JP4455018B2 - Frost treatment method for glass product surface - Google Patents

Frost treatment method for glass product surface Download PDF

Info

Publication number
JP4455018B2
JP4455018B2 JP2003380852A JP2003380852A JP4455018B2 JP 4455018 B2 JP4455018 B2 JP 4455018B2 JP 2003380852 A JP2003380852 A JP 2003380852A JP 2003380852 A JP2003380852 A JP 2003380852A JP 4455018 B2 JP4455018 B2 JP 4455018B2
Authority
JP
Japan
Prior art keywords
chemical solution
treatment
frost
glass product
frost treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003380852A
Other languages
Japanese (ja)
Other versions
JP2005145721A (en
Inventor
徹 瀬川
龍弘 佐藤
繁夫 須田
智則 渡辺
喜浩 宗像
信 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2003380852A priority Critical patent/JP4455018B2/en
Publication of JP2005145721A publication Critical patent/JP2005145721A/en
Application granted granted Critical
Publication of JP4455018B2 publication Critical patent/JP4455018B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)

Description

本発明は、ガラス製品、例えば、半導体製造用シリカガラス治具(チューブ、炉心管、ボート等)の表面を均一にフロスト処理することのできる新規な方法及び該方法により処理されたガラス製品に関する。   The present invention relates to a novel method capable of uniformly frosting the surface of a glass product, for example, a silica glass jig (tube, furnace core tube, boat, etc.) for semiconductor production, and a glass product treated by the method.

ガラス製品、特にシリカガラス製品は、高純度・耐熱性・耐化学薬品性に優れ、近年は半導体製造用治具、例えばチューブ、炉心管、ボード等として広く用いられている。   Glass products, particularly silica glass products, are excellent in high purity, heat resistance, and chemical resistance, and have been widely used in recent years as jigs for semiconductor production, such as tubes, furnace tubes, boards, and the like.

しかしながら、シリカガラス製品の問題点として次の点が指摘されている。(1)赤外線等による輻射熱がシリカ治具を伝搬しその端部のシール部材や連結用の有機物材料を劣化させる(特許文献1)。(2)LPCVD(Low Pressure Chemical Vapor Deposition)法によるポリシリコン膜成長時に炉心管内表面に堆積が起こり、それがウェーハの熱処理時に剥離する(特許文献2)。(3)熱処理時にシリカガラスボートとウェーハの融着がおこる(特許文献3)。   However, the following points have been pointed out as problems with silica glass products. (1) Radiation heat by infrared rays or the like propagates through the silica jig and degrades the sealing member at the end and the organic material for connection (Patent Document 1). (2) Deposition occurs on the inner surface of the core tube during the growth of the polysilicon film by LPCVD (Low Pressure Chemical Vapor Deposition) method, and it is peeled off during the heat treatment of the wafer (Patent Document 2). (3) During the heat treatment, the silica glass boat and the wafer are fused (Patent Document 3).

これらの問題点の改善策としては、シリカガラス製品の表面に凹凸を設けることが行われる。このシリカガラス製品の表面に凹凸をつけることにより、1)熱の遮断効果、2)熱処理時のパーティクル防止(剥離を防ぐ)及び3)熱処理時のボートとウェーハの融着防止という効果を期待することができ、上記したシリカガラス製品の問題点を解消することが可能となる。   As a measure for improving these problems, the surface of the silica glass product is provided with irregularities. By providing irregularities on the surface of this silica glass product, 1) heat blocking effect, 2) particle prevention during heat treatment (preventing peeling) and 3) effect of preventing boat and wafer fusion during heat treatment are expected. It is possible to solve the problems of the silica glass product described above.

シリカガラス製品の表面の凹凸の形成にはサンドブラスト法と化学的薬液処理法がある。一般的には機械的に表面を破壊する技術であるサンドブラスト法が用いられている。このサンドブラスト法による表面処理は、従来からシリカガラス製品の表面に凹凸な粗面を作る技術として、薬液処理法よりもむしろ一般的な技術として存在していた。   There are a sandblasting method and a chemical chemical treatment method for forming irregularities on the surface of a silica glass product. In general, a sand blast method, which is a technique for mechanically breaking the surface, is used. The surface treatment by the sand blast method has conventionally existed as a general technique rather than a chemical treatment method as a technique for forming an uneven rough surface on the surface of a silica glass product.

このサンドブラスト法の問題点は、表面の凹凸面にマイクロクラック(〜Max100μm)ができ、シリカガラス製品にダメージを加えることになることである。つまり、マイクロクラックが生成すると、(1)マイクロクラックに汚染物質が入る、(2)マイクロクラックによるガラスの強度劣化、及び(3)サンドブラスト処理後のフッ酸エッチングによる面状態の大きな変化、という不都合が生じてしまう。   The problem with this sandblasting method is that microcracks (˜Max 100 μm) are formed on the irregular surface of the surface, which damages the silica glass product. That is, when microcracks are generated, (1) contaminants enter the microcracks, (2) strength deterioration of the glass due to microcracks, and (3) a large change in surface state due to hydrofluoric acid etching after sandblasting. Will occur.

一方、化学的薬液処理法としては、例えば、フッ化水素とフッ化アンモニウムと酢酸と水の混合溶液で処理する方法が提案されており(特許文献4)、現在のところ、化学的薬液処理法は半導体工業で必要とされる凹凸を作るのに最適であると考えられている。   On the other hand, as a chemical chemical treatment method, for example, a method of treating with a mixed solution of hydrogen fluoride, ammonium fluoride, acetic acid and water has been proposed (Patent Document 4), and at present, a chemical chemical treatment method. Is considered to be optimal for making the irregularities required by the semiconductor industry.

しかし、薬液処理法では、粗さが大きな面になるようなフロスト処理条件でガラスを処理すると、凹凸が大きくなるが凹凸の隙間の平滑な部分も大きくなる。大きな凹凸の場合、凹凸の深さのばらつきも大きく、これらが見た目で、ムラに見えてしまう。特に、ウェーハが大口径になるとガラス製品も大型になり、不均一性が無視できなくなる。これまで、種々の薬液組成が検討されてきたが、ムラのない均一な凹凸を作るためには、薬液成分の存在比だけでは不十分であるので、フロスト処理用薬液が最初に接触する際のレイノルズ数Reに着目した提案(特許文献5)や複数の薬液を用いた提案(特許文献6)がなされている。   However, in the chemical treatment method, when the glass is processed under a frost processing condition such that the surface has a large roughness, the unevenness increases, but the smooth portion of the uneven space also increases. In the case of large unevenness, the unevenness of the unevenness varies greatly, and these appear to be uneven. In particular, when the wafer has a large diameter, the glass product becomes large, and the non-uniformity cannot be ignored. So far, various chemical compositions have been studied, but the abundance ratio of the chemical components is not enough to create a uniform unevenness with no unevenness. Proposals focusing on the Reynolds number Re (Patent Document 5) and proposals using a plurality of chemical solutions (Patent Document 6) have been made.

また、ガラス表面の表面粗さRaを制御する方法としては、フッ化水素、フッ化アンモニウム及び水を含有する主液と98%以上の酢酸からなる補助液とよりなる2液型処理液において、主液と補助液の比率により粗面の程度をコントロールする方法が提案されている(特許文献7)。
特公平8−24109号公報 実開昭61−88233号公報 特開平1−170019号公報 特開平7−267679号公報 特開2001−240429号公報 特開2002−110554号公報 特開平10−36140号公報
In addition, as a method for controlling the surface roughness Ra of the glass surface, in a two-component processing liquid comprising a main liquid containing hydrogen fluoride, ammonium fluoride and water and an auxiliary liquid composed of 98% or more acetic acid, A method for controlling the degree of rough surface by the ratio of the main liquid and the auxiliary liquid has been proposed (Patent Document 7).
Japanese Patent Publication No. 8-24109 Japanese Utility Model Publication No. 61-88233 Japanese Patent Laid-Open No. 1-170019 JP-A-7-267679 Japanese Patent Laid-Open No. 2001-240429 JP 2002-110554 A Japanese Patent Laid-Open No. 10-36140

本発明は、上記した問題点に鑑みなされたもので、ガラス製品、例えばシリカガラス製品の表面に容易に凹凸を有する粗面を形成し且つ該粗面の表面粗さRaを自在に制御することができ、特に凹凸が大きくても凹凸の隙間の平滑な部分が無く、均一性に優れた表面を容易且つ短時間に形成することができるガラス製品表面のフロスト処理方法及び該方法により処理された表面に凹凸を有するガラス製品を提供することを目的とする。   The present invention has been made in view of the above-described problems, and easily forms a rough surface having irregularities on the surface of a glass product, for example, a silica glass product, and freely controls the surface roughness Ra of the rough surface. In particular, even if the unevenness is large, there is no smooth part of the uneven gap, and a surface with excellent uniformity can be formed easily and in a short time. It aims at providing the glass product which has an unevenness | corrugation on the surface.

上記課題を解決するために、本発明のガラス製品表面のフロスト処理方法の基本的技術思想は、ガラス製品にフロスト処理用薬液を接触させる接触工程と、該接触工程後該ガラス製品を該フロスト処理薬液中に静置させる静置工程と、該静置工程後該ガラス製品を乾燥させる乾燥工程とからなるフロスト処理を行う方法であって、該接触工程において、下記式(1)で定義されるレイノルズ数Reを制御することにより、該ガラス製品の表面粗さRaを制御することを特徴とする。 In order to solve the above-mentioned problem, the basic technical idea of the frost treatment method for a glass product surface according to the present invention includes a contact step of bringing a glass solution into contact with a chemical solution for frost treatment, and the frost treatment of the glass product after the contact step. A method of performing a frost treatment comprising a standing step of standing in a chemical solution and a drying step of drying the glass product after the standing step, wherein the contact step is defined by the following formula (1): The surface roughness Ra of the glass product is controlled by controlling the Reynolds number Re.

Re=D・u・ρ/μ ・・・(1)
〔式(1)において、D:処理槽の幅、u:薬液の流速、ρ:薬液の密度、μ:薬液の粘度〕
Re = D · u · ρ / μ (1)
[In formula (1), D: width of treatment tank, u: flow rate of chemical solution, ρ: density of chemical solution, μ: viscosity of chemical solution]

本発明のガラス製品表面のフロスト処理方法は、ガラス製品にフロスト処理用薬液を接触させる接触工程と、該接触工程後該ガラス製品を該フロスト処理薬液中に静置させる静置工程と、該静置工程後該ガラス製品を乾燥させる乾燥工程とからなるフロスト処理を2回以上行う方法であって、該各接触工程において、前記ガラス製品が前記フロスト処理薬液と最初に接触する際の薬液の流動を制御することにより、下記式(1)で定義されるレイノルズ数Reを制御し、それにより該ガラス製品の表面粗さRaを制御する方法であり、前記レイノルズ数Reが3000以上の範囲になるように制御された精フロスト処理及び前記レイノルズ数Reが3000未満の範囲になるように制御された粗フロスト処理を併用し、前記精フロスト処理を1回以上行うようにしたことを特徴とする。 The glass product surface frost treatment method of the present invention includes a contact step of bringing a glass product into contact with a chemical solution for frost treatment, a stationary step of allowing the glass product to stand in the frost treatment chemical solution after the contact step, and the static treatment. A method of performing a frost treatment including a drying step of drying the glass product after the placing step twice or more, wherein the chemical solution flows when the glass product first comes into contact with the frost treatment chemical solution in each contact step by controlling the control the Reynolds number Re is defined by the following formula (1), whereby a method of controlling the surface roughness Ra of the glass product, the Reynolds number Re is in the range of more than 3000 controlled fine frosting and the Reynolds number Re in combination of controlled roughness frosting to be in the range of less than 3000 as, the fine frosting Characterized in that to perform more than once.

Re=D・u・ρ/μ ・・・(1)
〔式(1)において、D:処理槽の幅、u:薬液の流速、ρ:薬液の密度、μ:薬液の粘度〕
Re = D · u · ρ / μ (1)
[In formula (1), D: width of treatment tank, u: flow rate of chemical solution, ρ: density of chemical solution, μ: viscosity of chemical solution]

各フロスト処理において用いられるフロスト処理用薬液を1種類とすれば、処理用薬液の交換を行う手間が省け好適である。前記フロスト処理用薬液としては、フッ化水素とフッ化アンモニウムを含む薬液が用いられるが、特に、フッ化水素10〜50重量%、フッ化アンモニウム6〜30重量%及び有機酸30〜60重量を含有する水溶液が好適に用いられる。該有機酸としては、特に限定されないが、例えば、酢酸、ギ酸、プロピオン酸等が好ましい。   If one type of frost treatment chemical solution is used in each frost treatment, it is preferable to save the trouble of replacing the treatment chemical solution. As the chemical solution for frost treatment, a chemical solution containing hydrogen fluoride and ammonium fluoride is used, and in particular, 10 to 50% by weight of hydrogen fluoride, 6 to 30% by weight of ammonium fluoride, and 30 to 60% by weight of organic acid. An aqueous solution containing it is preferably used. The organic acid is not particularly limited, but for example, acetic acid, formic acid, propionic acid and the like are preferable.

本発明方法において、上記ガラス製品に上記フロスト処理用薬液が最初に接触する際(接触工程)の薬液の流動レイノルズ数Reを制御する好ましい手段としては、(1)処理槽に攪拌機を設置し、該攪拌機の回転数を制御すること、つまり、攪拌翼によって処理槽内を攪拌すること、(2)処理槽に複数の薬液供給口を設け、該薬液供給口からの薬液の流速を制御すること、(3)処理槽にバブリング装置を設置し、該バブリング装置の空気圧力を制御すること、をあげることができる。上記(3)はバブリング法といえるもので、薬液内に気体(泡)を投入することによって流れを作るもので、例えるならば金魚の水槽のごときものである。   In the method of the present invention, as a preferred means for controlling the flow Reynolds number Re of the chemical solution when the chemical solution for frost treatment first contacts the glass product (contacting step), (1) a stirrer is installed in the treatment tank, Controlling the rotation speed of the stirrer, that is, stirring the inside of the treatment tank with a stirring blade, (2) providing a plurality of chemical solution supply ports in the treatment tank, and controlling the flow rate of the chemical solution from the chemical solution supply port (3) A bubbling device is installed in the treatment tank, and the air pressure of the bubbling device is controlled. The above (3) can be said to be a bubbling method, and a flow is created by introducing a gas (bubble) into the chemical solution. For example, it is like a goldfish tank.

レイノルズ数Reを制御する手段としては、上記した(1)〜(3)の他に、(4)シャワーリング法、つまり、薬液をシャワーによって処理槽に送り込むこと、(5)振動法、つまり、製品又は薬液に機械的振動、乃至超音波による振動を与えること、(6)処理槽の構造を、薬液が循環するようなシステムを備えたものとすること、等をあげることができる。   As means for controlling the Reynolds number Re, in addition to the above (1) to (3), (4) showering method, that is, sending a chemical solution into the processing tank by shower, (5) vibration method, that is, For example, mechanical vibrations or ultrasonic vibrations may be applied to the product or the chemical solution, and (6) the structure of the treatment tank may be provided with a system that circulates the chemical solution.

処理槽を用いてガラス製品をフロスト処理用薬液に浸漬させる態様としては、処理槽にガラス製品を設置して、薬液を供給する際、正確には供給される薬液がガラス製品と接触する際の薬液の流動を制御する態様、または、逆に、予め処理槽に薬液を満たし、薬液の流動を制御した状態で、ガラス製品を処理槽内に投入する態様をあげることができる。さらに、両者の中間の態様として、ガラス製品を投入しつつ、薬液を供給する態様も適用可能である。要するに、本発明方法においては、ガラス製品が薬液と最初に接触する際に、薬液の流動を制御した状態とすればよいもので、そのような態様はすべて含まれるものである。   As an aspect of immersing the glass product in the chemical solution for frost treatment using the treatment tank, when the glass product is installed in the treatment tank and the chemical liquid is supplied, precisely when the supplied chemical liquid is in contact with the glass product An aspect of controlling the flow of the chemical liquid, or conversely, an aspect of filling the chemical liquid in the treatment tank in advance and controlling the flow of the chemical liquid to put the glass product into the treatment tank can be given. Furthermore, as an intermediate mode between the two, a mode in which a chemical solution is supplied while a glass product is introduced is also applicable. In short, in the method of the present invention, when the glass product first comes into contact with the chemical solution, the flow of the chemical solution may be controlled, and all such aspects are included.

また、いずれの場合もガラス製品全体が薬液に接触した後は薬液の流動は停止し、静置で処理を行うか又は、ガラス製品全体が薬液に接触後、薬液の流動レイノルズ数Reを所定値(2000)以下に制御した状態のまま保持し、処理を行う。   In any case, the flow of the chemical solution stops after the entire glass product has contacted the chemical solution, and the processing is carried out by standing or the flow Reynolds number Re of the chemical solution is set to a predetermined value after the entire glass product has contacted the chemical solution. (2000) The state controlled below is held and processing is performed.

フッ化水素とフッ化アンモニウムの腐食液中ではガラス(SiO)はフッ化水素によりエッチングされる。溶け出したSiは珪フッ化アンモニウム[(NHSiF]になりガラス表面に付着し結晶成長する。このことでフッ化水素によるエッチングが部分的に阻害され凹凸ができる。薬液の流速を早めることにより、珪フッ化アンモニウムの微結晶核がガラスに均一に付着するようになり、結晶核間が狭くなり、できあがった凹凸面の表面粗さが細かくなる。よって、流動を変え、レイノルズ数Reを制御することによりガラス表面の均一性及び表面粗さRaを変えることができる。 In the etching solution of hydrogen fluoride and ammonium fluoride, glass (SiO 2 ) is etched by hydrogen fluoride. The dissolved Si becomes ammonium silicofluoride [(NH 4 ) 2 SiF 6 ] and adheres to the glass surface to grow crystals. As a result, etching with hydrogen fluoride is partially inhibited and unevenness is formed. By increasing the flow rate of the chemical solution, the microcrystalline nuclei of ammonium silicofluoride are uniformly attached to the glass, the space between the crystal nuclei is narrowed, and the surface roughness of the resulting irregular surface becomes fine. Therefore, the uniformity of the glass surface and the surface roughness Ra can be changed by changing the flow and controlling the Reynolds number Re.

前記各接触工程において前記レイノルズ数を前記各フロスト処理毎に変えることが好ましい。特に、本発明の方法において、前記レイノルズ数Reが3000以上、好適にはレイノルズ数Reが4000以上の範囲になるように制御された精フロスト処理及び前記レイノルズ数Reが3000未満、好適にはレイノルズ数Reが2000以下の範囲になるように制御された粗フロスト処理を併用することにより、表面粗さRaがある程度大きく且つ均一性の高いガラス表面を形成することができる。これら精フロスト処理及び粗フロスト処理を行う順番は特に限定されない。本発明方法では、複数回フロスト処理を行う場合、薬液の流速を変えて処理することにより、1種類の薬液で処理することが可能となる。   It is preferable that the Reynolds number is changed for each frost treatment in each contact step. In particular, in the method of the present invention, the fine frost process controlled so that the Reynolds number Re is 3000 or more, preferably the Reynolds number Re is 4000 or more, and the Reynolds number Re is less than 3000, preferably Reynolds. By using a rough frost process controlled so that the number Re is in a range of 2000 or less, a glass surface having a relatively large surface roughness Ra and high uniformity can be formed. The order in which these fine frost treatment and coarse frost treatment are performed is not particularly limited. In the method of the present invention, when the frost treatment is performed a plurality of times, the treatment can be performed with one kind of chemical solution by changing the flow rate of the chemical solution.

本発明方法は、シリカガラス製品のみならず、あらゆるガラス製品の化学的薬液処理の処理技術として有効である。   The method of the present invention is effective as a processing technique for chemical chemical treatment of not only silica glass products but also all glass products.

本発明のガラス製品は、本発明の方法でフロスト処理された表面を有することを特徴とする。本発明のガラス製品において、前記フロスト処理された表面にメサ又は切頭ピラミッド形状の突出構造体と、その間の凹部を有し、それらの上に小突起物が均一に分布するようにすることができる。本発明のガラス製品において、表面粗さRaが0.2〜10μm、Rmaxが3〜100μmの表面を有するようにすることができる。   The glass product of the present invention is characterized by having a surface frosted by the method of the present invention. In the glass product of the present invention, the frosted surface has a mesa or truncated pyramid-shaped projecting structure and a recess therebetween, and the small protrusions are uniformly distributed on them. it can. The glass product of the present invention can have a surface with a surface roughness Ra of 0.2 to 10 μm and an Rmax of 3 to 100 μm.

本発明のガラス製品のフロスト処理方法によれば、レイノルズ数を変更することにより容易に凹凸を有する粗面を形成し且つ該粗面の表面粗さRaを自在に制御することができ、特に特に凹凸が大きくても凹凸の隙間の平滑な部分が無く、見た目もムラがほとんど無い表面を容易且つ短時間に形成することができる。本発明のガラス製品は、マイクロクラックを伴わない凹凸が形成された表面を有しており、特に、半導体製造用シリカガラス治具として好適である。   According to the frost treatment method for glass products of the present invention, it is possible to easily form a rough surface having irregularities by changing the Reynolds number, and to freely control the surface roughness Ra of the rough surface, in particular, Even if the unevenness is large, a surface having no smooth portion of the unevenness of the unevenness and having almost no unevenness can be formed easily and in a short time. The glass product of the present invention has a surface on which irregularities without microcracks are formed, and is particularly suitable as a silica glass jig for semiconductor production.

以下に本発明方法の実施の形態を添付図面に基づいて説明する。図1は本発明のガラス製品表面のフロスト処理方法の基本的技術思想の工程順の1例を示すフローチャートである。 Embodiments of the method of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a flowchart showing an example of the order of steps in the basic technical concept of the frost treatment method for a glass product surface according to the present invention.

本発明のガラス製品表面のフロスト処理方法の基本的技術思想は、図1に示したように、ガラス製品にフロスト処理用薬液を接触させる接触工程(ステップ100)と、該接触工程後のガラス製品をフロスト処理用薬液中に静置させる静置工程(ステップ102)と、該静置工程後のガラス製品をリンス乾燥等により乾燥させる乾燥工程(ステップ104)とからなるフロスト処理を行うものである。 As shown in FIG. 1, the basic technical idea of the glass product surface frost treatment method of the present invention is a contact step (step 100) in which a glass solution is brought into contact with a chemical solution for frost treatment, and the glass product after the contact step. Is subjected to a frost treatment comprising a standing step (step 102) for allowing the glass product to stand in a frost treatment chemical solution and a drying step (step 104) for drying the glass product after the standing step by rinsing and drying. .

上記接触工程においては、下記式(1)で定義されるレイノルズ数Reを制御し、それによって該ガラス製品の表面粗さRaを制御することができる。   In the contact step, the Reynolds number Re defined by the following formula (1) is controlled, whereby the surface roughness Ra of the glass product can be controlled.

Re=D・u・ρ/μ ・・・(1)
〔式(1)において、D:処理槽の幅、u:薬液の流速、ρ:薬液の密度、μ:薬液の粘度〕
Re = D · u · ρ / μ (1)
[In formula (1), D: width of treatment tank, u: flow rate of chemical solution, ρ: density of chemical solution, μ: viscosity of chemical solution]

本発明のガラス製品表面のフロスト処理方法、図1に示したフロスト処理を2回以上行うものである。図2は本発明のガラス製品表面のフロスト処理方法の第2の態様の工程順の1例を示すフローチャートである。本発明方法の第2の態様は、図2に示したように、まず第1フロスト処理を行う。第1フロスト処理は、ガラス製品にフロスト処理用薬液を接触させる第1接触工程(ステップ200)と、該第1接触工程後のガラス製品をフロスト処理用薬液中に静置させる第1静置工程(ステップ202)と、該静置工程後のガラス製品をリンス乾燥等により乾燥させる第1乾燥工程(ステップ204)とから構成されている。次に、第1フロスト処理を行ったガラス製品に第2フロスト処理を行う。 The frost treatment method for the glass product surface of the present invention is to perform the frost treatment shown in FIG. 1 twice or more. FIG. 2 is a flowchart showing an example of the order of steps of the second aspect of the method for frosting a glass product surface according to the present invention. In the second aspect of the method of the present invention, as shown in FIG. The first frost treatment includes a first contact step (step 200) in which the glass product is brought into contact with the chemical solution for frost treatment, and a first stationary step in which the glass product after the first contact step is placed in the chemical solution for frost treatment. (Step 202) and a first drying step (step 204) for drying the glass product after the standing step by rinsing drying or the like. Next, the 2nd frost process is performed to the glass product which performed the 1st frost process.

第2フロスト処理は、第1フロスト処理を行ったガラス製品にフロスト処理用薬液を接触させる第2接触工程(ステップ206)と、該第2接触工程後のガラス製品をフロスト処理用薬液中に静置させる第2静置工程(ステップ208)と、該静置工程後のガラス製品をリンス乾燥等により乾燥させる第2乾燥工程(ステップ210)とから構成されている。   In the second frost treatment, the glass product subjected to the first frost treatment is brought into contact with the chemical solution for frost treatment (step 206), and the glass product after the second contact step is placed in the chemical solution for frost treatment. The second standing step (step 208) to be placed and the second drying step (step 210) for drying the glass product after the standing step by rinsing drying or the like.

上記第1接触工程(ステップ200)及び第2接触工程(ステップ206)における上記式(1)で定義されるレイノルズ数Reを第1フロスト処理及び第2フロスト処理においてそれぞれ変えるとともに該レイノルズ数Reが3000以上であるフロスト処理は1回以上とするようにしたものである。   The Reynolds number Re defined by the above formula (1) in the first contact process (step 200) and the second contact process (step 206) is changed in the first frost process and the second frost process, respectively. The frost treatment of 3000 or more is performed once or more.

上記各フロスト処理におけるフロスト処理用薬液は1種類用いれば充分であり、この場合フロスト処理用薬液を各フロスト処理毎に交換する手間が省ける利点がある。このフロスト処理用薬液としてはフッ化水素10〜50重量%、フッ化アンモニウム6〜30重量%及び有機酸30〜60重量を含有する水溶液が好ましく用いられる。   It is sufficient to use one kind of chemical solution for frost treatment in each of the above frost treatments. In this case, there is an advantage that it is possible to save the trouble of exchanging the chemical solution for frost treatment for each frost treatment. As the chemical solution for frost treatment, an aqueous solution containing 10 to 50% by weight of hydrogen fluoride, 6 to 30% by weight of ammonium fluoride and 30 to 60% by weight of an organic acid is preferably used.

第1接触工程(ステップ200)及び第2接触工程(ステップ206)におけるレイノルズ数Reとしては3000以上又は3000未満が用いられる。レイノルズ数Reが3000以上、より好ましくは4000以上の場合にはガラス製品の表面粗さRaを小さくするフロスト処理、即ち精フロスト処理を行うことができ、一方レイノルズ数Reが3000未満、より好ましくは2000以下の場合にはガラス製品の表面粗さRaを大きくするフロスト処理、即ち粗フロスト処理を行うことができる。   As the Reynolds number Re in the first contact process (step 200) and the second contact process (step 206), 3000 or more or less than 3000 is used. When the Reynolds number Re is 3000 or more, more preferably 4000 or more, a frost treatment for reducing the surface roughness Ra of the glass product, that is, a fine frost treatment can be performed, while the Reynolds number Re is less than 3000, more preferably In the case of 2000 or less, a frost process for increasing the surface roughness Ra of the glass product, that is, a rough frost process can be performed.

上記2回のフロスト処理において、粗フロスト処理及び精フロスト処理を行うことが好適である。粗フロスト処理と精フロスト処理を行う順序は特に限定されず、いずれを先に行っても良い。図2のフローチャートにおいては、2回のフロスト処理を行う場合を示したが、3回以上のフロスト処理を同様に行うことが可能である。   In the two frost processes, it is preferable to perform a rough frost process and a fine frost process. The order in which the rough frost process and the fine frost process are performed is not particularly limited, and either may be performed first. In the flowchart of FIG. 2, the case where the frost process is performed twice is shown, but the frost process of three times or more can be similarly performed.

本発明のガラス製品表面のフロスト処理方法によれば、フロスト処理された表面にメサ又は切頭ピラミッド形状の突出構造体と、その間の凹部を有し、それらの上に小突起物が均一に分布した表面状態のガラス製品を得ることができる。   According to the frost treatment method of the glass product surface of the present invention, the frosted surface has a mesa or truncated pyramid-shaped projecting structure and a recess therebetween, and the small projections are uniformly distributed on them. It is possible to obtain a glass product having a surface state.

続いて本発明方法を実施するのに用いられる処理槽の好ましい態様を添付図面中、図3〜図8とともに説明する。図3は本発明方法の実施に用いられる処理槽の1例を示す側面的説明図、図4は図3の上面的説明図、図5は本発明方法の実施に用いられる処理槽の他の例を示す側面的説明図、図6は図5の上面的説明図、図7は本発明方法の実施に用いられる処理槽の別の例を示す側面的説明図、図8は図7の上面的説明図である。   Subsequently, a preferred embodiment of a treatment tank used for carrying out the method of the present invention will be described with reference to FIGS. FIG. 3 is a side explanatory view showing an example of a treatment tank used for carrying out the method of the present invention, FIG. 4 is a top view explanatory view of FIG. 3, and FIG. 5 is another treatment tank used for carrying out the method of the present invention. FIG. 6 is a top side explanatory view of FIG. 5, FIG. 7 is a side side explanatory view showing another example of a treatment tank used for carrying out the method of the present invention, and FIG. 8 is a top side view of FIG. FIG.

図3及び図4は、攪拌機付き処理槽10Aを示す。該処理槽10Aには、シリカガラス製品14を斜めに固定する固定治具12及びフロスト処理用薬液18を供給する薬液供給口16が、設置されている他に、攪拌翼20を備えた攪拌機22が設けられている。この攪拌機22を作動させることによって薬液供給口16から供給される薬液の流動レイノルズ数Reを制御することができる。   3 and 4 show a treatment tank 10A with a stirrer. The treatment tank 10A is provided with a fixing jig 12 for obliquely fixing the silica glass product 14 and a chemical solution supply port 16 for supplying a chemical solution 18 for frost treatment, and a stirrer 22 provided with a stirring blade 20. Is provided. By operating the agitator 22, the flow Reynolds number Re of the chemical solution supplied from the chemical solution supply port 16 can be controlled.

図5及び図6は、複数の薬液供給口を設けた処理槽10Bを示す。該処理槽10Bには、シリカガラス製品14を斜めに固定する固定治具12及びフロスト処理用薬液18を供給する通常の薬液供給口16が設けられているが、その薬液供給口16の他にさらに3つの薬液供給口16a,16b,16cが追加して設けられている。この薬液供給口16,16a〜16cの設置数は図示例では4つの場合を示したが、2つ以上の複数設ければよいもので、例えば、6つや8つ設けることが可能である。この場合、薬液の均一な供給を行うためには各薬液供給口を互いに対称となる位置に設置するのが好適である。   5 and 6 show a treatment tank 10B provided with a plurality of chemical solution supply ports. The treatment tank 10B is provided with a fixing jig 12 for obliquely fixing the silica glass product 14 and a normal chemical solution supply port 16 for supplying a chemical solution 18 for frost treatment. Further, three chemical liquid supply ports 16a, 16b, and 16c are additionally provided. In the illustrated example, the number of the chemical solution supply ports 16 and 16a to 16c is four, but two or more may be provided. For example, six or eight may be provided. In this case, in order to uniformly supply the chemical liquid, it is preferable to install the chemical liquid supply ports at positions that are symmetrical to each other.

図7及び図8は、バブリング装置付処理槽10Cを示す。該処理槽10Cには、シリカガラス製品14を斜めに固定する固定治具12及びフロスト処理用薬液18を供給する薬液供給口16が設けられている他に、バブリング装置24が設けられている。該バブリング装置24は処理槽10Cの底面に設置された空気排出パイプ26及び該空気排出パイプ26に空気を導入する空気導入パイプ28を有している。該空気排出パイプ26には多数の空気排出孔が穿設されており、該空気導入パイプ28を介して導入された空気が該空気排出口から薬液18中に放出されて多数のバブル(泡)30が発生するようになっている。   7 and 8 show a treatment tank 10C with a bubbling device. The treatment tank 10C is provided with a bubbling device 24 in addition to a fixing jig 12 for obliquely fixing the silica glass product 14 and a chemical solution supply port 16 for supplying a chemical solution 18 for frost treatment. The bubbling device 24 has an air discharge pipe 26 installed on the bottom surface of the treatment tank 10 </ b> C and an air introduction pipe 28 for introducing air into the air discharge pipe 26. A large number of air discharge holes are formed in the air discharge pipe 26, and air introduced through the air introduction pipe 28 is discharged from the air discharge port into the chemical liquid 18 and a large number of bubbles (bubbles). 30 is generated.

上記した各処理槽10A,10B,10Cは、各処理槽10A〜10C内に設置された固定治具12に斜めに固定されたシリカガラス製品14の表面に凹凸を形成するために用いられる。   Each processing tank 10A, 10B, 10C mentioned above is used in order to form an unevenness | corrugation in the surface of the silica glass product 14 diagonally fixed to the fixing jig 12 installed in each processing tank 10A-10C.

本発明方法の特徴は、上記各処理槽10A,10B,10Cを用いてガラス製品、例えばシリカガラス製品14をフロスト処理用薬液18に浸漬させることによってガラス製品14の表面にフロスト処理を行うにあたり、ガラス製品14にフロスト処理用薬液18が最初に接触する際、前記レイノルズ数Reが所定数値となるように薬液18の流速uを制御し、該ガラス製品14の全体を薬液18に浸漬した後は薬液18の流れを止め、静置で処理することによってガラス製品14の表面粗さRaを制御するものである。本発明方法において、2回以上フロスト処理を行うことによってガラス製品の表面粗さRaの制御を一層好適に行うことができる。   A feature of the method of the present invention is that when the glass product 14 is immersed in the frost treatment chemical solution 18 by immersing the glass product, for example, the silica glass product 14 in the frost treatment chemical solution 18 using each of the treatment tanks 10A, 10B, 10C, When the chemical solution 18 for frost treatment first comes into contact with the glass product 14, the flow rate u of the chemical solution 18 is controlled so that the Reynolds number Re becomes a predetermined value, and the entire glass product 14 is immersed in the chemical solution 18. The surface roughness Ra of the glass product 14 is controlled by stopping the flow of the chemical solution 18 and processing it by standing. In the method of the present invention, the surface roughness Ra of the glass product can be more suitably controlled by performing the frost treatment twice or more.

以下に実施例をあげて本発明をさらに具体的に説明するが、これらの実施例は例示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。   The present invention will be described more specifically with reference to the following examples. However, it is needless to say that these examples are shown by way of illustration and should not be construed in a limited manner.

(実験例1)
フッ化水素20質量%、フッ化アンモニウム10質量%及び酢酸35質量%の処理用薬液槽にシリカガラス炉心管を常温で1時間浸した。なお、シリカガラス炉心管が薬液と最初に接触する際のReは2000以下であった。上記処理後、炉心管を乾燥させた。
(Experimental example 1)
A silica glass furnace tube was immersed in a treatment chemical bath of 20% by mass of hydrogen fluoride, 10% by mass of ammonium fluoride and 35% by mass of acetic acid at room temperature for 1 hour. Note that the Re when the silica glass furnace tube first contacts the chemical was 2000 or less. After the above treatment, the core tube was dried.

次に、図3及び図4に示した構造と同様の攪拌機付処理槽(600×600×1500mm)に上記炉心管を固定治具12にて斜めに固定し、攪拌機22を回転しながら、上記と同じ薬液を供給口から注入し、シリカガラス炉心管を薬液18に浸漬させた。シリカガラス炉心管14が薬液18と最初に接触する際の流動制御は、槽内の攪拌機22の回転数を制御することによって、Re=4000になるように調整した。シリカガラス炉心管14全体が薬液18に浸漬後、攪拌機22を停止し、常温で1時間静置した。上記処理後、炉心管を乾燥させ、処理後のシリカガラス表面を走査電子顕微鏡で撮影した。得られた写真を図9に示す。この処理済炉心管を粗さ計で測定した結果、平均粗さRaは1.25μm、Rmaxは7.2μmであった。   Next, the furnace core tube is obliquely fixed by the fixing jig 12 in a processing tank with a stirrer (600 × 600 × 1500 mm) similar to the structure shown in FIG. 3 and FIG. The same chemical solution was injected from the supply port, and the silica glass core tube was immersed in the chemical solution 18. The flow control when the silica glass furnace tube 14 first comes into contact with the chemical solution 18 was adjusted to Re = 4000 by controlling the rotation speed of the stirrer 22 in the tank. After the entire silica glass furnace tube 14 was immersed in the chemical solution 18, the stirrer 22 was stopped and left at room temperature for 1 hour. After the treatment, the core tube was dried, and the treated silica glass surface was photographed with a scanning electron microscope. The obtained photograph is shown in FIG. As a result of measuring the treated core tube with a roughness meter, the average roughness Ra was 1.25 μm, and Rmax was 7.2 μm.

(実験例2)
実験例1で用いた攪拌機付処理槽にシリカガラス炉心管を固定し、攪拌機22を回転しながら、実験例1と同一の組成の処理用薬液を供給口から注入し、シリカガラス炉心管を薬液18に浸漬させた。シリカガラス炉心管14が薬液18と最初に接触する際の流動制御は、槽内の攪拌機22の回転数を制御することによって、Re=4000になるように調整した。シリカガラス炉心管14全体が薬液18に浸漬後、攪拌機22を停止し、2時間静置した。
(Experimental example 2)
The silica glass core tube is fixed to the processing tank with a stirrer used in Experimental Example 1, and while the stirrer 22 is rotated, a processing chemical solution having the same composition as that of Experimental Example 1 is injected from the supply port, and the silica glass core tube is connected to the chemical solution. 18 soaked. The flow control when the silica glass furnace tube 14 first comes into contact with the chemical solution 18 was adjusted to Re = 4000 by controlling the rotation speed of the stirrer 22 in the tank. After the entire silica glass furnace tube 14 was immersed in the chemical solution 18, the stirrer 22 was stopped and allowed to stand for 2 hours.

上記処理後、炉心管を乾燥させ、上記と同じ薬液にシリカガラス炉心管を2時間浸した。なお、シリカガラス炉心管が薬液と最初に接触する際のReは2000以下であった。上記処理後、炉心管を乾燥させ、処理後のシリカガラス表面を走査電子顕微鏡で撮影した。得られた写真を図10に示す。この処理済炉心管を粗さ計で測定した結果、平均粗さRaは0.94μm、Rmaxは5.9μmであった。   After the treatment, the core tube was dried, and the silica glass core tube was immersed in the same chemical solution as above for 2 hours. Note that the Re when the silica glass furnace tube first contacts the chemical was 2000 or less. After the treatment, the core tube was dried, and the treated silica glass surface was photographed with a scanning electron microscope. The obtained photograph is shown in FIG. As a result of measuring the treated core tube with a roughness meter, the average roughness Ra was 0.94 μm, and Rmax was 5.9 μm.

(実験例3)
実験例1で用いた攪拌機付処理槽にシリカガラス炉心管を固定し、攪拌機22を回転しながら、実験例1と同一の組成の処理用薬液を供給口から注入し、シリカガラス炉心管を薬液18に浸漬させた。シリカガラス炉心管14が薬液18と最初に接触する際の流動制御は、槽内の攪拌機22の回転数を制御することによって、Re=5000になるように調整した。シリカガラス炉心管14全体が薬液18に浸漬後、攪拌機22を停止し、2時間静置した。
(Experimental example 3)
The silica glass core tube is fixed to the processing tank with a stirrer used in Experimental Example 1, and while the stirrer 22 is rotated, a processing chemical solution having the same composition as that of Experimental Example 1 is injected from the supply port. 18 soaked. The flow control when the silica glass furnace tube 14 first comes into contact with the chemical solution 18 was adjusted to Re = 5000 by controlling the rotation speed of the stirrer 22 in the tank. After the entire silica glass furnace tube 14 was immersed in the chemical solution 18, the stirrer 22 was stopped and allowed to stand for 2 hours.

上記処理後、炉心管を乾燥させ、上記と同じ薬液にシリカガラス炉心管を2時間浸した。シリカガラス炉心管14が薬液18と最初に接触する際の流動制御は、槽内の攪拌機22の回転数を制御することによって、Re=5000になるように調整した。上記処理後、炉心管を乾燥させ、処理後のシリカガラス表面を走査電子顕微鏡で撮影した。得られた写真を図11に示す。この処理済炉心管を粗さ計で測定した結果、平均粗さRaは0.34μm、Rmaxは4.2μmであった。   After the treatment, the core tube was dried, and the silica glass core tube was immersed in the same chemical solution as above for 2 hours. The flow control when the silica glass furnace tube 14 first comes into contact with the chemical solution 18 was adjusted to Re = 5000 by controlling the rotation speed of the stirrer 22 in the tank. After the treatment, the core tube was dried, and the treated silica glass surface was photographed with a scanning electron microscope. The obtained photograph is shown in FIG. As a result of measuring the treated core tube with a roughness meter, the average roughness Ra was 0.34 μm and Rmax was 4.2 μm.

(実験例4)
実験例1と同一の組成の処理用薬液にシリカガラス炉心管を2時間浸した。なお、シリカガラス炉心管が薬液と最初に接触する際のReは2000以下であった。上記処理後、炉心管を乾燥させ、同一の薬液にシリカガラス炉心管を1時間浸した。なお、シリカガラス炉心管が薬液と最初に接触する際のReは2000以下であった。上記処理後、炉心管を乾燥させ、処理後のシリカガラス表面を走査電子顕微鏡で撮影した。得られた写真を図12に示す。得られた処理済炉心管の表面は見た目にムラがあり、この処理済炉心管を粗さ計で測定した結果、平均粗さRaは1.68μm、Rmaxは9.4μmであった。
(Experimental example 4)
The silica glass furnace tube was immersed in a chemical solution for treatment having the same composition as in Experimental Example 1 for 2 hours. Note that the Re when the silica glass furnace tube first contacts the chemical was 2000 or less. After the above treatment, the core tube was dried, and the silica glass core tube was immersed in the same chemical solution for 1 hour. Note that the Re when the silica glass furnace tube first contacts the chemical was 2000 or less. After the treatment, the core tube was dried, and the treated silica glass surface was photographed with a scanning electron microscope. The obtained photograph is shown in FIG. The surface of the obtained treated core tube was uneven in appearance, and as a result of measuring the treated core tube with a roughness meter, the average roughness Ra was 1.68 μm and Rmax was 9.4 μm.

(実験例5)
実験例1と同一の組成の処理用薬液にシリカガラス炉心管を2時間浸した。なお、シリカガラス炉心管が薬液と最初に接触する際のReは2000以下であった。上記処理後、炉心管を乾燥させ、処理後のシリカガラス表面を走査電子顕微鏡で撮影した。得られた写真を図13に示す。得られた処理済炉心管の表面は見た目にかなりムラがあり、この処理済炉心管を粗さ計で測定した結果、平均粗さRaは1.69μm、Rmaxは11.6μmであった。
(Experimental example 5)
The silica glass furnace tube was immersed in a chemical solution for treatment having the same composition as in Experimental Example 1 for 2 hours. Note that the Re when the silica glass furnace tube first contacts the chemical was 2000 or less. After the treatment, the core tube was dried, and the treated silica glass surface was photographed with a scanning electron microscope. The obtained photograph is shown in FIG. The surface of the obtained treated core tube was considerably uneven, and as a result of measuring the treated core tube with a roughness meter, the average roughness Ra was 1.69 μm and Rmax was 11.6 μm.

(実験例6)
実験例1で用いた攪拌機付処理槽にシリカガラス炉心管を固定し、攪拌機22を回転しながら、実験例1と同一の組成の処理用薬液を供給口から注入し、シリカガラス炉心管を薬液18に浸漬させた。シリカガラス炉心管14が薬液18と最初に接触する際の流動制御は、槽内の攪拌機22の回転数を制御することによって、Re=4000になるように調整した。シリカガラス炉心管14全体が薬液18に浸漬後、攪拌機22を停止し、1時間静置した。上記処理後、炉心管を乾燥させ、処理後のシリカガラス表面を走査電子顕微鏡で撮影した。得られた写真を図14に示す。得られた処理済炉心管の表面は見た目のムラは実質的になく、この処理済炉心管を粗さ計で測定した結果、平均粗さRaは0.40μm、Rmaxは5.6μmであった。
(Experimental example 6)
The silica glass core tube is fixed to the processing tank with a stirrer used in Experimental Example 1, and while the stirrer 22 is rotated, a processing chemical solution having the same composition as that of Experimental Example 1 is injected from the supply port. 18 soaked. The flow control when the silica glass furnace tube 14 first comes into contact with the chemical solution 18 was adjusted to Re = 4000 by controlling the rotation speed of the stirrer 22 in the tank. After the entire silica glass furnace tube 14 was immersed in the chemical solution 18, the stirrer 22 was stopped and allowed to stand for 1 hour. After the treatment, the core tube was dried, and the treated silica glass surface was photographed with a scanning electron microscope. The obtained photograph is shown in FIG. The surface of the obtained treated core tube was substantially non-uniform in appearance, and as a result of measuring the treated core tube with a roughness meter, the average roughness Ra was 0.40 μm and Rmax was 5.6 μm. .

本発明のガラス製品表面のフロスト処理方法の基本的思想の工程順を示すフローチャートである。It is a flowchart which shows the process order of the basic idea of the frost processing method of the glass product surface of this invention. 本発明のガラス製品表面のフロスト処理方法の工程順の例を示すフローチャートである。It is a flowchart which shows one example of the process order of the frost processing method of the glass product surface of this invention. 本発明方法の実施に用いられる処理槽の1例を示す側面的説明図である。It is side explanatory drawing which shows an example of the processing tank used for implementation of the method of this invention. 図3の上面的説明図である。FIG. 4 is a top explanatory view of FIG. 3. 本発明方法の実施に用いられる処理槽の他の例を示す側面的説明図である。It is side explanatory drawing which shows the other example of the processing tank used for implementation of the method of this invention. 図5の上面的説明図である。FIG. 6 is a top view of FIG. 5. 本発明方法の実施に用いられる処理槽の別の例を示す側面的説明図である。It is side explanatory drawing which shows another example of the processing tank used for implementation of the method of this invention. 図7の上面的説明図である。FIG. 8 is a top explanatory view of FIG. 7. 実験例1の結果を示す写真である。6 is a photograph showing the results of Experimental Example 1. 実験例2の結果を示す写真である。6 is a photograph showing the results of Experimental Example 2. 実験例3の結果を示す写真である。10 is a photograph showing the results of Experimental Example 3. 実験例4の結果を示す写真である。6 is a photograph showing the results of Experimental Example 4. 実験例5の結果を示す写真である。10 is a photograph showing the results of Experimental Example 5. 実験例6の結果を示す写真である。10 is a photograph showing the results of Experimental Example 6.

符号の説明Explanation of symbols

10,10A,10B,10C:処理槽、12:固定治具、14:シリカガラス製品、16,16a,16b,16c:薬液供給口、18:フロスト処理用薬液、20:攪拌翼、22:攪拌機、24:バブリング装置、26:空気排出パイプ、28:空気導入パイプ、30:バブル(泡)。   10, 10A, 10B, 10C: treatment tank, 12: fixing jig, 14: silica glass product, 16, 16a, 16b, 16c: chemical solution supply port, 18: chemical solution for frost treatment, 20: stirring blade, 22: stirrer 24: bubbling device, 26: air discharge pipe, 28: air introduction pipe, 30: bubble.

Claims (4)

ガラス製品にフロスト処理用薬液を接触させる接触工程と、該接触工程後該ガラス製品を該フロスト処理薬液中に静置させる静置工程と、該静置工程後該ガラス製品を乾燥させる乾燥工程とからなるフロスト処理を2回以上行う方法であって、
該各接触工程において、前記ガラス製品が前記フロスト処理薬液と最初に接触する際薬液の流動を制御することにより、下記式(1)で定義されるレイノルズ数Reを制御し、それにより該ガラス製品の表面粗さRaを制御する方法であり、
前記レイノルズ数Reが3000以上の範囲になるように制御された精フロスト処理及び前記レイノルズ数Reが3000未満の範囲になるように制御された粗フロスト処理を併用し、
前記精フロスト処理を1回以上行うようにしたことを特徴とするガラス製品表面のフロスト処理方法。
Re=D・u・ρ/μ ・・・(1)
〔式(1)において、D:処理槽の幅、u:薬液の流速、ρ:薬液の密度、μ:薬液の粘度
A contact step of bringing the glass product into contact with the chemical solution for frost treatment, a stationary step of allowing the glass product to stand in the frost treatment chemical solution after the contacting step, and a drying step of drying the glass product after the standing step. A method of performing frost treatment consisting of two or more times,
In each of the contact steps, the Reynolds number Re defined by the following formula (1) is controlled by controlling the flow of the chemical solution when the glass product first comes into contact with the frosted chemical solution. It is a method for controlling the surface roughness Ra of the product,
The fine frost process controlled so that the Reynolds number Re is in the range of 3000 or more and the coarse frost process controlled so that the Reynolds number Re is in the range of less than 3000 are used in combination.
A method for frosting a surface of a glass product, wherein the fine frosting is performed at least once.
Re = D · u · ρ / μ (1)
[In formula (1), D: width of treatment tank, u: flow rate of chemical solution, ρ: density of chemical solution, μ: viscosity of chemical solution ]
前記各フロスト処理において用いられるフロスト処理用薬液が1種類であることを特徴とする請求項1記載のガラス製品表面のフロスト処理方法。   The frost treatment method for a glass product surface according to claim 1, wherein the frost treatment chemical solution used in each frost treatment is one kind. 前記フロスト処理用薬液が、フッ化水素10〜50重量%、フッ化アンモニウム6〜30重量%及び有機酸30〜60重量を含有する水溶液であることを特徴とする請求項1又は2記載のガラス製品表面のフロスト処理方法。   The glass according to claim 1 or 2, wherein the chemical solution for frost treatment is an aqueous solution containing 10 to 50% by weight of hydrogen fluoride, 6 to 30% by weight of ammonium fluoride, and 30 to 60% by weight of an organic acid. Frost treatment method for product surface. 前記各接触処理において前記レイノルズ数Reを前記各フロスト処理毎に変えることを特徴とする請求項1〜3のいずれか1項記載のガラス製品表面のフロスト処理方法。   The frost treatment method for a glass product surface according to any one of claims 1 to 3, wherein the Reynolds number Re is changed for each frost treatment in each contact treatment.
JP2003380852A 2003-11-11 2003-11-11 Frost treatment method for glass product surface Expired - Lifetime JP4455018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003380852A JP4455018B2 (en) 2003-11-11 2003-11-11 Frost treatment method for glass product surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003380852A JP4455018B2 (en) 2003-11-11 2003-11-11 Frost treatment method for glass product surface

Publications (2)

Publication Number Publication Date
JP2005145721A JP2005145721A (en) 2005-06-09
JP4455018B2 true JP4455018B2 (en) 2010-04-21

Family

ID=34690402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003380852A Expired - Lifetime JP4455018B2 (en) 2003-11-11 2003-11-11 Frost treatment method for glass product surface

Country Status (1)

Country Link
JP (1) JP4455018B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220111262A (en) 2019-12-04 2022-08-09 신에쯔 세끼에이 가부시키가이샤 How to make quartz glass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10384972B2 (en) * 2014-02-06 2019-08-20 Momentive Performance Materials Inc. Fused quartz tubing for pharmaceutical packaging and methods for making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220111262A (en) 2019-12-04 2022-08-09 신에쯔 세끼에이 가부시키가이샤 How to make quartz glass

Also Published As

Publication number Publication date
JP2005145721A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
US7377991B2 (en) Ultrasonic assisted etch using corrosive liquids
JP5524453B2 (en) Silicon wafer etching method and etching apparatus
KR100272513B1 (en) Etching Device of Glass Substrate
KR100735858B1 (en) Process for treating a semiconductor wafer with a gaseous medium, and semiconductor wafer treated by this process
US7578302B2 (en) Megasonic cleaning using supersaturated solution
JP3523239B2 (en) Glass substrate chemical processing method and glass substrate
WO2003085705A1 (en) Transition flow treatment process and apparatus
JP4455018B2 (en) Frost treatment method for glass product surface
US20020079289A1 (en) Etching apparatus of glass substrate
JPH0910709A (en) Substrate treatment device
US6551443B2 (en) Apparatus for etching glass substrate in fabrication of LCD
CN113130304A (en) Wet etching method for electrode metal layer of silicon carbide device
CN109913222A (en) A kind of silicon wafer polishing liquid
US6248179B1 (en) Method of removing polymeric material on a silicon water
JP4454761B2 (en) Frost treatment method for glass product surface
JP4623624B2 (en) Method of roughening the surface of a silicon wafer substrate
KR20020056942A (en) Semiconductor industry-use silica glass jig and production method therefor
JP3500691B2 (en) Wafer etching method
CN115023411A (en) Method for producing silica glass
JP2000340541A (en) Etching method
JP2004002205A (en) Chemical processing method of glass substrate
JP2002110554A (en) Silica glass jig for semiconductor industry and its manufacturing method
JP2003273054A (en) Method of manufacturing liquid crystal display
KR20030056702A (en) An etching apparatus of silicon wafer
JP2000133632A (en) Etching of porous body and etching equipment therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4455018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term