JP4454561B2 - Molded fuel roasting tray and molded fuel roasting method - Google Patents

Molded fuel roasting tray and molded fuel roasting method Download PDF

Info

Publication number
JP4454561B2
JP4454561B2 JP2005305822A JP2005305822A JP4454561B2 JP 4454561 B2 JP4454561 B2 JP 4454561B2 JP 2005305822 A JP2005305822 A JP 2005305822A JP 2005305822 A JP2005305822 A JP 2005305822A JP 4454561 B2 JP4454561 B2 JP 4454561B2
Authority
JP
Japan
Prior art keywords
fuel
molded fuel
molded
roasting
tray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005305822A
Other languages
Japanese (ja)
Other versions
JP2007114047A (en
Inventor
一文 後藤
真樹 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2005305822A priority Critical patent/JP4454561B2/en
Publication of JP2007114047A publication Critical patent/JP2007114047A/en
Application granted granted Critical
Publication of JP4454561B2 publication Critical patent/JP4454561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、成形燃料焙焼トレーおよび成形燃料焙焼方法に関し、詳しくは成形不良等により使用不能(オフスペック)となった、若しくは使用スケジュールの変更等で余剰品となった高温ガス炉用成形燃料から濃縮ウランを回収して再度利用するために、該成形燃料中のカーボンを焙焼して除去する焙焼炉に使用する成形燃料焙焼トレーおよびこの成形燃料焙焼トレーを用いた成形燃料焙焼方法に関するものである。   The present invention relates to a molded fuel roasting tray and a molded fuel roasting method, and more specifically, molding for a high temperature gas furnace that has become unusable (off-spec) due to molding failure or the like, or has become a surplus product due to a change in usage schedule or the like. A molded fuel roasting tray used in a roasting furnace for roasting and removing carbon in the molded fuel in order to recover concentrated uranium from the fuel and reuse it, and a molded fuel using the molded fuel roasted tray It relates to a roasting method.

高温ガス炉はウラニウムの核反応エネルギーを、ヘリウムを媒体として900℃前後の高熱として取り出し利用しようとするものである。そのため、高温ガス炉用の燃料は通常の発電用軽水炉などとは異なった構造をしている。特許文献1に示されるように、高温ガス炉用の燃料製造工程においては、まず3〜10%程度に濃縮された濃縮ウランからなる硝酸ウラニルから重ウラン酸アンモニウム粒子を製造し、これを大気中で焙焼し、さらに還元及び焼結することにより、高密度の二酸化ウラン粒子(燃料核)を作る。この燃料核を分級して直径350〜650μm程度の粒子径に調整し、炭素源となる炭化水素ガス等の熱分解装置中に導入して炭素等の被覆層を形成し直径約1mmの被覆燃料粒子とする。被覆層は、一般に、内側から低密度炭素層、高密度炭素層、炭化珪素層、および高密度炭素層の順に4層形成される。一般的な高温ガス炉用の成形燃料である燃料コンパクトやペブル球は、上述の被覆燃料粒子を黒鉛粉末、粘結剤等のマトリックス材とともに成形し焙焼して製造される。直径、高さが約10〜80mmの円筒形または円柱形に成形したものが燃料コンパクト、およそ30〜70mmの略球形(タドン形状)にしたものがペブル球と呼ばれている。この成形燃料は、例えば黒鉛スリーブに入れられ、黒鉛スリーブごと減速材を兼ねる黒鉛ブロック中に適当な間隔で挿入され、この黒鉛ブロックを積み重ねて高温ガス炉用の炉心が構成される。このように成形燃料は炉心構成の中心部分を占めるため、その形状、寸法や燃料核の分布密度など厳しい品質管理が要求される。   The high-temperature gas reactor is intended to extract and utilize the nuclear reaction energy of uranium as high heat around 900 ° C. using helium as a medium. Therefore, the fuel for the HTGR has a structure different from that of a normal light water reactor for power generation. As shown in Patent Document 1, in a fuel manufacturing process for a high temperature gas reactor, first, ammonium heavy uranate particles are manufactured from uranyl nitrate composed of enriched uranium concentrated to about 3 to 10%, and this is produced in the atmosphere. The uranium dioxide particles (fuel nuclei) are densely baked with, and further reduced and sintered. The fuel nuclei are classified and adjusted to a particle diameter of about 350 to 650 μm, and introduced into a thermal decomposition apparatus for hydrocarbon gas or the like as a carbon source to form a coating layer of carbon or the like, and a coated fuel having a diameter of about 1 mm Particles. In general, four coating layers are formed from the inside in the order of a low-density carbon layer, a high-density carbon layer, a silicon carbide layer, and a high-density carbon layer. Fuel compacts and pebble spheres, which are molded fuels for general high-temperature gas reactors, are manufactured by molding and roasting the above-mentioned coated fuel particles together with a matrix material such as graphite powder and binder. A cylindrical or columnar shape having a diameter and height of about 10 to 80 mm is called a fuel compact, and a substantially spherical shape (tadon shape) of about 30 to 70 mm is called a pebble sphere. This molded fuel is placed in, for example, a graphite sleeve and inserted into a graphite block serving as a moderator together with the graphite sleeve at an appropriate interval, and the graphite block is stacked to constitute a core for a high temperature gas reactor. As described above, since the molded fuel occupies the central portion of the core structure, strict quality control is required such as its shape, size, and distribution density of fuel nuclei.

そこで、製造工程等で変形したり燃料核の密度が異なったりして使用不能(オフスペック)となったり、使用スケジュール上余剰品となったりした成形燃料(以後まとめてオフスペック等の成形燃料とも言う。)からは、濃縮ウランを回収し、再度燃料製造工程に戻している。一般的な4層被覆燃料粒子の場合、成形燃料から濃縮ウランを回収する工程は、まず、焙焼工程で成形燃料を焙焼してマトリックスとして用いられたカーボン等および燃料核の外部を被覆しているカーボンを焙焼除去する。焙焼工程では、炭化珪素は除去されないので、燃料核は炭化珪素層およびその内側の炭素被覆層で覆われたまま残る。次に、この炭化珪素被覆層を機械的に破砕して炭素被覆燃料核を得る。この際、炭素被覆燃料核も破砕されている場合もあるが問題はない。この炭素被覆燃料核を再度焙焼してカーボンを除去し、破砕された炭化珪素紛のみを含有する燃料核を回収する。最後に、この炭化珪素紛含有燃料核を硝酸等により溶解して、硝酸ウラニルとして濃縮ウランを回収する。   Therefore, molded fuel that has become unusable (off-spec) due to deformation in the manufacturing process or the density of fuel nuclei, or has become a surplus product in the use schedule (hereinafter collectively referred to as off-spec or other shaped fuel) From that, the enriched uranium is recovered and returned to the fuel production process. In the case of general four-layer coated fuel particles, the process of recovering enriched uranium from the molded fuel is performed by first roasting the molded fuel in the roasting process to coat the carbon etc. used as a matrix and the outside of the fuel core. The carbon that has been roasted and removed. In the roasting process, since silicon carbide is not removed, the fuel core remains covered with the silicon carbide layer and the carbon coating layer on the inside thereof. Next, the silicon carbide coating layer is mechanically crushed to obtain carbon-coated fuel nuclei. At this time, the carbon-coated fuel core may be crushed, but there is no problem. The carbon-coated fuel core is roasted again to remove the carbon, and the fuel core containing only the crushed silicon carbide powder is recovered. Finally, the silicon carbide powder-containing fuel nucleus is dissolved with nitric acid or the like to recover concentrated uranium as uranyl nitrate.

これらの工程において、濃縮ウランは臨界量を超えないように取り扱わねばならない。そのため、一定量以下に分割して回分処理することが一般的である。濃縮ウラン回収の最初の工程である成形燃料の焙焼工程においても、成形燃料焙焼トレーに一定量以下(通常は80個以下)の成形燃料を並べて、回分式で焙焼する方法が一般的である。通常は、成形燃料を成形燃料焙焼トレー上に目視で均一になるように(例えば、図3の(F)図のように)並べて配置し、この成形燃料焙焼トレーを間隔を設けて数段重ね、焙焼炉中に導入して、成形燃料のマトリックスであるカーボンを焙焼除去する。焙焼には焙焼温度をおよそ600〜1100℃とし、トレー上の成形燃料に空気を送って焙焼効率を上げている。マトリックスのカーボンが焙焼除去されると成形燃料は形状が崩れ、被覆粒子としてトレー上に堆積する。被覆粒子表面の炭素被覆層も焙焼されて炭化珪素被覆層が表面に露出する。図3の(G)図に示されるように焙焼が不十分な場合は、再度焙焼炉で完全に炭素を焙焼する。炭化珪素被覆層の内側にも炭素被覆層があるが、これは酸素との接触ができないので焙焼除去できないで残る。この炭化珪素被覆燃料核は、次の炭化珪素被覆層破砕工程以降に送られる。そして、上述のように硝酸ウラニルとして濃縮ウランが回収され再利用される。   In these processes, enriched uranium must be handled so as not to exceed a critical amount. Therefore, it is common to perform batch processing by dividing it into a predetermined amount or less. Even in the process of roasting molded fuel, which is the first process for recovering concentrated uranium, a method of arranging a certain amount or less (usually 80 or less) of molded fuel on a molded fuel roasting tray and baking it in a batch system is common. It is. Normally, the molded fuel is arranged side by side on the molded fuel roasting tray so as to be visually uniform (for example, as shown in FIG. 3 (F)), and this molded fuel roasting tray is arranged at intervals. Introduced into a stacking and roasting furnace, the carbon which is the matrix of the molded fuel is roasted and removed. For roasting, the roasting temperature is set to about 600 to 1100 ° C., and air is sent to the molded fuel on the tray to increase the roasting efficiency. When the matrix carbon is roasted and removed, the shaped fuel loses its shape and deposits on the tray as coated particles. The carbon coating layer on the surface of the coated particles is also roasted to expose the silicon carbide coating layer on the surface. When roasting is insufficient as shown in FIG. 3G, carbon is completely roasted again in the roasting furnace. There is also a carbon coating layer inside the silicon carbide coating layer, but this cannot be roasted and removed because it cannot be contacted with oxygen. This silicon carbide-coated fuel nucleus is sent after the next silicon carbide coating layer crushing step. As described above, the enriched uranium is recovered and reused as uranyl nitrate.

特開2004−219195号公報JP 2004-219195 A

上述のように成形燃料焙焼工程においては、成形燃料焙焼トレーに一定量以下(通常は80個程度以下)の成形燃料を並べて、回分式で焙焼している。しかし、成形燃料中のカーボンは一度焼結されたものであり、非常に焙焼除去し難いカーボンである。1000℃前後の高温で、成形燃料に空気をあてながら焙焼しても簡単に焙焼しない。そこで、成形燃料は成形燃料焙焼トレー上にできるだけ均一に分散して酸素が接触し易くしている。放射能をおびた多数の比較的小さな成形燃料を均一に並べることは、時間と労力が必要であった。また、燃料コンパクトのように円筒形で比較的重心の高い形状のものは、焙焼促進用に導入する空気の流れによって移動したり、倒れたりして、成形燃料焙焼トレー上の一部に偏在しやすいという問題があった。このようになると、せっかく最初に成形燃料を成形燃料焙焼トレー上に均一に配置しても意味のないことになってしまう。
本発明においては、成形燃料焙焼工程において、成形燃料をトレー上に容易に均一に分散して配列でき、酸素が接触し易くなり容易に焙焼できる成形燃料焙焼トレーおよびこのトレーを用いた成形燃料の焙焼方法を提供することを目的としている。
As described above, in the molded fuel roasting step, a predetermined amount or less (usually about 80 or less) of molded fuel is arranged on the molded fuel roasting tray and roasted batchwise. However, the carbon in the molded fuel has been sintered once and is very difficult to roast and remove. Even if it is baked at a high temperature of about 1000 ° C. while applying air to the molded fuel, it is not easily baked. Therefore, the molded fuel is dispersed as uniformly as possible on the molded fuel roasting tray so that oxygen can easily come into contact with it. Uniformly arranging a large number of relatively small shaped fuels with radioactivity required time and effort. In addition, a cylinder with a relatively high center of gravity, such as a fuel compact, may move or fall over due to the flow of air introduced to promote roasting, and may become part of the molded fuel roasting tray. There was a problem of being unevenly distributed. In this case, it would be meaningless to arrange the molded fuel uniformly on the molded fuel roasting tray first.
In the present invention, in the molded fuel roasting step, the molded fuel roasting tray which can easily and uniformly disperse the molded fuel on the tray and can easily be roasted due to easy contact with oxygen is used. The object is to provide a method for roasting molded fuel.

本発明の課題を解決するための手段は以下に示す成形燃料焙焼トレーおよび成形燃料の焙焼方法である。
(1)高温ガス炉用成形燃料を焙焼してウラン燃料粒子を回収する成形燃料焙焼装置において、成形燃料が挿入可能であり、前記成形燃料が挿入されたときに前記成形燃料の上部が露出可能に形成されて成る成形燃料配列孔を複数個均一に分散配置した成形燃料配列プレートを備えた成形燃料焙焼トレー。
(2)前記成形燃料配列孔の直径が前記成形燃料の直径の1.05〜1.5倍であり、
前記成形燃料配列プレートが前記成形燃料焙焼トレーの上部8〜50mmに設置される請求項1に記載の成形燃料焙焼トレー。
(3)高温ガス炉用成形燃料を、上記(1)又は(2)に記載の成形燃料焙焼トレーに備えられた成形燃料配列プレートの各成形燃料配列孔から挿入し、成形燃料焙焼トレー上に均一に分散配置して、成形燃料焙焼炉に導入して焙焼する成形燃料焙焼方法。
Means for solving the problems of the present invention are a molded fuel roasting tray and a molded fuel roasting method described below.
(1) In a molded fuel roasting apparatus that roasts a molded fuel for a HTGR and collects uranium fuel particles, the molded fuel can be inserted, and when the molded fuel is inserted, the upper portion of the molded fuel is A molded fuel roasting tray comprising a molded fuel array plate in which a plurality of molded fuel array holes formed so as to be exposed are uniformly distributed.
(2) The diameter of the molded fuel array hole is 1.05 to 1.5 times the diameter of the molded fuel,
The molded fuel roasting tray according to claim 1, wherein the molded fuel array plate is installed in an upper portion of 8 to 50 mm of the molded fuel roasting tray.
(3) A molded fuel roasting tray is formed by inserting molded fuel for a HTGR from each molded fuel array hole of the molded fuel array plate provided in the molded fuel roasting tray described in (1) or (2) above. A molded fuel roasting method in which the fuel is uniformly distributed and introduced into a molded fuel roasting furnace.

本発明は、オフスペックの高温ガス炉用成形燃料から濃縮ウラン回収の最初の工程である成形燃料の焙焼工程に関するものである。本発明の成形燃料焙焼トレーは、使用不能、所謂オフスペックおよび余剰となった高温ガス炉用の成形燃料からウラニウムを回収するためのオフスペック成形燃料焙焼装置において、成形燃料をトレー上に容易に配置でき、均一に焙焼させるために、特別の形状の成形燃料配列プレートを備えている。本発明の成形燃料の焙焼方法は成形燃料焙焼トレー上に成形燃料配列プレートに従って一定量(通常は80個以下)の成形燃料を並べて焙焼炉に挿入し焙焼する。従来は、成形燃料を成形燃料焙焼トレー上に目視でほぼ均一分散するように並べて配置し、この成形燃料焙焼トレーを焙焼炉中に挿入して、成形燃料のマトリックスを形成するカーボンを焙焼除去していたが、効率的にカーボンを焙焼除去できていなかった。本発明の成形燃料配列プレートを備えた成形燃料焙焼トレー上に、本発明の成形燃料の焙焼方法に従って配置した成形燃料は、焙焼炉で効率よく焙焼される。焙焼は、従来と同じように焙焼温度をおよそ600〜1100℃とし、トレー上の成形燃料に空気を送って焙焼効率を上げてマトリックスのカーボンを焙焼除去すればよい。これにより、成形燃料は完全に形状が崩れ、被覆粒子としてトレー上にばらばらになってほぼ均一に堆積する。被覆粒子表面の炭素被覆層も焙焼されやすく、炭化珪素被覆層が表面に露出する。炭化珪素被覆層の内側にも炭素被覆層があるが、これは酸素との接触ができないので焙焼除去できないで残る。炭化珪素被覆燃料核は次の炭化珪素被覆層破砕工程に送られ、炭化珪素層を破砕した後、再度焙焼処理を行いカーボンを除去する。そして、残った粉末から従来と同様のウラン溶解工程において硝酸ウラニルとして濃縮ウランが回収され再利用される。   The present invention relates to a molded fuel roasting process, which is the first process of recovering concentrated uranium from off-spec high temperature gas reactor molded fuel. The molded fuel roasting tray of the present invention is an off-spec molded fuel roasting device for recovering uranium from unusable, so-called off-spec and surplus molded fuel for high-temperature gas reactors. A specially shaped shaped fuel array plate is provided for easy placement and uniform baking. According to the method for roasting a molded fuel of the present invention, a predetermined amount (usually 80 or less) of molded fuel is arranged on a molded fuel roasting tray in accordance with a molded fuel array plate and inserted into a roasting furnace for baking. Conventionally, the molded fuel is arranged side by side on the molded fuel roasting tray so as to be almost uniformly dispersed, and the molded fuel roasting tray is inserted into a roasting furnace to form carbon that forms the matrix of the molded fuel. Although it was roasted and removed, carbon could not be efficiently roasted and removed. The molded fuel arranged according to the molded fuel roasting method of the present invention on the molded fuel roasting tray having the molded fuel array plate of the present invention is efficiently roasted in a roasting furnace. The roasting may be performed by setting the roasting temperature to about 600 to 1100 ° C. as in the prior art, sending air to the molded fuel on the tray to increase the roasting efficiency, and roasting and removing the carbon of the matrix. As a result, the shape of the molded fuel is completely lost, and the formed fuel is scattered on the tray as coated particles and deposited almost uniformly. The carbon coating layer on the surface of the coated particles is also easily roasted, and the silicon carbide coating layer is exposed on the surface. There is a carbon coating layer on the inner side of the silicon carbide coating layer, but this cannot be roasted and removed because it cannot be contacted with oxygen. The silicon carbide-coated fuel nucleus is sent to the next silicon carbide coating layer crushing step, and after the silicon carbide layer is crushed, it is roasted again to remove carbon. Then, concentrated uranium is recovered from the remaining powder as uranyl nitrate and reused in the same uranium dissolution step as before.

図1を参照して説明すると、本発明に用いる成形燃料配列プレート2は、成形燃料焙焼トレー4の成形燃料配置面とほぼ同じ大きさで、成形燃料配置面の真上に設置されている。重要なのは、燃料配列プレート2の表面全体に成形燃料配列孔3を均一に分散して配置していることである。成形燃料配列孔3は、オフスペック等の成形燃料1を挿入し、成形燃料焙焼トレー4の成形燃料配置面上に配列するための孔である。この成形燃料配列孔3を利用して成形燃料を成形燃料焙焼トレー4の成形燃料配置面上に配列することにより、成形燃料が成形燃料焙焼トレー上に均一に分散配置され効率的に焙焼されやすくなる。なお、均一分散配置とは言っても、成形燃料焙焼トレーの端部付近は均一ではない。焙焼炉の熱の分布や焙焼用空気の分布が異なるので、通常は配置された成形燃料の間の空間を十分取っておくことが好ましい。例として、図3の(D)図を示す。   Referring to FIG. 1, the molded fuel array plate 2 used in the present invention is approximately the same size as the molded fuel arrangement surface of the molded fuel roasting tray 4 and is installed directly above the molded fuel arrangement surface. . What is important is that the molded fuel array holes 3 are uniformly distributed over the entire surface of the fuel array plate 2. The molded fuel array hole 3 is a hole for inserting the molded fuel 1 such as off-spec and arranging it on the molded fuel arrangement surface of the molded fuel roasting tray 4. By arranging the molded fuel on the molded fuel arrangement surface of the molded fuel roasting tray 4 using the molded fuel array holes 3, the molded fuel is uniformly distributed and arranged on the molded fuel roasting tray. It becomes easy to be baked. Note that even if the uniform dispersion arrangement is used, the vicinity of the end of the molded fuel roasting tray is not uniform. Since the distribution of heat in the roasting furnace and the distribution of roasting air are different, it is usually preferable to reserve a sufficient space between the formed fuels. As an example, FIG. 3D is shown.

本発明の成形燃料焙焼トレーを用いて成形燃料を配置すれば、成形燃料焙焼トレー上への成形燃料の均一な配列が容易に且つ短時間で可能となる。さらに、成形燃料の均一な分散配置により、焙焼工程における成形燃料の焙焼むらがなくなり、焙焼除去すべきカーボンが容易に除去でき非常に効率的である。特に、焙焼用の空気の流路を考慮した成形燃料配列プレートを用いた場合は、焙焼用空気による成形燃料の移動や転倒への注意をせずに焙焼でき、焙焼炉の運転管理も容易となる。また、成形燃料供給用ホッパーを用いて成形燃料配列孔に成形燃料を供給すれば、成形燃料焙焼トレーへの成形燃料配置の自動化も可能である。   If the molded fuel is arranged using the molded fuel roasting tray of the present invention, the uniform arrangement of the molded fuel on the molded fuel roasting tray can be easily performed in a short time. Furthermore, the uniform distribution of the molded fuel eliminates uneven burning of the molded fuel in the roasting process, and the carbon to be roasted and removed can be easily removed, which is very efficient. In particular, when using a molded fuel array plate that takes into account the air flow path for roasting, the roasting air can be roasted without paying attention to the movement of the molded fuel or falling, and the roasting furnace can be operated. Management is also easy. Further, if the molded fuel is supplied to the molded fuel array holes using the molded fuel supply hopper, the arrangement of the molded fuel on the molded fuel roasting tray can be automated.

本発明の成形燃料焙焼トレーは、使用不能、所謂オフスペックとなった高温ガス炉用の成形燃料等からウラニウムを回収するためのオフスペック成形燃料焙焼装置において、成形燃料をトレー上に容易に配置し、均一に焙焼させるために、特別の形状、例えば図2に示す正方形格子状(A)図、六方細密充填構造(B)図の形状の成形燃料配列孔を形成した成形燃料配列プレートを備えている。
図1では、成形燃料焙焼トレー4の成形燃料配置面上の右手前に配列された2個のオフスペック等の成形燃料5、およびその奥の3番目の成形燃料配列孔3にオフスペック等の成形燃料1(以下、文脈上おかしくない限り成形燃料とはオフスペック等の成形燃料を指す。)を矢印方向に沿って配置しようとしているところを模式的に表している。このようにして成形燃料1を成形燃料焙焼トレー4上に配列していき、すべての成形燃料配列孔3に成形燃料1が挿入されたら配列は完成である。
このため、成形燃料配列孔3は成形燃料を挿入できる形状であり、挿入した成形燃料があまり移動しない程度の大きさが好ましい。例えば円筒形の燃料コンパクト用の成形燃料配列孔は円形が好ましく、その直径が燃料コンパクトの直径よりも0.1〜10mm、好ましくは1〜5mm大きいことが望ましい。燃料コンパクトの直径と成形燃料配列孔の直径との比率で表せば1.05〜1.5倍とすることが望ましい。オフスペック等の成形燃料は変形していたり、膨れがあったりするので、設計上の成形燃料の形状と成形燃料配列孔とをぴったり同じにすると、成形燃料を挿入できなくなる場合がある。また、成形燃料配列孔が大きすぎると、配置された成形燃料が移動して全体の配列が不規則になり易く、場合によっては成形燃料が倒れてしまうこともある。
成形燃料焙焼トレー4上の燃料配列プレート2の高さ方向の位置は、成形燃料を成形燃料焙焼トレー4の成形燃料配置面上に設置したときに、成形燃料の上部が燃料配列プレート2の成形燃料配列孔3の上に出ているようにすることが好ましい。通常は成形燃料の高さが10〜80mm程度であるので、燃料配列プレート2は成形燃料焙焼トレー4の成形燃料配置面の上8〜50mmに設置すればよい。そして、成形燃料配列プレート2は成形燃料焙焼トレー4と水平方向にも相対移動しないように設置する。成形燃料配列プレート2と成形燃料焙焼トレー4とに水平方向の相対移動が起こると、配列した成形燃料が移動したり、倒れたりしてしまうので好ましくない。
The molded fuel roasting tray of the present invention can be used on an off-spec molded fuel roasting device for recovering uranium from unusable, so-called off-spec molded fuel for high-temperature gas reactors. A molded fuel array in which formed fuel array holes having a special shape, for example, a square lattice shape (A) diagram and a hexagonal close-packed structure (B) diagram shown in FIG. It has a plate.
In FIG. 1, two shaped fuels 5 such as off-specs arranged on the right side of the shaped fuel arrangement surface of the shaped fuel roasting tray 4 and off-spec etc. in the third shaped fuel array hole 3 in the back thereof. The molded fuel 1 (hereinafter, molded fuel refers to a molded fuel such as off-spec unless otherwise strange in context) is schematically shown where it is going to be arranged along the arrow direction. The molded fuel 1 is arranged on the molded fuel roasting tray 4 in this way, and the arrangement is completed when the molded fuel 1 is inserted into all the molded fuel array holes 3.
For this reason, the molded fuel array hole 3 has a shape into which the molded fuel can be inserted, and preferably has a size such that the inserted molded fuel does not move so much. For example, the molded fuel array hole for a cylindrical fuel compact is preferably circular, and its diameter is desirably 0.1 to 10 mm, preferably 1 to 5 mm larger than the diameter of the fuel compact. In terms of the ratio between the diameter of the fuel compact and the diameter of the molded fuel array holes, it is desirable that the ratio be 1.05 to 1.5 times. Since the molded fuel such as off-spec is deformed or swollen, if the designed molded fuel shape and the molded fuel array hole are exactly the same, the molded fuel may not be inserted. In addition, if the molded fuel array hole is too large, the arranged molded fuel moves and the entire array tends to be irregular, and the molded fuel may fall down in some cases.
The position in the height direction of the fuel array plate 2 on the molded fuel roasting tray 4 is such that when the molded fuel is placed on the molded fuel arrangement surface of the molded fuel roasting tray 4, the upper part of the molded fuel is the fuel array plate 2. It is preferable to protrude above the shaped fuel array hole 3. Since the height of the molded fuel is usually about 10 to 80 mm, the fuel array plate 2 may be installed 8 to 50 mm above the molded fuel arrangement surface of the molded fuel roasting tray 4. The molded fuel array plate 2 is installed so as not to move relative to the molded fuel roasting tray 4 in the horizontal direction. If relative movement in the horizontal direction occurs between the molded fuel array plate 2 and the molded fuel roasting tray 4, the arrayed molded fuel moves or falls, which is not preferable.

図2には、成形燃料配列プレート2の表面に均一に分散配置された多数の成形燃料配列孔3の例を示している。(A)図は、成形燃料配列孔3を正方形の格子状模様の交点上に均一に分散した例である。このように、縦横両方向に等間隔に成形燃料配列孔を配置すれば本発明に使用する好適な成形燃料配列プレートが得られる。(B)図は平面上に円を六方細密充填した場合の配置方法により成形燃料配列孔を成形燃料配列プレート全体に配置した例である。この場合も、本発明に使用する好適な成形燃料配列プレートが得られる。
図3の(C)図は実際の成形燃料配列プレート2を成形燃料焙焼トレー4上に設置した写真であり、(D)図は(C)図の状態の成形燃料焙焼トレー4上に燃料コンパクトを成形燃料配列孔に従って配置した後、成形燃料配列プレートを取りはずし燃料コンパクトの配列状態を写した写真である。燃料コンパクトは成形燃料焙焼トレー4上にきれいに均一分散して配列されている。
この燃料コンパクトを配列した成形燃料焙焼トレーを成形燃料焙焼炉に導入して焙焼すれば、燃料コンパクトは均一に、効率的に焙焼されカーボンが焙焼除去されて、炭化珪素被覆粒子のみが成形燃料焙焼トレー上に残る。図3の(E)図は、焙焼が終了して成形燃料焙焼炉から取り出した成形燃料焙焼トレー上の炭化珪素被覆粒子の写真である。炭化珪素被覆粒子が成形燃料焙焼トレー上全面に均一に分散して堆積している。
FIG. 2 shows an example of a large number of molded fuel array holes 3 that are uniformly distributed on the surface of the molded fuel array plate 2. FIG. 5A shows an example in which the molded fuel array holes 3 are uniformly distributed on the intersections of a square lattice pattern. In this way, if the molded fuel array holes are arranged at equal intervals in both the vertical and horizontal directions, a suitable molded fuel array plate used in the present invention can be obtained. FIG. 5B shows an example in which the formed fuel array holes are arranged on the entire formed fuel array plate by an arrangement method in a case where circles are packed in a hexagonal close-packed manner on a plane. Again, a suitable shaped fuel array plate for use in the present invention is obtained.
3C is a photograph of the actual molded fuel array plate 2 placed on the molded fuel roasting tray 4, and FIG. 3D is a photograph of the molded fuel roasting tray 4 in the state of FIG. It is the photograph which copied the arrangement state of the fuel compact by detaching the formation fuel arrangement plate after arranging the fuel compact according to the formation fuel arrangement hole. The fuel compacts are arranged on the molded fuel roasting tray 4 in a uniformly distributed manner.
If this fuel compact is arranged in a molded fuel roasting tray and introduced into a molded fuel roasting furnace, the fuel compact is uniformly and efficiently roasted, carbon is roasted and removed, and silicon carbide coated particles Only remains on the molded fuel roasting tray. FIG. 3E is a photograph of the silicon carbide-coated particles on the molded fuel roasting tray taken out from the molded fuel roasting furnace after the roasting was completed. Silicon carbide-coated particles are uniformly dispersed and deposited on the entire surface of the molded fuel roasting tray.

本発明の成形燃料焙焼方法は、成形燃料焙焼トレーに備えられた成形燃料配列プレート表面の各成形燃料配列孔からオフスペックの成形燃料を挿入し、成形燃料焙焼トレー上に成形燃料を均一分散配置した状態で成形燃料焙焼炉に導入して焙焼する成形燃料焙焼方法である。成形燃料を成形燃料焙焼トレー上に配置するにあたって、成形燃料配列プレート上に均一分散配置された成形燃料配列孔に成形燃料を挿入していけば、自然に成形燃料焙焼トレー上への成形燃料の配置が完成する。これを成形燃料焙焼炉に導入して焙焼すれば、成形燃料はむらなく効率的に焙焼されて、炭化珪素被覆燃料粒子が得られる。成形燃料焙焼トレーに配置された成形燃料を成形燃料焙焼炉で焙焼する際、成形燃料配列プレートは成形燃料焙焼トレー上に設置したままでもよいし、取り外してから焙焼してもよい。成形燃料配列プレートを成形燃料焙焼トレー上に設置したまま焙焼すれば、成形燃料は移動したり、倒れたりすることは少ないので焙焼用空気流を強めにして焙焼効率を上げることができる。しかし、成形燃料配列プレートが焙焼用空気流を遮る恐れがあるので、焙焼用空気流の導入方法や成形燃料配列プレートの形状に工夫が必要である。例えば、成形燃料配列プレートをメッシュ状にしたり、成形燃料配列プレート上に空気流通過用の小孔を多数形成しておけばよい。成形燃料配列プレートを成形燃料焙焼トレーから取り外してから焙焼すると、焙焼用空気流が強い場合、成形燃料の移動や転倒が起こり易いが、均一な加熱がしやすく、成形燃料配列プレートに焙焼用空気流が邪魔されないので少量の焙焼用空気でも成形燃料を焙焼し易い場合もある。成形燃料配列プレートは焙焼炉の温度や焙焼用空気流の設計などを勘案して取り外したり、つけたままにしたりして焙焼すればよい。   In the molded fuel roasting method of the present invention, an off-spec molded fuel is inserted from each molded fuel array hole on the surface of the molded fuel array plate provided in the molded fuel roasting tray, and the molded fuel is placed on the molded fuel roasting tray. This is a molded fuel roasting method in which it is introduced into a molded fuel roasting furnace and roasted in a uniformly dispersed state. When the molded fuel is placed on the molded fuel roasting tray, if the molded fuel is inserted into the molded fuel array holes that are uniformly distributed on the molded fuel array plate, the molded fuel is naturally molded onto the molded fuel roasting tray. The fuel arrangement is completed. When this is introduced into a molded fuel roasting furnace and roasted, the molded fuel is uniformly and efficiently fired to obtain silicon carbide-coated fuel particles. When the molded fuel placed on the molded fuel roasting tray is roasted in the molded fuel roasting furnace, the molded fuel array plate may remain installed on the molded fuel roasting tray, or may be removed and roasted after removal. Good. If the molded fuel array plate is placed on the molded fuel roasting tray and roasted, the molded fuel will not move or fall over, so the air flow for roasting can be strengthened to increase roasting efficiency. it can. However, since the molded fuel array plate may block the air flow for roasting, it is necessary to devise a method for introducing the air flow for roasting and the shape of the molded fuel array plate. For example, the molded fuel array plate may be made into a mesh shape, or a large number of small holes for airflow passage may be formed on the molded fuel array plate. When the molded fuel array plate is removed from the molded fuel roasting tray and then roasted, if the air flow for roasting is strong, the molded fuel tends to move or fall over, but it is easy to heat uniformly, Since the air flow for roasting is not obstructed, the molded fuel may be easily roasted even with a small amount of air for roasting. The molded fuel array plate may be removed by taking into consideration the temperature of the roasting furnace, the design of the airflow for roasting, or the like, and roasted while being attached.

本発明を実施するための最良の形態を、実施例および比較例より説明する。なお、本発明は実施例に限定されるものではない。
(実施例)
図3の(C)図に示すように、直径28mmの円形の成形燃料配列孔を縦横等間隔に配列した成形燃料配列プレート(図2の(A)図タイプ)を備えた成形燃料焙焼トレーを作成した。成形燃料配列プレートは縦横50cmのステンレス製平板である。成形燃料焙焼トレー本体は、図3の(D)図に示されているように、底面は縦45cm、横51cmで、横の側壁の高さ5cm、縦の側壁の高さ3cmのステンレス製である。成形燃料配列プレートは横側面がぴったりと成形燃料焙焼トレー本体の内側に収まり、縦側は成形燃料焙焼トレー本体の側壁に載っている状態である。すなわち、成形燃料配列プレートは成形燃料焙焼トレー本体の底面から3cm上部に成形燃料配列面と平行に設置されている(図3の(C)図参照)。なお、成形燃料配列孔は56個が8列7行で縦横6cmの等間隔に均一に成形燃料配列プレート上に分散して形成されている。この成形燃料焙焼トレー上に成形燃料配列孔の数に見合う56個のオフスペックの燃料コンパクト(平均直径26mm、高さ39mmの円筒形状)を成形燃料配列プレート上部から挿入して配置した。燃料コンパクト配置には、特に熟練を要せず約1分で終了した。
すべての燃料コンパクトを配置してから、成形燃料配列プレートを真上に引き揚げて取り外し(図3の(D)図参照)、燃料コンパクトを配置したまま成形燃料焙焼トレーを電気炉の成形燃料焙焼炉に挿入した。焙焼炉中に空気を導入しながら700〜1000℃で約240分間焙焼した後、成形燃料焙焼トレーを焙焼炉から取り出した。燃料コンパクトは完全に焙焼され、燃料コンパクトの形状は全くなくなり炭化珪素被覆燃料粒子のみが成形燃料焙焼トレー上にほぼ平らに堆積していた(図3の(E)図参照)。この炭化珪素被覆燃料粒子は、次の被覆燃料粒子破砕工程に進めることができる。
The best mode for carrying out the present invention will be described from examples and comparative examples. In addition, this invention is not limited to an Example.
(Example)
As shown in FIG. 3C, a molded fuel roasting tray provided with a molded fuel array plate (type of FIG. 2A) in which circular molded fuel array holes having a diameter of 28 mm are arranged at equal intervals in the vertical and horizontal directions. It was created. The molded fuel array plate is a stainless steel flat plate having a length and width of 50 cm. As shown in FIG. 3D, the molded fuel roasting tray main body is made of stainless steel with a bottom surface of 45 cm in length and 51 cm in width, a horizontal side wall height of 5 cm, and a vertical side wall height of 3 cm. It is. The molded fuel arrangement plate is in a state where the lateral side is exactly inside the molded fuel roasting tray main body and the vertical side is placed on the side wall of the molded fuel roasting tray main body. That is, the molded fuel array plate is installed 3 cm above the bottom surface of the molded fuel roasting tray main body in parallel with the molded fuel array surface (see FIG. 3C). In addition, 56 molded fuel array holes are uniformly distributed on the molded fuel array plate at equal intervals of 6 cm in length and width in 8 columns and 7 rows. On this molded fuel roasting tray, 56 off-spec fuel compacts (cylindrical shape with an average diameter of 26 mm and a height of 39 mm) corresponding to the number of molded fuel array holes were inserted and arranged from the upper part of the molded fuel array plate. The fuel compact arrangement did not require special skills and was completed in about 1 minute.
After all the fuel compacts have been placed, the molded fuel array plate is lifted straight up and removed (see FIG. 3D), and the molded fuel roasting tray is placed in the electric furnace with the fuel compacts in place. Inserted into the furnace. After roasting at 700 to 1000 ° C. for about 240 minutes while introducing air into the roasting furnace, the molded fuel roasting tray was taken out from the roasting furnace. The fuel compact was completely roasted, the shape of the fuel compact disappeared, and only silicon carbide-coated fuel particles were deposited almost flatly on the molded fuel roasting tray (see FIG. 3E). The silicon carbide coated fuel particles can proceed to the next coated fuel particle crushing step.

(比較例)
実施例1において、成形燃料焙焼トレー上に成形燃料配列プレートを設けないで、燃料コンパクトを成形燃料焙焼トレー上に直接配置した。多数の燃料コンパクトを図3の(D)図のように直接整列させることは、熟練者でも大変なので図3の(F)図のように2個一組として5行5列に配置して、全体として均一な配列とした。燃料コンパクト配置には、熟練者でも3〜5分を要した。これを焙焼炉に導入して実施例1と同様の条件で焙焼した。焙焼炉から取り出した成形燃料焙焼トレー上の燃料コンパクトは、マトリックスのカーボンが完全に焙焼されておらず、燃料コンパクトの形状が一部残っていたり(およそ15〜30%が形状残留)、移動して倒れかかっている状態を示すものもあった(図3の(G)図参照)。このような場合は、再度焙焼を繰り返さなければ炭化珪素被覆燃料粒子を回収できない。そのため、焙焼工程に実施例1の2倍近い時間がかかった。
(Comparative example)
In Example 1, the compact fuel was placed directly on the molded fuel roasting tray without providing the molded fuel array plate on the molded fuel roasting tray. It is difficult even for a skilled person to align a large number of fuel compacts directly as shown in FIG. 3D, so as shown in FIG. The overall arrangement was uniform. Even a skilled person required 3 to 5 minutes for the fuel compact arrangement. This was introduced into a roasting furnace and roasted under the same conditions as in Example 1. The fuel compact on the molded fuel roasting tray taken out from the roasting furnace is not completely roasted in the matrix carbon, and part of the fuel compact shape remains (approximately 15-30% of the shape remains) Some of them show a state of being moved and falling down (see FIG. 3G). In such a case, silicon carbide-coated fuel particles cannot be recovered unless roasting is repeated again. Therefore, the roasting process took nearly twice as long as in Example 1.

本発明の成形燃料焙焼トレーおよび成形燃料焙焼方法は、高温ガス炉用の燃料製造において、オフスペック等の成形燃料から濃縮ウランを回収する工程の合理化に役立つものである。   INDUSTRIAL APPLICABILITY The molded fuel roasting tray and the molded fuel roasting method of the present invention are useful for rationalizing the process of recovering concentrated uranium from molded fuel such as off-spec in the production of fuel for high-temperature gas reactors.

図1は、本発明の成形燃料焙焼トレーに成形燃料を配置している模式図である。FIG. 1 is a schematic view in which a molded fuel is arranged in a molded fuel roasting tray of the present invention. 図2は、成形燃料配列プレート上の成形燃料配列孔の配置例である。FIG. 2 is an arrangement example of the molded fuel array holes on the molded fuel array plate. 図3は、本発明および従来の成形燃料焙焼方法を示す写真である。FIG. 3 is a photograph showing the present invention and a conventional molded fuel roasting method.

符号の説明Explanation of symbols

1:オフスペックの成形燃料 2:成形燃料配列プレート 3:成形燃料配列孔
4:成形燃料焙焼トレー 5:オフスペックの成形燃料
1: Molded fuel of off-spec 2: Molded fuel array plate 3: Molded fuel array hole 4: Molded fuel roasting tray 5: Molded fuel of off-spec

Claims (3)

高温ガス炉用成形燃料を焙焼してウラン燃料粒子を回収する成形燃料焙焼装置において、成形燃料が挿入可能であり、前記成形燃料が挿入されたときに前記成形燃料の上部が露出可能に形成されて成る成形燃料配列孔を複数個均一に分散配置した成形燃料配列プレートを備えた成形燃料焙焼トレー。 In a molded fuel roasting device that recovers uranium fuel particles by roasting a molded fuel for a HTGR, the molded fuel can be inserted, and the upper part of the molded fuel can be exposed when the molded fuel is inserted A molded fuel roasting tray provided with a molded fuel array plate in which a plurality of formed fuel array holes are uniformly distributed. 前記成形燃料配列孔の直径が前記成形燃料の直径の1.05〜1.5倍であり、The diameter of the molded fuel array hole is 1.05 to 1.5 times the diameter of the molded fuel;
前記成形燃料配列プレートが前記成形燃料焙焼トレーの上部8〜50mmに設置される請求項1に記載の成形燃料焙焼トレー。The molded fuel roasting tray according to claim 1, wherein the molded fuel array plate is installed in an upper portion of 8 to 50 mm of the molded fuel roasting tray.
高温ガス炉用成形燃料を、請求項1又は2に記載の成形燃料焙焼トレーに備えられた成形燃料配列プレートの各成形燃料配列孔から挿入し、成形燃料焙焼トレー上に均一に分散配置して、成形燃料焙焼炉に導入して焙焼する成形燃料焙焼方法。 3. The molded fuel for the HTGR is inserted from each molded fuel array hole of the molded fuel array plate provided in the molded fuel roasting tray according to claim 1 or 2 , and uniformly distributed on the molded fuel roasting tray. Then, a molded fuel roasting method which is introduced into a molded fuel roasting furnace and roasted.
JP2005305822A 2005-10-20 2005-10-20 Molded fuel roasting tray and molded fuel roasting method Expired - Fee Related JP4454561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005305822A JP4454561B2 (en) 2005-10-20 2005-10-20 Molded fuel roasting tray and molded fuel roasting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005305822A JP4454561B2 (en) 2005-10-20 2005-10-20 Molded fuel roasting tray and molded fuel roasting method

Publications (2)

Publication Number Publication Date
JP2007114047A JP2007114047A (en) 2007-05-10
JP4454561B2 true JP4454561B2 (en) 2010-04-21

Family

ID=38096374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005305822A Expired - Fee Related JP4454561B2 (en) 2005-10-20 2005-10-20 Molded fuel roasting tray and molded fuel roasting method

Country Status (1)

Country Link
JP (1) JP4454561B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101231161B1 (en) 2011-04-15 2013-02-07 한국수력원자력 주식회사 Multi-floor calcination furnace for thermal treatment of single layer particles and its operation method

Also Published As

Publication number Publication date
JP2007114047A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
CA2976389C (en) Nuclear fuel pebble and method of manufacturing the same
US10902956B2 (en) Nuclear fuel pebble and method of manufacturing the same
US11776701B2 (en) Fission product getter formed by additive manufacturing
US7521007B1 (en) Methods and apparatuses for the development of microstructured nuclear fuels
JP4454561B2 (en) Molded fuel roasting tray and molded fuel roasting method
US3586746A (en) Method of making a nuclear fuel plate
US20150040727A1 (en) Mechanical press system and method of removing salt using the same
JP4697938B2 (en) Method for producing coated fuel particles for HTGR
JP2007010472A (en) Method and device for manufacturing overcoat particle for high-temperature gas-cooled reactor fuel
GB2065955A (en) Production of Tritium in a Nuclear Reactor
JP2007003118A (en) Gas injection nozzle deposit-removing method for manufacturing device of coated fuel particle for high-temperature gas furnace and manufacturing method of coated fuel particle for high-temperature gas furnace
JP2006000768A (en) Sieve for screening minute particle and method for screening minute particle for high temperature gas-cooled reactor fuel
JP4685707B2 (en) Fuel compact pre-firing device and fuel compact pre-firing method
JP2006078401A (en) Pebble bed type nuclear fuel for high-temperature gas-cooled reactor and its manufacturing method
JP2006112838A (en) Method for manufacturing fuel compact for high-temperature gas-cooled reactor
JP2007147335A (en) Pebble-bed fuel and method for manufacturing same
Charollais et al. CEA and AREVA HTR fuel particles manufacturing and characterization R and D Program
JP2006317167A (en) Method and system for over-coating coated fuel particle
JP2006258799A (en) Manufacturing method of fuel for high-temperature gas-cooled reactor
JP2007024841A (en) Manufacturing equipment of coated fuel particle for high-temperature gas-cooled reactor
Blanco et al. feiQAL NOTICE--
JP2007101453A (en) Fuel compact for high-temperature gas-cooled reactor, fuel compact identification method for high-temperature gas-cooled reactor, die, and fuel compact manufacturing method for high-temperature gas-cooled reactor
JP2007132728A (en) Method of manufacturing fuel compact for high-temperature gas-cooled reactor
JP2006300535A (en) Gas introduction nozzle of coated fuel particle manufacturing equipment for high-temperature gas-cooled reactor
JP2006250664A (en) Manufacture device of coated fuel particle for high-temperature gas-cooled reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160212

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees