JP4455096B2 - Saw wire cutting device - Google Patents

Saw wire cutting device Download PDF

Info

Publication number
JP4455096B2
JP4455096B2 JP2004050843A JP2004050843A JP4455096B2 JP 4455096 B2 JP4455096 B2 JP 4455096B2 JP 2004050843 A JP2004050843 A JP 2004050843A JP 2004050843 A JP2004050843 A JP 2004050843A JP 4455096 B2 JP4455096 B2 JP 4455096B2
Authority
JP
Japan
Prior art keywords
wire
saw wire
saw
workpiece
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004050843A
Other languages
Japanese (ja)
Other versions
JP2005238377A (en
Inventor
寛之 大上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKUSEN CO.,LTD
Original Assignee
TOKUSEN CO.,LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKUSEN CO.,LTD filed Critical TOKUSEN CO.,LTD
Priority to JP2004050843A priority Critical patent/JP4455096B2/en
Publication of JP2005238377A publication Critical patent/JP2005238377A/en
Application granted granted Critical
Publication of JP4455096B2 publication Critical patent/JP4455096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、半導体、セラミックなどの硬質材料の切断用ワイヤソーに好適なワイヤ(以下「ソーワイヤ」という)に関する。   The present invention relates to a wire suitable for a wire saw for cutting hard materials such as semiconductors and ceramics (hereinafter referred to as “saw wire”).

現在、半導体材料のマルチワイヤソーによるワイヤスライシング加工において、遊離砥粒を用いた遊離砥粒方式と、ワイヤ表面にダイヤモンド砥粒を固着させたダイヤモンドワイヤ工具を用いた固定砥粒方式とが一般的である。
そして、いずれの方式においても、ソーワイヤには、切断時にかかる張力に耐えうる強度が必要なため、通常高炭素鋼線材やピアノ線材が使用されている。
従来、このようなソーワイヤは、直径5mm程度の原線に伸線加工とパテンティング処理を繰り返し施すことにより製造されている。したがって、その断面形状を、例えば特許文献1にも記載されているように、円形に形成されている(図13参照)。
特開2001−225255号公報
At present, in wire slicing processing using a multi-wire saw of semiconductor materials, there are two general methods: a loose abrasive method using loose abrasive grains and a fixed abrasive grain method using diamond wire tools with diamond abrasive grains fixed to the wire surface. is there.
In any of the systems, since the saw wire needs to be strong enough to withstand the tension applied at the time of cutting, a high carbon steel wire or a piano wire is usually used.
Conventionally, such a saw wire is manufactured by repeatedly performing a drawing process and a patenting process on an original wire having a diameter of about 5 mm. Therefore, the cross-sectional shape is formed in a circular shape as described in, for example, Patent Document 1 (see FIG. 13).
JP 2001-225255 A

上述のような、断面円形のソーワイヤは、図14に示すようなワイヤソー装置により、半導体材料(ワーク)05の切断に使用される。図14は往復動型ワイヤソー装置を示しており、この装置は、ソーワイヤの送出しおよび巻取り部A、切断加工部B、ワイヤ張力調整部Cで構成されている。
2連のドラム01から送出されたワイヤ02は、ガイドプーリー04を介して切断加工部B、ワイヤ張力調整部Cの順に通り、2連ドラム01のもう一方の片側に巻取られる。2連ドラム01はモータ03が正逆運転するので、ソーワイヤ02の送出しと巻取りとを同時に行うことによって、ソーワイヤ02は往復運動し、切断加工部Bにおいて、ワーク05を切断加工することが可能となる。ワイヤ張力調整部Cはトルクモータ08、トルクアーム06およびテンションプーリー07から構成されており、トルクモータ08の回転によりソーワイヤ02に一定の張力が与えられる。切断加工部Bは主にガイドプーリーおよびスライダーから構成されており、スライダーにはワークを取り付けられるための加工台が取り付けている。
The saw wire having a circular cross section as described above is used for cutting the semiconductor material (workpiece) 05 by a wire saw apparatus as shown in FIG. FIG. 14 shows a reciprocating wire saw device, which is composed of a saw wire feeding and winding unit A, a cutting unit B, and a wire tension adjusting unit C.
The wire 02 delivered from the double drum 01 passes through the guide pulley 04 in the order of the cutting portion B and the wire tension adjustment portion C, and is wound around the other side of the double drum 01. Since the motor 03 of the double drum 01 is operated in the forward and reverse directions, the saw wire 02 is reciprocated by simultaneously sending and winding the saw wire 02, and the workpiece 05 can be cut in the cutting portion B. It becomes possible. The wire tension adjusting unit C includes a torque motor 08, a torque arm 06, and a tension pulley 07, and a constant tension is applied to the saw wire 02 by the rotation of the torque motor 08. The cutting part B is mainly composed of a guide pulley and a slider, and a processing table for attaching a work is attached to the slider.

円形断面のソーワイヤを使用して、上述のようなワイヤソー装置により、半導体材料(ワーク)の切断を行うと、その切断加工時に、ソーワイヤの断面形状が従来は円形であるため、ワーク面圧が均一に分散し、その結果加工能率が低くなるという課題がある。   When a semiconductor material (workpiece) is cut by a wire saw device as described above using a saw wire with a circular cross section, the work surface pressure is uniform because the cross-sectional shape of the saw wire is conventionally circular during the cutting process. There is a problem that the processing efficiency is lowered as a result.

本発明は、このような課題を解決しようとするもので、本発明は、ソーワイヤの断面形状として断面三角形状の捩れを有しないワイヤを利用することにより、エッジ効果(ソーワイヤの角部がワークに当接した時にワーク当接面積が減少し、その結果ワーク面圧が上昇して切削性能が向上するという効果)と、ソーワイヤがガイドプーリーとワーク面との間を移動中に発生するソーワイヤの捩れ効果(ソーワイヤがガイドプーリーとワーク面との間を移動中にソーワイヤに捩れが発生し、この捩れにより、切り粉の排出が促進されるという効果)とにより、切断能率の向上を可能にしたソーワイヤによる切断装置を提供しようとするものである。
The present invention is intended to solve such problems. The present invention uses a wire that does not have a twist of a triangular cross-section as a cross- sectional shape of the saw wire. The contact area of the workpiece decreases when it abuts, resulting in an increase in workpiece surface pressure and improved cutting performance), and the saw wire twisting while the saw wire moves between the guide pulley and the workpiece surface Saw wire that can improve cutting efficiency due to the effect (the saw wire is twisted while the saw wire is moving between the guide pulley and the work surface, and this twist promotes the discharge of chips) It is intended to provide a cutting device .

本発明は、ソーワイヤの断面を三角形形状に形成したものを利用し、且つV型溝でソーワイヤを案内する切断装置とすることで課題解決の手段としている。
The present invention is a means for solving the problem by utilizing a saw wire having a triangular cross section and guiding the saw wire with a V-shaped groove .

さらに、ソーワイヤの表面に、砥粒、例えばダイヤモンド砥粒を固定、特に電着方式により固定したものを用いると尚良い。
Furthermore, it is more preferable to use abrasive grains fixed on the surface of the saw wire, for example, diamond abrasive grains, particularly those fixed by an electrodeposition method .

本発明のソーワイヤでは、その断面が三角形状に形成されているので、ソーワイヤの角部がワークに当接した時にワーク当接面積が減少し、その結果、加工時の単位当たりのワーク面圧を上昇させることができて、切削性能を向上することが可能となる(この効果を「エッジ効果」という)。 In the saw wire of the present invention, since the cross section is formed in a triangular shape , the work contact area decreases when the corner of the saw wire comes into contact with the work, and as a result, the work surface pressure per unit during processing is reduced. The cutting performance can be improved (this effect is referred to as “edge effect”).

また、ソーワイヤがガイドプーリーとワーク面との間を移動中にソーワイヤに捩れが発生する。このソーワイヤの捩れにより、切り粉のソーワイヤからの分離がスムーズとなって目詰まりが減り、さらにソーワイヤのワークに当たっていない面に沿って切り粉がソーワイヤとともに切断箇所から外部に連れ出される現象が発生し、これにより切り粉の排出が良好に行われて切断能率の向上が可能になる(この効果を「ソーワイヤの捩れ効果」という)。   Further, the saw wire is twisted while the saw wire moves between the guide pulley and the work surface. Due to this twisting of the saw wire, the separation of the chips from the saw wire becomes smoother and clogging is reduced, and further, a phenomenon occurs in which the chips are taken out together with the saw wire from the cut portion along the surface not hitting the workpiece of the saw wire, As a result, the chips are discharged well and the cutting efficiency can be improved (this effect is referred to as “the twisting effect of the saw wire”).

以下、図面とともに本発明の一実施形態について説明する。
図1はソーワイヤの製作工程を示す概略図断面図、図2、図3はソーワイヤの加工能率の実験結果を示すグラフ、図4はソーワイヤの切断方向における加工面粗さの実験結果を示すグラフ、図5は同ワイヤ走行方向における加工面粗さの実験結果を示すグラフ、図6はソーワイヤの切断方向における加工面うねりの実験結果を示すグラフ、図7は同ワイヤ走行方向における加工面うねりの実験結果を示すグラフ、図8はソーワイヤのワイヤ走行方向における平均砥粒径と加工面粗さとの関係の実験結果を示すグラフ、図9はソーワイヤの加工能率と加工面うねりとの関係の実験結果を示すグラフ、図10は切断加工部「B」の模試図、図11(a)は図10のX−X線断面図、(b)は図10のY−Y線断面図、(c)は図10のZ−Z線断面図、図12はソーワイヤによる切断部の一部の拡大断面図である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
1 is a schematic cross-sectional view showing a manufacturing process of a saw wire, FIG. 2 and FIG. 3 are graphs showing experimental results of the processing efficiency of the saw wire, and FIG. 4 is a graph showing experimental results of the processing surface roughness in the cutting direction of the saw wire, FIG. 5 is a graph showing experimental results of the machined surface roughness in the wire running direction, FIG. 6 is a graph showing experimental results of the machined surface waviness in the saw wire cutting direction, and FIG. 7 is an experiment of machined surface waviness in the wire running direction. FIG. 8 is a graph showing results, FIG. 8 is a graph showing experimental results of the relationship between the average abrasive grain size in the wire traveling direction of the saw wire and the processed surface roughness, and FIG. 9 is an experimental result of the relationship between the processing efficiency of the saw wire and the waviness of the processed surface. FIG. 10 is a schematic diagram of the cutting portion “B”, FIG. 11A is a cross-sectional view taken along the line XX of FIG. 10, (b) is a cross-sectional view taken along the line Y-Y of FIG. 10, and FIG. ZZ line break in FIG. FIG, 12 is an enlarged cross-sectional view of a portion of the cut by the saw wire.

図1に示すように、この実施形態のソーワイヤ4は、SWRS82材(φ5.5mm)1(母材)にパテンティングおよび冷間伸線加工を施し、線径0.2mmのワイヤに仕上げ、次にこのワイヤを圧延して一片の長さが約0.23mm、高さ約0.21mmの断面形状が略正三角形のワイヤ2を製作する。
ついで、このワイヤ2の表面に、通常の方法により、つまり電着方式により、ダイヤモンド砥粒3を固着して、断面正三角形のダイヤモンド砥粒ソーワイヤ4(以下「ソーワイヤ4」という)を得ることができる。この実施形態のものでは、ダイヤモンド砥粒3はその平均砥粒径が0.03〜の0.04mm、砥粒層の厚みは0.050mmである。
As shown in FIG. 1, the saw wire 4 of this embodiment is subjected to patenting and cold drawing on a SWRS82 material (φ5.5 mm) 1 (base material) to finish a wire having a wire diameter of 0.2 mm. The wire 2 is rolled to produce a wire 2 having a substantially equilateral triangular cross section with a piece length of about 0.23 mm and a height of about 0.21 mm.
Then, diamond abrasive grains 3 are fixed to the surface of the wire 2 by a normal method, that is, by electrodeposition, to obtain a diamond abrasive saw wire 4 (hereinafter referred to as “saw wire 4”) having a regular triangular cross section. it can. In this embodiment, the diamond abrasive grain 3 has an average abrasive grain size of 0.03 to 0.04 mm, and the abrasive grain layer has a thickness of 0.050 mm.

図2、3は上記工程により製作されたソーワイヤ4の切断加工試験の結果を示している。この切断加工試験の加工条件は次の通りである。
工作物:ソーダガラス
工作物寸法:50×40×10mm
ソーワイヤの長さ:12m
加工荷重:1.96N/Wire
ソーワイヤ張力:19.6N
ソーワイヤ走行速度:100m/min.
加工液:軽油
加工時間:15min.
図2、3に示す通り、従来のソーワイヤでは、固定されている砥粒3の径φが10〜40μmの範囲のソーワイヤ4の加工能率は、加工回数10回前後で安定している。しかし、砥粒径φが65〜80μmのソーワイヤでは、砥粒の保持力を向上させるため、メッキ層が厚くなり、その結果ソーワイヤの径が太くなって、ねじり強度が弱くなり加工回数10回前後で破断してしまう結果となった。
これに較べて、この実施形態のソーワイヤ4は、加工能率がほぼ530μm/minで安定している。このような加工能率のものを従来の円形断面のソーワイヤで得ようとすると、そのソーワイヤでは砥粒径φが120〜150μm となり実用上問題がある。つまり砥粒径φが65〜80μmのソーワイヤですら加工回数10回前後で破断してしまうことからみて、加工能率がほぼ530μm/min.という加工能率のものを、従来の円形断面のソーワイヤで得ようとするのは到底実現不可能なことである。
2 and 3 show the results of a cutting test of the saw wire 4 manufactured by the above process. The processing conditions of this cutting processing test are as follows.
Workpiece: Soda glass Workpiece dimension: 50 × 40 × 10mm
Saw wire length: 12m
Processing load: 1.96N / Wire
Saw wire tension: 19.6N
Saw wire traveling speed: 100 m / min.
Processing fluid: Light oil Processing time: 15 min.
As shown in FIGS. 2 and 3, in the conventional saw wire, the processing efficiency of the saw wire 4 in the range where the diameter φ of the fixed abrasive grain 3 is 10 to 40 μm is stable around the number of processing 10 times. However, in the case of a saw wire having an abrasive grain diameter φ of 65 to 80 μm, in order to improve the holding power of the abrasive grain, the plating layer becomes thick, and as a result, the diameter of the saw wire becomes thicker and the torsion strength becomes weaker, and the number of times of processing is around 10 times. As a result, it was broken.
In comparison, the saw wire 4 of this embodiment is stable at a processing efficiency of approximately 530 μm / min. If an attempt is made to obtain such a processing efficiency with a conventional saw wire having a circular cross section, the saw wire has an abrasive particle diameter φ of 120 to 150 μm, which is problematic in practice. In other words, even a saw wire with an abrasive grain diameter φ of 65 to 80 μm is broken when the number of times of machining is around 10, and the machining efficiency is about 530 μm / min. It is impossible to achieve the processing efficiency of the conventional circular saw wire.

このように、この実施形態のソーワイヤ4は、加工能率がほぼ530μm/min.で30回以上の加工回数にも耐えうることが試験の結果判明した。加工能率がほぼ530μm/min.であるということは、砥粒径φが15〜30μmの従来の一般的な円形断面のソーワイヤのものの約2倍の加工能率であるということができる。
さらに、加工面(表面)粗さ、および加工面(表面)うねりについては、試験により、それぞれ図4〜7に示す通りの結果が得られた。なお、図4〜7における従来のソーワイヤは、線径:0.29mm、砥粒径:0.030〜0.040mm、母線径:0.20mmである。
Thus, the saw wire 4 of this embodiment has a processing efficiency of approximately 530 μm / min. As a result of testing, it was found that it can withstand more than 30 machining cycles. The processing efficiency is approximately 530 μm / min. It can be said that the processing efficiency is about twice that of a conventional general circular cross-section saw wire having an abrasive grain diameter φ of 15 to 30 μm.
Further, with respect to the processed surface (surface) roughness and the processed surface (surface) waviness, the results as shown in FIGS. In addition, the conventional saw wire in FIGS. 4-7 is wire diameter: 0.29mm, abrasive grain diameter: 0.030-0.040mm, bus-bar diameter: 0.20mm.

すなわち、加工面(表面)粗さについては、平均砥粒径がほぼ同じ場合、従来の(断面
円形の)ソーワイヤに較べて、切断方向およびワイヤ走行方向について、若干性能の低下が認められた(図4、5参照)。
また、加工面(表面)うねりについては、平均砥粒径がほぼ同じ場合、従来の(断面円形の)ソーワイヤに較べて、切断方向およびワイヤ走行方向について、若干性能の低下が認められた(図6、7参照)。
In other words, with respect to the processed surface (surface) roughness, when the average abrasive grain size was almost the same, a slight decrease in performance was observed in the cutting direction and the wire running direction as compared to the conventional (circular cross-section) saw wire ( (See FIGS. 4 and 5).
In addition, with respect to the processed surface (surface) waviness, when the average abrasive grain size was almost the same, a slight decrease in performance was observed in the cutting direction and the wire running direction compared to the conventional (circular cross-section) saw wire (Fig. 6 and 7).

しかしながら、図8、9に示す通り、この実施形態のソーワイヤ4は、加工面(表面)粗さについては、平均砥粒径がφ30〜40μmの従来の(断面円形の)ソーワイヤの加工面(表面)粗さに相当する性能をそなえ(図8参照)、また加工面(表面)うねりについては、φ10〜20μmの従来の(断面円形の)ソーワイヤの加工面(表面)うねりに相当する性能をそなえている(図9参照)ことが判明した。   However, as shown in FIGS. 8 and 9, the saw wire 4 of this embodiment has a processed surface (surface) roughness of the processed surface (surface) of a conventional (circular cross-section) saw wire having an average abrasive grain size of φ30 to 40 μm. ) Providing performance equivalent to roughness (see FIG. 8), and processing surface (surface) waviness has performance equivalent to the processing surface (surface) waviness of conventional (circular cross-section) φ10-20 μm saw wires. (See FIG. 9).

さらに、この実施形態のソーワイヤ4の切断加工状態を高速度カメラにより撮影し、その画像を解析することにより、ソーワイヤ4はガイドプーリーとワークとの間において、捩れながら走行していることが判明した。
この「捩れ」は、次に述べる理由により発生するものと推測される。
Further, the cutting state of the saw wire 4 of this embodiment was photographed with a high-speed camera, and by analyzing the image, it was found that the saw wire 4 was running while being twisted between the guide pulley and the workpiece. .
This “twist” is presumed to occur for the following reason.

すなわち、図11に示すように、ソーワイヤ4は三角形断面に形成されている。一方ガイドプーリー14はV型溝をそなえており、このV型溝でソーワイヤ4を案内する構成となっている。ソーワイヤ4には所定値の張力が付与され、一方ワーク15は矢W方向に押圧されていることから、ガイドプーリー14に接当する箇所では、ソーワイヤ4は、その角部(エッジ)がV型溝の鋭角状の内径面に当接する状態となる〔図11(a)、(c)〕。なお図10中符号「A」、「B」、「C」はそれぞれ図14中の「A」、「B」、「C」と同じ部分を示す。   That is, as shown in FIG. 11, the saw wire 4 is formed in a triangular cross section. On the other hand, the guide pulley 14 has a V-shaped groove, and the saw wire 4 is guided by the V-shaped groove. Since a predetermined value of tension is applied to the saw wire 4 and the workpiece 15 is pressed in the direction of the arrow W, the corner portion (edge) of the saw wire 4 is V-shaped at a location where it contacts the guide pulley 14. It will be in the state contact | abutted to the acute-angle-shaped inner diameter surface of a groove | channel [FIG. Note that reference numerals “A”, “B”, and “C” in FIG. 10 indicate the same portions as “A”, “B”, and “C” in FIG. 14, respectively.

ソーワイヤ4がワーク15に接当する箇所切断加工では、ソーワイヤ4は平面部がワーク15に接当する状態〔(図11(b))となり、この状態でワークの切断が行われる。   In the part cutting process in which the saw wire 4 comes into contact with the workpiece 15, the saw wire 4 is in a state in which the flat portion comes into contact with the workpiece 15 (FIG. 11B), and the workpiece is cut in this state.

このように、ソーワイヤ4は、ガイドプーリー14からワーク15に進むうちに、ほぼ60°捩じられ、ワーク15から離れて巻取り側のガイドプーリー14に進むうちに、ほぼ60°捩じられた分が戻されて、ソーワイヤ4は、巻取り側のガイドプーリー14のV型溝に適応するように、角部(エッジ)が内側(図10において右側)に向かう状態に戻る〔図11(c)〕。   In this way, the saw wire 4 was twisted by approximately 60 ° while proceeding from the guide pulley 14 to the work 15, and was twisted by approximately 60 ° while proceeding from the work 15 to the guide pulley 14 on the winding side. The minute portion is returned, and the saw wire 4 returns to a state in which the corner (edge) faces inward (right side in FIG. 10) so as to adapt to the V-shaped groove of the guide pulley 14 on the winding side [FIG. ]].

すなわち、ソーワイヤ4は、ワーク切断加工時に、捩れ現象を伴いながら、移動することになる。したがって、ソーワイヤ4に付着した切り粉は、ソーワイヤ4がワーク切断部から外方に露出した直後に、ソーワイヤ4のねじれによる振動で振り落とされることになり、その結果ソーワイヤ4の目詰まりが抑制される。すなわち「ソーワイヤの捩れ効果」が奏される。   That is, the saw wire 4 moves while being twisted during workpiece cutting. Therefore, immediately after the saw wire 4 is exposed to the outside from the workpiece cutting portion, the chips adhering to the saw wire 4 are shaken off by vibration due to the twist of the saw wire 4, and as a result, clogging of the saw wire 4 is suppressed. The That is, the “saw wire twist effect” is achieved.

さらに、ワークの切断箇所においても、ソーワイヤ4は常にその平面部がワーク15に当接した状態で走行し続けるのではなく、捩れながらワーク15に当接して走行していることも、高速度カメラによる撮影映像の解析により判明した。つまり、ソーワイヤ4によるワーク15の切断は、ソーワイヤ4の平面部がワーク15に当接したり、ソーワイヤ4の角部(エッジ)4aがワーク15に当接したり(図12参照)しながらソーワイヤ4が走行することにより、行われるということが判明した。そして、ソーワイヤ4の角部4aがワーク15に当接する時には、ソーワイヤ4のワーク15に対する当接面積が減少し、その結果、加工時の単位当たりのワーク面圧が上昇することとなるので、切削性能が向上する。すなわち「エッジ効果」が奏される。   Furthermore, the saw wire 4 does not always travel with the flat portion thereof in contact with the work 15 even at the work cutting position, but is also in contact with the work 15 while being twisted. It was revealed by the analysis of the video shot by. That is, the workpiece 15 is cut by the saw wire 4 when the saw wire 4 is in contact with the workpiece 15 or the corner (edge) 4a of the saw wire 4 is in contact with the workpiece 15 (see FIG. 12). It turns out that it is done by running. And when the corner | angular part 4a of the saw wire 4 contact | abuts to the workpiece | work 15, since the contact | abutting area with respect to the workpiece | work 15 of the saw wire 4 will decrease, the workpiece surface pressure per unit at the time of a process will raise, Therefore Performance is improved. That is, an “edge effect” is produced.

さらに、ソーワイヤ4が図12に示す状態、つまりソーワイヤ4の角部(エッジ)4aがワーク15に当接したときには、ソーワイヤ4の平面部4bに切り粉16が付着し、その切り粉16は、そのままソーワイヤ4とともに切断部外方に運び出されることも高速度カメラによる撮影映像の解析により判明した。このように、この実施形態のソーワイヤ4による切断では、切断部からの切り粉の積極的な排出が行われており、このことも切断能率の向上に寄与していると考えられる。   Furthermore, when the saw wire 4 is in the state shown in FIG. 12, that is, when the corner (edge) 4a of the saw wire 4 is in contact with the workpiece 15, the chip 16 adheres to the flat portion 4b of the saw wire 4, and the chip 16 is The fact that it was carried out with the saw wire 4 to the outside of the cut part was also found by analysis of the video image taken by the high-speed camera. Thus, in the cutting | disconnection by the saw wire 4 of this embodiment, the active discharge | emission of the swarf from a cutting part is performed, and it is thought that this has also contributed to the improvement of cutting efficiency.

上述の説明は、断面形状が正三角形のソーワイヤを対象としているが、正三角形断面のほかの三角形断面(たとえば二等辺三角形断面)のソーワイヤにおいても、同様の効果が得られることは、いうまでもない。なお製作コストの面からみた場合、断面形状が正三角形形状ものもが最も有利である。さらに、三角形断面のほかの多角形断面形状のソーワイヤにおいても、ほぼ同様の効果が得られることは明らかである。   Although the above description is directed to a saw wire having an equilateral triangle cross section, it goes without saying that the same effect can be obtained with a saw wire having a triangular section other than the equilateral triangle section (for example, an isosceles triangle section). Absent. From the viewpoint of production cost, the one having a regular triangular cross section is most advantageous. Further, it is clear that substantially the same effect can be obtained with a saw wire having a polygonal cross section other than a triangular cross section.

本発明の一実施形態としてのソーワイヤの製作工程を示す概略図である。It is the schematic which shows the manufacturing process of the saw wire as one Embodiment of this invention. 同ソーワイヤの加工能率の実験結果を示すグラフである。It is a graph which shows the experimental result of the processing efficiency of the saw wire. 同ソーワイヤの加工能率の実験結果を示すグラフである。It is a graph which shows the experimental result of the processing efficiency of the saw wire. 同ソーワイヤの切断方向における加工面粗さの実験結果を示すグラフである。It is a graph which shows the experimental result of the processing surface roughness in the cutting direction of the saw wire. 同ワイヤ走行方向における加工面粗さの実験結果を示すグラフである。It is a graph which shows the experimental result of the processing surface roughness in the wire running direction. 同ソーワイヤの切断方向における加工面うねりの実験結果を示すグラフである。It is a graph which shows the experimental result of the process surface waviness in the cutting direction of the saw wire. 同ワイヤ走行方向における加工面うねりの実験結果を示すグラフである。It is a graph which shows the experimental result of the processing surface waviness in the wire running direction. 同ソーワイヤのワイヤ走行方向における平均砥粒径と加工面粗さとの関係の実験結果を示すグラフである。It is a graph which shows the experimental result of the relationship between the average abrasive grain diameter in the wire traveling direction of the saw wire, and a processed surface roughness. 同ソーワイヤの加工能率と加工面うねりとの関係の実験結果を示すグラフである。It is a graph which shows the experimental result of the relationship between the processing efficiency of the saw wire, and processing surface waviness. 同切断加工部「B」の模試図である。It is a trial drawing of the cutting process part "B". (a)は図10のX−X線断面図である。 (b)は図10のY−Y線断面図である。 (c)は図10のZ−Z線断面図である。(A) is XX sectional drawing of FIG. (B) is the YY sectional view taken on the line of FIG. (C) is a ZZ line sectional view of Drawing 10. 同ソーワイヤによる切断部の一部の拡大断面図である。It is a partial expanded sectional view of the cutting part by the saw wire. 従来のソーワイヤの断面図である。It is sectional drawing of the conventional saw wire. 一般的なワイヤソー装置の概略斜視図である。It is a schematic perspective view of a general wire saw apparatus.

符号の説明Explanation of symbols

1:母材
2:ワイヤ
3:ダイヤモンド砥粒
4:ソーワイヤ
4a:角部(エッジ)
4b:平面部
14:ガイドプーリー
15:ワーク
16:切り粉

1: Base material 2: Wire 3: Diamond abrasive grains 4: Saw wire 4a: Corner (edge)
4b: Plane portion 14: Guide pulley 15: Workpiece 16: Chip

Claims (1)

ダイヤモンドを固着させたソーワイヤの走行によってワークを切断加工する装置であって、断面が三角形で捻りを有さないワイヤを用い、且つV型溝を設けたガイドプーリーをワークの前後に設置し、V型溝に沿って方向付けされたワイヤが走行し、ガイドプーリー間で、該ガイドプーリーが設置された側から断面三角形ワイヤの鋭角部にワークを当接することで捻れが生じ、ワイヤの平面部と角部とでワークを切断する加工装置。
An apparatus for cutting a workpiece by traveling a saw wire with diamonds fixed thereto , using a wire having a triangular cross-section and having no twist, and having guide pulleys with V-shaped grooves provided before and after the workpiece, V A wire directed along the mold groove runs , and twists occur between the guide pulleys by bringing the workpiece into contact with the acute angle part of the cross-section triangular wire from the side where the guide pulley is installed, and the plane part of the wire A processing device that cuts workpieces at corners.
JP2004050843A 2004-02-26 2004-02-26 Saw wire cutting device Expired - Fee Related JP4455096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004050843A JP4455096B2 (en) 2004-02-26 2004-02-26 Saw wire cutting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004050843A JP4455096B2 (en) 2004-02-26 2004-02-26 Saw wire cutting device

Publications (2)

Publication Number Publication Date
JP2005238377A JP2005238377A (en) 2005-09-08
JP4455096B2 true JP4455096B2 (en) 2010-04-21

Family

ID=35020651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004050843A Expired - Fee Related JP4455096B2 (en) 2004-02-26 2004-02-26 Saw wire cutting device

Country Status (1)

Country Link
JP (1) JP4455096B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2464485A2 (en) 2009-08-14 2012-06-20 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body
US9028948B2 (en) 2009-08-14 2015-05-12 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body, and methods of forming thereof
TWI466990B (en) 2010-12-30 2015-01-01 Saint Gobain Abrasives Inc Abrasive article and method of forming
JP2014530770A (en) 2011-09-16 2014-11-20 サンーゴバンアブレイシブズ,インコーポレイティド Abrasive article and forming method
EP2572818A1 (en) 2011-09-23 2013-03-27 NV Bekaert SA A fixed abrasive sawing wire with improved abrasive particle retention
KR20140075717A (en) 2011-09-29 2014-06-19 생-고뱅 어브레이시브즈, 인코포레이티드 Abrasive articles including abrasive particles bonded to an elongated substrate body having a barrier layer, and methods of forming thereof
TW201404527A (en) 2012-06-29 2014-02-01 Saint Gobain Abrasives Inc Abrasive article and method of forming
TW201402274A (en) 2012-06-29 2014-01-16 Saint Gobain Abrasives Inc Abrasive article and method of forming
TWI477343B (en) 2012-06-29 2015-03-21 Saint Gobain Abrasives Inc Abrasive article and method of forming
TWI474889B (en) 2012-06-29 2015-03-01 Saint Gobain Abrasives Inc Abrasive article and method of forming
TW201441355A (en) 2013-04-19 2014-11-01 Saint Gobain Abrasives Inc Abrasive article and method of forming
JP6172053B2 (en) * 2014-05-28 2017-08-02 信越半導体株式会社 Fixed abrasive wire, wire saw and workpiece cutting method
CN104742263B (en) * 2015-04-21 2016-04-13 浙江东尼电子股份有限公司 A kind of Buddha's warrior attendant wire rod of cutting sapphire
TWI621505B (en) 2015-06-29 2018-04-21 聖高拜磨料有限公司 Abrasive article and method of forming

Also Published As

Publication number Publication date
JP2005238377A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
JP4455096B2 (en) Saw wire cutting device
JP2010167509A (en) Fixed-abrasive grain saw wire and cutting method
KR101652062B1 (en) A structure saw wire maintaining crimp property under high slicing tension
JP5649692B2 (en) Method for simultaneously slicing multiple wafers from a cylindrical workpiece
US20110114603A1 (en) Wire cut electrical discharge machine
JP5362053B2 (en) Roller for wire saw
WO2017099108A1 (en) Method for producing bandsaw blade that lengthens service life of barrel member, and bandsaw blade
WO2013041140A1 (en) Method and apparatus for cutting semiconductor workpieces
KR101608436B1 (en) A saw wire having asymmetrical crimp
EP4043113A1 (en) Steel strip notching method, cold rolling method, and cold rolled steel strip manufacturing method
JP2005279837A (en) Multiple groove pulley for wire saw
JP5103836B2 (en) Pipe end deburring method for steel pipes
JP2009023066A (en) Saw wire and cutting method by wire saw using saw wire
KR102644660B1 (en) Manufacturing method and wire saw device of wire saw device
JP6835213B2 (en) Work cutting method and joining member
WO2018163752A1 (en) Method for manufacturing wafer
JP2000135663A (en) Work autorotation type wire saw and manufacture of wafer
JP2008188721A (en) Substrate manufacturing method and wire saw device
JP4325655B2 (en) Method for manufacturing compound semiconductor substrate
CN113272101A (en) Method and apparatus for cutting workpiece
JP3283753B2 (en) Saw blade
JPS61121819A (en) Wire for wire saw
KR20010049960A (en) Saw wire and method for the cutting lapping of hard brittle workpieces
KR20200111697A (en) Cutting method of work and wire saw
JP2001334452A (en) Cutting method for columnar work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061226

A977 Report on retrieval

Effective date: 20080709

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080715

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A131 Notification of reasons for refusal

Effective date: 20080902

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A131 Notification of reasons for refusal

Effective date: 20090901

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100203

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees