen to the storage tank 12 can be reduced.

(2)
上記実施の形態では、車両側燃料電池51に水素を供給する車両側水素供給手段Aとして、車両側水素貯蔵タンク52を搭載した例を説明したが、車両側水素供給手段Aとして、天然ガスやガソリンやメタノールなどの原燃料を改質して水素を生成する改質装置を燃料電池搭載車両50に搭載しても構わない。
(2)
In the above embodiment, an example in which the vehicle-side hydrogen storage tank 52 is mounted as the vehicle-side hydrogen supply means A that supplies hydrogen to the vehicle-side fuel cell 51 has been described. A reformer that generates hydrogen by reforming raw fuel such as gasoline or methanol may be mounted on the fuel cell vehicle 50.

本発明係る水素利用システムの実施形態を示す概略構成図The schematic block diagram which shows embodiment of the hydrogen utilization system which concerns on this invention 本発明係る水素利用システムの別実施形態を示す概略構成図The schematic block diagram which shows another embodiment of the hydrogen utilization system which concerns on this invention

符号の説明Explanation of symbols

1:施設
10:定置型燃料電池設備
11:施設側燃料電池
12:施設側水素貯蔵タンク(施設側水素貯蔵部)
13:負荷
16:減圧弁
17:圧力センサ
20:接続管
21:開閉弁
23:施設側接続部
25a:水素貯蔵量検出手段
25:制御装置
26:通信装置(水素貯蔵量情報発信手段)
27:リモコン
40:施設側改質装置(施設側改質部)
50:燃料電池搭載車両
51:車両側燃料電池
52:車両側水素貯蔵タンク(車両側水素貯蔵部)
53:負荷
57:圧力センサ
60:接続管
61:開閉弁
62:車両側接続部
65a:水素貯蔵量検出手段
65b:水素貯蔵量情報通知手段
65:制御装置
66:通信装置(水素貯蔵量情報受信手段)
67:表示部
70:通信ネットワーク
A:車両側水素供給手段
X:水素移送手段
1: Facility 10: Stationary fuel cell facility 11: Facility side fuel cell 12: Facility side hydrogen storage tank (facility side hydrogen storage unit)
13: Load 16: Pressure reducing valve 17: Pressure sensor 20: Connection pipe 21: On-off valve 23: Facility side connection part 25a: Hydrogen storage amount detection means 25: Control device 26: Communication device (hydrogen storage amount information transmission means)
27: Remote control 40: Facility side reformer (facility side reformer)
50: Fuel cell-equipped vehicle 51: Vehicle-side fuel cell 52: Vehicle-side hydrogen storage tank (vehicle-side hydrogen storage unit)
53: Load 57: Pressure sensor 60: Connection pipe 61: On-off valve 62: Vehicle-side connection portion 65a: Hydrogen storage amount detection means 65b: Hydrogen storage amount information notification means 65: Controller 66: Communication device (hydrogen storage amount information reception) means)
67: Display unit 70: Communication network A: Vehicle-side hydrogen supply means X: Hydrogen transfer means

Claims (3)

水素により電力を発生する施設側燃料電池と前記施設側燃料電池に供給される水素を貯蔵する施設側水素貯蔵部とを施設に設置してなる定置型燃料電池設備と、水素により電力を発生する車両側燃料電池と前記車両側燃料電池に水素を供給する車両側水素供給手段とを搭載してなる燃料電池搭載車両とで構成され、
前記車両側水素供給手段から前記施設側水素貯蔵部に水素を移送可能な水素移送手段を備え、
前記定置型燃料電池設備に、前記施設側水素貯蔵部の水素貯蔵量を検出する水素貯蔵量検出手段と、前記水素貯蔵量に関する水素貯蔵量情報を通信ネットワークを介して燃料電池搭載車両側に発信する水素貯蔵量情報発信手段とを備え、
前記燃料電池搭載車両に、前記通信ネットワークを介して前記水素貯蔵量情報発信手段から前記水素貯蔵量情報を受信する水素貯蔵量情報受信手段と、前記水素貯蔵量情報を搭乗者に通知する水素貯蔵量情報通知手段とを備えた水素利用システム。
A stationary fuel cell facility in which a facility-side fuel cell that generates power by hydrogen and a facility-side hydrogen storage unit that stores hydrogen supplied to the facility-side fuel cell are installed in the facility, and power is generated by hydrogen A vehicle-side fuel cell and a fuel-cell-equipped vehicle on which vehicle-side hydrogen supply means for supplying hydrogen to the vehicle-side fuel cell is mounted,
E Bei hydrogen transfer means transportable hydrogen to the facility hydrogen storage unit from the vehicle side hydrogen supply means,
Hydrogen storage amount detection means for detecting the hydrogen storage amount of the facility-side hydrogen storage unit and hydrogen storage amount information related to the hydrogen storage amount are transmitted to the vehicle equipped with the fuel cell to the stationary fuel cell facility via a communication network. Hydrogen storage amount information transmission means
Hydrogen storage amount information receiving means for receiving the hydrogen storage amount information from the hydrogen storage amount information transmitting means via the communication network, and hydrogen storage for notifying a passenger of the hydrogen storage amount information to the vehicle equipped with the fuel cell A hydrogen utilization system comprising a quantity information notification means .
前記車両側水素供給手段が、前記車両側燃料電池に供給される水素を貯蔵する車両側水素貯蔵部である請求項1に記載の水素利用システム。   2. The hydrogen utilization system according to claim 1, wherein the vehicle-side hydrogen supply means is a vehicle-side hydrogen storage unit that stores hydrogen supplied to the vehicle-side fuel cell. 前記定置型燃料電池設備に、原燃料を改質して前記施設側燃料電池に供給される水素を生成する施設側改質部を備えた請求項1又は2に記載の水素利用システム。 3. The hydrogen utilization system according to claim 1, wherein the stationary fuel cell facility includes a facility-side reforming unit that reforms raw fuel to generate hydrogen to be supplied to the facility-side fuel cell .
JP2004168551A 2004-06-07 2004-06-07 Hydrogen utilization system Expired - Fee Related JP4456935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004168551A JP4456935B2 (en) 2004-06-07 2004-06-07 Hydrogen utilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004168551A JP4456935B2 (en) 2004-06-07 2004-06-07 Hydrogen utilization system

Publications (2)

Publication Number Publication Date
JP2005347209A JP2005347209A (en) 2005-12-15
JP4456935B2 true JP4456935B2 (en) 2010-04-28

Family

ID=35499381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004168551A Expired - Fee Related JP4456935B2 (en) 2004-06-07 2004-06-07 Hydrogen utilization system

Country Status (1)

Country Link
JP (1) JP4456935B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353383A (en) * 2004-06-09 2005-12-22 S X L Corp Fuel cell system for building
JP5668645B2 (en) * 2011-08-31 2015-02-12 トヨタ自動車株式会社 Fuel cell system
JP2013197076A (en) * 2012-03-23 2013-09-30 Panasonic Corp Fuel cell system
JP2015015116A (en) * 2013-07-03 2015-01-22 パナソニックIpマネジメント株式会社 Fuel cell system
JP2016110820A (en) * 2014-12-05 2016-06-20 株式会社東芝 Fuel cell system
JP6584318B2 (en) * 2015-12-25 2019-10-02 トヨタホーム株式会社 Power supply system
JP7371456B2 (en) * 2019-11-25 2023-10-31 日産自動車株式会社 Vehicle control method and vehicle control device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197037A (en) * 1997-09-17 1999-04-09 Matsushita Electric Works Ltd Fuel cell power generating system
JP3873480B2 (en) * 1998-09-26 2007-01-24 株式会社エクォス・リサーチ Hydrogen production vehicle, hydrogen supply system, and hydrogen supply method
JP2002020103A (en) * 2000-06-30 2002-01-23 Mitsubishi Kakoki Kaisha Ltd Method for starting and method for stopping hydrogen producing device
JP2002373230A (en) * 2001-06-18 2002-12-26 Tokyo Gas Co Ltd Hydrogen supply method and device
JP2003317787A (en) * 2002-02-21 2003-11-07 Matsushita Electric Ind Co Ltd Cogeneration vehicle system using fuel cell vehicle and movable body composing system
JP2004048895A (en) * 2002-07-11 2004-02-12 Toyota Motor Corp Private energy generating system

Also Published As

Publication number Publication date
JP2005347209A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP4520959B2 (en) Power supply system
US7968239B2 (en) Fuel cell system with multiple warm-up mechanisms
CA2469309C (en) Power supply system and electronic device comprising the same
JP4836971B2 (en) Gas / water supply system and solid oxide fuel cell system for fuel cell
EP2648314A1 (en) Natural energy storage system
CN101171200A (en) Fuel supply method and fuel supply device
JP4456935B2 (en) Hydrogen utilization system
JP6551884B2 (en) Fuel cell vehicle
JP2004116544A (en) Hydrogen supplying station and its control method
JP2006302802A (en) Method of replacing fuel storage container, fuel storage container replacing system and fuel cell vehicle
JP2007179886A (en) Fuel cell system for coping with emergency
JP4843898B2 (en) Fuel cell device and control method thereof
JP2006146431A (en) Distribution schedule management system for hydrogen storage cartridge, terminal equipment used for the system and distribution schedule management method
JP2005032585A (en) Power supply system using fuel cell
JP2005125927A (en) Mobile hydrogen producing apparatus, and hydrogen supply system
JP2009181700A (en) Fuel battery device
JP2003056798A (en) Hydrogen storing vessel and hydrogen supplying method
JP2019179762A (en) Power control device
JP5136219B2 (en) Fuel cell system
JP6584318B2 (en) Power supply system
JP4836970B2 (en) Gas / water supply system and solid oxide fuel cell system for fuel cell
KR102295597B1 (en) Multi purpose fuel cell system and control method thereof
JP2008135402A (en) Solid oxide fuel cell system
JP5865239B2 (en) Fuel cell vehicle
JP2013197076A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees