JP4456405B2 - Method for producing vinyl chloride resin foam - Google Patents

Method for producing vinyl chloride resin foam Download PDF

Info

Publication number
JP4456405B2
JP4456405B2 JP2004119387A JP2004119387A JP4456405B2 JP 4456405 B2 JP4456405 B2 JP 4456405B2 JP 2004119387 A JP2004119387 A JP 2004119387A JP 2004119387 A JP2004119387 A JP 2004119387A JP 4456405 B2 JP4456405 B2 JP 4456405B2
Authority
JP
Japan
Prior art keywords
vinyl chloride
chloride resin
polymerization
layered silicate
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004119387A
Other languages
Japanese (ja)
Other versions
JP2005298737A (en
Inventor
憲史 大迫
喜弘 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2004119387A priority Critical patent/JP4456405B2/en
Publication of JP2005298737A publication Critical patent/JP2005298737A/en
Application granted granted Critical
Publication of JP4456405B2 publication Critical patent/JP4456405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、樹脂中に層状珪酸塩を含有する塩化ビニル系樹脂発泡体の製造方法に関する。

The present invention relates to a method for producing a vinyl chloride resin foam containing a layered silicate in a resin.

従来、塩化ビニル系樹脂は機械的強度、耐薬品性等に優れた特性を有する材料としてパ
イプ、波板、樋など建築・配管材料等の多くの用途に使われており、更に、耐熱性、熱変
形温度、耐衝撃性等の諸物性を改善することが要求されている。
Conventionally, vinyl chloride resin has been used in many applications such as pipes, corrugated sheets, and construction materials such as pipes as a material having excellent mechanical strength and chemical resistance. It is required to improve various physical properties such as heat distortion temperature and impact resistance.

これらの諸物性を改善するために、塩化ビニル系樹脂に炭酸カルシウム等の無機充填剤
を添加することは、広く実施されているが、塩化ビニル系樹脂と炭酸カルシウム等の無機
充填剤の親和性は乏しく、機械的強度や耐熱性は改善されるが靭性が低下するという欠点
があり、又、機械的強度を改善するには多量の無機充填剤を添加しなければならないと言
う欠点があった。
In order to improve these physical properties, it is widely practiced to add inorganic fillers such as calcium carbonate to vinyl chloride resins, but the affinity between vinyl chloride resins and inorganic fillers such as calcium carbonate is widely used. However, the mechanical strength and heat resistance are improved, but the toughness is reduced. In addition, a large amount of inorganic filler must be added to improve the mechanical strength. .

上記欠点を改良するために、塩化ビニル系樹脂を懸濁重合する際に、無機充填剤を添加
して重合する方法が種々検討されている。
In order to improve the above drawbacks, various methods for polymerizing by adding an inorganic filler during suspension polymerization of a vinyl chloride resin have been studied.

例えば、塩化ビニルを懸濁重合する時に、クリソタイル、セピオライト、ベルミキュラ
イトなどの硅酸質充填材を添加する塩化ビニル系樹脂の製造方法(例えば、特許文献1参
照。)、塩化ビニルを懸濁重合する時に、タルクなどの粉末粒子を添加する塩化ビニル系
樹脂の製造方法(例えば、特許文献2参照。)、懸濁重合に於いて、タルク、ベントナイ
トなどの無機充填剤をノニオン界面活性剤で湿潤させて添加して、塩化ビニル系樹脂を製
造する方法(例えば、特許文献3参照。)等が提案されているが、無機充填剤の分散効果
が充分でなく、物性改善は十分なものとならなかった。
特公昭50−26590号公報 特開昭52−94389号公報 特開昭60−228505号公報
For example, a method for producing a vinyl chloride resin in which a oxalic filler such as chrysotile, sepiolite, vermiculite is added during suspension polymerization of vinyl chloride (see, for example, Patent Document 1), vinyl chloride is suspended. A method for producing a vinyl chloride resin in which powder particles such as talc are added during suspension polymerization (see, for example, Patent Document 2). In suspension polymerization, inorganic fillers such as talc and bentonite are used as nonionic surfactants. A method of producing a vinyl chloride resin by adding it after being moistened with (for example, see Patent Document 3) has been proposed, but the dispersion effect of the inorganic filler is not sufficient, and the physical properties are sufficiently improved. It did not become.
Japanese Patent Publication No. 50-26590 JP 52-94389 A JP 60-228505 A

その為、無機充填剤の分散性を向上させる努力がなされ、例えば、重合転化率が70%
に達した時に無機充填剤を添加して、塩化ビニル系樹脂の懸濁重合をする方法(例えば、
特許文献4参照。)、シランカップリング剤処理された無機充填剤を添加して、塩化ビニ
ル系樹脂の懸濁重合をする方法(例えば、特許文献5、6参照。)、シランカップリング
剤を重合系内に添加して、塩化ビニル系樹脂の懸濁重合をする方法(例えば、特許文献7
、8参照。)等が提案されているが、いずれも、充分な効果を上げていないのが現状であ
る。
特開平4−117403号公報 特開昭57−192412号公報 特開平2−34602号公報 特開平2−50924号公報 特開平2−50925号公報
Therefore, efforts are made to improve the dispersibility of the inorganic filler. For example, the polymerization conversion is 70%.
When an inorganic filler is reached, a suspension polymerization of a vinyl chloride resin is performed (for example,
See Patent Document 4. ), A method of suspension polymerization of a vinyl chloride resin by adding an inorganic filler treated with a silane coupling agent (see, for example, Patent Documents 5 and 6), and adding a silane coupling agent into the polymerization system Then, a method of suspension polymerization of a vinyl chloride resin (for example, Patent Document 7)
, 8 see. ), Etc. have been proposed, but none of them are effective enough.
Japanese Patent Laid-Open No. 4-117403 Japanese Patent Laid-Open No. 57-192412 JP-A-2-34602 Japanese Patent Laid-Open No. 2-50924 Japanese Patent Laid-Open No. 2-50925

更に、塩化ビニル単独又は塩化ビニルを主成分とする重合性単量体を、微細な無機充填
剤である、平均粒子径が10〜50μmの硅酸塩及びシリカの存在下で、懸濁分散剤を含
む水性媒体中で懸濁重合することを特徴とする塩化ビニル系樹脂の懸濁重合方法(例えば
、特許文献9参照。)が提案されている。
特開平10−110004号公報
Further, a vinyl chloride alone or a polymerizable monomer containing vinyl chloride as a main component is suspended and dispersed in the presence of a fine inorganic filler, an oxalate having an average particle size of 10 to 50 μm and silica. There has been proposed a suspension polymerization method for vinyl chloride resin (see, for example, Patent Document 9) characterized in that suspension polymerization is carried out in an aqueous medium containing.
Japanese Patent Laid-Open No. 10-110004

しかしながら、無機充填剤は比重が大きく、重合中に沈殿してしまうので塩化ビニル系
樹脂中に多量に導入することは困難であった。又、多量に導入しようとすると、より多量
の無機充填剤を添加する必要があり、沈殿する無機充填剤が多くなり、重合終了後に重合
槽内の掃除が困難であるという問題があった。更に、塩化ビニル系樹脂と無機充填剤の分
離工程が必要になり、製造コストが高くなるという欠点があった。
However, since the inorganic filler has a large specific gravity and precipitates during the polymerization, it has been difficult to introduce a large amount into the vinyl chloride resin. Moreover, when trying to introduce a large amount, it is necessary to add a larger amount of an inorganic filler, the amount of precipitated inorganic filler increases, and there is a problem that it is difficult to clean the inside of the polymerization tank after the polymerization is completed. Furthermore, there is a drawback in that a separation step of the vinyl chloride resin and the inorganic filler is required, which increases the manufacturing cost.

一方、塩化ビニル系樹脂成形体の軽量化、低コスト化、意匠性付与の目的で、塩化ビニ
ル系樹脂を発泡することが従来から行われているが、塩化ビニル系樹脂中に無機充填剤が
存在すると、発泡の際に無機充填剤が核剤として作用し、発泡セルが巨大化したり不均一
になり、発泡体の機械的強度が低下するという欠点があった。
On the other hand, foaming of a vinyl chloride resin has been conventionally carried out for the purpose of reducing the weight of the vinyl chloride resin molded product, reducing the cost, and imparting design properties. However, an inorganic filler is contained in the vinyl chloride resin. When present, the inorganic filler acts as a nucleating agent during foaming, and the foamed cells become large or non-uniform, resulting in a disadvantage that the mechanical strength of the foam is reduced.

この発泡セルの巨大化や不均一化を抑止し、発泡体の機械的強度の低下等を抑制するた
めに、種々の手段、例えば、発泡剤の粒径を微細化する、発泡の核剤となる無機充填剤を
造核剤として加えるといった方法が講じられてきた。
In order to suppress the enlargement and non-uniformization of the foamed cells, and to suppress a decrease in the mechanical strength of the foam, various means, for example, a foaming nucleating agent that refines the particle size of the foaming agent and A method of adding an inorganic filler as a nucleating agent has been taken.

例えば、ポリプロピレンに発泡剤及びシランカップリング剤を吸着した粘土化合物及び
/又はケイ藻土を添加し高発泡倍率・高強度のポリプロピレン発泡体を形成すること(例
えば、特許文献10参照。)が提案されている。
特開平8−143697号公報
For example, it is proposed to add a clay compound and / or diatomaceous earth in which a foaming agent and a silane coupling agent are adsorbed to polypropylene to form a polypropylene foam having a high foaming ratio and high strength (for example, see Patent Document 10). Has been.
Japanese Patent Application Laid-Open No. 8-143697

しかし、上記粘土化合物及び/又はケイ藻土の粒子径は4〜10μmと大きいので、樹
脂中に均一分散せず、発泡させると発泡セルが巨大化したり不均一になることが依然とし
てあり、機械的強度、耐熱性、靭性が依然として不足していた。
However, since the particle diameter of the clay compound and / or diatomaceous earth is as large as 4 to 10 μm, it does not disperse uniformly in the resin. The strength, heat resistance and toughness were still insufficient.

又、予め特定の発泡剤を粘土化合物及び/又はケイ藻土に吸着させておかなければなら
ず、このような多段処理を要するので、生産コストが高くなるという欠点があった。
In addition, a specific foaming agent must be adsorbed on the clay compound and / or diatomaceous earth in advance, and this multi-stage treatment is required, which has the disadvantage of increasing production costs.

本発明は、上記従来技術の課題に鑑みてなされたものであり、容易且つ安価に製造でき、微細な粒子径の無機充填剤が塩化ビニル系樹脂中に均一に分散しており、且つ、微細で均一な発泡セルを有し、機械的強度、耐熱性、靭性等が優れた塩化ビニル系樹脂発泡体の製造方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, can be easily and inexpensively manufactured, and the inorganic filler having a fine particle diameter is uniformly dispersed in the vinyl chloride resin, and the fine Another object of the present invention is to provide a method for producing a vinyl chloride resin foam having uniform foam cells and excellent mechanical strength, heat resistance, toughness and the like.

本発明の塩化ビニル系樹脂発泡体の製造方法は、塩化ビニルモノマー単独又は塩化ビニルモノマーを主成分とする塩化ビニル系モノマーを、層状珪酸塩の存在下、乳化分散剤を含む水中で乳化重合し、塩化ビニル系樹脂とし、該塩化ビニル系樹脂に不活性ガスを含浸させた後、発泡させることを特徴とする。

The method for producing a vinyl chloride resin foam of the present invention comprises a vinyl chloride monomer alone or a vinyl chloride monomer having a vinyl chloride monomer as a main component by emulsion polymerization in water containing an emulsifying dispersant in the presence of a layered silicate. , and vinyl chloride resin is impregnated with an inert gas to the vinyl chloride resin, wherein the foaming.

本発明で使用される塩化ビニル系樹脂は、塩化ビニルモノマー単独又は塩化ビニルモノ
マーを主成分とする塩化ビニル系モノマーを、層状珪酸塩の存在下、乳化分散剤を含む水
中で乳化重合する。
The vinyl chloride resin used in the present invention emulsion-polymerizes a vinyl chloride monomer alone or a vinyl chloride monomer mainly composed of a vinyl chloride monomer in water containing an emulsifying dispersant in the presence of a layered silicate.

本発明で使用される塩化ビニル系モノマーとしては、塩化ビニルモノマー単独又は塩化
ビニルを主成分とする塩化ビニルモノマーが挙げられる。
塩化ビニルを主成分とする塩化ビニルモノマーとは、50重量%以上の塩化ビニルモノ
マーと、塩化ビニルモノマーと共重合可能なモノマーとの混合モノマーである。
Examples of the vinyl chloride monomer used in the present invention include a vinyl chloride monomer alone or a vinyl chloride monomer mainly composed of vinyl chloride.
The vinyl chloride monomer having vinyl chloride as a main component is a mixed monomer of 50% by weight or more of vinyl chloride monomer and a monomer copolymerizable with vinyl chloride monomer.

上記塩化ビニルモノマーと共重合可能なモノマーとしては、例えば、エチレン、プロピ
レン、ブチレン等のα−オレフィン類;プロピオン酸ビニル等のビニルエステル類;エチ
ルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類;メチル(メタ)アクリ
レート、ブチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート等の(メ
タ)アクリレート類;スチレン、α−メチルスチレン等の芳香族ビニル類;フッ化ビニル
、フッ化ビニリデン、塩化ビニリデン等のハロゲン化ビニル類;N−フェニルマレイミド
、N−シクロヘキシルマレイミド等のN−置換マレイミド類等が挙げられる。これらのそ
の他の共重合性モノマーは、単独で用いられても良いし、2種類以上が併用されても良い
Examples of monomers copolymerizable with the vinyl chloride monomer include α-olefins such as ethylene, propylene, and butylene; vinyl esters such as vinyl propionate; vinyl ethers such as ethyl vinyl ether and butyl vinyl ether; methyl (meth) (Meth) acrylates such as acrylate, butyl (meth) acrylate, and hydroxyethyl (meth) acrylate; aromatic vinyls such as styrene and α-methylstyrene; vinyl halides such as vinyl fluoride, vinylidene fluoride, and vinylidene chloride And N-substituted maleimides such as N-phenylmaleimide and N-cyclohexylmaleimide. These other copolymerizable monomers may be used alone or in combination of two or more.

本発明で使用される層状珪酸塩は、従来から塩化ビニル系樹脂の充填剤又は物性強化剤
として用いられており、水に分散すると膨潤し、分散可能な性質を有するものであり、例
えば、バーミキュライト、モンモリロナイト、バイデライト、ノントロナイト、サポナイ
トなどのスメクタイト族フィロ珪酸塩;白雲母、ソーダ雲母、絹雲母、セラドナイト、金
雲母、フッ素金雲母などのマイカ族フィロ珪酸塩;カオリナイトなどのカオリン鉱物;パ
イロフィライト、タルク、テクト珪酸塩等が挙げられ、これらは単独又は2種以上を組み
合わせて用いることができる。
The layered silicate used in the present invention has been conventionally used as a filler or a physical property reinforcing agent for vinyl chloride resin, and swells when dispersed in water and has a dispersible property. For example, vermiculite Smectite phyllosilicates such as montmorillonite, beidellite, nontronite, saponite; Mica phyllosilicates such as muscovite, soda mica, sericite, ceradonite, phlogopite, fluor phlogopite; kaolin minerals such as kaolinite; Examples include pyrophyllite, talc, and tectosilicate, and these can be used alone or in combination of two or more.

上記層状珪酸塩は水と混合して激しく攪拌すると、水で膨潤し粒子径が小さくなるので
層状珪酸塩の粒子径は、特に限定されるものではなく、一般に10〜100μmの粒子が
好適に使用される。
When the above lamellar silicate is mixed with water and vigorously stirred, the particle size of the lamellar silicate is not particularly limited because it swells with water and the particle size decreases, and generally 10 to 100 μm particles are preferably used. Is done.

層状珪酸塩の添加量は、少量では塩化ビニル系樹脂の機械的強度や耐熱性を改良する効
果がなく、多量になると層状珪酸塩が水中で膨潤し増粘して塩化ビニル系モノマーの乳化
重合が困難になるので、塩化ビニル系モノマー25〜99重量%に対し層状珪酸塩75〜
1重量%が好ましく、より好ましくは、塩化ビニル系モノマー50〜99重量%に対し層
状珪酸塩50〜1重量%である。
If the amount of layered silicate added is small, there is no effect to improve the mechanical strength and heat resistance of the vinyl chloride resin. If the amount is large, the layered silicate swells in water and thickens, and emulsion polymerization of the vinyl chloride monomer occurs. Layered silicate 75 to 75% by weight of vinyl chloride monomer 25 to 99% by weight
It is preferably 1% by weight, more preferably 50 to 1% by weight of layered silicate with respect to 50 to 99% by weight of vinyl chloride monomer.

本発明においては、塩化ビニル系モノマーを、層状珪酸塩の存在下、乳化分散剤を含む
水中で乳化重合するのであるが、層状珪酸塩が微細粒子径となり水により膨潤した状態で
水中に存在しないと、層状珪酸塩は分離、沈降してしまい、乳化重合された塩化ビニル系
樹脂中に取り込まれにくくなるので、層状珪酸塩は微細粒子径となり水により膨潤した状
態で水中に存在することが好ましい。
In the present invention, a vinyl chloride monomer is emulsion-polymerized in water containing an emulsifying dispersant in the presence of a layered silicate, but the layered silicate has a fine particle size and is not swollen by water. Then, the layered silicate is separated and settled, and it is difficult to be taken into the emulsion-polymerized vinyl chloride resin. Therefore, the layered silicate is preferably present in water in a state where it has a fine particle size and is swollen by water. .

微細な層状珪酸塩を水により膨潤した状態で水中に存在させる方法は、従来公知の任意
の方法が採用されてよいが、層状珪酸塩と水を激しく攪拌することにより、粒子径を微細
にし容易に層状珪酸塩を水により膨潤させることができるので、層状珪酸塩と水の混合物
をホモジナイザーにより攪拌してスラリーを作成する方法が好ましい。
Any method known in the art may be employed as the method for causing the fine layered silicate to exist in water in a swollen state with water, but it is easy to make the particle size finer by vigorously stirring the layered silicate and water. Since the layered silicate can be swollen with water, a method of preparing a slurry by stirring the mixture of the layered silicate and water with a homogenizer is preferable.

こうすることで層状珪酸塩は、その粒子径が100nm〜10μmに微細化され、水中
で膨潤した状態で安定なスラリーが得られるので、得られれたスラリーを乳化重合に使用
するのが好ましい。
By carrying out like this, since the particle diameter of layered silicate is refined | miniaturized to 100 nm-10 micrometers, and a stable slurry is obtained in the state swollen in water, it is preferable to use the obtained slurry for emulsion polymerization.

本発明で使用される乳化分散剤としては、従来より塩化ビニル系樹脂の乳化重合の際に
使用されている任意の乳化分散剤が使用でき、例えば、アニオン系界面活性剤、ノニオン
系界面活性剤、部分ケン化ポリ酢酸ビニル、セルロース系分散剤、ゼラチン等が挙げられ
、アニオン系界面活性剤が好適に使用される。アニオン系界面活性剤としては、、例えば
、アルキルベンゼンスルホン酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸エ
ステルアンモニウム塩等が挙げられる。
As the emulsifying dispersant used in the present invention, any emulsifying dispersant conventionally used in the emulsion polymerization of vinyl chloride resins can be used, for example, anionic surfactants and nonionic surfactants. , Partially saponified polyvinyl acetate, cellulose-based dispersant, gelatin and the like, and anionic surfactants are preferably used. Examples of the anionic surfactant include sodium alkylbenzene sulfonate and ammonium polyoxyethylene alkyl ether sulfate.

本発明の乳化重合方法は、塩化ビニル系モノマーを、層状珪酸塩の存在下、乳化分散剤
を含む水中で乳化重合するのであり、層状珪酸塩を存在させる以外、従来公知の任意の塩
化ビニルの乳化重合方法が採用されてよい。
In the emulsion polymerization method of the present invention, a vinyl chloride monomer is emulsion-polymerized in water containing an emulsifying dispersant in the presence of a layered silicate. Except for the presence of a layered silicate, any conventionally known vinyl chloride monomer can be used. An emulsion polymerization method may be employed.

例えば、重合槽内部を減圧して酸素除去を行った後、窒素にて大気圧まで圧力を戻し、
窒素雰囲気下において、層状珪酸塩を水に分散したスラリー及び乳化分散剤と重合開始剤
を重合槽に添加し、重合槽内をジャケット等により所定の温度に昇温して、塩化ビニルモ
ノマーを重合槽内へ添加することにより重合する。
For example, after removing oxygen by reducing the pressure inside the polymerization tank, the pressure is returned to atmospheric pressure with nitrogen,
Under a nitrogen atmosphere, a slurry in which a layered silicate is dispersed in water, an emulsifying dispersant and a polymerization initiator are added to a polymerization tank, and the polymerization tank is heated to a predetermined temperature by a jacket or the like to polymerize a vinyl chloride monomer. It polymerizes by adding into the tank.

上記重合開始剤としては、従来から乳化重合で使用されている水溶性のフリーラジカル
を発生する化合物であれば、特に限定されず例えば、過酸化水素、過硫酸アンモニウム、
過硫酸カリウム、過硫酸ナトリウム等の無機系過酸化物;4,4’−アゾビス−4−シア
ノバレリックアシッド等のアゾ系開始剤及びレドックス開始剤等が挙げられる。
The polymerization initiator is not particularly limited as long as it is a compound that generates water-soluble free radicals conventionally used in emulsion polymerization. For example, hydrogen peroxide, ammonium persulfate,
Examples thereof include inorganic peroxides such as potassium persulfate and sodium persulfate; azo initiators such as 4,4′-azobis-4-cyanovaleric acid, and redox initiators.

上記乳化重合の際の重合温度としては、従来公知の乳化重合温度であればよく、特に限
定されるものではない。又、重合槽についても、形状、構造において、特に制限はなく、
従来公知の任意の重合槽が使用可能である。
The polymerization temperature at the time of the emulsion polymerization may be any conventionally known emulsion polymerization temperature, and is not particularly limited. Also, the polymerization tank is not particularly limited in shape and structure,
Any conventionally known polymerization tank can be used.

乳化重合の結果得られるエマルジョンの固形分濃度は、特に限定されるものではないが
、生産性、重合反応の安定性からみて、10〜50重量%が好ましい。
The solid content concentration of the emulsion obtained as a result of emulsion polymerization is not particularly limited, but is preferably 10 to 50% by weight in view of productivity and stability of the polymerization reaction.

乳化重合の結果得られるエマルジョン中の塩化ビニル系樹脂の平均粒子径は、特に限定
されず、使用方法により好ましい平均粒子径が異なるが、例えば、エマルジョンとして用
いる場合は、大きくなると塩化ビニル系樹脂粒子と水の分離が起こりやすくなるため、3
0μm以下が好ましい。又、塩化ビニル系樹脂粒子を乾燥し、粉体として使用する場合は
、乾燥工程の操作性等より10〜3000μmが好ましい。
The average particle size of the vinyl chloride resin in the emulsion obtained as a result of the emulsion polymerization is not particularly limited, and the preferred average particle size varies depending on the method of use. For example, when used as an emulsion, the vinyl chloride resin particles become larger when used as an emulsion. And water is more likely to separate.
0 μm or less is preferable. Further, when the vinyl chloride resin particles are dried and used as a powder, the thickness is preferably 10 to 3000 μm in view of the operability of the drying process.

得られた塩化ビニル系樹脂の平均重合度は,小さすぎても大きすぎても成形性が低下す
るので300〜4000が好ましく、より好ましくは800〜2500である。
The average degree of polymerization of the obtained vinyl chloride resin is preferably 300 to 4000, more preferably 800 to 2500, since the moldability is lowered if it is too small or too large.

尚、平均重合度とは、塩化ビニル系樹脂をテトラヒドロフラン(THF)に溶解させ、
濾過により不溶成分を除去した後、濾液中のTHFを乾燥除去して得た樹脂を試料とし、
JIS K−6721「塩化ビニル樹脂試験方法」に準拠して測定した平均重合度を意味
する
The average degree of polymerization means that a vinyl chloride resin is dissolved in tetrahydrofuran (THF)
After removing insoluble components by filtration, the resin obtained by drying and removing THF in the filtrate was used as a sample.
Means the average degree of polymerization measured according to JIS K-6721 “Testing methods for vinyl chloride resin”.

本発明の塩化ビニル系樹脂発泡体の製造方法は、得られた塩化ビニル系樹脂に不活性ガスを含浸させた後、発泡させる発泡体の製造方法である。
The method for producing a vinyl chloride resin foam of the present invention is a method for producing a foam in which the obtained vinyl chloride resin is impregnated with an inert gas and then foamed .

塩化ビニル系樹脂に不活性ガスを含浸させるのは、塩化ビニル系樹脂粉末に不活性ガス
を含浸させてもよいが、一般的には塩化ビニル系樹脂を成形し、得られた成形体に不活性
ガスを含浸させるのが好ましい。
The vinyl chloride resin may be impregnated with an inert gas. The vinyl chloride resin powder may be impregnated with an inert gas. However, in general, a vinyl chloride resin is molded, and the resulting molded product is inefficient. It is preferable to impregnate with an active gas.

塩化ビニル系樹脂を成形する方法は、特に限定されず、従来から公知の任意の成形方法
が採用されてよく、例えば、押出成形法、プレス成形法、射出成形法、ブロー成形法、カ
レンダー成形法等が挙げられる。
The method for molding the vinyl chloride resin is not particularly limited, and any conventionally known molding method may be employed. For example, extrusion molding, press molding, injection molding, blow molding, calendar molding Etc.

又、塩化ビニル系樹脂成形体を成形する際に一般に添加されている配合剤が添加されて
よく、配合剤としては、例えば、熱安定剤、安定化助剤、滑剤、加工助剤、酸化防止剤、
光安定剤、顔料、無機充填剤、可塑剤等が挙げられる。
In addition, a compounding agent that is generally added when molding a vinyl chloride resin molded body may be added. Examples of the compounding agent include a heat stabilizer, a stabilizing aid, a lubricant, a processing aid, and an antioxidant. Agent,
Examples include light stabilizers, pigments, inorganic fillers, plasticizers, and the like.

上記熱安定剤としては、塩化ビニル系樹脂を成形する際に使用されている熱安定剤であ
れば、特に限定されず、例えば、ジメチル錫メルカプト、ジブチル錫メルカプト、ジオク
チル錫メルカプト、ジブチル錫マレート、ジブチル錫マレートポリマー、ジオクチル錫マ
レート、ジオクチル錫マレートポリマー、ジブチル錫ラウレート、ジブチル錫ラウレート
ポリマー等の有機錫安定剤、ステアリン酸鉛、二塩基性亜リン酸鉛、三塩基性硫酸鉛等の
鉛系安定剤、カルシウム−亜鉛系安定剤、バリウム−亜鉛系安定剤、バリウム−カドミウ
ム系安定剤等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
The heat stabilizer is not particularly limited as long as it is a heat stabilizer used in molding a vinyl chloride resin. For example, dimethyltin mercapto, dibutyltin mercapto, dioctyltin mercapto, dibutyltin malate, Organic tin stabilizers such as dibutyltin malate polymer, dioctyltin malate, dioctyltin malate polymer, dibutyltin laurate, dibutyltin laurate polymer, lead stearate, dibasic lead phosphite, tribasic lead sulfate, etc. Lead stabilizers, calcium-zinc stabilizers, barium-zinc stabilizers, barium-cadmium stabilizers, and the like. These may be used alone or in combination of two or more.

上記安定化助剤としては、塩化ビニル系樹脂を成形する際に使用されている安定化助剤
であれば、特に限定されず、例えば、エポキシ化大豆油、エポキシ化アマニ豆油エポキシ
化テトラヒドロフタレート、エポキシ化ポリブタジエン、リン酸エステル等が挙げられる
。これらは単独で用いてもよく、2種以上を併用してもよい。
The stabilizing aid is not particularly limited as long as it is a stabilizing aid used in molding a vinyl chloride resin, for example, epoxidized soybean oil, epoxidized linseed oil, epoxidized tetrahydrophthalate, Examples include epoxidized polybutadiene and phosphate esters. These may be used alone or in combination of two or more.

上記滑剤としては、塩化ビニル系樹脂を成形する際に使用されている滑剤であれば、特
に限定されず、例えば、モンタン酸ワックス、パラフィンワックス、ポリエチレンワック
ス、ステアリン酸、ステアリルアルコール、ステアリン酸ブチル等が挙げられる。これら
は単独で用いてもよく、2種以上を併用してもよい。
The lubricant is not particularly limited as long as it is a lubricant used when molding a vinyl chloride resin. For example, montanic acid wax, paraffin wax, polyethylene wax, stearic acid, stearyl alcohol, butyl stearate, etc. Is mentioned. These may be used alone or in combination of two or more.

上記加工助剤としては、塩化ビニル系樹脂を成形する際に使用されている加工助剤であ
れば、特に限定されず、例えば、重量平均分子量10万〜200万のアルキルアクリレー
ト/アルキルメタクリレート共重合体であるアクリル系加工助剤が挙げられ、具体例とし
ては、n−ブチルアクリレート/メチルメタクリレート共重合体、2−エチルヘキシルア
クリレート/メチルメタクリレート/ブチルメタクリレート共重合体等が挙げられる。こ
れらは単独で用いてもよく、2種以上を併用してもよい。
The processing aid is not particularly limited as long as it is a processing aid used when molding a vinyl chloride resin. For example, an alkyl acrylate / alkyl methacrylate copolymer having a weight average molecular weight of 100,000 to 2,000,000 is used. Examples include acrylic processing aids that are coalesced, and specific examples include n-butyl acrylate / methyl methacrylate copolymer, 2-ethylhexyl acrylate / methyl methacrylate / butyl methacrylate copolymer, and the like. These may be used alone or in combination of two or more.

上記酸化防止剤としては、塩化ビニル系樹脂を成形する際に使用されている酸化防止剤
であれば、特に限定されず、例えば、フェノール系抗酸化剤等が挙げられる。これらは単
独で用いてもよく、2種以上を併用してもよい。
The antioxidant is not particularly limited as long as it is an antioxidant used when molding a vinyl chloride resin, and examples thereof include a phenolic antioxidant. These may be used alone or in combination of two or more.

上記光安定剤としては、塩化ビニル系樹脂を成形する際に使用されている光安定剤であ
れば、特に限定されず、例えば、サリチル酸エステル系、ベンゾフェノン系、ベンゾトリ
アゾール系、シアノアクリレート系等の紫外線吸収剤、あるいはヒンダードアミン系の光
安定剤等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
The light stabilizer is not particularly limited as long as it is a light stabilizer used when molding a vinyl chloride resin, and examples thereof include salicylic acid ester, benzophenone, benzotriazole, and cyanoacrylate. Examples thereof include an ultraviolet absorber and a hindered amine light stabilizer. These may be used alone or in combination of two or more.

上記顔料としては、塩化ビニル系樹脂を成形する際に使用されている顔料であれば、特
に限定されず、例えば、アゾ系、フタロシアニン系、スレン系、染料レーキ系等の有機顔
料、酸化物系、クロム酸モリブデン系、硫化物・セレン化物系、フェロシアン化物系等の
無機顔料等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
The pigment is not particularly limited as long as it is a pigment used when molding a vinyl chloride resin. For example, organic pigments such as azo, phthalocyanine, selenium, and dye lake, and oxides Inorganic pigments such as molybdenum chromate, sulfide / selenide, ferrocyanide, and the like. These may be used alone or in combination of two or more.

上記無機充填剤としては塩化ビニル系樹脂を成形する際に使用されている無機充填剤で
あれば、特に限定されず、例えば、炭酸カルシウム、タルク等が挙げられる。これらは単
独で用いてもよく、2種以上を併用してもよい。
The inorganic filler is not particularly limited as long as it is an inorganic filler used when molding a vinyl chloride resin, and examples thereof include calcium carbonate and talc. These may be used alone or in combination of two or more.

上記可塑剤としては、塩化ビニル系樹脂を成形する際に使用されている可塑剤であれば
、特に限定されず、例えば、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、
ジ−2−エチルヘキシルアジペート等が挙げられる。これらは単独で用いてもよく、2種
以上を併用してもよい。
The plasticizer is not particularly limited as long as it is a plasticizer used when molding a vinyl chloride resin, and examples thereof include dibutyl phthalate, di-2-ethylhexyl phthalate,
Examples include di-2-ethylhexyl adipate. These may be used alone or in combination of two or more.

本発明で使用される不活性ガスは、常温常圧で気体状態のものであって、高温高圧下で
塩化ビニル系樹脂への含浸性が良好で、塩化ビニル系樹脂を劣化させないものであれば、
特に限定されず、例えば、二酸化炭素、窒素、アルゴン、ネオン、ヘリウム、酸素等の無
機ガスやフロンガス、低分子量の炭化水素等の有機ガスが挙げられる。
The inert gas used in the present invention is in a gaseous state at normal temperature and normal pressure, and has good impregnation into a vinyl chloride resin under high temperature and high pressure and does not deteriorate the vinyl chloride resin. ,
It is not particularly limited, and examples thereof include inorganic gases such as carbon dioxide, nitrogen, argon, neon, helium, oxygen, and organic gases such as Freon gas and low molecular weight hydrocarbons.

上記不活性ガスは、常温常圧で気体状態なので、使用後、塩化ビニル系樹脂から容易に
除去することが可能である。
Since the inert gas is in a gaseous state at normal temperature and pressure, it can be easily removed from the vinyl chloride resin after use.

上記不活性ガスのなかで、火災、爆発等の危険がなく、環境、作業者の健康に対して安
全で回収が容易な二酸化炭素、窒素、アルゴン、ネオン、ヘリウムガスが好ましく、容易
に超臨界状態となる窒素及び二酸化炭素がより好ましい。
Among the above inert gases, carbon dioxide, nitrogen, argon, neon, and helium gas are preferable because they are safe for the environment and the health of workers and easy to recover, and are easily supercritical. Nitrogen and carbon dioxide are more preferred.

上記不活性ガスは含浸速度が速い超臨界状態で含浸されると、効率的な含浸が可能であ
る。超臨界状態とは、臨界温度以上であって臨界圧力以上の状態をいう。例えば、ガスが
二酸化炭素の場合は臨界温度は30.9℃、臨界圧力は7.4MPa、窒素の場合は臨界
温度は−146.9℃、臨界圧力は3.4MPaである。
When the inert gas is impregnated in a supercritical state where the impregnation rate is high, efficient impregnation is possible. The supercritical state is a state that is higher than the critical temperature and higher than the critical pressure. For example, when the gas is carbon dioxide, the critical temperature is 30.9 ° C., the critical pressure is 7.4 MPa, and when nitrogen is nitrogen, the critical temperature is −146.9 ° C., and the critical pressure is 3.4 MPa.

上記不活性ガスを塩化ビニル系樹脂成形体に含浸させる方法については、特に限定され
ず、例えば、密閉したオートクレーブ中に不活性ガスと塩化ビニル系樹脂成形体に封入し
、加熱加圧する方法を挙げることができる。この方法では、圧力及び温度のコントロール
が容易である。
The method for impregnating the vinyl chloride resin molded body with the inert gas is not particularly limited, and examples thereof include a method in which an inert gas and a vinyl chloride resin molded body are sealed in a sealed autoclave and heated and pressurized. be able to. This method makes it easy to control the pressure and temperature.

又、塩化ビニル系樹脂を溶融押出機に投入し、スクリューとしてベントタイプスクリュ
ーを用い、シリンダーの途中からベント部分に上記不活性ガスを注入してもよい。この場
合、溶融状態の塩化ビニル系樹脂にて圧力シールを行うことにより、塩化ビニル系樹脂に
対して効果的に不活性ガスを含浸させることができ、連続的に発泡体を製造することがで
きる。従って、この方法は、工業的に好ましく用いられる。
Alternatively, a vinyl chloride resin may be charged into a melt extruder, a vent type screw may be used as a screw, and the inert gas may be injected into the vent portion from the middle of the cylinder. In this case, by performing pressure sealing with a molten vinyl chloride resin, the vinyl chloride resin can be effectively impregnated with an inert gas, and a foam can be produced continuously. . Therefore, this method is preferably used industrially.

不活性ガスを塩化ビニル系樹脂に含浸させる際のガスの圧力は、9.8×105 Pa以
上が好ましく、9.8×106 Pa以上が更に好ましい。又、超臨界流体となる条件は、
不活性ガスの種類により異なるため、超臨界流体として用いることができる不活性ガスは
ある程度限定され、これらの不活性ガスのなかで、比較的穏やかな条件で超臨界状態の性
質を示す二酸化炭素及び窒素が好ましく用いられる。
The pressure of the gas when impregnating the vinyl chloride resin with the inert gas is preferably 9.8 × 10 5 Pa or more, and more preferably 9.8 × 10 6 Pa or more. Also, the condition to become a supercritical fluid is
The inert gas that can be used as a supercritical fluid is limited to some extent because it varies depending on the type of the inert gas. Among these inert gases, carbon dioxide that exhibits supercritical state properties under relatively mild conditions and Nitrogen is preferably used.

上記不活性ガスを、塩化ビニル系樹脂に含浸させる温度については、塩化ビニル系樹脂
が劣化又は分解しない温度であれば、いかなる温度においても好ましく行うことができる
With respect to the temperature at which the inert gas is impregnated into the vinyl chloride resin, any temperature can be preferably used as long as the vinyl chloride resin does not deteriorate or decompose.

上記不活性ガスの含浸量については、特に限定されないが、発泡セルの状態から塩化ビ
ニル系樹脂100重量部に対し、0.1〜10重量部が好ましく、特に0.5〜6重量部
が好ましい。
The amount of impregnation of the inert gas is not particularly limited, but is preferably 0.1 to 10 parts by weight, particularly preferably 0.5 to 6 parts by weight with respect to 100 parts by weight of the vinyl chloride resin from the state of the foamed cell. .

本発明においては、乳化重合により、塩化ビニル系樹脂中に微細な層状珪酸塩が均一に
分散した塩化ビニル系樹脂が得られ、この微細な層状珪酸塩が均一に分散した塩化ビニル
系樹脂に不活性ガスを均一に含浸し、発泡させると、外的な圧力、温度の急激な変化によ
り層状珪酸塩の界面上に気泡核が生じるので、微細かつ均一な発泡セルを持つ発泡体を製
造することができる。
In the present invention, a vinyl chloride resin in which fine layered silicate is uniformly dispersed in the vinyl chloride resin is obtained by emulsion polymerization, and the fine layered silicate is not dispersed in the uniformly dispersed vinyl chloride resin. When the active gas is uniformly impregnated and foamed, bubble nuclei are generated on the interface of the layered silicate due to abrupt changes in external pressure and temperature, so a foam with fine and uniform foam cells is produced. Can do.

本発明の塩化ビニル系樹脂発泡体の製造方法は上述の通りであり、容易且つ安価に製造でき、上記発泡体は、微細な粒子径の無機充填剤が塩化ビニル系樹脂中に均一に分散しており、且つ、微細で均一な発泡セルを有し、機械的強度、耐熱性、靭性等が優れている。
The method for producing the vinyl chloride resin foam of the present invention is as described above, and can be easily and inexpensively produced. The foam has a fine particle size inorganic filler uniformly dispersed in the vinyl chloride resin. In addition, it has fine and uniform foam cells, and is excellent in mechanical strength, heat resistance, toughness and the like.

以下、本発明の実施例について説明するが、下記の例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

層状珪酸塩スラリーの作成
(1)スラリーA
脱イオン水10.6重量部とモンモリロナイト(平均粒子径36μm)1.29重量部
を混合し、ホモジナイザーにより攪拌速度4000rpmで10分間攪拌して、モンモリ
ロナイトのスラリーを得た。得られたスラリーを2時間静置した後、スラリーの状態を観
察したが、モンモリロナイトの凝集及び沈降はなかった。又、水中に存在したモンモリロ
ナイトの平均粒子径は0.8μmであった。
Preparation of layered silicate slurry (1) Slurry A
10.6 parts by weight of deionized water and 1.29 parts by weight of montmorillonite (average particle size 36 μm) were mixed and stirred with a homogenizer at a stirring speed of 4000 rpm for 10 minutes to obtain a montmorillonite slurry. After the obtained slurry was allowed to stand for 2 hours, the state of the slurry was observed, but there was no aggregation or sedimentation of montmorillonite. The average particle size of montmorillonite present in water was 0.8 μm.

(2)スラリーB
脱イオン水10.6重量部とマイカ(平均粒子径65μm)10.47重量部を混合し
、ホモジナイザーにより攪拌速度4000rpmで10分間攪拌して、マイカのスラリー
を得た。得られたスラリーを2時間静置した後、スラリーの状態を観察したが、マイカの
凝集及び沈降はなかった。又、水中に存在したマイカの平均粒子径は2.2μmであった
(2) Slurry B
10.6 parts by weight of deionized water and 10.47 parts by weight of mica (average particle size 65 μm) were mixed and stirred with a homogenizer at a stirring speed of 4000 rpm for 10 minutes to obtain a mica slurry. After the obtained slurry was allowed to stand for 2 hours, the state of the slurry was observed, but there was no aggregation or sedimentation of mica. The average particle size of mica present in the water was 2.2 μm.

(3)スラリーC
脱イオン水10.6重量部とベントナイト(平均粒子径44μm)2.72重量部を混
合し、ホモジナイザーにより攪拌速度4000rpmで10分間攪拌して、ベントナイト
のスラリーを得た。得られたスラリーを2時間静置した後、スラリーの状態を観察したが
、ベントナイトの凝集及び沈降はなかった。又、水中に存在したベントナイトの平均粒子
径は1.1μmであった。
(3) Slurry C
10.6 parts by weight of deionized water and 2.72 parts by weight of bentonite (average particle size 44 μm) were mixed and stirred with a homogenizer at a stirring speed of 4000 rpm for 10 minutes to obtain a bentonite slurry. After the obtained slurry was allowed to stand for 2 hours, the state of the slurry was observed, but there was no aggregation or sedimentation of bentonite. The average particle size of bentonite present in water was 1.1 μm.

(実施例1、2)
内容積20リットルでジャケットを備えたステンレス製重合器を脱気した後、脱イオン
水95.4重量部、ドデシルベンゼンスルホン酸ナトリウム0.326重量部、上記スラ
リーA11.89重量部、塩化ビニルモノマー33重量部及び過硫酸アンモニウム0.0
33重量部を供給した後、重合器内の温度を57℃に昇温して、乳化重合反応を開始した
(Examples 1 and 2)
After degassing a stainless polymerizer with an internal volume of 20 liters and a jacket, 95.4 parts by weight of deionized water, 0.326 parts by weight of sodium dodecylbenzenesulfonate, 11.89 parts by weight of the slurry A, vinyl chloride monomer 33 parts by weight and ammonium persulfate 0.0
After supplying 33 parts by weight, the temperature in the polymerization vessel was raised to 57 ° C. to start the emulsion polymerization reaction.

その後、重合器の圧力が0. 2MPa低下した時点で未反応塩化ビニルモノマーを回収
し、脱水乾燥して塩化ビニル系樹脂Aを得た。得られた塩化ビニル系樹脂Aの平均重合度
は1000であり、モンモリロナイトを5重量%含有していた。
Thereafter, when the pressure in the polymerization vessel decreased by 0.2 MPa, unreacted vinyl chloride monomer was recovered and dehydrated and dried to obtain vinyl chloride resin A. The average degree of polymerization of the obtained vinyl chloride resin A was 1000 and contained 5% by weight of montmorillonite.

表1に示した所定量の塩化ビニル系樹脂A、有機錫系熱安定剤(三共有機合成社製、商
品名:ONZ−6F)及び滑剤(三井化学社製、商品名:Hiwax−2203A)を1
00Lスーパーミキサー(カワタ社製)に供給し、3分間攪拌混合して塩化ビニル樹脂組
成物を得た。
Predetermined amounts of vinyl chloride resin A, organotin heat stabilizer (trade name: ONZ-6F, manufactured by Mitsui Chemicals Co., Ltd.) and lubricant (trade name: Hiwax-2203A, manufactured by Mitsui Chemicals) shown in Table 1 1
It was supplied to a 00 L super mixer (manufactured by Kawata) and stirred and mixed for 3 minutes to obtain a vinyl chloride resin composition.

得られた塩化ビニル系樹脂組成物を6インチロール成形機に供給し、190℃で3分間
ロール混練して厚さ1mmのシートを得、得られたシートをプレス成型機に供給して、2
00℃で3分間予熱した後、200℃、圧力4.9MPaで4分間プレスして厚さ0.5
mmの塩化ビニル系樹脂成形体を得た。
The obtained vinyl chloride resin composition is supplied to a 6-inch roll molding machine, roll-kneaded at 190 ° C. for 3 minutes to obtain a sheet having a thickness of 1 mm, and the obtained sheet is supplied to a press molding machine.
After preheating at 00 ° C for 3 minutes, the thickness is reduced by pressing at 200 ° C and a pressure of 4.9 MPa for 4 minutes.
A vinyl chloride resin molded body having a thickness of mm was obtained.

得られた塩化ビニル系樹脂成形体から幅15mm、長さ40mmの塩化ビニル系樹脂板
状体を作製し、オートクレーブに供給し、オートクレーブを密閉し、オートクレーブの内
部温度を100℃に設定した。
A vinyl chloride resin plate having a width of 15 mm and a length of 40 mm was prepared from the obtained vinyl chloride resin molded body, supplied to the autoclave, the autoclave was sealed, and the internal temperature of the autoclave was set to 100 ° C.

次いで、二酸化炭素をオートクレーブに高圧にて注入し、オートクレーブ内の内圧を1
.5 ×107 Paで60分間保持した。その後、オートクレーブ内の温度を表1に示した
所定温度に設定し、この状態で一気にオートクレーブ内のガスを抜き、オートクレーブ内
圧を常圧にまで戻して、塩化ビニル系樹脂発泡体を得た。
Next, carbon dioxide is injected into the autoclave at a high pressure, and the internal pressure in the autoclave is reduced to 1.
. Hold at 5 × 10 7 Pa for 60 minutes. Thereafter, the temperature in the autoclave was set to the predetermined temperature shown in Table 1. In this state, the gas in the autoclave was exhausted at once and the autoclave internal pressure was returned to normal pressure to obtain a vinyl chloride resin foam.

得られた塩化ビニル系樹脂発泡体の二酸化炭素含有量、発泡倍率、平均セル径、セル径
のばらつき及び引張強度を測定して結果を表1に示した。
The obtained carbon chloride resin foam was measured for carbon dioxide content, expansion ratio, average cell diameter, cell diameter variation and tensile strength, and the results are shown in Table 1.

(実施例3、4)
スラリーAに代えて、スラリーB21.07重量部を供給した以外は、実施例1で行っ
たと同様にして乳化重合を行い塩化ビニル系樹脂Bを得た。得られた塩化ビニル系樹脂B
の平均重合度は1000であり、マイカを30重量%含有していた。
(Examples 3 and 4)
Instead of slurry A, emulsion polymerization was carried out in the same manner as in Example 1 except that 21.07 parts by weight of slurry B was supplied to obtain vinyl chloride resin B. Obtained vinyl chloride resin B
The average degree of polymerization was 1000 and contained 30% by weight of mica.

得られた塩化ビニル系樹脂Bを用いた以外は、実施例1で行ったと同様にして塩化ビニ
ル系樹脂板状体を得、オートクレーブ内の温度を表1示した所定温度に設定し、この状態
で一気にオートクレーブ内のガスを抜いた以外は実施例1で行ったと同様にして塩化ビニ
ル系樹脂発泡体を得た。
Except for using the obtained vinyl chloride resin B, a vinyl chloride resin plate was obtained in the same manner as in Example 1, and the temperature in the autoclave was set to the predetermined temperature shown in Table 1, Then, a vinyl chloride resin foam was obtained in the same manner as in Example 1 except that the gas in the autoclave was removed at once.

得られた塩化ビニル系樹脂発泡体の二酸化炭素含有量、発泡倍率、平均セル径、セル径
のばらつき及び引張強度を測定して結果を表1に示した。
The obtained carbon chloride resin foam was measured for carbon dioxide content, expansion ratio, average cell diameter, cell diameter variation and tensile strength, and the results are shown in Table 1.

(実施例5、6)
スラリーAに代えて、スラリーC13.32重量部を供給した以外は、実施例1で行っ
たと同様にして乳化重合を行い塩化ビニル系樹脂Cを得た。得られた塩化ビニル系樹脂B
の平均重合度は1000であり、ベントナイトを10重量%含有していた。
(Examples 5 and 6)
A vinyl chloride resin C was obtained by emulsion polymerization in the same manner as in Example 1 except that 13.32 parts by weight of slurry C was supplied instead of slurry A. Obtained vinyl chloride resin B
The average degree of polymerization was 1000 and contained 10% by weight of bentonite.

得られた塩化ビニル系樹脂Cを用いた以外は、実施例1で行ったと同様にして塩化ビニ
ル系樹脂板状体を得、オートクレーブ内の温度を表1に示した所定温度に設定し、この状
態で一気にオートクレーブ内のガスを抜いた以外は実施例1で行ったと同様にして塩化ビ
ニル系樹脂発泡体を得た。
A vinyl chloride resin plate was obtained in the same manner as in Example 1 except that the obtained vinyl chloride resin C was used, and the temperature in the autoclave was set to the predetermined temperature shown in Table 1, A vinyl chloride resin foam was obtained in the same manner as in Example 1 except that the gas in the autoclave was vented at once.

得られた塩化ビニル系樹脂発泡体の二酸化炭素含有量、発泡倍率、平均セル径、セル径
のばらつき及び引張強度を測定して結果を表1に示した。
The obtained carbon chloride resin foam was measured for carbon dioxide content, expansion ratio, average cell diameter, cell diameter variation and tensile strength, and the results are shown in Table 1.

(比較例1〜8)
表2に示した所定量の塩化ビニル樹脂(徳山積水社製、商品名「TS1000R」、平
均重合度1000)、有機錫系熱安定剤(三共有機合成社製、商品名:ONZ−6F)、
滑剤(三井化学社製、商品名:Hiwax−2203A)、モンモリロナイト(平均粒子
径36μm)、マイカ(平均粒子径65μm)及びベントナイト(平均粒子径44μm)
を100Lスーパーミキサー(カワタ社製)に供給し、3分間攪拌混合して塩化ビニル樹
脂組成物を得た。
(Comparative Examples 1-8)
Predetermined amounts of vinyl chloride resin shown in Table 2 (made by Tokuyama Sekisui Co., Ltd., trade name “TS1000R”, average polymerization degree 1000), organotin-based heat stabilizer (trade name: ONZ-6F, produced by Sansha Co., Ltd.) ,
Lubricant (Mitsui Chemicals, trade name: Hiwax-2203A), montmorillonite (average particle size 36 μm), mica (average particle size 65 μm) and bentonite (average particle size 44 μm)
Was supplied to a 100 L super mixer (manufactured by Kawata Corp.) and stirred and mixed for 3 minutes to obtain a vinyl chloride resin composition.

得られた塩化ビニル系樹脂組成物を用いて、実施例1で行ったと同様にして塩化ビニル
系樹脂板状体を得、オートクレーブ内の温度を表2示した所定温度に設定し、この状態で
一気にオートクレーブ内のガスを抜いた以外は実施例1で行ったと同様にして塩化ビニル
系樹脂発泡体を得た。
Using the obtained vinyl chloride resin composition, a vinyl chloride resin plate was obtained in the same manner as in Example 1, and the temperature in the autoclave was set to the predetermined temperature shown in Table 2, and in this state A vinyl chloride resin foam was obtained in the same manner as in Example 1 except that the gas in the autoclave was removed at once.

得られた塩化ビニル系樹脂発泡体の二酸化炭素含有量、発泡倍率、平均セル径、セル径
のばらつき及び引張強度を測定して結果を表2に示した。
The carbon dioxide content, expansion ratio, average cell diameter, cell diameter variation and tensile strength of the obtained vinyl chloride resin foam were measured, and the results are shown in Table 2.

尚、各物性の測定方法は下記の通りであった。
(1)二酸化炭素の含浸量
オートクレーブに供給する前の塩化ビニル系樹脂板状体と、得られた塩化ビニル系樹脂
発泡体の重量を測定し、塩化ビニル系樹脂板状体に対する増加した重量を百分率で示した
In addition, the measuring method of each physical property was as follows.
(1) Amount of carbon dioxide impregnation Measure the weight of the vinyl chloride resin plate before supplying it to the autoclave and the obtained vinyl chloride resin foam, and calculate the increased weight with respect to the vinyl chloride resin plate. Expressed as a percentage.

(2)発泡倍率
次式より塩化ビニル系樹脂発泡体の発泡倍率を求めた。
発泡倍率=発泡前の塩化ビニル系樹脂板状体の比重/塩化ビニル系樹脂発泡体の比重
尚、塩化ビニル系樹脂発泡体の比重は、塩化ビニル系樹脂発泡体を水に沈めた際の発生浮
力より算出したものである。
(2) Expansion ratio The expansion ratio of the vinyl chloride resin foam was determined from the following formula.
Foaming ratio = specific gravity of vinyl chloride resin plate before foaming / specific gravity of vinyl chloride resin foam The specific gravity of vinyl chloride resin foam is generated when the vinyl chloride resin foam is submerged in water. It is calculated from buoyancy.

(3)平均セル径及びセル径のばらつき
塩化ビニル系樹脂発泡体をナイフで切断し、切断断面を2次電子反射式電子顕微鏡によ
り撮影した。撮影した断面写真を画像解析により白色部分(塩化ビニル系樹脂部分)と黒
色部分(発泡セル部分)に二値化を行った。その黒色部分の面積を疑似円表面積とし、そ
こからセル径を算出し平均値とセル径の標準偏差を算出した。算出したセル径の標準偏差
を径のばらつきとした。
(3) Variation of average cell diameter and cell diameter The vinyl chloride resin foam was cut with a knife, and the cut cross section was photographed with a secondary electron reflection electron microscope. The photographed cross-sectional photograph was binarized into a white part (vinyl chloride resin part) and a black part (foamed cell part) by image analysis. The area of the black portion was defined as a pseudo circular surface area, and the cell diameter was calculated therefrom, and the average value and the standard deviation of the cell diameter were calculated. The standard deviation of the calculated cell diameter was taken as the variation in diameter.

(4)引張強度
得られた塩化ビニル系樹脂発泡体を用い、プラスチックの引張試験方法(JIS K7
113)に準拠して、1号形試験片を作製し23℃で引張試験を行い、引張降伏強度を求
めた。
(4) Tensile strength Using the obtained vinyl chloride resin foam, a tensile test method for plastics (JIS K7
113) No. 1 test piece was prepared and a tensile test was performed at 23 ° C. to obtain a tensile yield strength.

Figure 0004456405
Figure 0004456405

Figure 0004456405
Figure 0004456405

Claims (4)

塩化ビニルモノマー単独又は塩化ビニルモノマーを主成分とする塩化ビニル系モノマーを、層状珪酸塩の存在下、乳化分散剤を含む水中で乳化重合し、塩化ビニル系樹脂とし、該塩化ビニル系樹脂に不活性ガスを含浸させた後、発泡させることを特徴とする塩化ビニル系樹脂発泡体の製造方法。 Vinyl chloride monomer as a main component a vinyl monomer alone or a vinyl chloride monomer chloride, in the presence of the layered silicate, and an emulsion polymerization in water with an emulsifying dispersant, a vinyl chloride resin, to the vinyl chloride-based resin not A method for producing a vinyl chloride resin foam comprising impregnating an active gas and then foaming. 塩化ビニル系樹脂が、塩化ビニル系モノマー25〜99重量%と層状珪酸塩75〜1重量%を乳化重合することを特徴とする請求項1記載の塩化ビニル系樹脂発泡体の製造方法。 Vinyl chloride resin, a manufacturing method of a vinyl chloride resin foam of claim 1, wherein the emulsion polymerization of vinyl monomer 25-99 wt% chloride and 75 to 1 wt.% Layered silicate. 塩化ビニル系樹脂が、層状珪酸塩が微細化され水により膨潤した状態で水中に存在下、乳化重合することを特徴とする請求項1又は2記載の塩化ビニル系樹脂発泡体の製造方法。 Vinyl chloride resin, the presence in the water in a state where the layered silicate is swollen with a miniaturized water The process according to claim 1 or 2 vinyl chloride resin foam, wherein the emulsion polymerization. 不活性ガスが窒素又は二酸化炭素であることを特徴とする請求項1、2又は3記載の塩化ビニル系樹脂発泡体の製造方法。

The method for producing a vinyl chloride resin foam according to claim 1, 2 or 3, wherein the inert gas is nitrogen or carbon dioxide.

JP2004119387A 2004-04-14 2004-04-14 Method for producing vinyl chloride resin foam Expired - Fee Related JP4456405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004119387A JP4456405B2 (en) 2004-04-14 2004-04-14 Method for producing vinyl chloride resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004119387A JP4456405B2 (en) 2004-04-14 2004-04-14 Method for producing vinyl chloride resin foam

Publications (2)

Publication Number Publication Date
JP2005298737A JP2005298737A (en) 2005-10-27
JP4456405B2 true JP4456405B2 (en) 2010-04-28

Family

ID=35330668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004119387A Expired - Fee Related JP4456405B2 (en) 2004-04-14 2004-04-14 Method for producing vinyl chloride resin foam

Country Status (1)

Country Link
JP (1) JP4456405B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061754A (en) * 2007-09-10 2009-03-26 Kaneka Corp Foam molding machine of thermoplastic resin
JP5552399B2 (en) * 2010-09-01 2014-07-16 積水化成品工業株式会社 Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body
CN103102631B (en) * 2012-02-09 2015-11-04 芜湖特贝特材料科技有限公司 Based on CPVC/PVC heat-resisting composite and the preparation method of supercritical CO 2 extrusion foaming

Also Published As

Publication number Publication date
JP2005298737A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP4268190B2 (en) Vinyl chloride nanocomposite resin composition having excellent impact resistance and method for producing the same
US9334337B2 (en) Enhanced water swellable compositions
WO2009128432A1 (en) Production method of polytetrafluoroethylene fine powder
CN109071705B (en) Method for preparing chlorinated polyvinyl chloride resin
WO2009142080A1 (en) Method for producing polytetrafluoroethylene fine powder
CN113166303B (en) Preparation method of chlorinated polyvinyl chloride resin
JP4456405B2 (en) Method for producing vinyl chloride resin foam
EP2428531B1 (en) Polyvinyl chloride nanocomposite and method of making the same
CN109843940B (en) Method for preparing chlorinated vinyl chloride resin
JPS6410004B2 (en)
JP4429866B2 (en) Method for producing vinyl chloride resin
JP2006328165A (en) Method for producing chlorinated polyvinyl chloride-based resin
KR100868458B1 (en) Method of preparing polyvinylchloride for manufacturing of low-absorption plastisol
JP4338703B2 (en) Method for producing chlorinated vinyl chloride resin
JP4610877B2 (en) Method for producing chlorinated vinyl chloride resin
JP3863279B2 (en) Method for producing chlorinated vinyl chloride resin
EP3715387B1 (en) Vinyl chloride-based polymer and preparation method thereof
JP2006322013A (en) Method for producing chlorinated vinyl chloride-based resin
JP2818101B2 (en) Method for producing chlorinated vinyl chloride resin
JP2003119341A (en) Polyvinyl chloride-based resin composition
US10882937B2 (en) Polymer having a small average particle size
JP2008156375A (en) Vinyl chloride resin dope composition
JPH06298872A (en) Ethylene/vinyl chloride copolymer powder
JP2000344830A (en) Production of chlorinated vinyl chloride resin
JPH11158221A (en) Vinyl chloride-based resin and chlorinated vinyl chloride-based resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4456405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees