JP4456238B2 - Alkali-soluble lubricant-coated aluminum alloy plate with excellent corrosion resistance and formability - Google Patents

Alkali-soluble lubricant-coated aluminum alloy plate with excellent corrosion resistance and formability Download PDF

Info

Publication number
JP4456238B2
JP4456238B2 JP2000230125A JP2000230125A JP4456238B2 JP 4456238 B2 JP4456238 B2 JP 4456238B2 JP 2000230125 A JP2000230125 A JP 2000230125A JP 2000230125 A JP2000230125 A JP 2000230125A JP 4456238 B2 JP4456238 B2 JP 4456238B2
Authority
JP
Japan
Prior art keywords
alkali
formability
aluminum alloy
alloy plate
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000230125A
Other languages
Japanese (ja)
Other versions
JP2002047580A (en
Inventor
雄一 佐藤
俊康 浮穴
誠 佐賀
陽一郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000230125A priority Critical patent/JP4456238B2/en
Publication of JP2002047580A publication Critical patent/JP2002047580A/en
Application granted granted Critical
Publication of JP4456238B2 publication Critical patent/JP4456238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車のボディシートや部品、各種機械器具、家電部品等の素材として使用する、耐食性および成形性に優れたアルカリ可溶型潤滑被覆アルミニウム合金板に関する。
【0002】
【従来の技術】
高成形性および高強度を要求する用途、例えば自動車のボディーシートには、主として冷延鋼板が使用されているが、燃費向上の観点から軽量化が求められ、アルミニウム合金板の採用が進められている。この自動車ボディシートにはプレス加工による成形性が要求されるため、アルミニウム合金の中でも強度および成形性に優れる5000系、すなわち、Al−Mg合金が使用されている。
ところが、Al−Mg合金は製造性が悪いためにコストが高く、また、リューダースマークが発生しやすいため、成形後、良好な表面性状が得られ難い。そこで、製造コストが安く、リューダースマークを生じないAl−Mg−Siを用いることが望ましいため、開発が進められている。
【0003】
しかし、Al−Mg−Si系合金はAl−Mg系合金に比べて成形性が劣っている。これは、Al−Mg−Si系合金が析出強化により高強度を得られる合金であり、塗装焼き付け後の強度上昇、いわゆる塗装焼付け硬化性(以下BH性)に優れる反面、製造時に析出物を生じ易く、その析出物によって延性が低下するためである。これまでに成形性に優れたAl−Mg−Si系合金として、例えば、特開平9−31616号公報、特開平10−102179号公報が開示されている。これらは、Cuを添加して張出成形性の向上を図ったものである。
【0004】
【発明が解決しようとする課題】
Al−Mg−SiのへのCuの添加は張出成形性の向上に極めて有効であり、しかも、BH性や製造性を損わないという利点があるが、耐食性が低下し粒界腐食性が生じやすくなる。また、自動車ボディ等に適用する際に要求される深絞り性および型かじり性は向上しないという問題があった。
【0005】
【発明を解決するための手段】
本発明者は前述の課題を解決するために詳細な検討を重ね、Cu添加による耐食性の低下が結晶粒界に生じたCu系析出物であることを明らかにし、この析出物の制御により、BH性、成形性および耐食性の兼備が可能であることを見出した。さらに、成分系、特にMgとCu量を限定し、Cu系析出物のサイズおよび析出状態を制御することにより、このようなアルミニウム合金を製造することができた。
【0006】
また、アルミニウム合金の成形性、特に深絞り性および型かじり性を向上させるには、表面に潤滑皮膜を塗布することが有効であるが、自動車用途等に適用する場合は、プレス成形後のアルカリ脱脂工程や洗浄工程において潤滑皮膜が溶解、離脱する脱膜型潤滑皮膜の塗布が望ましい。そこで本発明者は、脱膜型潤滑皮膜によるプレス成形性の向上およびアルカリ脱脂工程や洗浄工程における潤滑皮膜の溶解、離脱性について詳細に検討を行った。その結果、粒状の潤滑機能付与剤を含むアルカリ可溶型潤滑樹脂皮膜を一定膜厚範囲内でアルミニウム合金板表面に形成させることにより、上記目的を達成できることを見い出した。
【0007】
すなわち、本発明の要旨とするところは、
(1)量%で、Mg:0.1〜0.65%、Si:0.4〜2.0%、Cu:0.8〜1.4%、Mg+Cu:0.9〜1.5%を含有しZn:0.03〜2.5%、Mn:0.03〜0.5%、Cr:0.03〜0.2%、Zr:0.03〜0.15%、V:0.03〜0.15%、Fe:0.03〜0.3%、Ti:0.005〜0.1%、B:0.005〜0.1%のうちの1種または2種以上を、さらに含有し、残部はAl及び不可避的不純物からなるAl合金であって、結晶粒界上のCuを含有する析出物の最大径が0.5μm以下で、かつ、その結晶粒界面に占める割合が5%以下であり、さらに、粒内に0.2μm以上の最大径を有する晶析出物が、100μm2 当たり20個未満であり、両面又は片面の表面に、粒状潤滑機能付与剤を2〜15量%含有したアルカリ可溶型潤滑樹脂皮膜が0.5〜5μm形成されたことを特徴とする、耐食性および成形性に優れたAl−Mg−Si−Cu系合金板。
【0008】
(2)前記(1)に記載のアルミニウム合金板において、粒状潤滑機能付与剤を2〜15量%、シリカ粒子を1〜30量%含有したアルカリ可溶型潤滑樹脂皮膜が0.5〜5μm形成されたことを特徴とする、耐食性および成形性に優れたAl−Mg−Si−Cu系合金板。
(3)粒状潤滑機能付与剤が、ポリオレフィン系ワックス、フッ素系ワックス、パラフィン系ワックス、ステアリン酸系ワックスのうちの1種または2種以上からなる前記(1)または(2)に記載の耐食性および成形性に優れたAl−Mg−Si−Cu系合金板である。
【0009】
【発明の実施の形態】
以下に、本発明の合金組成や析出物の析出状態、製造条件等の限定理由を具体的に説明する。
Mg:Mgは本発明の合金系では基本となる合金元素であり、塗装焼き付け時にMg−Si系の微細な析出物を生じて高BH性の発現に寄与するものである。しかし、Mg量が0.1%未満ではBH性が不十分ではなく、一方、0.65%を超える過剰な添加により結晶粒界に粗大なMg−Si―Cu系析出物を生じ、耐食性および成形性を低下させる。このことから、Mg量は0.1〜0.65%の範囲とする。
【0010】
Si:Siも本発明の合金系では基本となる合金元素であり、塗装焼き付け時にMg−Si系の微細な析出物を生じて高BH性の発現に寄与するが、Si量が0.4%未満ではBH性が不十分であり、一方、2.0%を超えると粗大なSi相が析出して成形性を低下させる。このことから、Si量は0.4〜2.0%の範囲とする。
Cu:Cuも本発明の合金系では基本となる合金元素であり、成形性を向上させるが、Cu量が0.8%未満では十分な成形性が確保できず、一方、1.4%を超える過剰な添加により結晶粒界に粗大なAl−Mg−Si―Cu系析出物を生じ、耐食性および成形性を低下させる。このことから、Cu量は0.8〜1.4%の範囲とする。
【0011】
さらに、Mg+Cuが0.9%未満ではBH性および成形性が不十分であり、1.5%を超えると通常の溶体化処理条件ではAl−Mg−Si―Cu系析出物の生成を抑制できなくなり、耐食性および成形性が低下することから、Mg+Cuを0.9〜1.5%の範囲とする。
Zn、Mn、Cr、Zr、V、Fe、Ti、B:これらの元素は強度向上や結晶粒微細化のために1種または2種以上添加される。
これらのうち、Znは合金の時効性の向上を通じて強度向上に寄与する元素であり、その含有量が0.03%未満では上記の効果が不十分であり、一方、2.5%を超えれば成形性および耐食性が低下する。従って、Znを添加する場合のZnの量は0.03〜2.5%の範囲内とした。
【0012】
さらに、Mn,Cr,Zr,Vは強度向上と結晶粒の微細化に効果のある元素であり、いずれも含有量が0.03%未満では上記の効果が十分に得られない。一方、Mnは0.5%を、Crは0.2%を、ZrおよびVは0.15%を超えると巨大金属間化合物を生じて成形性を低下させる。従って、Mnは0.03〜0.5%、Crは0.03〜0.2%、ZrおよびVは0.03〜0.15%の範囲とした。
また、Feは強度向上と鋳塊組織の微細化に有効な元素であり、その含有量が0.03%未満では十分な効果が得られず、0.3%を超えれば巨大晶出物を生じて成形性を低下させるため、Fe量は0.03〜0.3%とした。
【0013】
TiおよびBも強度向上と鋳塊組織の微細化に有効な元素であり、その含有量が0.005%未満では十分な効果が得られず、0.1%を超えれば巨大晶出物を生じて成形性を低下させるため、添加を0.005〜0.1%とした。
なお、これらのZn、Mn、Cr、Zr、V、Fe、Ti、Bの範囲は積極的な添加元素としてこれらの元素を含む場合を示したものであり、いずれもその下限値よりも少ない量を不純物として含有することは特に支障ない。
【0014】
次に、本発明における合金板に析出するCu系析出物およびのサイズ、析出状態について説明する。成形性および耐食性に影響を及ぼす析出物はその大きさと析出する場所および分布状態に依存する。すなわち、Cu系析出物が結晶粒界上にあり、その最大径が0.5μm以上であれば、あるいは、最大径が0.5μm以下であっても結晶粒界を占める割合が5%を超える状態であれば、結晶粒界に沿った割れを生じやすくなり成形性が低下する。また、結晶粒界上に上述の分布状態でCu系析出物が生じればその周囲のCu量が減少するため、粒界腐食、すなわち糸錆が発生し易くなる。
【0015】
また、晶析出物が結晶粒内にある場合は、その最大径が0.2μm以上の析出物が100μm2 内に20個以上検出できる状態では破断の起点が多くなり、成形性が低下する。従って、冷延板の晶析出物の晶析出状態を前述のように規定する。なお、結晶粒界のCu系析出物および結晶粒内における晶析出物の析出状態は、透過型電子顕微鏡を用いて5000倍程度の倍率で任意の5視野を撮影し、その写真から析出物のサイズおよび個数を観察し、粒界析出物の粒界占有率および粒内晶析出物の単位面積当たりの個数を評価することができる。
【0016】
このようなアルミニウム合金板の深絞り性、型かじり性を高めるために、表面に塗布するアルカリ可溶型潤滑被覆について以下に説明する。これは、膜厚を一定の条件とした粒状潤滑機能付与剤を含有するアルカリ可溶型潤滑樹脂皮膜である。まず、アルカリ液に溶解・脱膜するアルカリ溶解型潤滑皮膜には、ポリエチレングリコール系、ポリプロピレングリコール系、ポリビニルアルコール系、アクリル系、ポリエステル系などがあるが、アルカリ溶解可能とするために、樹脂水分散体または水溶性樹脂でなければならない。ポリエチレングリコール系では、皮膜形成性の観点から、平均分子量3000以上のポリエチレングリコールおよび変性ポリエチレングリコールが挙げられる。変性ポリエチレングリコールとしては、イソシアネート変性ポリエチレングリコール、エポキシ変性ポリエチレングリコール等が挙げられる。
【0017】
ポリプロピレングリコール系では、皮膜形成性の観点から、平均分子量3000以上のポリプロピレングリコールおよび変性ポリプロピレングリコールが挙げられる。変性ポリプロピレングリコールとしては、イソシアネート変性ポリプロピレングリコール、エポキシ変性ポリプロピレングリコール等が挙げられる。
ポリビニルアルコール系では、完全ケン化型ポリビニルアルコール、部分ケン化型ポリビニルアルコール、変性ポリビニルアルコール等が挙げられる。変性ポリビニルアルコールとしては、カルボキシル基変性ポリビニルアルコール、スルホン酸ポリビニルアルコール、アセトアセチル基ポリビニルアルコール等が挙げられる。
【0018】
アクリル系としては、アクリル酸、メタアクリル酸、アクリル酸エステル、メタクリル酸エステル、マレイン酸、イタコン酸の共重合体が挙げられる。アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸nブチル、アクリル酸2エチルヘキシル、アクリル酸2ヒドロキシエチル、アクリル酸ヒドロキシプロピル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸nブチル、メタクリル酸イソブチル、メタクリル酸nヘキシル、メタクリル酸ラウリル、メタクリル酸2ヒドロキシエチル、メタクリル酸ヒドロキシプロピルなどがある。共重合体としては、スチレン、アクリルアミド、酢酸ビニル、アクリルニトリル、などが挙げられる。
【0019】
ポリエステル系については、ポリエステルを構成する多価アルコールとしては、エチレングリコール、プロピレングリコール、1,3ブチレングリコール、1,6ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、トリエチレングルコールなどが挙げられ、多塩基酸としては、無水フタル酸、イソフタル酸テレフタル酸、無水コハク酸、アジピン酸、アゼライン酸、セバシン酸、フマル酸、イタコン酸、無水マレイン酸などが挙げられる。
【0020】
本発明のアルミニウム合金板に被覆される潤滑樹脂皮膜の厚さは、0.5μm未満であるとプレス加工時の押圧による、型かじりや傷の発生を防止できず、かつ摺動が加わるために要求される加工性を得ることが出来ない。この効果は、厚さが5μmまでで顕著であるが、これを超えても効果は変わらない。従って、潤滑樹脂被膜の厚さは0.5〜5μmの範囲とする。また、本発明の潤滑樹脂皮膜は目的に応じて板の両面又は片面に被覆される。
【0021】
次に潤滑機能付与剤について説明する。
粒状潤滑機能付与剤は表面の摩擦係数を低減することによりさらに潤滑性を付与し、かじり等を防止してプレス加工性、しごき加工性を向上する作用を有している。潤滑機能付与剤としては、得られる皮膜に潤滑性能を付与するものであればよいが、ポレオレフィン系(ポリエチレン,ポリプロピレン等)、フッ素系(ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン,ポリフッ化ビニル等)、パラフィン系、ステアリン酸系ワックスのうちの1種または2種以上からなるものが好ましい。
【0022】
潤滑機能付与剤の添加量は、量%で2%未満では要求される潤滑効果が得られず、15%を越えると皮膜強度が低下したり、潤滑付与剤の剥離が発生するなどの問題があるため、2〜15%が好ましい。
シリカは皮膜強度、合金板との密着性を向上させる場合に添加する。シリカ粒子は、水分散性コロイダルシリカ、粉砕シリカ、気相法シリカなどいずれのシリカ粒子であっても良い。皮膜の加工性、耐食性発現を考慮すると、1次粒子径は2〜30nmで、2次凝集粒子径は100nm以下が好ましい。シリカの添加量としては量%で1〜30%が好ましい。1%未満では、下層との密着性向上効果が得られない。30%を越えると皮膜の伸びが減少するため加工性が低下し、型かじりが発生しやすくなる。
【0023】
本発明のアルカリ可溶型潤滑樹脂皮膜中には上記以外に、意匠性を付与するための顔料や、導電性を付与する導電性添加剤、等を目的に応じて、皮膜性能を低下させない範囲内で添加することができる。
また、本発明において、さらなる耐食性や密着性を得るために下地にリン酸塩処理やクロメート処理を施してもかまわない。この場合のクロメート処理としては、電解型クロメート、反応型クロメートおよび塗布型クロメートのいずれの処理をあげることができる。クロメート皮膜は還元したクロム酸にシリカ、燐酸、親水性樹脂の中から少なくとも1種以上を含有したクロメート液を塗布、乾燥したものが好ましい。
【0024】
リン酸塩の付着量としては、リン酸塩として0.5〜3.5g/m2 の範囲が好ましい。クロメートの付着量としては、金属クロム換算で5〜150mg/m2 の範囲が好ましく、さらに好ましい範囲は10〜50mg/m2 である。5mg/m2 未満では優れた耐食性効果が得られず、150mg/m2 を超えると成形時にクロメート皮膜の凝集破壊が起こるなど、加工性を劣化させる。さらに、目的に応じ下地に酸洗処理、アルカリ処理、電解還元処理、コバルトめっき処理、ニッケルめっき処理、シランカップリング処理無機シリケート処理を施してもかまわない。
【0025】
潤滑樹脂皮膜の形成方法としては、樹脂成分および粒状潤滑機能付与剤を含む水溶液また水分散体をロールコーター塗装法、スプレー法など従来公知の方法で塗布・焼付乾燥して形成することができる。
本発明の潤滑被覆アルミニウム合金板は潤滑皮膜のさらに上層に潤滑油または潤滑防錆油を塗布することができる。ただし、塗布する潤滑油または潤滑防錆油は、本発明の潤滑皮膜を膨潤または溶解させないものが望ましい。
【0026】
【実施例】
次に実施例に基づいて、本発明を具体的に説明する。
(実施例1)
表1に示すアルミニウム合金を、それぞれ常法に従ってDC鋳造法によって鋳造し、得られた鋳塊に530℃×5hrの均質化処理を施した後、熱間圧延を行って熱延板とした。次いで530℃×1minの中間焼鈍を施した後、厚さ1mmの冷延板を製造し、540℃×10secの溶体化処理を施した。この時の540℃〜200℃間の冷却速度を19℃/secとした。さらに、溶体化処理後速やかに80℃×5hrの安定化処理を施した。
【0027】
【表1】

Figure 0004456238
【0028】
次に、ポリエステル系ウレタン樹脂の水溶液に、軟化点110℃および平均粒径1.0μmの低密度ポリエチレンワックスを10量%混合し、合金板の表面にバーコーター塗装した後、180℃の加熱炉を用いて合金板到達温度80℃で焼付乾燥し、厚さ1μmの潤滑樹脂皮膜を形成させた。
試料の析出状態を、透過型電子顕微鏡によって5000倍の写真を任意の場所で5視野撮影し、その範囲で観察される析出物のサイズおよび数を測定し、評価した。引張試験はJISに準拠して行い、BH性は引張試験片に2%の引張歪を与えた後、170℃×20minの熱処理を施し、耐力を測定して評価した。
【0029】
成形性評価には張出成形、深絞り成形および曲げ成形を行った。張出成形性はJISに準拠してエリクセン値で評価し、深絞り性は、円筒深絞り試験をポンチ直径50mm、ポンチ肩半径5mmの条件で実施し、限界絞り比(LDR)で評価した。曲げ試験は、0.5tの内側半径で180°曲げを行い、その外側部分の外観観察を行って、割れが発生しなかったものを○、および割れが発生したものを×として評価した。
【0030】
耐食性は、アルカリ脱脂および水洗によって表面の脱膜型潤滑皮膜を除去した後、燐酸亜鉛処理、水洗、塗装を行い、試料表面にナイフで人工疵を入れた後、塩水噴霧、湿潤した後、糸錆性を評価した。糸錆性の評価は最大糸錆長さを基準として行い、1mm未満を○、1mm以上を×とした。
さらに、型かじり性、加工後の樹脂カス発生状況および脱脂性の評価を行った。型かじり性および加工後の樹脂カス発生状況は、円筒ポンチの油圧成形試験機により、ポンチ直径40mm、ポンチ肩半径4mm、ダイス直径43mm、ダイス肩半径4mm、シワ押さえ力1tonで成形試験を行って評価した。
【0031】
型かじり性は側壁の外観を目視し、次の指標に依って評価した。
◎:成形可能で、合金板表面の欠陥無し
○:成形可能で、合金板表面の欠陥無し、摺動面わずかに変色
△:成形可能で、合金板表面にわずかにかじり疵発生
×:成形可能で、合金板表面に線状かじり疵多数発生
【0032】
また、加工後の樹脂カス発生状況を次の指標で評価した。
◎:カス発生無し
○:極わずかに樹脂カス発生
△:少し樹脂カス発生
×:樹脂カス多数発生
【0033】
脱脂性は、FC−4358脱脂液(日本パーカライジング製、pH=10.5に調整、温度70℃)を試験片に8秒間スプレーした後水洗し、乾燥後の皮膜残存率を赤外分光分析にて測定し、次の指標で評価した。
◎:皮膜残存無し
○:皮膜残存5%以下
△:皮膜残存5%超10%以下
×:皮膜残存10%超
【0034】
析出物の状態、機械的性質およびBH後の耐力、成形性(エリクセン値、LDRおよび曲げ性)、糸錆発生状況、型かじり性、樹脂カス発生状況および脱膜性を評価した結果を表2に示す。本発明で示したA1〜A12の合金は規定範囲内の析出状態で粒界を占める割合が少なく、成形性、耐食性に優れ、かつ高BH性を有している。また、加工後に樹脂カスが発生し難く、脱脂性に優れている。
【0035】
一方、比較例で示した合金のうち、B1はMg量が、B3はSi量が本発明の範囲よりも少ないため、BH性およびエリクセン値が不十分である。また、B2はMg量が、B4はSi量が多いため、B6はCu量が多くMg+Cu量が本発明の範囲を超えているため、粒界および粒内に析出物を生じて、BH性、エリクセン値、曲げ性および耐糸錆性が低下している。B5はCu量が少ないためにエリクセン値が不十分であり、B7はZn量が多いため、耐糸錆性が低下している。さらに、B8〜13の合金は、Mn、Cr、Zr、Fe、TiおよびBの添加量が本発明で規定した範囲を外れているため、晶析出物の分布が本発明で規定する範囲を外れ、その結果曲げ性およびエリクセン値が低下している。
【0036】
【表2】
Figure 0004456238
【0037】
(実施例2)
表1の発明合金A の冷延板に、540℃×10secの溶体化処理を施した。この時の540℃〜200℃間の冷却速度を19℃/secとした。さらに、溶体化処理後速やかに80℃×5hrの安定化処理を施した。
このアルミニウム合金の表面には、基本的にクロメート未処理としたが、一部水準について、クロム還元率(Cr(VI)/全Cr)=0.4のクロム酸にコロイダルシリカを加えた塗布型クロメート液をロールコータにてクロム付着量が金属クロム換算で20mg/m2 となるよう塗布し、加熱乾燥させクロメート皮膜を形成させた。
【0038】
次に、ポリエチレングリコール、ポリプロピレングリコール、アクリル樹脂の水溶液または水分散体に、ポリエチレンワックス、ポリテトラフルオロエチレンワックス、合成パラフィンワックス、ステアリン酸カルシウムワックス、およびコロイダルシリカを表3に示す組成で混合し、バーコーター塗装して180℃の加熱炉を用いて合金板到達温度80℃で焼付乾燥し潤滑樹脂皮膜を形成させた。なお、加工性評価の比較材として、上記のアルミニウム合金板にジョンソンワックス#122を塗布したものを用いた。
【0039】
これらのサンプルに対して実施例1と同様に深絞り性、型かじり性、加工後の樹脂カス発生状況および脱脂性の評価を行い、表3に示した。
表3に示すように、No.26〜46の本発明の範囲内にあるアルカリ可溶型潤滑被覆アルミニウム合金板は、いずれも深絞り性および型かじり性に優れ、加工後に樹脂カスが発生し難く、脱脂性に優れている。一方、比較例No.47は潤滑皮膜の膜厚が薄いため、No.48は粒状潤滑機能付与剤の含有量が少ないため、型かじり性が不十分である。一方、No.49は粒状潤滑機能付与剤の含有量が多いため、加工後に樹脂カスが発生している。
【0040】
【表3】
Figure 0004456238
【0041】
【発明の効果】
以上のように、本発明によれば、成形性および耐食性に優れたアルカリ可溶型潤滑被覆アルミニウム合金板を提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alkali-soluble lubricity-coated aluminum alloy plate excellent in corrosion resistance and formability, which is used as a material for automobile body sheets and parts, various machinery and appliances, and home appliance parts.
[0002]
[Prior art]
Cold-rolled steel sheets are mainly used for applications requiring high formability and high strength, such as automobile body sheets. However, weight reduction is required from the viewpoint of improving fuel efficiency, and the adoption of aluminum alloy sheets has been promoted. Yes. Since this automobile body sheet requires formability by press working, among aluminum alloys, 5000 series that is excellent in strength and formability, that is, Al—Mg alloy is used.
However, the Al—Mg alloy is expensive due to poor manufacturability, and a Ruders mark is likely to be generated. Therefore, it is difficult to obtain good surface properties after molding. Therefore, since it is desirable to use Al—Mg—Si that is low in manufacturing cost and does not generate a Ruders mark, development has been advanced.
[0003]
However, the Al—Mg—Si alloy is inferior in formability compared to the Al—Mg alloy. This is an alloy in which an Al—Mg—Si alloy can obtain high strength by precipitation strengthening, and is excellent in strength increase after paint baking, so-called paint bake hardenability (hereinafter referred to as BH property), but precipitates are produced during production. This is because the ductility is lowered by the precipitate. As Al-Mg-Si alloys having excellent formability, for example, JP-A-9-31616 and JP-A-10-102179 have been disclosed. These are intended to improve the stretch formability by adding Cu.
[0004]
[Problems to be solved by the invention]
The addition of Cu to Al-Mg-Si is extremely effective for improving the stretch formability and has the advantage of not impairing the BH property and manufacturability, but the corrosion resistance is lowered and the intergranular corrosion property is reduced. It tends to occur. In addition, there is a problem that the deep drawability and mold squeeze required when applied to automobile bodies and the like are not improved.
[0005]
[Means for Solving the Invention]
The present inventor has conducted detailed studies in order to solve the above-mentioned problems, clarified that the corrosion resistance decrease due to the addition of Cu is a Cu-based precipitate generated at the grain boundary, and by controlling this precipitate, BH It has been found that it is possible to combine properties, moldability and corrosion resistance. Furthermore, such an aluminum alloy could be produced by limiting the component system, particularly the amount of Mg and Cu, and controlling the size and precipitation state of the Cu-based precipitate.
[0006]
In order to improve the formability of an aluminum alloy, particularly deep drawability and die squeeze, it is effective to apply a lubricating film to the surface. It is desirable to apply a defilming-type lubricating film that dissolves and separates in the degreasing process and the cleaning process. Therefore, the present inventor has studied in detail the improvement of press formability by the delaminating type lubricant film and the dissolution and release properties of the lubricant film in the alkali degreasing process and the cleaning process. As a result, it has been found that the above object can be achieved by forming an alkali-soluble lubricating resin film containing a granular lubricating function imparting agent on the aluminum alloy plate surface within a certain film thickness range.
[0007]
That is, the gist of the present invention is that
(1) quality In amount%, Mg: 0.1-0.65%, Si: 0.4-2.0%, Cu: 0.8-1.4%, Mg + Cu: 0.9-1.5% , Zn: 0.03-2.5%, Mn: 0.03-0.5%, Cr: 0.03-0.2%, Zr: 0.03-0.15%, V: 0.03- One or more of 0.15%, Fe: 0.03-0.3%, Ti: 0.005-0.1%, B: 0.005-0.1%, further containing The balance is an Al alloy composed of Al and inevitable impurities, the maximum diameter of the precipitate containing Cu on the grain boundary is 0.5 μm or less, and the proportion of the precipitate in the grain interface is 5%. The crystal precipitate having a maximum diameter of 0.2 μm or more in the grains is 100 μm. 2 Less than 20 per particle, 2 to 15 granular lubricant function imparting agent on both surfaces or one surface quality An Al—Mg—Si—Cu alloy plate excellent in corrosion resistance and formability, characterized in that an alkali-soluble lubricating resin film containing 0.5% by weight is formed in an amount of 0.5 to 5 μm.
[0008]
(2) In the aluminum alloy plate according to the above (1), 2 to 15 granular lubricant function-imparting agents are added. quality %, Silica particles 1-30 quality An Al—Mg—Si—Cu alloy plate excellent in corrosion resistance and formability, characterized in that an alkali-soluble lubricating resin film containing 0.5% by weight is formed in an amount of 0.5 to 5 μm.
(3) The corrosion resistance according to (1) or (2) above, wherein the granular lubricating function-imparting agent is one or more of polyolefin wax, fluorine wax, paraffin wax, and stearic acid wax. It is an Al—Mg—Si—Cu alloy plate having excellent formability.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Below, the reasons for limitation of the alloy composition of the present invention, the precipitation state of precipitates, production conditions, etc. will be specifically described.
Mg: Mg is a basic alloy element in the alloy system of the present invention, and contributes to the development of high BH properties by producing fine Mg-Si precipitates during coating baking. However, if the amount of Mg is less than 0.1%, the BH property is not insufficient. On the other hand, excessive addition exceeding 0.65% produces coarse Mg—Si—Cu-based precipitates at the grain boundaries, resulting in corrosion resistance and Reduces moldability. For this reason, the Mg content is in the range of 0.1 to 0.65%.
[0010]
Si: Si is also a basic alloy element in the alloy system of the present invention, and contributes to the development of high BH properties by producing fine Mg-Si precipitates during coating baking, but the Si amount is 0.4%. If the ratio is less than 2.0%, the BH property is insufficient. On the other hand, if it exceeds 2.0%, a coarse Si phase is precipitated and the formability is lowered. For this reason, the Si amount is set to a range of 0.4 to 2.0%.
Cu: Cu is also a basic alloy element in the alloy system of the present invention, and improves formability. However, if the amount of Cu is less than 0.8%, sufficient formability cannot be secured, while 1.4% Excessive addition causes coarse Al—Mg—Si—Cu-based precipitates at the crystal grain boundaries, thereby reducing corrosion resistance and formability. For this reason, the amount of Cu is set to a range of 0.8 to 1.4%.
[0011]
Further, if Mg + Cu is less than 0.9%, the BH property and formability are insufficient, and if it exceeds 1.5%, generation of Al—Mg—Si—Cu-based precipitates can be suppressed under normal solution treatment conditions. The corrosion resistance and formability are reduced, so Mg + Cu is set in the range of 0.9 to 1.5%.
Zn, Mn, Cr, Zr, V, Fe, Ti, B: These elements are added singly or in combination of two or more for strength improvement and crystal grain refinement.
Among these, Zn is an element that contributes to improving the strength by improving the aging property of the alloy. If the content is less than 0.03%, the above effect is insufficient. Formability and corrosion resistance are reduced. Therefore, the amount of Zn in the case of adding Zn is set in the range of 0.03 to 2.5%.
[0012]
Further, Mn, Cr, Zr, and V are elements that are effective in improving the strength and refining the crystal grains, and if the content is less than 0.03%, the above effects cannot be sufficiently obtained. On the other hand, when Mn exceeds 0.5%, Cr exceeds 0.2%, and Zr and V exceed 0.15%, a giant intermetallic compound is formed and formability is lowered. Therefore, Mn is set to 0.03 to 0.5%, Cr is set to 0.03 to 0.2%, and Zr and V are set to 0.03 to 0.15%.
Fe is an element effective for improving the strength and refining the ingot structure. If the content is less than 0.03%, sufficient effects cannot be obtained. In order to reduce the formability, the Fe content is set to 0.03 to 0.3%.
[0013]
Ti and B are also effective elements for improving the strength and refining the ingot structure. If the content is less than 0.005%, a sufficient effect cannot be obtained. In order to reduce the moldability, the addition is made 0.005 to 0.1%.
The ranges of Zn, Mn, Cr, Zr, V, Fe, Ti, and B show cases where these elements are included as positive additive elements, and the amounts are all less than the lower limit values. It is not particularly difficult to contain as an impurity.
[0014]
Next, the size and precipitation state of Cu-based precipitates deposited on the alloy plate in the present invention will be described. Precipitates that affect moldability and corrosion resistance depend on their size, where they are deposited, and their distribution. That is, if the Cu-based precipitate is on the grain boundary and the maximum diameter is 0.5 μm or more, or even if the maximum diameter is 0.5 μm or less, the proportion of the crystal grain boundary exceeds 5%. If it is a state, it will become easy to produce the crack along a crystal grain boundary, and a moldability will fall. In addition, if Cu-based precipitates are generated on the crystal grain boundaries in the above-described distribution state, the amount of Cu around them decreases, so that intergranular corrosion, that is, thread rust is likely to occur.
[0015]
Further, when the crystal precipitate is in the crystal grain, a precipitate having a maximum diameter of 0.2 μm or more is 100 μm. 2 In the state where 20 or more pieces can be detected, the starting point of breakage increases, and the formability deteriorates. Therefore, the crystal precipitation state of the crystal precipitates on the cold rolled sheet is defined as described above. As for the precipitation state of the Cu-based precipitates at the grain boundaries and the crystal precipitates in the crystal grains, an arbitrary five fields of view were photographed at a magnification of about 5,000 times using a transmission electron microscope. By observing the size and number, the grain boundary occupancy of the grain boundary precipitates and the number per unit area of the intragranular crystal precipitates can be evaluated.
[0016]
In order to improve the deep drawability and mold squeezing property of such an aluminum alloy plate, an alkali-soluble lubricating coating applied to the surface will be described below. This is an alkali-soluble lubricating resin film containing a granular lubricating function-imparting agent with a constant film thickness. First, there are polyethylene glycol-based, polypropylene glycol-based, polyvinyl alcohol-based, acrylic-based, polyester-based, etc. as the alkali-soluble lubricating film that dissolves and removes the film in an alkali solution. Must be a dispersion or water soluble resin. In the polyethylene glycol type, polyethylene glycol and modified polyethylene glycol having an average molecular weight of 3000 or more can be mentioned from the viewpoint of film formation. Examples of the modified polyethylene glycol include isocyanate-modified polyethylene glycol and epoxy-modified polyethylene glycol.
[0017]
In the polypropylene glycol type, polypropylene glycol having a mean molecular weight of 3000 or more and modified polypropylene glycol can be mentioned from the viewpoint of film formation. Examples of the modified polypropylene glycol include isocyanate-modified polypropylene glycol and epoxy-modified polypropylene glycol.
Examples of the polyvinyl alcohol include completely saponified polyvinyl alcohol, partially saponified polyvinyl alcohol, and modified polyvinyl alcohol. Examples of the modified polyvinyl alcohol include carboxyl group-modified polyvinyl alcohol, sulfonic acid polyvinyl alcohol, and acetoacetyl group polyvinyl alcohol.
[0018]
Examples of the acrylic type include copolymers of acrylic acid, methacrylic acid, acrylic acid ester, methacrylic acid ester, maleic acid, and itaconic acid. Examples of acrylic esters include methyl acrylate, ethyl acrylate, isopropyl acrylate, nbutyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate. Nbutyl methacrylate, isobutyl methacrylate, n-hexyl methacrylate, lauryl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, and the like. Examples of the copolymer include styrene, acrylamide, vinyl acetate, and acrylonitrile.
[0019]
For polyesters, examples of the polyhydric alcohol constituting the polyester include ethylene glycol, propylene glycol, 1,3 butylene glycol, 1,6 hexanediol, diethylene glycol, dipropylene glycol, neopentyl glycol, and triethylene glycol. Examples of the polybasic acid include phthalic anhydride, terephthalic acid isophthalate, succinic anhydride, adipic acid, azelaic acid, sebacic acid, fumaric acid, itaconic acid, maleic anhydride, and the like.
[0020]
When the thickness of the lubricating resin film coated on the aluminum alloy plate of the present invention is less than 0.5 μm, the occurrence of mold galling and scratches due to pressing during press working cannot be prevented, and sliding is added. The required processability cannot be obtained. This effect is significant when the thickness is up to 5 μm, but the effect does not change even if the thickness is exceeded. Therefore, the thickness of the lubricating resin film is in the range of 0.5 to 5 μm. The lubricating resin film of the present invention is coated on both sides or one side of the plate according to the purpose.
[0021]
Next, the lubricating function imparting agent will be described.
The granular lubrication function-imparting agent has a function of further imparting lubricity by reducing the friction coefficient of the surface, preventing galling and the like, and improving press workability and ironing workability. Any lubricating function-imparting agent may be used as long as it imparts lubricating performance to the resulting film. Polyolefin-based (polyethylene, polypropylene, etc.), fluorine-based (polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride) , Polyvinyl fluoride, etc.), paraffin-based and stearic acid-based waxes are preferred.
[0022]
The addition amount of the lubricating function imparting agent is quality If the amount is less than 2%, the required lubrication effect cannot be obtained, and if it exceeds 15%, there is a problem that the film strength is lowered or the lubricant imparting agent is peeled off, so 2 to 15% is preferable. .
Silica is added to improve the film strength and the adhesion to the alloy plate. The silica particles may be any silica particles such as water-dispersible colloidal silica, pulverized silica, and vapor phase method silica. Considering the workability of the film and the expression of corrosion resistance, the primary particle diameter is preferably 2 to 30 nm and the secondary aggregate particle diameter is preferably 100 nm or less. As addition amount of silica quality The amount is preferably 1 to 30%. If it is less than 1%, the effect of improving the adhesion to the lower layer cannot be obtained. If it exceeds 30%, the elongation of the film is reduced, so that the workability is lowered, and mold galling is likely to occur.
[0023]
In addition to the above, the alkali-soluble lubricating resin film of the present invention includes a pigment for imparting design properties, a conductive additive for imparting conductivity, and the like, in a range that does not deteriorate the film performance depending on the purpose. Can be added within.
In the present invention, the base may be subjected to phosphate treatment or chromate treatment in order to obtain further corrosion resistance and adhesion. In this case, as the chromate treatment, any of electrolytic chromate, reactive chromate and coating chromate can be used. The chromate film is preferably obtained by applying a chromate solution containing at least one of silica, phosphoric acid, and hydrophilic resin to reduced chromic acid and drying it.
[0024]
The amount of phosphate adhered is 0.5 to 3.5 g / m as phosphate. 2 The range of is preferable. The amount of chromate attached is 5 to 150 mg / m in terms of chromium metal. 2 The range is preferably 10 to 50 mg / m. 2 It is. 5mg / m 2 If it is less than 150 mg / m, an excellent corrosion resistance effect cannot be obtained. 2 Exceeding the above causes deterioration of workability such as cohesive failure of the chromate film during molding. Furthermore, pickling treatment, alkali treatment, electrolytic reduction treatment, cobalt plating treatment, nickel plating treatment, and silane coupling treatment inorganic silicate treatment may be applied to the base according to the purpose.
[0025]
As a method for forming a lubricating resin film, an aqueous solution or water dispersion containing a resin component and a particulate lubricating function-imparting agent can be applied, baked and dried by a conventionally known method such as a roll coater coating method or a spray method.
In the lubricating coated aluminum alloy plate of the present invention, lubricating oil or lubricating rust preventive oil can be applied to the upper layer of the lubricating coating. However, the lubricating oil or lubricating rust preventive oil to be applied is preferably one that does not swell or dissolve the lubricating coating of the present invention.
[0026]
【Example】
Next, based on an Example, this invention is demonstrated concretely.
Example 1
Each aluminum alloy shown in Table 1 was cast by a DC casting method according to a conventional method, and the obtained ingot was subjected to homogenization treatment at 530 ° C. × 5 hr, and then hot-rolled to obtain a hot-rolled sheet. Subsequently, after performing an intermediate annealing of 530 ° C. × 1 min, a cold-rolled sheet having a thickness of 1 mm was manufactured and subjected to a solution treatment of 540 ° C. × 10 sec. The cooling rate between 540 ° C. and 200 ° C. at this time was 19 ° C./sec. Further, a stabilization treatment of 80 ° C. × 5 hr was performed immediately after the solution treatment.
[0027]
[Table 1]
Figure 0004456238
[0028]
Next, 10% of a low density polyethylene wax having a softening point of 110 ° C. and an average particle diameter of 1.0 μm is added to an aqueous solution of a polyester urethane resin. quality After mixing in an amount of% and coating the surface of the alloy plate with a bar coater, it was baked and dried at an alloy plate arrival temperature of 80 ° C. using a 180 ° C. heating furnace to form a 1 μm thick lubricating resin film.
The precipitation state of the sample was evaluated by measuring the size and number of precipitates observed in the range of five fields of view at 5000 times with a transmission electron microscope at a 5000 × magnification. The tensile test was performed in accordance with JIS, and the BH property was evaluated by giving a tensile strain of 2% to the tensile test piece, and then performing heat treatment at 170 ° C. for 20 minutes, and measuring the proof stress.
[0029]
For formability evaluation, bulging, deep drawing and bending were performed. The stretch formability was evaluated by an Erichsen value according to JIS, and the deep drawability was evaluated by a limit drawing ratio (LDR) by conducting a cylindrical deep draw test under the conditions of a punch diameter of 50 mm and a punch shoulder radius of 5 mm. In the bending test, 180 ° bending was performed with an inner radius of 0.5 t, the appearance of the outer portion was observed, and evaluation was made as “O” when no cracks occurred and “X” when cracks occurred.
[0030]
Corrosion resistance is obtained by removing the lubricant film on the surface by alkali degreasing and water washing, zinc phosphate treatment, water washing and painting, putting artificial scissors on the sample surface with a knife, spraying with salt water, moistening, and threading. Rust was evaluated. The evaluation of the thread rust property was performed on the basis of the maximum thread rust length, and less than 1 mm was marked as ◯, and 1 mm or more was marked as x.
Furthermore, the mold galling property, the state of resin residue after processing and the degreasing property were evaluated. The mold squeezing property and the state of resin residue after processing were performed by a molding test using a cylindrical punch hydraulic forming tester with a punch diameter of 40 mm, a punch shoulder radius of 4 mm, a die diameter of 43 mm, a die shoulder radius of 4 mm, and a wrinkle holding force of 1 ton. evaluated.
[0031]
The mold galling property was evaluated according to the following index by visually observing the appearance of the side wall.
A: Formable and no defects on the alloy plate surface
○: Formable, no defects on the alloy plate surface, slightly discolored sliding surface
Δ: Formable and slight galling occurs on the alloy plate surface
×: Can be formed and a large number of linear gallings occur on the alloy plate surface
[0032]
Moreover, the state of resin residue generation after processing was evaluated by the following index.
A: No residue generated
○: Slight resin residue generated
△: Slight resin residue generated
×: Resin residue generated
[0033]
Degreasing is performed by spraying FC-4358 degreasing liquid (manufactured by Nihon Parkerizing, adjusted to pH = 10.5, temperature 70 ° C.) on a test piece for 8 seconds, washing with water, and measuring the film remaining rate after drying by infrared spectroscopic analysis. Measured by the following indicators.
A: No film remaining
○: film remaining 5% or less
Δ: More than 5% of film remaining and 10% or less
×: More than 10% remaining film
[0034]
Table 2 shows the results of evaluating the state of precipitates, mechanical properties, yield strength after BH, formability (Ericsen value, LDR and bendability), thread rust occurrence, mold galling, resin residue generation and film removal. Shown in The alloys A1 to A12 shown in the present invention have a small proportion of grain boundaries in a precipitation state within a specified range, have excellent formability and corrosion resistance, and have high BH properties. In addition, resin debris hardly occurs after processing and has excellent degreasing properties.
[0035]
On the other hand, among the alloys shown in the comparative examples, B1 has an Mg content and B3 has an Si content less than the range of the present invention, so that the BH property and the Erichsen value are insufficient. Moreover, since B2 has a large amount of Mg and B4 has a large amount of Si, B6 has a large amount of Cu and the amount of Mg + Cu exceeds the range of the present invention. Erichsen value, bendability and yarn rust resistance are reduced. Since B5 has a small amount of Cu, the Erichsen value is insufficient, and since B7 has a large amount of Zn, the rust resistance is lowered. Further, in the alloys of B8 to 13, since the addition amount of Mn, Cr, Zr, Fe, Ti and B is out of the range specified in the present invention, the distribution of crystal precipitates is out of the range specified in the present invention. As a result, the bendability and the Erichsen value are lowered.
[0036]
[Table 2]
Figure 0004456238
[0037]
(Example 2)
The cold-rolled sheet of invention alloy A in Table 1 was subjected to a solution treatment at 540 ° C. × 10 sec. The cooling rate between 540 ° C. and 200 ° C. at this time was 19 ° C./sec. Further, a stabilization treatment of 80 ° C. × 5 hr was performed immediately after the solution treatment.
The surface of this aluminum alloy is basically untreated with chromate, but for a certain level, a coating type in which colloidal silica is added to chromic acid with a chromium reduction rate (Cr (VI) / total Cr) = 0.4. Chromate solution is 20 mg / m in terms of metal chromium in the amount of chromium deposited on the roll coater. 2 Then, it was heated and dried to form a chromate film.
[0038]
Next, polyethylene wax, polytetrafluoroethylene wax, synthetic paraffin wax, calcium stearate wax, and colloidal silica are mixed in an aqueous solution or dispersion of polyethylene glycol, polypropylene glycol, and acrylic resin in the composition shown in Table 3, and the bar is mixed. The coater was applied and baked and dried at an alloy plate reaching temperature of 80 ° C. using a 180 ° C. heating furnace to form a lubricating resin film. In addition, as a comparative material for workability evaluation, a material obtained by applying Johnson wax # 122 to the above aluminum alloy plate was used.
[0039]
These samples were evaluated in the same manner as in Example 1 for deep drawability, die squeeze, post-processing resin residue generation and degreasing properties, and are shown in Table 3.
As shown in Table 3, no. Any of the alkali-soluble lubricant-coated aluminum alloy plates in the range of 26 to 46 of the present invention is excellent in deep drawability and mold galling, hardly causes resin residue after processing, and is excellent in degreasing properties. On the other hand, Comparative Example No. No. 47 has a thin lubricating film, so no. Since No. 48 has a small content of the granular lubricating function-imparting agent, the mold galling property is insufficient. On the other hand, no. Since No. 49 has a large content of the granular lubricating function imparting agent, resin residue is generated after processing.
[0040]
[Table 3]
Figure 0004456238
[0041]
【The invention's effect】
As described above, according to the present invention, an alkali-soluble lubricity-coated aluminum alloy plate excellent in formability and corrosion resistance can be provided.

Claims (3)

量%で、
Mg:0.1〜0.65%、
Si:0.4〜2.0%、
Cu:0.8〜1.4%、
Mg+Cu:0.9〜1.5%
を含有し
Zn:0.03〜2.5%、
Mn:0.03〜0.5%、
Cr:0.03〜0.2%、
Zr:0.03〜0.15%、
V :0.03〜0.15%、
Fe:0.03〜0.3%、
Ti:0.005〜0.1%
B :0.005〜0.1%
のうちの1種または2種以上を、さらに含有し、残部はAl及び不可避的不純物からなるAl合金であって、結晶粒界上のCuを含有する析出物の最大径が0.5μm以下で、かつ、その結晶粒界面に占める割合が5%以下であり、さらに、粒内に0.2μm以上の最大径を有する晶析出物が、100μm2 当たり20個未満であり、両面又は片面の表面に、粒状潤滑機能付与剤を2〜15量%含有したアルカリ可溶型潤滑樹脂皮膜が0.5〜5μm形成されたことを特徴とする、耐食性および成形性に優れたアルカリ可溶型潤滑被覆アルミニウム合金板。
In mass%,
Mg: 0.1 to 0.65%,
Si: 0.4-2.0%,
Cu: 0.8 to 1.4%,
Mg + Cu: 0.9 to 1.5%
Contain,
Zn: 0.03-2.5%,
Mn: 0.03 to 0.5%,
Cr: 0.03-0.2%,
Zr: 0.03 to 0.15%,
V: 0.03-0.15%,
Fe: 0.03-0.3%,
Ti: 0.005 to 0.1%
B: 0.005-0.1%
1 or 2 or more of them, and the balance is an Al alloy consisting of Al and inevitable impurities, and the maximum diameter of the precipitate containing Cu on the grain boundaries is 0.5 μm or less. And the ratio of the crystal grain interface to the crystal grain interface is 5% or less, and the number of crystal precipitates having a maximum diameter of 0.2 μm or more in the grain is less than 20 per 100 μm 2. in, wherein the alkali-soluble lubricating resin film and the granular lubricating function-imparting agent contains 2 to 15 mass% is formed 0.5 to 5 [mu] m, an alkali-soluble lubricating excellent in corrosion resistance and formability Coated aluminum alloy plate.
請求項1に記載のアルミニウム合金板において、粒状潤滑機能付与剤を2〜15量%、シリカ粒子を1〜30量%含有したアルカリ可溶型潤滑樹脂皮膜が0.5〜5μm形成されたことを特徴とする、耐食性および成形性に優れたアルカリ可溶型潤滑被覆アルミニウム合金板。In the aluminum alloy sheet according to claim 1, the granular lubricating function-imparting agent 2-15 mass%, alkali-soluble lubricating resin film of silica particles containing 1-30 mass% is formed 0.5~5μm An alkali-soluble lubricity-coated aluminum alloy plate excellent in corrosion resistance and formability, characterized in that 粒状潤滑機能付与剤が、ポリオレフィン系ワックス、フッ素系ワックス、パラフィン系ワックス、ステアリン酸系ワックスのうちの1種または2種以上からなる請求項1または請求項2に記載の、耐食性および成形性に優れたアルカリ可溶型潤滑被覆アルミニウム合金板。  The particulate lubrication function-imparting agent is composed of one or more of polyolefin wax, fluorine wax, paraffin wax, and stearic acid wax. Excellent alkali-soluble lubricant-coated aluminum alloy plate.
JP2000230125A 2000-07-31 2000-07-31 Alkali-soluble lubricant-coated aluminum alloy plate with excellent corrosion resistance and formability Expired - Fee Related JP4456238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000230125A JP4456238B2 (en) 2000-07-31 2000-07-31 Alkali-soluble lubricant-coated aluminum alloy plate with excellent corrosion resistance and formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000230125A JP4456238B2 (en) 2000-07-31 2000-07-31 Alkali-soluble lubricant-coated aluminum alloy plate with excellent corrosion resistance and formability

Publications (2)

Publication Number Publication Date
JP2002047580A JP2002047580A (en) 2002-02-15
JP4456238B2 true JP4456238B2 (en) 2010-04-28

Family

ID=18723131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000230125A Expired - Fee Related JP4456238B2 (en) 2000-07-31 2000-07-31 Alkali-soluble lubricant-coated aluminum alloy plate with excellent corrosion resistance and formability

Country Status (1)

Country Link
JP (1) JP4456238B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2856368B1 (en) * 2003-06-18 2005-07-22 Pechiney Rhenalu BODY PIECE OF AUTOMOBILE BODY IN ALLOY SHEET AI-SI-MG FIXED ON STRUCTURE STEEL
US8445106B2 (en) 2005-08-02 2013-05-21 Kobe Steel, Ltd. Resin-coated metal sheet and resin composition
JP4728191B2 (en) * 2005-08-02 2011-07-20 株式会社神戸製鋼所 Resin-coated metal plate and resin composition
JP4787625B2 (en) * 2006-02-13 2011-10-05 株式会社神戸製鋼所 Lubricating composition coated metal sheet
JP7264783B2 (en) * 2019-09-19 2023-04-25 株式会社神戸製鋼所 Lubricating film coated aluminum plate
CN110964936B (en) * 2019-12-16 2021-04-02 金联电力设备有限公司 Production process of high-strength corrosion-resistant aluminum alloy for power line hardware

Also Published As

Publication number Publication date
JP2002047580A (en) 2002-02-15

Similar Documents

Publication Publication Date Title
TWI686510B (en) Coated steel
JP6121070B1 (en) Surface treatment solution for hot-pressed plated steel sheet
WO2002079533A1 (en) Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof
TWI623649B (en) Hot-pressed aluminized steel sheet and manufacturing method of hot-pressed aluminized steel sheet
KR20150060904A (en) Hot-dip galvanized steel sheet
TWI792602B (en) Coated steel product
JP2002371333A (en) Aluminum alloy sheet superior in formability, coating/ baking hardenability and corrosion resistance, and manufacturing method therefor
JP3802695B2 (en) Aluminum alloy plate with excellent press formability and hemmability
JP2005089780A (en) Lubricating surface-treated metallic base material excellent in formability and weldability
JP4456238B2 (en) Alkali-soluble lubricant-coated aluminum alloy plate with excellent corrosion resistance and formability
JP4787625B2 (en) Lubricating composition coated metal sheet
JP4818509B2 (en) Paint bake hardening and press forming aluminum alloy plate and method for producing the same
JP2002371332A (en) Aluminum alloy sheet superior in formability and coating /baking hardenability, and manufacturing method therefor
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
JP4171141B2 (en) Aluminum alloy material with excellent yarn rust resistance
JP2001329328A (en) Aluminum alloy sheet excellent in coating/baking hardenability and workability and its production method
JP5551881B2 (en) Resin-coated high-strength galvannealed steel sheet with excellent press formability
JP6585436B2 (en) Aluminum alloy plate for automobile body panel excellent in yarn rust resistance, paint bake hardenability and processability, and production method thereof, and automobile body panel using the same and production method thereof
RU2463385C1 (en) Plate from titanium or titanium alloy with perfect ratio between stamping capability and strength
JP5206216B2 (en) Anti-glare hot-dip galvanized steel sheet and method for producing the same
JP2006026938A (en) Water soluble lubricating resin coated anodic oxidation treatment plate excellent in molding processability
JP4249092B2 (en) Method for producing Al-Mg-Si aluminum alloy sheet with excellent corrosion resistance after painting
JP2006265702A (en) Cold-rolled aluminum alloy sheet for bottle-shaped can superior in high temperature property
JP7264783B2 (en) Lubricating film coated aluminum plate
JP3060943B2 (en) Surface treatment liquid and metal sheet for film formation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4456238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees