JP4454340B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP4454340B2
JP4454340B2 JP2004046522A JP2004046522A JP4454340B2 JP 4454340 B2 JP4454340 B2 JP 4454340B2 JP 2004046522 A JP2004046522 A JP 2004046522A JP 2004046522 A JP2004046522 A JP 2004046522A JP 4454340 B2 JP4454340 B2 JP 4454340B2
Authority
JP
Japan
Prior art keywords
negative electrode
electrode
positive electrode
current collector
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004046522A
Other languages
Japanese (ja)
Other versions
JP2005235695A (en
Inventor
潤二 中島
積 大畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004046522A priority Critical patent/JP4454340B2/en
Publication of JP2005235695A publication Critical patent/JP2005235695A/en
Application granted granted Critical
Publication of JP4454340B2 publication Critical patent/JP4454340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、安全性および生産性に優れたリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery excellent in safety and productivity.

リチウムイオン二次電池は、一般に正極芯材および前記正極芯材に担持された複合リチウム酸化物からなる正極、負極芯材および前記負極芯材に担持されたリチウムイオンが出入り可能な材料からなる負極、セパレータおよび非水電解液を具備する。正極および負極は、セパレータを介して捲回された状態であって、柱状の極板群を構成している。正極および負極の長手方向に沿う一方の端部には、それぞれ芯材露出部が形成されており、それらの露出部は柱状の極板群の一方および他方の端面において他方の電極の端部よりも突出させてある。   A lithium ion secondary battery generally includes a positive electrode core material, a positive electrode made of a composite lithium oxide supported on the positive electrode core material, a negative electrode core material, and a negative electrode made of a material that allows lithium ions supported on the negative electrode core material to enter and exit. And a separator and a non-aqueous electrolyte. The positive electrode and the negative electrode are wound through a separator and constitute a columnar electrode plate group. A core material exposed portion is formed at one end portion along the longitudinal direction of the positive electrode and the negative electrode, respectively, and these exposed portions are located at one end and the other end face of the columnar electrode plate group from the end of the other electrode. Is also protruding.

近年、リチウムイオン二次電池の集電効率を高め、充放電時の抵抗を低減させる観点から、柱状の極板群の一方および他方の端面から突出させた芯材露出部を、極板群の中心軸方向に屈曲させ、平坦な正極集電部および負極集電部を形成することが提案されている(特許文献1)。平坦な集電部を集電板と接合することにより、振動等に対して安定な構造になるとともに、集電効率を高めることができ、充放電時の抵抗が低減するからである。   In recent years, from the viewpoint of increasing the current collection efficiency of a lithium ion secondary battery and reducing the resistance at the time of charge and discharge, the core material exposed portion protruding from one and the other end surface of the columnar electrode plate group It has been proposed to bend in the direction of the central axis to form flat positive and negative current collectors (Patent Document 1). This is because by joining the flat current collecting part to the current collecting plate, the structure is stable against vibration and the like, the current collecting efficiency can be increased, and the resistance during charging and discharging is reduced.

正極と負極との間に介在するセパレータは、極板間を電子的に絶縁し、さらに電解液を保持する役目をもつ。セパレータには、主にポリエチレン樹脂からなる微多孔性シートが使われている。しかし、微多孔性シートなどのシート状セパレータは、概して150℃以下の温度でも収縮しやすく、短絡を起こしやすい。また、釘のような鋭利な形状の突起物が電池を貫いた時(例えば釘刺し試験時)、瞬時に発生する短絡反応熱により短絡部が拡大する。そして、さらなる反応熱が発生し、電池が異常過熱された状態に至る可能性がある。   The separator interposed between the positive electrode and the negative electrode serves to electronically insulate between the electrode plates and to hold the electrolytic solution. For the separator, a microporous sheet mainly made of polyethylene resin is used. However, sheet-like separators such as microporous sheets generally tend to shrink even at temperatures of 150 ° C. or less and easily cause short circuits. Further, when a sharply shaped protrusion such as a nail penetrates the battery (for example, during a nail penetration test), the short-circuit portion is expanded by a short-circuit reaction heat that is instantaneously generated. Then, further reaction heat is generated and the battery may be abnormally overheated.

一方、リチウムイオン二次電池のデンドライト発生を抑制するために、シート状セパレータの表面に、無機フィラーを含む多孔膜を形成する技術が提案されている(特許文献2参照)。さらに、リチウムイオン二次電池の極板間における電解液保持能力を向上させるために、シート状セパレータの表面に、無機フィラーを含む多孔膜を形成する技術が提案されている(特許文献3参照)。   On the other hand, in order to suppress the dendrite generation of a lithium ion secondary battery, a technique for forming a porous film containing an inorganic filler on the surface of a sheet-like separator has been proposed (see Patent Document 2). Furthermore, in order to improve the electrolyte solution holding | maintenance capability between the electrode plates of a lithium ion secondary battery, the technique which forms the porous film containing an inorganic filler on the surface of a sheet-like separator is proposed (refer patent document 3). .

また、高率放電時の容量低下を伴わずに内部短絡を防ぐ観点から、アルミナなどの無機フィラーと水溶性高分子からなる保護層を電極上に形成する技術が提案されている(特許文献4参照)。   In addition, from the viewpoint of preventing internal short circuit without reducing the capacity during high rate discharge, a technique for forming a protective layer made of an inorganic filler such as alumina and a water-soluble polymer on an electrode has been proposed (Patent Document 4). reference).

また、内部短絡発生時に極板間のイオン移動を抑止するシャットダウン機能をリチウムイオン二次電池に付与するために、ガラス転移点の低い樹脂からなる多孔膜を電極上に形成する技術が提案されている(特許文献5参照)。   In addition, a technology has been proposed in which a porous film made of a resin having a low glass transition point is formed on an electrode in order to give a lithium ion secondary battery a shutdown function that suppresses ion migration between electrode plates when an internal short circuit occurs. (See Patent Document 5).

なお、近年、一般的なリチウムイオン二次電池の負極には、スチレン−ブタジエン共重合体(SBR)からなるゴム性状高分子が、負極結着剤として用いられている。ゴム性状高分子は、従来において負極結着剤として用いられてきたポリフッ化ビニリデン(PVDF)などよりも、使用量が少量で済むため、負極のリチウムイオン受入れ性が向上するからである。ゴム性状高分子を負極結着剤として用いる場合、負極合剤層を電極芯材(銅箔など)に担持させるために、水溶性高分子からなる増粘剤を、ゴム性状高分子と併用する必要がある。水溶性高分子としては、セルロース系樹脂が主流である。   In recent years, a rubbery polymer made of a styrene-butadiene copolymer (SBR) has been used as a negative electrode binder for a negative electrode of a general lithium ion secondary battery. This is because the rubber-like polymer can be used in a smaller amount than polyvinylidene fluoride (PVDF) that has been conventionally used as a negative electrode binder, so that the lithium ion acceptability of the negative electrode is improved. When a rubber-like polymer is used as a negative electrode binder, a thickener composed of a water-soluble polymer is used in combination with the rubber-like polymer in order to support the negative electrode mixture layer on an electrode core material (such as copper foil). There is a need. As the water-soluble polymer, a cellulose-based resin is mainly used.

特開2000−294222号公報JP 2000-294222 A 特開2001−319634号公報JP 2001-319634 A 特開2002−8730号公報JP 2002-8730 A 特開平9−147916号公報JP-A-9-147916 特開平11−144706号公報JP-A-11-144706

柱状の極板群の一方および他方の端面から突出させた芯材露出部を極板群の中心軸方向に屈曲させる場合、芯材露出部が重なり合って極板群の端面の隙間を減少させる。その結果、極板群に電解液を含浸させる際に、集電部が障害となり、含浸に時間がかかって生産性が大幅に低下するという問題が生じる。   When the core material exposed portions that protrude from one and the other end surfaces of the columnar electrode plate group are bent in the central axis direction of the electrode plate group, the core material exposed portions overlap to reduce the gap between the end surfaces of the electrode plate group. As a result, when the electrode plate group is impregnated with the electrolytic solution, the current collector becomes an obstacle, so that the impregnation takes time and the productivity is greatly reduced.

シート状セパレータの表面に無機フィラーを含む多孔膜を形成する技術においては、セパレータが収縮すると、これに伴って多孔膜も収縮するという欠点がある。従って、このような技術は、内部短絡や釘刺し時の安全性を保障し得るものではない。   In the technique of forming a porous film containing an inorganic filler on the surface of a sheet-like separator, there is a drawback that when the separator contracts, the porous film also contracts. Therefore, such a technique cannot guarantee the safety at the time of internal short circuit or nail penetration.

無機フィラーと水溶性高分子からなる保護層を電極上に形成する技術においては、負極が水溶性高分子を含む場合には、負極中の増粘剤が、乾燥前の保護層中に含まれる水により膨潤する。そのため負極が変形するという不具合が生じる。変形を免れた負極は実用に供し得るものの、生産歩留が大幅に低下する。   In the technique of forming a protective layer composed of an inorganic filler and a water-soluble polymer on an electrode, when the negative electrode includes a water-soluble polymer, the thickener in the negative electrode is included in the protective layer before drying. Swells with water. Therefore, the malfunction that a negative electrode deform | transforms arises. Although the negative electrode that is free from deformation can be put to practical use, the production yield is greatly reduced.

ガラス転移点の低い樹脂を軟化させることにより、シャットダウン効果を発現させる技術は、内部短絡に対する絶対的な安全機構とはなり得ない。釘刺し試験では、内部短絡時の発熱温度は、局所的に数百℃を超えることがあるからである。その場合、ガラス転移点の低い樹脂は、軟化が進みすぎたり、焼失したりする。釘が正極と負極を貫くと同時に、このような多孔膜の損傷が起こると、異常過熱が引き起こされる可能性が高くなる。   A technique for producing a shutdown effect by softening a resin having a low glass transition point cannot be an absolute safety mechanism against an internal short circuit. This is because in the nail penetration test, the heat generation temperature at the time of an internal short circuit may locally exceed several hundred degrees Celsius. In that case, the resin having a low glass transition point is excessively softened or burned out. When the nail penetrates the positive electrode and the negative electrode and at the same time the porous film is damaged, there is a high possibility that abnormal overheating will be caused.

上記を鑑み、本発明は、柱状の極板群の一方および他方の端面から突出させた芯材露出部を極板群の中心軸方向に屈曲させる場合において、極板群への電解液の含浸時間を短縮し、生産性の低下を抑制することを目的とする。また、本発明は、前記目的の達成と同時に、耐熱性に優れた多孔膜とシート状セパレータとを好ましい態様で併用することにより、リチウムイオン二次電池の安全性を高めることを目的とする。   In view of the above, the present invention impregnates the electrode plate group with an electrolytic solution when bending the core exposed portion protruding from one and the other end faces of the columnar electrode plate group in the central axis direction of the electrode plate group. The purpose is to shorten the time and suppress the decrease in productivity. Another object of the present invention is to improve the safety of a lithium ion secondary battery by simultaneously using the porous film having excellent heat resistance and a sheet-like separator in a preferred mode simultaneously with the achievement of the object.

本発明は、(a)正極芯材および前記正極芯材に担持された複合リチウム酸化物からなる正極、(b)負極芯材および前記負極芯材に担持されたリチウムイオンが出入り可能な材料からなる負極、(c)セパレータ、(d)非水電解液、(e)正極および負極の少なくとも一方の表面に接着された多孔膜、(f)正極集電板、および(g)負極集電板を具備するリチウムイオン二次電池であって、
正極および負極は、セパレータを介して捲回された状態であって、柱状の極板群を構成しており、
正極および負極は、それぞれその長手方向に沿う一方の端部に芯材露出部を有し、
正極および負極の芯材露出部は、それぞれ柱状の極板群の一方および他方の端面において、他方の電極の端部よりも突出するとともに、極板群の中心軸方向に屈曲して正極集電部および負極集電部を形成しており、
正極集電部および負極集電部は、それぞれ正極集電板および負極集電板と接合されており、
多孔膜が無機フィラーと膜結着剤とからなり、
膜結着剤が、非水溶性であるとともに200℃未満の結晶融点を有さず、かつ200℃以上の熱変形開始温度および分解開始温度を有する、アクリロニトリル単位を含むゴム性状高分子であるリチウムイオン二次電池に関する。
The present invention includes (a) a positive electrode core material and a positive electrode made of a composite lithium oxide supported on the positive electrode core material, and (b) a negative electrode core material and a material capable of entering and exiting lithium ions supported on the negative electrode core material. negative electrode, (c) a separator, (d) a non-aqueous electrolyte solution, (e) the cathode and multi-porous membrane which is adhered to at least one surface of the negative electrode, (f) positive electrode current collector plate, and (g) the negative electrode current collector made of A lithium ion secondary battery comprising a plate,
The positive electrode and the negative electrode are wound through a separator and constitute a columnar electrode plate group,
Each of the positive electrode and the negative electrode has a core material exposed portion at one end along the longitudinal direction,
The core material exposed portions of the positive electrode and the negative electrode protrude from the end portions of the other electrode at one and the other end faces of the columnar electrode plate group, respectively, and bend in the direction of the central axis of the electrode plate group. Part and negative electrode current collector part,
The positive electrode current collector and the negative electrode current collector are joined to the positive electrode current collector and the negative electrode current collector, respectively .
The porous membrane consists of an inorganic filler and a membrane binder,
Lithium, which is a rubbery polymer containing an acrylonitrile unit, whose film binder is water-insoluble, does not have a crystalline melting point of less than 200 ° C., and has a thermal deformation start temperature and a decomposition start temperature of 200 ° C. or higher The present invention relates to an ion secondary battery.

上記リチウムイオン二次電池においては、負極が負極結着剤と増粘剤を含み、負極結着剤がスチレン−ブタジエンゴムまたはその変性体であり、増粘剤がカルボキシメチルセルロースであることが望まれる。 In the lithium ion secondary battery, it is desirable that the negative electrode includes a negative electrode binder and a thickener , the negative electrode binder is styrene-butadiene rubber or a modified product thereof, and the thickener is carboxymethylcellulose. .

多孔膜が正極および負極の少なくとも一方の表面に接着されることにより、柱状の極板群の一方および他方の端面から突出させた芯材露出部を極板群の中心軸方向に屈曲させる場合においても、極板群に電解液を含浸させる時間が従来よりも短くなり、リチウムイオン二次電池の生産性が大幅に向上する。このような効果は、多孔膜の毛細管現象に基づくものと考えられる。   In the case where the core material exposed part protruding from one and the other end face of the columnar electrode plate group is bent in the central axis direction of the electrode plate group by bonding the porous film to at least one surface of the positive electrode and the negative electrode However, the time for impregnating the electrode group with the electrolyte is shorter than before, and the productivity of the lithium ion secondary battery is greatly improved. Such an effect is considered to be based on the capillary action of the porous membrane.

また、多孔膜が正極および負極の少なくとも一方の表面に接着されることにより、発熱が起こった場合でも、シート状セパレータとともに多孔膜が収縮するのを防止できる。従って、本発明によれば、安全性の高いリチウムイオン二次電池を効率良く生産することができる。   Further, the porous film is adhered to at least one surface of the positive electrode and the negative electrode, so that the porous film can be prevented from shrinking together with the sheet-like separator even when heat is generated. Therefore, according to the present invention, a highly safe lithium ion secondary battery can be efficiently produced.

多孔膜は、無機フィラーおよび膜結着剤からなり、無機フィラーがアルミナおよび酸化チタンの少なくともいずれか1種であり、膜結着剤が非水溶性であるとともに200℃未満の結晶融点を有さず、かつ200℃以上の熱変形開始温度および分解開始温度を有する、アクリロニトリル単位を含むゴム性状高分子であることから、水溶性高分子を含む負極を変形させることがなく、歩留が低下しない。 Porous membrane, an inorganic filler and Makuyui binder, at least one kind of inorganic filler alumina and titanium oxide, organic film binder, a crystalline melting point of less than 200 ° C. with a water-insoluble In addition, since it is a rubber-like polymer containing an acrylonitrile unit having a thermal deformation start temperature and a decomposition start temperature of 200 ° C. or higher, the negative electrode containing a water-soluble polymer is not deformed and the yield is lowered. do not do.

また、膜結着剤が200℃未満の結晶融点を有さず、かつ200℃以上の熱変形開始温度および分解開始温度を有することから、多孔膜の熱分解や熱変形に対する耐性が向上する。従って、膜結着剤の軟化による多孔膜の変形や多孔膜の焼失は生じにくい。 Also, film binder does not have a crystalline melting point of less than 200 ° C., and since it has a 200 ° C. or more heat deformation starting temperature and decomposition temperature, resistance is improved with respect to thermal decomposition and thermal deformation of the porous film. Therefore, deformation of the porous film and burnout of the porous film due to softening of the film binder are unlikely to occur.

本発明のリチウムイオン二次電池は、正極芯材および正極芯材に担持された複合リチウム酸化物からなる正極と、負極芯材および負極芯材に担持されたリチウムイオンが出入り可能な材料からなる負極を具備する。正極および負極は、それぞれ帯状であり、それぞれその長手方向に沿う一方の端部に芯材露出部を有する。正極芯材にはアルミニウム箔などが好ましく用いられるが、これに限定されない。また、負極芯材には、銅箔などが好ましく用いられるが、これに限定されない。   The lithium ion secondary battery of the present invention comprises a positive electrode comprising a positive electrode core material and a composite lithium oxide supported on the positive electrode core material, and a negative electrode core material and a material capable of entering and exiting lithium ions supported on the negative electrode core material. A negative electrode is provided. Each of the positive electrode and the negative electrode has a strip shape, and has a core material exposed portion at one end portion along the longitudinal direction thereof. An aluminum foil or the like is preferably used for the positive electrode core material, but is not limited thereto. Moreover, although copper foil etc. are used preferably for a negative electrode core material, it is not limited to this.

このような極板を得るには、まず、複合リチウム酸化物もしくはリチウムイオンが出入り可能な材料を分散媒と混合して電極合剤ペーストを調製し、その電極合剤ペーストを所定の端部を除くストリップ状の芯材の両面に塗布し、乾燥することにより得ることができる。電極合剤ペーストを塗布しない芯材端部は、長手方向に沿う一方の端部だけでもよく、長手方向に沿う両方の端部であってもよい。芯材露出部の幅は、正極では2〜7mm、負極では1〜4mmであることが好ましい。   In order to obtain such an electrode plate, first, an electrode mixture paste is prepared by mixing a composite lithium oxide or a material capable of entering and exiting lithium ions with a dispersion medium, and the electrode mixture paste is applied to a predetermined end. It can be obtained by applying to both surfaces of the strip-shaped core material except for drying. The end portion of the core material to which the electrode mixture paste is not applied may be only one end portion along the longitudinal direction or both end portions along the longitudinal direction. The width of the exposed core material is preferably 2 to 7 mm for the positive electrode and 1 to 4 mm for the negative electrode.

柱状の極板群は、正極と負極とをセパレータを介して捲回することにより構成される。捲回工程において、正極および負極の芯材露出部は、それぞれ柱状の極板群の一方および他方の端面において、他方の電極の端部よりも突出するように配置される。他方の電極の端部から突出する芯材露出部の長さは、例えば0.5〜2mm程度が好適である。   The columnar electrode plate group is configured by winding a positive electrode and a negative electrode through a separator. In the winding step, the core material exposed portions of the positive electrode and the negative electrode are arranged so as to protrude from the end portions of the other electrode on one and the other end surfaces of the columnar electrode plate group, respectively. The length of the exposed core material protruding from the end of the other electrode is preferably about 0.5 to 2 mm, for example.

柱状の極板群の一方および他方の端面において、他方の電極の端部よりも突出した芯材露出部は、極板群の中心軸方向に屈曲させられる。こうして屈曲した芯材露出部からなる正極集電部および負極集電部が形成される。正極集電部および負極集電部には、それぞれ平坦な正極集電板および負極集電板が溶接などの方法によって接合される。   On one and the other end faces of the columnar electrode plate group, the core material exposed portion protruding from the end portion of the other electrode is bent in the central axis direction of the electrode plate group. In this way, a positive electrode current collector and a negative electrode current collector made up of the bent core material exposed part are formed. A flat positive current collector and a negative current collector are joined to the positive current collector and the negative current collector by a method such as welding.

正極および負極の少なくとも一方の表面には、電子絶縁性を有する多孔膜が接着されている。多孔膜は、毛細管現象によって電解液を移送する作用を有することから、多孔膜で表面が覆われた極板には電解液が速やかに含浸される。   A porous film having electronic insulating properties is bonded to at least one surface of the positive electrode and the negative electrode. Since the porous membrane has an action of transferring the electrolytic solution by capillary action, the electrode plate whose surface is covered with the porous membrane is quickly impregnated with the electrolytic solution.

また、多孔膜が正極および負極の少なくとも一方の表面に接着していることから、万一、内部短絡部に起因する多量の発熱によってセパレータが収縮した場合でも、セパレータと一緒に電子絶縁性を有する多孔膜が変形することがない。従って、安全性の向上を期待することもできる。   In addition, since the porous film adheres to at least one surface of the positive electrode and the negative electrode, even if the separator contracts due to a large amount of heat generated due to the internal short circuit portion, it has electronic insulation properties together with the separator. The porous membrane is not deformed. Therefore, improvement in safety can be expected.

多孔膜としては、無機フィラーおよび膜結着剤からなるものを用いることができる。ただし、リチウム受け入れ性に優れた高性能負極を用いる場合には、膜結着剤は、非水溶性の樹脂材料からなる必要がある。高性能負極は、負極結着剤と増粘剤を含んでおり、負極結着剤はゴム性状高分子からなり、増粘剤はセルロース系樹脂などの水溶性高分子からなる。仮に、多孔膜に水溶性の樹脂材料を用いるとすれば、多孔膜の原料を水に溶解または分散させる必要がある。そのため、製造過程で、負極中の水溶性高分子が、乾燥前の多孔膜中に含まれる水により膨潤し、負極が変形し、歩留が大幅に低下する。   As the porous film, one made of an inorganic filler and a film binder can be used. However, in the case of using a high-performance negative electrode excellent in lithium acceptability, the membrane binder needs to be made of a water-insoluble resin material. The high performance negative electrode includes a negative electrode binder and a thickener, the negative electrode binder is made of a rubbery polymer, and the thickener is made of a water-soluble polymer such as a cellulose resin. If a water-soluble resin material is used for the porous membrane, it is necessary to dissolve or disperse the raw material for the porous membrane in water. Therefore, in the production process, the water-soluble polymer in the negative electrode is swollen by the water contained in the porous film before drying, the negative electrode is deformed, and the yield is greatly reduced.

ここで「樹脂材料が非水溶性である」とは、樹脂材料を水と混合しても、実質的に均一な溶液が得られないことを意味する。逆に、樹脂材料は、有機溶媒に均一に溶解するものであることが望ましい。   Here, “the resin material is water-insoluble” means that a substantially uniform solution cannot be obtained even when the resin material is mixed with water. On the contrary, it is desirable that the resin material is one that can be uniformly dissolved in an organic solvent.

膜結着剤は、さらに、200℃未満の結晶融点を有さず、かつ200℃以上の熱変形開始温度および分解開始温度を有する樹脂材料からなる必要がある。その理由は、内部短絡時の電池挙動を評価するための釘刺し試験において、条件によっては内部短絡時の発熱温度が局所的に数百℃を超える点にある。このような高温においては、200℃未満の結晶融点を有する樹脂材料や、200℃未満の熱変形開始温度および分解開始温度を有する樹脂材料は、過度の軟化や焼失を起こし、多孔膜を変形させることになる。   Further, the film binder needs to be made of a resin material that does not have a crystal melting point of less than 200 ° C. and has a heat deformation start temperature and a decomposition start temperature of 200 ° C. or more. The reason is that, in the nail penetration test for evaluating the battery behavior at the time of internal short circuit, the heat generation temperature at the time of internal short circuit locally exceeds several hundred degrees Celsius depending on the conditions. At such a high temperature, a resin material having a crystal melting point of less than 200 ° C. or a resin material having a thermal deformation start temperature and a decomposition start temperature of less than 200 ° C. causes excessive softening and burning, and deforms the porous film. It will be.

膜結着剤は、複数種の樹脂材料の組み合わせからなるものでもよい。ただし、少なくとも1種の樹脂材料は、200℃未満の結晶融点を有さず、200℃以上の熱変形開始温度および分解開始温度を有することを要する。膜結着剤を構成する樹脂材料は、結晶融点を有さない非結晶性のものであることが特に好ましい。   The membrane binder may be a combination of a plurality of types of resin materials. However, at least one kind of resin material does not have a crystal melting point of less than 200 ° C., and needs to have a thermal deformation start temperature and a decomposition start temperature of 200 ° C. or more. The resin material constituting the membrane binder is particularly preferably an amorphous material having no crystalline melting point.

なお、多孔膜を電極表面に接着しないで、多孔膜単独をシート状に成形することは、電池特性および設計容量の観点から現実的ではない。多孔膜単独をシート状に成形しようとすれば、シート形状を保持する観点から、多孔膜の厚みを相当に大きくする必要がある上、多量の膜結着剤を必要とするからである。   In addition, it is not realistic from the viewpoint of battery characteristics and design capacity to form the porous film alone without adhering the porous film to the electrode surface. This is because if the porous membrane alone is to be formed into a sheet shape, the thickness of the porous membrane needs to be considerably increased from the viewpoint of maintaining the sheet shape, and a large amount of membrane binder is required.

膜結着剤を構成する樹脂材料は、少なくともゴム弾性を有するゴム性状高分子を含むことが好ましい。そのような膜結着剤を含む多孔膜は、耐衝撃性に優れるためである。従って、正極と負極とをセパレータを介して捲回する際に、ひび割れなどが生じにくくなり、電池の生産歩留をより高く維持することができる。   The resin material constituting the membrane binder preferably contains at least a rubbery polymer having rubber elasticity. This is because a porous film containing such a film binder is excellent in impact resistance. Therefore, when the positive electrode and the negative electrode are wound through the separator, cracks and the like are hardly generated, and the production yield of the battery can be maintained higher.

膜結着剤を構成するゴム性状高分子としては、アクリロニトリル単位を含むゴム性状高分子が、非結晶性で耐熱性が高い点で特に優れている。アクリロニトリル単位を含むゴム性状高分子の好ましい一例として、アクリロニトリルゴムもしくはその変性体を挙げることができる。また、商業入手可能なアクリロニトリル単位を含むゴム性状高分子としては、例えば日本ゼオン(株)製のBM−720Hなどを挙げることができる。   As the rubbery polymer constituting the membrane binder, a rubbery polymer containing an acrylonitrile unit is particularly excellent in that it is amorphous and has high heat resistance. A preferred example of the rubbery polymer containing acrylonitrile units is acrylonitrile rubber or a modified product thereof. Examples of commercially available rubbery polymers containing acrylonitrile units include BM-720H manufactured by Nippon Zeon Co., Ltd.

多孔膜に用いられる無機フィラーは、膜結着剤と同程度の耐熱性を有することが好ましく、200℃以上でも熱的に安定であることが望まれる。また、無機フィラーは、リチウムイオン二次電池の使用環境下で、電気化学的にも安定であることが望まれる。また、無機フィラーは、多孔膜の原料のペースト化(塗料化)に適した材料であることが好ましい。   The inorganic filler used for the porous membrane preferably has the same degree of heat resistance as the membrane binder, and is desirably thermally stable even at 200 ° C. or higher. In addition, the inorganic filler is desired to be electrochemically stable under the usage environment of the lithium ion secondary battery. The inorganic filler is preferably a material suitable for pasting (painting) the raw material of the porous film.

無機フィラーのBET比表面積は、極板群への電解液の含浸を容易にするとともに、電池性能および寿命を向上させる観点から、0.9m2/g以上、さらには1.5m2/g以上であることが好ましい。BET比表面積が0.9m2/g未満になると、膜結着剤による無機フィラー同士の結合力を高める効果が小さくなる。また、無機フィラーの凝集を抑制し、多孔膜の原料のペースト(塗料)の流動性を好適化する観点から、BET比表面積は大き過ぎず、例えば150m2/g以下であることが好ましい。 The BET specific surface area of the inorganic filler is 0.9 m 2 / g or more, more preferably 1.5 m 2 / g or more from the viewpoint of facilitating the impregnation of the electrolyte solution into the electrode plate group and improving battery performance and life. It is preferable that When the BET specific surface area is less than 0.9 m 2 / g, the effect of increasing the bonding force between the inorganic fillers by the film binder is reduced. Further, from the viewpoint of suppressing the aggregation of the inorganic filler and optimizing the fluidity of the raw material paste (paint) of the porous membrane, the BET specific surface area is not too large, and is preferably 150 m 2 / g or less, for example.

無機フィラーの平均粒径(個数基準のメディアン径)は、0.1〜5μmであることが好ましい。複数種の無機フィラーを混合して用いてもよい。その場合、平均粒径の異なる無機フィラーを混合して用いることにより、緻密な多孔膜を得ることも可能である。   The average particle diameter (number-based median diameter) of the inorganic filler is preferably 0.1 to 5 μm. A plurality of kinds of inorganic fillers may be mixed and used. In that case, it is also possible to obtain a dense porous film by mixing and using inorganic fillers having different average particle diameters.

以上のような観点から、無機フィラーとしては、無機酸化物が好ましく、例えばアルミナ、酸化チタン等を好ましく用いることができる。また、特に、α−アルミナを用いることが好ましい。樹脂微粒子もフィラーとして一般的に用いられているが、本発明で用いるフィラーは、耐熱性および高度な電気化学的安定性を要するため、樹脂微粒子は不適である。   From the above viewpoint, the inorganic filler is preferably an inorganic oxide, and for example, alumina, titanium oxide, or the like can be preferably used. In particular, α-alumina is preferably used. Resin fine particles are also generally used as fillers. However, since the fillers used in the present invention require heat resistance and high electrochemical stability, resin fine particles are unsuitable.

無機フィラーと膜結着剤との合計に占める無機フィラーの含有率は、50重量%以上99重量%以下であることが好ましい。無機フィラーの含有率が、50重量%未満では、膜結着剤の量が過多となり、無機フィラー粒子間の隙間により構成される細孔構造の制御が困難になる。また、無機フィラーの含有率が、99重量%をこえると、膜結着剤の量が過少となり、多孔膜の極板表面に対する密着性が低下する。   The content of the inorganic filler in the total of the inorganic filler and the membrane binder is preferably 50% by weight or more and 99% by weight or less. When the content of the inorganic filler is less than 50% by weight, the amount of the membrane binder becomes excessive, and it becomes difficult to control the pore structure constituted by the gaps between the inorganic filler particles. Moreover, when the content rate of an inorganic filler exceeds 99 weight%, the quantity of a film | membrane binder will become small and the adhesiveness with respect to the electrode-plate surface of a porous film will fall.

多孔膜の厚みは、特に限定されないが、多孔膜による電解液の移送を促進する作用と、安全性向上の作用を十分に発揮させるとともに、電池の設計容量を維持する観点から、0.5〜20μmであることが好ましい。この場合、現在、一般的に用いられているセパレータの厚さと多孔膜の厚さとの総和を、15〜30μmに制御することが可能である。   The thickness of the porous membrane is not particularly limited, but from the viewpoint of sufficiently promoting the transfer of the electrolyte solution by the porous membrane and the effect of improving the safety, and maintaining the design capacity of the battery, from 0.5 to It is preferably 20 μm. In this case, it is possible to control the sum of the thickness of the separator and the thickness of the porous film that are currently used generally to 15 to 30 μm.

負極は、少なくともリチウムイオンが出入り可能な材料からなる負極活物質と、負極結着剤と、増粘剤とを含む。
負極活物質としては、各種天然黒鉛、各種人造黒鉛、石油コークス、炭素繊維、有機高分子焼成物などの炭素材料、酸化物、シリサイドなどのシリコン含有複合材料、各種金属もしくは合金材料を用いることができる。
The negative electrode includes at least a negative electrode active material made of a material that allows lithium ions to enter and exit, a negative electrode binder, and a thickener.
As the negative electrode active material, it is possible to use various natural graphites, various artificial graphites, petroleum coke, carbon fibers, organic polymer fired products, silicon-containing composite materials such as oxides and silicides, various metals or alloy materials. it can.

負極結着剤としては、前述のようにリチウムイオン受入れ性を向上させる観点から、ゴム性状高分子が用いられる。このようなゴム性状高分子としては、スチレン単位およびブタジエン単位含むものが好ましく用いられる。例えばスチレン−ブタジエン共重合体(SBR)、SBRの変性体などを用いることができるが、これらに限定されない。ただし、負極結着剤は、水に溶解または分散させることが可能である必要がある。多孔膜の膜結着剤として用いる非水溶性のゴム性状高分子と同じものであっても、水に分散可能なものであれば、負極結着剤として用いることもできる。   As the negative electrode binder, a rubbery polymer is used from the viewpoint of improving the lithium ion acceptability as described above. As such a rubbery polymer, those containing styrene units and butadiene units are preferably used. For example, a styrene-butadiene copolymer (SBR), a modified SBR, or the like can be used, but it is not limited thereto. However, the negative electrode binder needs to be able to be dissolved or dispersed in water. Even if it is the same as the water-insoluble rubbery polymer used as the membrane binder of the porous membrane, it can be used as the negative electrode binder as long as it can be dispersed in water.

負極結着剤を構成するゴム性状高分子は、水溶性高分子からなる増粘剤と併用する必要がある。ここで、水溶性高分子としては、セルロース系樹脂が好ましく、特にカルボキシメチルセルロース(CMC)が好ましい。   The rubbery polymer constituting the negative electrode binder needs to be used in combination with a thickener made of a water-soluble polymer. Here, as the water-soluble polymer, a cellulose-based resin is preferable, and carboxymethyl cellulose (CMC) is particularly preferable.

負極に含まれるゴム性状高分子からなる負極結着剤および水溶性高分子からなる増粘剤の量は、負極活物質100重量部あたり、それぞれ0.1〜5重量部および0.1〜5重量部であることが好ましい。   The amount of the negative electrode binder composed of a rubber-like polymer and the thickener composed of a water-soluble polymer contained in the negative electrode is 0.1 to 5 parts by weight and 0.1 to 5 parts per 100 parts by weight of the negative electrode active material, respectively. It is preferable that it is a weight part.

正極は、少なくとも複合リチウム酸化物からなる正極活物質と、正極結着剤と、導電剤とを含む。
複合リチウム酸化物としては、コバルト酸リチウム(LiCoO2)、コバルト酸リチウムの変性体、ニッケル酸リチウム(LiNiO2)、ニッケル酸リチウムの変性体、マンガン酸リチウム(LiMn24)、マンガン酸リチウムの変性体、これらの酸化物のCo、MnもしくはNiの一部を他の遷移金属元素で置換したものなどが好ましい。各変性体には、アルミニウム、マグネシウムなどの元素を含むものがある。また、コバルト、ニッケルおよびマンガンの少なくとも2種を含むものもある。LiMn24などのMn系リチウム含有遷移金属酸化物は、特に、地球上に豊富に存在し、低価格である点で有望である。
The positive electrode includes at least a positive electrode active material made of a composite lithium oxide, a positive electrode binder, and a conductive agent.
Examples of the composite lithium oxide include lithium cobaltate (LiCoO 2 ), lithium cobaltate modified, lithium nickelate (LiNiO 2 ), lithium nickelate modified, lithium manganate (LiMn 2 O 4 ), lithium manganate Preferred are those obtained by substituting a part of Co, Mn or Ni of these oxides with other transition metal elements. Some modified bodies contain elements such as aluminum and magnesium. There are also those containing at least two of cobalt, nickel and manganese. Mn-based lithium-containing transition metal oxides such as LiMn 2 O 4 are particularly promising because they exist abundantly on the earth and are inexpensive.

正極結着剤は、特に限定されず、ポリテトラフルオロエチレン(PTFE)、変性アクリロニトリルゴム粒子(日本ゼオン(株)製のBM−500Bなど)、ポリフッ化ビニリデン(PVDF)などを用いることができる。PTFEやBM−500Bは、正極合剤層の原料ペーストの増粘剤となるCMC、ポリエチレンオキシド(PEO)、変性アクリロニトリルゴム(日本ゼオン(株)製BM−720Hなど)などと組み合わせて用いることが好ましい。PVDFは、単一で、正極結着剤としての機能と、増粘剤としての機能とを有する。   The positive electrode binder is not particularly limited, and polytetrafluoroethylene (PTFE), modified acrylonitrile rubber particles (such as BM-500B manufactured by Nippon Zeon Co., Ltd.), polyvinylidene fluoride (PVDF), and the like can be used. PTFE and BM-500B may be used in combination with CMC, polyethylene oxide (PEO), modified acrylonitrile rubber (such as BM-720H manufactured by Nippon Zeon Co., Ltd.), which is a thickener for the raw material paste of the positive electrode mixture layer. preferable. PVDF is single and has a function as a positive electrode binder and a function as a thickener.

導電剤としては、アセチレンブラック、ケッチェンブラック、各種黒鉛などを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。   As the conductive agent, acetylene black, ketjen black, various graphites and the like can be used. These may be used alone or in combination of two or more.

非水電解液には、リチウム塩を溶質として溶解する非水溶媒を用いることが好ましい。リチウム塩としては、6フッ化リン酸リチウム(LiPF6)、過塩素酸リチウム(LiClO4)、ホウフッ化リチウム(LiBF4)などを用いることが好ましく、非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)などを用いることが好ましい。非水溶媒は、1種を単独で用いることもできるが、2種以上を組み合わせて用いることが好ましい。非水溶媒に溶解する溶質濃度は、一般に0.5〜2mol/Lである。 As the non-aqueous electrolyte, it is preferable to use a non-aqueous solvent that dissolves a lithium salt as a solute. As the lithium salt, it is preferable to use lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium borofluoride (LiBF 4 ), etc., and the nonaqueous solvent is ethylene carbonate (EC). , Propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC) and the like are preferably used. Although a nonaqueous solvent can also be used individually by 1 type, it is preferable to use 2 or more types in combination. The solute concentration dissolved in the non-aqueous solvent is generally 0.5 to 2 mol / L.

正極および/または負極上に、良好な皮膜を形成させ、過充電時の安定性等を確保するために、ビニレンカーボネート(VC)、シクロヘキシルベンゼン(CHB)、VCやCHBの変性体などを用いることもできる。   Use vinylene carbonate (VC), cyclohexylbenzene (CHB), modified products of VC and CHB, etc. to form a good film on the positive electrode and / or negative electrode and to ensure stability during overcharge. You can also.

セパレータは、リチウムイオン電池の使用環境に耐え得る材料からなるものであれば、特に限定されないが、ポリオレフィン樹脂からなる微多孔性シートを用いることが一般的である。また、ポリオレフィン樹脂としては、ポリエチレン、ポリプロピレンなどが用いられる。微多孔性シートは、1種のポリオレフィン樹脂からなる単層膜であってもよく、2種以上のポリオレフィン樹脂からなる多層膜であってもよい。セパレータの厚みは、特に限定されないが、電池の設計容量を維持する観点から、8〜30μmであることが好ましい。   The separator is not particularly limited as long as it is made of a material that can withstand the usage environment of the lithium ion battery, but a microporous sheet made of a polyolefin resin is generally used. In addition, as the polyolefin resin, polyethylene, polypropylene, or the like is used. The microporous sheet may be a single layer film made of one kind of polyolefin resin or a multilayer film made of two or more kinds of polyolefin resins. Although the thickness of a separator is not specifically limited, From a viewpoint of maintaining the design capacity of a battery, it is preferable that it is 8-30 micrometers.

図1は、集電部を形成する前の極板群の一例の要部の縦断面概略図である。正極は、正極芯材31およびその両面に担持された正極合剤層32からなり、負極は、負極芯材33およびその両面に担持された負極合剤層34からなる。負極の表面には、多孔膜35が接着されている。負極表面の多孔膜35と正極合剤層32との間には、セパレータ36が介在している。正極および負極は、それぞれ一方の端部に芯材露出部を有し、これらは互いに逆向きに配置されている。   FIG. 1 is a schematic vertical cross-sectional view of a main part of an example of an electrode plate group before forming a current collector. The positive electrode includes a positive electrode core material 31 and a positive electrode mixture layer 32 supported on both surfaces thereof, and the negative electrode includes a negative electrode core material 33 and a negative electrode mixture layer 34 supported on both surfaces thereof. A porous film 35 is bonded to the surface of the negative electrode. A separator 36 is interposed between the porous film 35 on the negative electrode surface and the positive electrode mixture layer 32. Each of the positive electrode and the negative electrode has a core material exposed portion at one end, and these are disposed in opposite directions.

図2は、集電部を形成した後の極板群の一例の要部の縦断面概略図である。正極芯材31および負極芯材33の露出部は、それぞれ塑性変形により極板群の中心軸方向に屈曲して、ほぼ平坦な正極集電部31aおよび負極集電部33aを形成している。中心軸方向に屈曲した芯材露出部は、多少の皺を生じながらも全体としては平坦な集電部を形成する。正極および負極は渦巻状に捲回されているため、中心軸方向とは逆向きに屈曲させることは困難である。   FIG. 2 is a schematic vertical cross-sectional view of the main part of an example of the electrode plate group after the current collector is formed. The exposed portions of the positive electrode core material 31 and the negative electrode core material 33 are bent in the direction of the central axis of the electrode plate group by plastic deformation, respectively, to form a substantially flat positive electrode current collector 31a and negative electrode current collector 33a. The core exposed portion bent in the central axis direction forms a flat current collecting portion as a whole while producing some wrinkles. Since the positive electrode and the negative electrode are wound in a spiral shape, it is difficult to bend in the direction opposite to the central axis direction.

次に、本発明を実施例および比較例に基づいてより具体的に説明するが、本発明はこれらに限定されるものではない。
《比較例1》
図3を参照しながら説明する。
Next, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to these.
<< Comparative Example 1 >>
This will be described with reference to FIG.

(a)正極の作製
コバルト酸リチウム3kgと、正極結着剤としての呉羽化学(株)製のPVDF#1320(PVDFを12重量%含むN−メチル−2−ピロリドン(NMP)溶液)1kgと、アセチレンブラック90gと、適量のNMPとを、双腕式練合機にて攪拌し、正極合剤ペーストを調製した。このペーストを正極芯材である15μm厚のアルミニウム箔11bの両面に塗布し、乾燥後圧延して、正極合剤層11aを形成した。この際、アルミニウム箔11bの長手方向に沿う一方の端部には幅5mmの芯材露出部を残した。また、アルミニウム箔11bおよび正極合剤層11aからなる極板の厚みを160μmに制御した。その後、円筒型電池(品番18650)の缶状電池ケースに挿入可能な幅に極板をスリットし、正極11のフープを得た。
(A) Production of positive electrode 3 kg of lithium cobaltate, 1 kg of PVDF # 1320 (N-methyl-2-pyrrolidone (NMP) solution containing 12% by weight of PVDF) manufactured by Kureha Chemical Co., Ltd. as a positive electrode binder, 90 g of acetylene black and an appropriate amount of NMP were stirred with a double-arm kneader to prepare a positive electrode mixture paste. This paste was applied to both surfaces of a 15 μm-thick aluminum foil 11b as a positive electrode core material, dried and then rolled to form a positive electrode mixture layer 11a. At this time, a core material exposed portion having a width of 5 mm was left at one end portion along the longitudinal direction of the aluminum foil 11b. Further, the thickness of the electrode plate made of the aluminum foil 11b and the positive electrode mixture layer 11a was controlled to 160 μm. Thereafter, the electrode plate was slit to a width that can be inserted into a can-shaped battery case of a cylindrical battery (Part No. 18650) to obtain a hoop of the positive electrode 11.

(b)負極の作製
人造黒鉛3kgと、負極結着剤としての日本ゼオン(株)製のBM−400B(スチレン−ブタジエン共重合体(ゴム粒子)を40重量%含む水性分散液)75gと、増粘剤としてのCMC30gと、適量の水とを、双腕式練合機にて攪拌し、負極合剤ペーストを調製した。このペーストを負極芯材である10μm厚の銅箔12bの両面に塗布し、乾燥後圧延して、負極合剤層12aを形成した。この際、銅箔12bの長手方向に沿う一方の端部には幅5mmの芯材露出部を残した。また、銅箔12bおよび負極合剤層12aからなる極板の厚みを180μmに制御した。その後、円筒型電池(品番18650)の缶状電池ケースに挿入可能な幅に極板をスリットし、負極12のフープを得た。
(B) Production of negative electrode 3 kg of artificial graphite, 75 g of BM-400B (an aqueous dispersion containing 40% by weight of a styrene-butadiene copolymer (rubber particles)) manufactured by Nippon Zeon Co., Ltd. as a negative electrode binder, 30 g of CMC as a thickener and an appropriate amount of water were stirred with a double-arm kneader to prepare a negative electrode mixture paste. This paste was applied to both sides of a 10 μm-thick copper foil 12b as a negative electrode core material, dried and rolled to form a negative electrode mixture layer 12a. At this time, a core material exposed portion having a width of 5 mm was left at one end portion along the longitudinal direction of the copper foil 12b. Further, the thickness of the electrode plate made of the copper foil 12b and the negative electrode mixture layer 12a was controlled to 180 μm. Thereafter, the electrode plate was slit to a width that can be inserted into a can-shaped battery case of a cylindrical battery (product number 18650) to obtain a hoop of the negative electrode 12.

(c)非水電解液の調製
エチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(MEC)とを体積比2:3:3で含む混合溶媒に、LiPF6を1mol/Lの濃度で溶解し、さらにビニレンカーボネート(VC)を3重量%添加して、電解液を調製した。
(C) Preparation of non-aqueous electrolyte solution A mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC) and methyl ethyl carbonate (MEC) at a volume ratio of 2: 3: 3, and a concentration of 1 mol / L of LiPF 6 Then, 3% by weight of vinylene carbonate (VC) was added to prepare an electrolytic solution.

(d)極板群の構成
正極11と負極12とを、それぞれ所定の長さで切断し、ポリエチレン樹脂からなる厚さ20μmの微多孔性シート13をセパレータとして介して捲回し、柱状の極板群を構成した。ただし、捲回工程においては、正極11および負極12の芯材露出部を、それぞれ柱状の極板群の一方および他方の端面において、他方の電極の端部よりも2mmほど突出させた。
(D) Configuration of electrode plate group Each of the positive electrode 11 and the negative electrode 12 is cut to a predetermined length, and a microporous sheet 13 made of polyethylene resin and having a thickness of 20 μm is wound as a separator to form a columnar electrode plate. Groups were made up. However, in the winding process, the core material exposed portions of the positive electrode 11 and the negative electrode 12 were protruded by about 2 mm from the end portions of the other electrode on one and the other end surfaces of the columnar electrode plate group, respectively.

(e)集電部の作製
極板群を捲回軸を中心に回転させながら、所定の治具を極板群の一方の端面にある正極芯材の露出部に押し当てながら、端面の外周側から中心に向かって治具を移動させた。その結果、芯材露出部は、外周側から内周側に向かって順次屈曲し、平坦な正極集電部21が形成された。同様に、極板群の他方の端面にある負極芯材の露出部に治具を押し当てながら、端面の外周側から中心に向かって治具を移動させ、平坦な負極集電部22を形成した。
(E) Production of current collector part While rotating the electrode plate group around the winding axis, while pressing a predetermined jig against the exposed portion of the positive electrode core member on one end face of the electrode plate group, The jig was moved from the side toward the center. As a result, the core material exposed portion was sequentially bent from the outer peripheral side toward the inner peripheral side, and a flat positive electrode current collector 21 was formed. Similarly, while pressing the jig against the exposed portion of the negative electrode core material on the other end face of the electrode plate group, the jig is moved from the outer peripheral side of the end face toward the center to form a flat negative electrode current collector 22. did.

(f)集電板の取付
平坦な正極集電部21および負極集電部22に、平板状の正極集電板18および負極集電板19をそれぞれ押しつけた。この状態で、各集電板の外側から、放射状にレーザビームを照射して、正極集電部21および負極集電部22に正極集電板18および負極集電板19をそれぞれ溶接した。
(F) Attaching the current collector plate The flat positive electrode current collector 21 and negative electrode current collector 22 were pressed against the flat positive electrode current collector 18 and negative electrode current collector 19, respectively. In this state, the positive electrode current collector 18 and the negative electrode current collector 19 were welded to the positive electrode current collector 21 and the negative electrode current collector 22 by irradiating a laser beam radially from the outside of each current collector.

(g)電池の組立
正極集電板18に正極リード18aの一端を溶接し、負極集電板19に負極リード19aの一端を溶接した。次いで、極板群を電池缶15の内空間に収容した。極板群と電池缶15の内面との間にはセパレータを介装させた。正極リード18aの他端は電池蓋6の裏面に溶接した。また、負極リード19aの他端は電池缶15の内底面に溶接した。その後、電池缶15の内空間に非水電解液5.5gを注液した。そして、極板群に電解液を真空含浸させた。そして、電池蓋6で電池缶15の開口を塞ぎ、電池缶15の開口端を電池蓋6の周縁に配した絶縁パッキン17にかしめて密閉した。こうして円筒型のリチウムイオン二次電池(品番18650)を完成した。得られたリチウムイオン二次電池は、集電効率が高く、充放電時における温度上昇が小さいことを確認した。
(G) Battery Assembly One end of the positive electrode lead 18 a was welded to the positive electrode current collector plate 18, and one end of the negative electrode lead 19 a was welded to the negative electrode current collector plate 19. Next, the electrode plate group was accommodated in the inner space of the battery can 15. A separator was interposed between the electrode plate group and the inner surface of the battery can 15. The other end of the positive electrode lead 18 a was welded to the back surface of the battery lid 6. The other end of the negative electrode lead 19 a was welded to the inner bottom surface of the battery can 15. Thereafter, 5.5 g of a nonaqueous electrolytic solution was injected into the inner space of the battery can 15. Then, the electrode group was vacuum impregnated with the electrolytic solution. Then, the opening of the battery can 15 was closed with the battery lid 6, and the opening end of the battery can 15 was caulked and sealed with an insulating packing 17 disposed on the periphery of the battery lid 6. Thus, a cylindrical lithium ion secondary battery (Part No. 18650) was completed. The obtained lithium ion secondary battery was confirmed to have a high current collection efficiency and a small temperature rise during charging and discharging.

《比較例2》
(a)多孔膜の原料ペーストの調製
無機フィラーとしての住友化学工業(株)製のAKP50(メディアン径0.3μmのα−アルミナ)を970gと、膜結着剤としての日本ゼオン(株)製のBM−720H(アクリロニトリル単位を含むゴム性状高分子を8重量%含むNMP溶液)375gと、適量のNMPとを、双腕式練合機にて攪拌し、多孔膜の原料ペーストを調製した。
<< Comparative Example 2 >>
(A) Preparation of porous membrane raw material paste 970 g of AKP50 (α-alumina with a median diameter of 0.3 μm) manufactured by Sumitomo Chemical Co., Ltd. as an inorganic filler, and manufactured by Nippon Zeon Co., Ltd. as a membrane binder BM-720H (NMP solution containing 8% by weight of a rubbery polymer containing an acrylonitrile unit) and an appropriate amount of NMP were stirred with a double-arm kneader to prepare a porous film raw material paste.

(b)電池の組み立て
多孔膜の原料ペーストを、微多孔性シートからなるセパレータの両面に塗布し、乾燥して、セパレータの表面に接着された片面あたりの厚さ5μmの多孔膜を形成した。こうして得られた多孔膜を有するセパレータを用いたこと以外、比較例1と同様にして、円筒型のリチウムイオン二次電池を作製した。
(B) Battery assembly The raw material paste for the porous film was applied to both sides of the separator made of a microporous sheet and dried to form a porous film having a thickness of 5 μm per side adhered to the surface of the separator. A cylindrical lithium ion secondary battery was produced in the same manner as in Comparative Example 1 except that the separator having the porous film thus obtained was used.

以下に、AKP50(α−アルミナ)の物性を示す。
〈1〉BET比表面積:約10m2/g
〈2〉耐熱性:250℃以上
なお、α−アルミナの耐熱性は250℃以上であることが知られている。
The physical properties of AKP50 (α-alumina) are shown below.
<1> BET specific surface area: about 10 m 2 / g
<2> Heat resistance: 250 ° C. or higher It is known that the heat resistance of α-alumina is 250 ° C. or higher.

以下に、BM−720H(アクリロニトリル単位を含むゴム性状高分子)の物性を示す。
〈1〉結晶融点:なし(非結晶性)
〈2〉分解開始温度:320℃
〈3〉熱変形開始温度:320℃
〈4〉水との親和性:非水溶性
The physical properties of BM-720H (rubbery polymer containing acrylonitrile units) are shown below.
<1> Crystal melting point: None (non-crystalline)
<2> Decomposition start temperature: 320 ° C
<3> Thermal deformation start temperature: 320 ° C
<4> Affinity with water: water-insoluble

《実施例1》
比較例2で調製したのと同じ多孔膜の原料ペーストを、正極フープの両面に塗布し、乾燥して、正極の表面に接着された片面あたりの厚さが5μmの多孔膜を形成した。こうして得られた多孔膜を有する正極を用いたこと以外、比較例1と同様にして、円筒型のリチウムイオン二次電池を作製した。
Example 1
The same raw material paste having the same porous film as that prepared in Comparative Example 2 was applied to both sides of the positive electrode hoop and dried to form a porous film having a thickness of 5 μm per side adhered to the surface of the positive electrode. A cylindrical lithium ion secondary battery was produced in the same manner as in Comparative Example 1 except that the positive electrode having the porous film thus obtained was used.

《実施例2〜8》
比較例2で調製したのと同じ多孔膜の原料ペーストを、負極フープの両面に塗布し、乾燥して、負極の表面に接着された片面あたりの厚さが0.5μm(実施例2)、1μm(実施例3)、5μm(実施例4)、10μm(実施例5)、15μm(実施例6)、20μm(実施例7)または30μm(実施例8)の多孔膜を形成した。こうして得られた多孔膜を有する負極を用いたこと以外、比較例1と同様にして、円筒型のリチウムイオン二次電池を作製した。
<< Examples 2 to 8 >>
The same porous membrane raw material paste as prepared in Comparative Example 2 was applied to both sides of the negative electrode hoop, dried, and the thickness per side adhered to the negative electrode surface was 0.5 μm (Example 2). A porous film of 1 μm (Example 3), 5 μm (Example 4), 10 μm (Example 5), 15 μm (Example 6), 20 μm (Example 7) or 30 μm (Example 8) was formed. A cylindrical lithium ion secondary battery was produced in the same manner as in Comparative Example 1 except that the negative electrode having the porous film thus obtained was used.

《実施例9〜14》
微多孔性シートからなるセパレータの厚さを、8μm(実施例9)、10μm(実施例10)、15μm(実施例11)、25μm(実施例12)、30μm(実施例13)または40μm(実施例14)としたこと以外、実施例4と同様にして、負極の表面に接着された多孔膜の厚みが片面あたり5μmである円筒型のリチウムイオン二次電池を作製した。
<< Examples 9 to 14 >>
The thickness of the separator made of the microporous sheet is 8 μm (Example 9), 10 μm (Example 10), 15 μm (Example 11), 25 μm (Example 12), 30 μm (Example 13) or 40 μm (implemented). A cylindrical lithium ion secondary battery in which the thickness of the porous film adhered to the negative electrode surface was 5 μm per side was produced in the same manner as in Example 4 except that Example 14) was adopted.

《実施例15〜20》
(a)多孔膜の原料ペーストの調製
無機フィラーと膜結着剤との合計に占める無機フィラーの含有率を、30重量%(実施例15)、50重量%(実施例16)、70重量%(実施例17)、90重量%(実施例18)、95重量%(実施例19)または99重量%(実施例20)としたこと以外、比較例2と同様にして、多孔膜の原料ペーストを調製した。
<< Examples 15 to 20 >>
(A) Preparation of raw material paste for porous film The content of the inorganic filler in the total of the inorganic filler and the film binder was 30% by weight (Example 15), 50% by weight (Example 16), 70% by weight. (Example 17), 90% by weight (Example 18), 95% by weight (Example 19) or 99% by weight (Example 20) Was prepared.

(b)電池の組み立て
上記の多孔膜の原料ペーストを、負極フープの両面に塗布し、乾燥して、負極の表面に接着された片面あたりの厚さが5μmの多孔膜を形成した。こうして得られた多孔膜を有する負極を用いたこと以外、比較例1と同様にして、円筒型のリチウムイオン二次電池を作製した。
(B) Battery assembly The raw material paste for the porous film was applied to both sides of the negative electrode hoop and dried to form a porous film having a thickness of 5 μm per side adhered to the surface of the negative electrode. A cylindrical lithium ion secondary battery was produced in the same manner as in Comparative Example 1 except that the negative electrode having the porous film thus obtained was used.

比較例3
(a)多孔膜の原料ペーストの調製
無機フィラーとしての住友化学工業(株)製のAKP50(メディアン径0.3μmのα−アルミナ)を970gと、水溶性のCMCを30gと、適量の水とを、双腕式練合機にて攪拌し、多孔膜の原料ペーストを調製した。
CMCは、結晶融点を有さず、非結晶性であり、分解開始温度は245℃であり、変形開始温度は198℃であった。
<< Comparative Example 3 >>
(A) Preparation of raw material paste for porous film 970 g of AKP50 (α-alumina having a median diameter of 0.3 μm) manufactured by Sumitomo Chemical Co., Ltd. as an inorganic filler, 30 g of water-soluble CMC, and an appropriate amount of water Was stirred with a double-arm kneader to prepare a raw material paste for a porous film.
CMC had no crystalline melting point, was amorphous, had a decomposition start temperature of 245 ° C., and a deformation start temperature of 198 ° C.

(b)電池の組み立て
上記の多孔膜の原料ペーストを、負極フープの両面に塗布し、乾燥して、負極の表面に接着された片面あたりの厚さが5μmの多孔膜を形成した。こうして得られた多孔膜を有する負極を用いたこと以外、比較例1と同様にして、円筒型のリチウムイオン二次電池を作製した。
(B) Battery assembly The raw material paste for the porous film was applied to both sides of the negative electrode hoop and dried to form a porous film having a thickness of 5 μm per side adhered to the surface of the negative electrode. A cylindrical lithium ion secondary battery was produced in the same manner as in Comparative Example 1 except that the negative electrode having the porous film thus obtained was used.

比較例4
(a)多孔膜の原料ペーストの調製
無機フィラーとしての住友化学工業(株)製のAKP50(メディアン径0.3μmのα−アルミナ)を970gと、非水溶性のPVDFを30gと、適量のNMPとを、双腕式練合機にて攪拌し、多孔膜の原料ペーストを調製した。
PVDFの結晶融点は174℃であり、分解開始温度は360℃であり、熱変形開始温度は153℃であった。
<< Comparative Example 4 >>
(A) Preparation of raw material paste of porous film 970 g of AKP50 (α-alumina having a median diameter of 0.3 μm) manufactured by Sumitomo Chemical Co., Ltd. as an inorganic filler, 30 g of water-insoluble PVDF, and an appropriate amount of NMP And a two-arm kneader to prepare a raw material paste for a porous film.
The crystal melting point of PVDF was 174 ° C., the decomposition start temperature was 360 ° C., and the thermal deformation start temperature was 153 ° C.

(b)電池の組み立て
上記の多孔膜の原料ペーストを、負極フープの両面に塗布し、乾燥して、負極の表面に接着された片面あたりの厚さが5μmの多孔膜を形成した。こうして得られた多孔膜を有する負極を用いたこと以外、比較例1と同様にして、円筒型のリチウムイオン二次電池を作製した。
(B) Battery assembly The raw material paste for the porous film was applied to both sides of the negative electrode hoop and dried to form a porous film having a thickness of 5 μm per side adhered to the surface of the negative electrode. A cylindrical lithium ion secondary battery was produced in the same manner as in Comparative Example 1 except that the negative electrode having the porous film thus obtained was used.

《実施例21
(a)多孔膜の原料ペーストの調製
AKP50(α−アルミナ)の代わりに、同様のメディアン径を有するチタニア(酸化チタン)を用いたこと以外、比較例2と同様にして、多孔膜の原料ペーストを調製した。すなわち、無機フィラーとしてのチタニアを970gと、膜結着剤としての日本ゼオン(株)製のBM−720H(アクリロニトリル単位を含むゴム性状高分子を8重量%含むNMP溶液)375gと、適量のNMPとを、双腕式練合機にて攪拌し、多孔膜の原料ペーストを調製した。
チタニアには、富士チタン工業(株)製のTA300(アナターゼ型)を用いた。チタニアのBET比表面積は8m2/gであった。
<< Example 21 >>
(A) Preparation of Porous Film Raw Material Paste Porous film raw material paste in the same manner as Comparative Example 2 except that titania (titanium oxide) having the same median diameter was used instead of AKP50 (α-alumina). Was prepared. That is, 970 g of titania as an inorganic filler, 375 g of BM-720H (NMP solution containing 8% by weight of a rubbery polymer containing an acrylonitrile unit) as a membrane binder, and an appropriate amount of NMP And a two-arm kneader to prepare a raw material paste for a porous film.
As titania, TA300 (anatase type) manufactured by Fuji Titanium Industry Co., Ltd. was used. The BET specific surface area of titania was 8 m 2 / g.

(b)電池の組み立て
上記の多孔膜の原料ペーストを、負極フープの両面に塗布し、乾燥して、負極の表面に接着された片面あたりの厚さが5μmの多孔膜を形成した。こうして得られた多孔膜を有する負極を用いたこと以外、比較例1と同様にして、円筒型のリチウムイオン二次電池を作製した。
(B) Battery assembly The raw material paste for the porous film was applied to both sides of the negative electrode hoop and dried to form a porous film having a thickness of 5 μm per side adhered to the surface of the negative electrode. A cylindrical lithium ion secondary battery was produced in the same manner as in Comparative Example 1 except that the negative electrode having the porous film thus obtained was used.

《実施例22
負極結着剤としてのBM400Bと増粘剤としてのCMCの代わりに、PVDFを用いたこと以外、比較例1と同様にして、負極を作製した。すなわち、人造黒鉛3kgと、負極結着剤としてのPVDFを240g(人造黒鉛に対して8重量%)と、適量のNMPとを、双腕式練合機にて攪拌し、負極合剤ペーストを調製した。このペーストを用いたこと以外、比較例1と同様にして、負極を作製した。ここで、PVDFには、正極結着剤として用いたPVDF#1320を用いた。以上の他は、実施例4と同様にして、負極の表面に接着された多孔膜の厚みが片面あたり5μmである円筒型のリチウムイオン二次電池を作製した。
<< Example 22 >>
A negative electrode was produced in the same manner as in Comparative Example 1 except that PVDF was used instead of BM400B as the negative electrode binder and CMC as the thickener. That is, 3 kg of artificial graphite, 240 g of PVDF as a negative electrode binder (8% by weight with respect to artificial graphite), and an appropriate amount of NMP were stirred with a double-arm kneader to prepare a negative electrode mixture paste. Prepared. A negative electrode was produced in the same manner as in Comparative Example 1 except that this paste was used. Here, PVDF # 1320 used as a positive electrode binder was used for PVDF. Other than the above, in the same manner as in Example 4, a cylindrical lithium ion secondary battery in which the thickness of the porous film adhered to the surface of the negative electrode was 5 μm per side was produced.

ここで、無機フィラーの物性評価方法について説明する。
[1]無機フィラーのBET比表面積
BET比表面積の測定は、直読式比表面積測定装置を用いて、BET一点法に基づいて実施した。まず、0.5〜1gの無機フィラーの試料をガラスセルに入れ、窒素とヘリウムの混合キャリアガス(体積比N2:He=30:70)流通下で、250℃で20〜30分間クリーニングを実施した。次いで、液体窒素で無機フィラーの試料を冷却しながら、キャリアガス中のN2を吸着させた。その後、無機フィラーの試料を室温まで昇温させ、N2の脱着量を熱伝導型検出器で検出し、脱着量に対応する表面積と測定後の試料質量とから、比表面積を算出した。算出には、ユアサアイオニクス(株)製のNOVA2000を用いた。
Here, the physical property evaluation method of an inorganic filler is demonstrated.
[1] BET specific surface area of inorganic filler The BET specific surface area was measured based on the BET single point method using a direct reading specific surface area measuring device. First, a sample of 0.5 to 1 g of an inorganic filler is placed in a glass cell, and cleaning is performed at 250 ° C. for 20 to 30 minutes under the flow of a mixed carrier gas of nitrogen and helium (volume ratio N 2 : He = 30: 70). Carried out. Next, N 2 in the carrier gas was adsorbed while cooling the inorganic filler sample with liquid nitrogen. Thereafter, the temperature of the inorganic filler sample was raised to room temperature, the desorption amount of N 2 was detected with a heat conduction detector, and the specific surface area was calculated from the surface area corresponding to the desorption amount and the measured sample mass. For the calculation, NOVA2000 manufactured by Yuasa Ionics Co., Ltd. was used.

[2]無機フィラーの耐熱性
無機フィラーの試料の示差走査熱量測定(DSC:differential scanning calorimetry)および熱重量測定−示差熱分析(TG−DTA:thermogravimetry-differential thermal analysis)を行い、DSC測定における変曲点の温度もしくはTG−DTA測定における重量変化の始点の温度により耐熱性を評価した。
[2] Heat resistance of inorganic fillers Perform differential scanning calorimetry (DSC) and thermogravimetry-differential thermal analysis (TG-DTA) of inorganic filler samples, and change in DSC measurement The heat resistance was evaluated by the temperature of the bending point or the temperature of the starting point of the weight change in the TG-DTA measurement.

ここで、膜結着剤の物性評価方法について説明する。
[3]膜結着剤の結晶融点もしくは分解開始温度
樹脂材料の試料のDSC測定およびTG−DTA測定を行い、DSC測定における変曲点の温度もしくはTG−DTA測定における重量変化の始点の温度を、結晶融点もしくは分解開始温度とした。
Here, a method for evaluating physical properties of the membrane binder will be described.
[3] Crystal melting point or decomposition start temperature of membrane binder Perform DSC measurement and TG-DTA measurement of a sample of resin material, and determine the temperature at the inflection point in DSC measurement or the temperature at the start of weight change in TG-DTA measurement. Crystal melting point or decomposition start temperature.

[4]膜結着剤の熱変形開始温度
熱膨張測定装置(理学電機(株)製の8141H)により、膜結着剤の試料の熱膨張測定を行い、寸法変化が初期の10%になった温度を熱変形開始温度とした。
[4] Thermal deformation start temperature of the membrane binder The thermal expansion of the membrane binder sample was measured with a thermal expansion measuring device (8141H manufactured by Rigaku Corporation), and the dimensional change became 10% of the initial value. This temperature was taken as the thermal deformation start temperature.

[5]膜結着剤と水との親和性
常温常圧下で、水に対する膜結着剤の溶解度を測定し、溶解度が1重量%以下の場合を、「非水溶性」であると判断した。
[5] Affinity between membrane binder and water The solubility of the membrane binder in water was measured at room temperature and normal pressure, and when the solubility was 1% by weight or less, it was judged to be “water-insoluble”. .

多孔膜の構成を表1にまとめて示す。また、セパレータの厚みと負極結着剤の種類を表2にまとめて示す。   The structure of the porous membrane is summarized in Table 1. Table 2 summarizes the thickness of the separator and the type of the negative electrode binder.

Figure 0004454340
Figure 0004454340

Figure 0004454340
Figure 0004454340

次に、作製した電池を以下に示す方法で評価した。
[極板群による電解液の含浸性]
各極板群を挿入した電池缶をそれぞれ5個準備した。5個の電池缶にそれぞれ5.5gの電解液を注液し、一定時間毎に1つの電池缶から極板群を取り出して、電極の濡れ具合を目視で観察した。電解液の注液時から極板群全体が十分に電解液で濡れていると判断されるまでに要した時間を、含浸時間として、表2中に示す。
Next, the produced battery was evaluated by the following method.
[Electrolytic solution impregnation by electrode plate group]
Five battery cans each having each electrode plate group inserted therein were prepared. Each of the five battery cans was injected with 5.5 g of an electrolytic solution, and the electrode plate group was taken out from one battery can at regular intervals, and the wetness of the electrodes was visually observed. Table 2 shows the time required from the time of injecting the electrolyte to the time when it is determined that the entire electrode plate group is sufficiently wetted with the electrolyte.

[多孔膜の密着性]
正極、負極またはセパレータ上に塗布後、乾燥して、得られた直後の多孔膜の状態を目視観察した。欠け、クラックもしくは脱落の痕跡が見られず、状態が良好なものを「OK」として表2中に示す。
[Porosity adhesion]
After coating on the positive electrode, negative electrode or separator, it was dried, and the state of the porous film immediately after obtained was visually observed. Table 2 shows that “OK” indicates that there is no trace of chipping, cracking, or dropout, and the state is good.

[負極外観]
負極上に多孔膜の原料ペーストを塗布後、乾燥して、多孔膜が形成された直後の負極の状態を目視観察した。寸法変化などの不具合が見られたものを「変化あり」、その他を「変化なし」として表2中に示す。
[Negative electrode appearance]
After applying the raw material paste for the porous film on the negative electrode, it was dried and the state of the negative electrode immediately after the porous film was formed was visually observed. Table 2 shows a case where a defect such as a dimensional change is observed as “changed” and the other as “no change”.

[多孔膜の柔軟性]
正極と負極とを、微多孔性シートからなるセパレータを介して捲回する際、正極、負極およびセパレータのいずれかに形成された多孔膜の主に巻芯近くの状態を目視観察した。各電池に付き、10個ずつ捲回極板群を作製し、捲回によって欠け、クラックもしくは脱落が生じた極板群の数量を表2中に示す。
[Porosity of porous membrane]
When the positive electrode and the negative electrode were wound through a separator made of a microporous sheet, the state of the porous film formed on any one of the positive electrode, the negative electrode, and the separator was mainly visually observed. Table 2 shows the number of wound electrode plates each having 10 pieces attached to each battery, and the number of electrode plates that were chipped, cracked or dropped out by winding.

[電池設計容量]
電池ケースの直径18mmに対し、捲回極板群の直径は、挿入性を重視して16.5mmとした。この場合において、正極活物質1gあたりの容量を142mAhとして、正極重量から電池設計容量を求め、表3中に示す。
[Battery design capacity]
The diameter of the wound electrode plate group was set to 16.5 mm with emphasis on the insertability with respect to the battery case diameter of 18 mm. In this case, assuming that the capacity per 1 g of the positive electrode active material is 142 mAh, the battery design capacity is obtained from the weight of the positive electrode and is shown in Table 3.

[電池の充放電特性]
捲回による欠け、クラックもしくは脱落のない極板群を具備する完成した電池に対し、2度の予備充放電を行い、45℃環境下で7日間保存した。その後、20℃環境下で、以下の2パターンの充放電を行った。
[Battery charge / discharge characteristics]
The completed battery having the electrode plate group free from chipping, cracking, or falling off by winding was subjected to pre-charging / discharging twice and stored at 45 ° C. for 7 days. Thereafter, the following two patterns of charging and discharging were performed in a 20 ° C. environment.

(1)第1パターン
定電流充電:1400mA(終止電圧4.2V)
定電圧充電:4.2V(終止電流100mA)
定電流放電:400mA(終止電圧3V)
(2)第2パターン
定電流充電:1400mA(終止電圧4.2V)
定電圧充電:4.2V(終止電流100mA)
定電流放電:4000mA(終止電圧3V)
このときの充放電容量を表3中に示す。
(1) First pattern constant current charge: 1400 mA (end voltage 4.2 V)
Constant voltage charge: 4.2V (end current 100mA)
Constant current discharge: 400mA (end voltage 3V)
(2) Second pattern constant current charge: 1400 mA (end voltage 4.2 V)
Constant voltage charge: 4.2V (end current 100mA)
Constant current discharge: 4000 mA (final voltage 3 V)
The charge / discharge capacity at this time is shown in Table 3.

[釘刺し安全性]
充放電特性を評価後の電池について、以下の充電を行った。
定電流充電:1400mA(終止電圧4.25V)
定電圧充電:4.25V(終止電流100mA)
充電後の電池に対して、その側面から、2.7mm径の鉄製丸釘を、20℃環境下で、5mm/秒または180mm/秒の速度で貫通させ、そのときの発熱状態を観測した。電池の貫通箇所における1秒後および90秒後の到達温度を表3中に示す。
[Nail penetration safety]
The battery after evaluation of charge / discharge characteristics was charged as follows.
Constant current charging: 1400mA (end voltage 4.25V)
Constant voltage charge: 4.25V (end current 100mA)
From the side of the battery after charging, an iron round nail having a diameter of 2.7 mm was penetrated at a speed of 5 mm / second or 180 mm / second in a 20 ° C. environment, and the heat generation state at that time was observed. Table 3 shows the temperatures reached after 1 second and 90 seconds after the battery penetration.

Figure 0004454340
Figure 0004454340

以下、評価結果について説明する。
(1)極板群による電解液の含浸性について
比較例1の場合、電解液を極板群に含浸させるために要した時間は、1個あたり40分間程度であった。このような長時間を要する理由は、極板群の端面に形成された電極芯材の露出部からなる平坦な集電部が障害となるためである。平坦な集電部を形成した場合、平坦な集電部を形成しない場合の2倍程度の時間を要することになる。一方、各実施例のように電極表面に多孔膜を形成した場合、電解液を極板群に含浸させる時間を大幅に短縮できた。例えば、実施例1では、5分間程度で含浸が完了した。また、実施例4では、約3分間で含浸が完了した。
Hereinafter, the evaluation results will be described.
(1) About the impregnation property of the electrolyte solution by the electrode plate group In the case of Comparative Example 1, the time required to impregnate the electrode plate group with the electrolyte solution was about 40 minutes. The reason why such a long time is required is that a flat current collecting portion formed by the exposed portion of the electrode core material formed on the end face of the electrode plate group becomes an obstacle. When a flat current collector is formed, it takes about twice as long as when a flat current collector is not formed. On the other hand, when the porous film was formed on the electrode surface as in each of the examples, the time for impregnating the electrode group with the electrolyte solution could be greatly shortened. For example, in Example 1, the impregnation was completed in about 5 minutes. In Example 4, the impregnation was completed in about 3 minutes.

(2)多孔膜の接着箇所について
多孔膜が存在しない比較例1では、釘刺し速度の如何に関わらず、1秒後の発熱が顕著である。これに対し、多孔膜を正極または負極上に形成した各実施例では、釘刺し後の発熱が大幅に抑制されている。
(2) About the adhesion | attachment location of a porous film In the comparative example 1 which does not exist a porous film, the heat_generation | fever after 1 second is remarkable regardless of the nail penetration speed. On the other hand, in each Example in which the porous film was formed on the positive electrode or the negative electrode, heat generation after nail penetration was greatly suppressed.

全ての釘刺し試験後の電池を分解して調べたところ、全ての電池においてセパレータが広範囲に及んで溶融していた。ただし、各実施例については、多孔膜がその原形を留めていた。このことから、多孔膜の耐熱性が十分である場合、釘刺し後に起こる短絡による発熱に対して膜構造は破壊されず、短絡箇所の拡大を抑止でき、過剰な発熱を防げるものと考えられる。   When all the batteries after the nail penetration test were disassembled and examined, the separators were melted over a wide range in all the batteries. However, for each example, the porous membrane retained its original shape. From this, it is considered that when the heat resistance of the porous film is sufficient, the film structure is not destroyed with respect to the heat generated by the short circuit that occurs after nail penetration, the expansion of the short-circuited portion can be suppressed, and excessive heat generation can be prevented.

一方、多孔膜をセパレータ上に形成した比較例2では、釘刺し速度が遅い場合に発熱が促進されていることがわかる。比較例2の電池を分解して調べたところ、前述したセパレータの溶融に伴い、多孔膜も変形していることが確認できた。如何に多孔膜自身に耐熱性があっても、多孔膜と接着したセパレータが収縮もしくは溶融を起こすとき、セパレータの形状変化に多孔膜が追従し、多孔膜が破損するものと考えられる。   On the other hand, in Comparative Example 2 in which the porous film is formed on the separator, it can be seen that heat generation is promoted when the nail penetration speed is low. When the battery of Comparative Example 2 was disassembled and examined, it was confirmed that the porous film was also deformed as the separator was melted. Regardless of the heat resistance of the porous film itself, it is considered that when the separator adhered to the porous film contracts or melts, the porous film follows the change in shape of the separator, and the porous film is damaged.

(3)釘刺し試験について
釘刺しによる発熱の原因については、過去の実験結果から、以下のように説明できる。
釘刺しにより、正極と負極とが接触(短絡)すると、ジュール熱が発生する。そして、ジュール熱によって耐熱性の低い材料(セパレータ)が溶融し、強固な短絡部を形成する。その結果、ジュール熱の発生が継続し、正極が熱的に不安定となる温度領域(160℃以上)にまで昇温される。こうして熱暴走が引き起こされる。
(3) About the nail penetration test The cause of the heat generated by the nail penetration can be explained as follows from the past experimental results.
When the positive electrode and the negative electrode come into contact (short circuit) by nail penetration, Joule heat is generated. Then, the low heat resistance material (separator) is melted by Joule heat to form a strong short-circuit portion. As a result, generation of Joule heat continues and the temperature is raised to a temperature range (160 ° C. or higher) where the positive electrode becomes thermally unstable. This causes a thermal runaway.

釘刺し速度を減じた場合には、局部的な発熱の促進が観察できた。釘刺し速度を減じて、単位時間当りの短絡面積を限定した場合、相当の熱量が限定箇所に集中することになる。そのため、正極が熱的に不安定になる温度領域に到達するのが早まるものと考えられる。
一方、釘刺し速度を増して、単位時間当りの短絡面積を拡大した場合、熱が大面積に分散されることになる。そのため、正極が熱的に不安定になる温度領域に達しにくくなると考えられる。
When the nail penetration speed was reduced, local enhancement of fever could be observed. When the nail penetration speed is reduced and the short-circuit area per unit time is limited, a considerable amount of heat is concentrated in the limited part. For this reason, it is considered that the positive electrode reaches a temperature range where it becomes thermally unstable.
On the other hand, when the nail penetration speed is increased and the short-circuit area per unit time is expanded, heat is dispersed over a large area. Therefore, it is thought that it becomes difficult to reach the temperature region where the positive electrode becomes thermally unstable.

(4)多孔膜の厚みについて
多孔膜層の厚みが大きすぎる実施例8では、極板群を構成する極板の長さが短くなることから、設計容量が低下しており、高率放電での容量も低下している。従って、本発明の効果を十分に得るためには、多孔膜の厚みを0.5〜20μmとすることが望ましい。
(4) Thickness of porous film In Example 8 where the thickness of the porous film layer is too large, the design capacity is reduced because the length of the electrode plate constituting the electrode plate group is shortened, and high rate discharge is performed. The capacity has also declined. Therefore, in order to sufficiently obtain the effects of the present invention, it is desirable that the thickness of the porous film is 0.5 to 20 μm.

(5)セパレータの厚みについて
セパレータの厚みが大きすぎる実施例14では、極板群を構成する極板の長さが短くなることから、設計容量が大幅に低下しており、高率放電での容量も低下している。従って、本発明の効果を十分に得るには、セパレータの厚みを8〜30μmとすることが望ましい。
(5) About the thickness of the separator In Example 14 where the thickness of the separator is too large, since the length of the electrode plate constituting the electrode plate group is shortened, the design capacity is greatly reduced, and high-rate discharge is achieved. The capacity is also decreasing. Therefore, in order to sufficiently obtain the effects of the present invention, it is desirable that the thickness of the separator is 8 to 30 μm.

(6)多孔膜における無機フィラーの含有率について
無機フィラーと膜結着剤との合計に占める無機フィラーの含有率が少ない(膜結着剤が多い)実施例15では、高率放電での容量の低下が見られる。これは、膜結着剤が過剰なため、フィラー粒子の隙間が十分に確保できなくなり、多孔膜のイオン導電性が低下したためと考えられる。従って、本発明の効果を十分に得るするには、無機フィラーの含有率を50〜99重量%とすることが望ましい。
(6) Content of inorganic filler in porous membrane In Example 15, the content of the inorganic filler in the total of the inorganic filler and the membrane binder is small (the membrane binder is large). Decrease is observed. This is presumably because the gap between filler particles cannot be secured sufficiently because the membrane binder is excessive, and the ionic conductivity of the porous membrane is reduced. Therefore, in order to sufficiently obtain the effects of the present invention, the content of the inorganic filler is desirably 50 to 99% by weight.

(7)多孔膜中の膜結着剤の種類について
膜結着剤として、CMCを用いた比較例3およびPVDFを用いた比較例4では、釘刺し速度を減じたときに、発熱を十分に抑止することができていない。これらの電池を分解して調べたところ、セパレータのみならず、多孔膜も変形していることが確認できた。
(7) Types of membrane binder in the porous membrane In Comparative Example 3 using CMC and Comparative Example 4 using PVDF as the membrane binder, sufficient heat generation was achieved when the nail penetration speed was reduced. It cannot be suppressed. When these batteries were disassembled and examined, it was confirmed that not only the separator but also the porous film was deformed.

比較例3では、短絡によるジュール熱により、CMC(変形開始温度198℃)が変形して、多孔膜の変形が起こったものと考えられる。また、比較例4では、PVDF(結晶融点174℃)の溶融により、多孔膜の変形が起こったものと考えられる。さらに、比較例3およびでは、釘の貫通により、強固な短絡箇所が形成され、発熱を抑止できなかったものと考えられる。 In Comparative Example 3 , it is considered that deformation of the porous film occurred due to deformation of CMC (deformation start temperature 198 ° C.) due to Joule heat due to short circuit. Further, in Comparative Example 4 , it is considered that the deformation of the porous film occurred due to the melting of PVDF (crystal melting point 174 ° C.). Further, in Comparative Examples 3 and 4 , it is considered that a strong short-circuit portion was formed by the penetration of the nail, and the heat generation could not be suppressed.

従って、多孔膜には、それ自身の焼失や溶融もしくは変形が起こりにくい膜結着剤、具体的には200℃未満の結晶融点を有さず、200℃以上の熱変形開始温度および分解開始温度を有する膜結着剤を、少なくとも1種用いることが必須となる。表1の結果からは、非結晶性で耐熱性が高いアクリロニトリル単位を含むゴム性状高分子(熱分解開始温度320〜340℃、熱変形開始温度320〜334℃)を好ましく用い得ることが理解できる。   Therefore, the porous film does not have its own film binder that hardly burns down or melts or deforms. Specifically, the porous film does not have a crystal melting point of less than 200 ° C., and the thermal deformation start temperature and the decomposition start temperature of 200 ° C. or more. It is essential to use at least one membrane binder having From the results shown in Table 1, it can be understood that a rubbery polymer (pyrolysis start temperature 320 to 340 ° C., heat deformation start temperature 320 to 334 ° C.) containing an acrylonitrile unit that is amorphous and has high heat resistance can be preferably used. .

アクリロニトリル単位を含むゴム性状高分子は、ゴム弾性を有する。この性質は、捲回極板群の構成おいて非常に有利に働くことになる。例えば、膜結着剤がゴム弾性を有する実施例では、捲回後の多孔膜は形状を十分に保持しており、不良無しとなっている。一方、比較例3およびでは、多孔膜の柔軟性の評価において、多くの不良が発生している。 The rubbery polymer containing acrylonitrile units has rubber elasticity. This property is very advantageous in the configuration of the wound electrode group. For example, in an embodiment in which the membrane binder has rubber elasticity, the wound porous membrane has a sufficient shape and has no defects. On the other hand, in Comparative Examples 3 and 4 , many defects occurred in the evaluation of the flexibility of the porous film.

(8)負極外観について
比較例3では、多孔膜の形成後に、負極の変形による外観不良が見られた。これは前述のように、負極中の増粘剤が、乾燥前の多孔膜中に含まれる水により、膨潤した結果であると考えられる。このような歩留の低い生産を回避するためには、多孔膜には非水溶性の膜結着剤を用い、多孔膜の原料ペーストの分散媒として水を用いないことが必須となる。より一般的には、負極活物質層の原料ペースト(負極ペースト)で用いる分散媒とは異なる分散媒を用いて、多孔膜を形成することが必須であるといえる。
(8) Negative electrode appearance
In Comparative Example 3 , poor appearance due to deformation of the negative electrode was observed after the formation of the porous film. As described above, this is considered to be a result of the thickener in the negative electrode being swollen by water contained in the porous film before drying. In order to avoid such a low yield production, it is essential to use a water-insoluble film binder for the porous film and not use water as a dispersion medium for the raw material paste of the porous film. More generally, it can be said that it is essential to form a porous film using a dispersion medium different from the dispersion medium used in the raw material paste (negative electrode paste) of the negative electrode active material layer.

(9)無機フィラーの種類について
無機フィラーとして、α−アルミナの代わりに、チタニアを用いた実施例21では、チタニアがα−アルミナとほぼ同様の諸機能を果たすことが確認できた。
(9) Types of inorganic filler In Example 21 in which titania was used instead of α-alumina as the inorganic filler, it was confirmed that titania performed almost the same functions as α-alumina.

(10)負極の構成について
実施例22に示すように、負極結着剤としてPVDFを用いると、負極結着剤の含有量が多くならざるを得ず、負極のリチウムイオン受入れ性が低下し、充電容量が漸減する。また、PVDFの性質に由来して、負極板が硬くなり、多孔膜の柔軟性を活かすことができない。従って、SBRのようにゴム弾性を有し、少量でも十分な粘着性を負極活物質層に与え得る負極結着剤を、水溶性の増粘剤(CMCなど)と併用することが望ましい。
(10) Regarding the configuration of the negative electrode As shown in Example 22, when PVDF is used as the negative electrode binder, the content of the negative electrode binder must be increased, and the lithium ion acceptability of the negative electrode is reduced. Charge capacity gradually decreases. In addition, the negative electrode plate becomes hard due to the properties of PVDF, and the flexibility of the porous film cannot be utilized. Therefore, it is desirable to use in combination with a water-soluble thickener (such as CMC) a negative electrode binder that has rubber elasticity, such as SBR, and can provide sufficient adhesion to the negative electrode active material layer even in a small amount.

以上のように本発明によれば、集電効率を高め、充放電時の発熱を抑制するために、柱状の極板群の一方および他方の端面から突出させた芯材露出部を端面に向かって屈曲させる場合において、極板群への電解液の含浸時間を従来よりも短縮でき、生産性の低下を抑制することができる。   As described above, according to the present invention, in order to increase the current collection efficiency and suppress the heat generation during charging and discharging, the core material exposed portions protruding from one and the other end surfaces of the columnar electrode plate group are directed toward the end surfaces. In the case of bending the electrode plate, the time for impregnation of the electrolyte into the electrode plate group can be shortened compared to the conventional case, and the decrease in productivity can be suppressed.

また、本発明は、前記目的の達成と同時に、耐熱性に優れた多孔膜とシート状セパレータとを好ましい態様で併用することにより、リチウムイオン二次電池の安全性を高めることができる。現在、各種用途において、リチウムイオン二次電池の安全性規格が厳しくなりつつある。そのような中で、釘刺し速度(短絡状態)の如何に関わらず、熱暴走を抑止することが可能である本発明は、極めて実用性が高いといえる。   Moreover, this invention can improve the safety | security of a lithium ion secondary battery by using together the porous film excellent in heat resistance, and a sheet-like separator in a preferable aspect simultaneously with achievement of the said objective. Currently, in various applications, safety standards for lithium ion secondary batteries are becoming stricter. Under such circumstances, it can be said that the present invention capable of suppressing thermal runaway regardless of the nail penetration speed (short circuit state) is extremely practical.

集電部を形成する前の極板群の一例の要部の縦断面概略図である。It is a longitudinal cross-sectional schematic diagram of the principal part of an example of the electrode group before forming a current collection part. 集電部を形成した後の極板群の一例の要部の縦断面概略図である。It is the longitudinal cross-sectional schematic of the principal part of an example of the electrode group after forming a current collection part. 比較例1のリチウムイオン二次電池の縦断面図である。4 is a longitudinal sectional view of a lithium ion secondary battery of Comparative Example 1. FIG.

符号の説明Explanation of symbols

31 正極芯材
31a 正極集電部
33a 負極集電部
32 正極合剤層
33 負極芯材
34 負極合剤層
35 多孔膜
36 セパレータ
31 Positive electrode core material 31a Positive electrode current collector 33a Negative electrode current collector 32 Positive electrode mixture layer 33 Negative electrode core material 34 Negative electrode mixture layer 35 Porous film 36 Separator

6 電池蓋
11 正極
11a 正極合剤層
11b アルミニウム箔
12 負極
12a 負極合剤層
12b 銅箔
13 微多孔性シート
15 電池缶
17 絶縁パッキン
18 正極集電板
18a 正極リード
19 負極集電板
19a 負極リード
21 正極集電部
22 負極集電部
6 Battery cover 11 Positive electrode 11a Positive electrode mixture layer 11b Aluminum foil 12 Negative electrode 12a Negative electrode mixture layer 12b Copper foil 13 Microporous sheet 15 Battery can 17 Insulation packing 18 Positive electrode current collector plate 18a Positive electrode lead 19 Negative electrode current collector plate 19a Negative electrode lead 21 Positive electrode current collector 22 Negative electrode current collector

Claims (5)

(a)正極芯材および前記正極芯材に担持された複合リチウム酸化物からなる正極、
(b)負極芯材および前記負極芯材に担持されたリチウムイオンが出入り可能な材料からなる負極、
(c)セパレータ、
(d)非水電解液、
(e)前記正極および前記負極の少なくとも一方の表面に接着された多孔膜、
(f)正極集電板、および
(g)負極集電板
を具備するリチウムイオン二次電池であって、
前記正極および前記負極は、前記セパレータを介して捲回された状態であって、柱状の極板群を構成しており、
前記正極および前記負極は、それぞれその長手方向に沿う一方の端部に芯材露出部を有し、
前記正極および前記負極の芯材露出部は、それぞれ前記柱状の極板群の一方および他方の端面において、他方の電極の端部よりも突出するとともに、極板群の中心軸方向に屈曲して正極集電部および負極集電部を形成しており、
前記正極集電部および前記負極集電部は、それぞれ前記正極集電板および前記負極集電板と接合されており、
前記多孔膜が、無機フィラーと膜結着剤とからなり、
前記無機フィラーが、アルミナおよび酸化チタンの少なくともいずれか1種であり、
前記膜結着剤が、非水溶性であるとともに200℃未満の結晶融点を有さず、かつ200℃以上の熱変形開始温度および分解開始温度を有する、アクリロニトリル単位を含むゴム性状高分子であるリチウムイオン二次電池。
(A) a positive electrode comprising a positive electrode core material and a composite lithium oxide supported on the positive electrode core material;
(B) a negative electrode comprising a negative electrode core material and a material capable of entering and exiting lithium ions carried on the negative electrode core material;
(C) separator,
(D) a non-aqueous electrolyte,
(E) the positive electrode and the adhered on at least one surface of the negative electrode multi-porous membrane,
(F) a positive electrode current collector plate, and (g) a lithium ion secondary battery comprising a negative electrode current collector plate,
The positive electrode and the negative electrode are wound through the separator and constitute a columnar electrode plate group,
The positive electrode and the negative electrode each have a core exposed portion at one end along the longitudinal direction thereof,
The core material exposed portions of the positive electrode and the negative electrode protrude from the end portions of the other electrode at one and the other end surfaces of the columnar electrode plate group, respectively, and bend in the central axis direction of the electrode plate group. Forming a positive current collector and a negative current collector,
The positive current collector and the negative current collector are joined to the positive current collector and the negative current collector, respectively .
The porous membrane consists of an inorganic filler and a membrane binder,
The inorganic filler is at least one of alumina and titanium oxide;
The membrane binder is a rubber-like polymer containing an acrylonitrile unit that is water-insoluble, does not have a crystalline melting point of less than 200 ° C., and has a thermal deformation start temperature and a decomposition start temperature of 200 ° C. or higher. Lithium ion secondary battery.
前記負極が、負極結着剤と増粘剤を含み、前記負極結着剤は、スチレン−ブタジエンゴムまたはその変性体であり、前記増粘剤は、カルボキシメチルセルロースである請求項1記載のリチウムイオン二次電池。 The lithium ion according to claim 1, wherein the negative electrode includes a negative electrode binder and a thickener, the negative electrode binder is styrene-butadiene rubber or a modified product thereof, and the thickener is carboxymethylcellulose. Secondary battery. 前記無機フィラーが、アルミナからなり、前記無機フィラーと前記膜結着剤との合計に占める前記無機フィラーの含有率が、50重量%以上99重量%以下である請求項1または2に記載のリチウムイオン二次電池。 3. The lithium according to claim 1, wherein the inorganic filler is made of alumina, and a content of the inorganic filler in a total of the inorganic filler and the film binder is 50 wt% or more and 99 wt% or less. Ion secondary battery. 前記多孔膜の厚みが、0.5μm以上20μm以下である請求項1〜のいずれかに記
載のリチウムイオン二次電池。
The porous membrane thickness of the lithium ion secondary battery according to any one of claims 1 to 3, at 0.5μm or 20μm or less.
前記セパレータの厚みが、8μm以上30μm以下である請求項1〜のいずれかに記
載のリチウムイオン二次電池。
The thickness of the separator is a lithium ion secondary battery according to any one of claims 1-4 is 8μm or more 30μm or less.
JP2004046522A 2004-02-23 2004-02-23 Lithium ion secondary battery Expired - Fee Related JP4454340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004046522A JP4454340B2 (en) 2004-02-23 2004-02-23 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004046522A JP4454340B2 (en) 2004-02-23 2004-02-23 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2005235695A JP2005235695A (en) 2005-09-02
JP4454340B2 true JP4454340B2 (en) 2010-04-21

Family

ID=35018411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004046522A Expired - Fee Related JP4454340B2 (en) 2004-02-23 2004-02-23 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4454340B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087690A (en) * 2005-09-21 2007-04-05 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
CN101371395B (en) * 2006-01-23 2011-08-17 松下电器产业株式会社 Sealed battery
US8883354B2 (en) 2006-02-15 2014-11-11 Optodot Corporation Separators for electrochemical cells
JP5241118B2 (en) * 2006-03-17 2013-07-17 三洋電機株式会社 Non-aqueous electrolyte battery
JP4958484B2 (en) * 2006-03-17 2012-06-20 三洋電機株式会社 Non-aqueous electrolyte battery and manufacturing method thereof
JP5241119B2 (en) * 2006-03-17 2013-07-17 三洋電機株式会社 Non-aqueous electrolyte battery
CN101449417B (en) 2006-03-17 2012-06-27 三洋电机株式会社 Nonaqueous electrolyte battery and method for manufacturing same
JP5110817B2 (en) * 2006-03-17 2012-12-26 三洋電機株式会社 Non-aqueous electrolyte battery
JP5241120B2 (en) * 2006-03-17 2013-07-17 三洋電機株式会社 Non-aqueous electrolyte battery
JP5110818B2 (en) * 2006-03-17 2012-12-26 三洋電機株式会社 Non-aqueous electrolyte battery
US20090197181A1 (en) * 2006-03-17 2009-08-06 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and method of manufacturing the same
CN101479877B (en) * 2006-05-04 2013-07-31 株式会社Lg化学 Lithium secondary battery and method for producing the same
JP5088856B2 (en) * 2006-06-19 2012-12-05 日立マクセルエナジー株式会社 Electrode for lithium secondary battery and lithium secondary battery
US20100216000A1 (en) * 2006-09-19 2010-08-26 Hideaki Fujita Method of producing electrode for secondary battery and secondary battery
JP5219387B2 (en) * 2007-03-12 2013-06-26 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2009032427A (en) * 2007-07-25 2009-02-12 Panasonic Corp Method of manufacturing electrode for lithium ion secondary battery
JP2009043641A (en) * 2007-08-10 2009-02-26 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and negative electrode used for the same
KR101309925B1 (en) 2009-04-10 2013-09-17 도요타지도샤가부시키가이샤 Lithium ion battery and utilization thereof
EP2436061B1 (en) 2009-05-26 2019-10-16 Optodot Corporation Batteries utilizing electrode coatings directly on nanoporous separators
CN102130315B (en) 2010-01-13 2015-12-16 索尼公司 Barrier film and nonaqueous electrolyte battery
JP2011192634A (en) * 2010-02-17 2011-09-29 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2012011944A2 (en) 2010-07-19 2012-01-26 Optodot Corporation Separators for electrochemical cells
JP5692644B2 (en) * 2011-03-18 2015-04-01 株式会社Gsユアサ Battery, battery separator, and battery separator manufacturing method
CN103947008B (en) * 2011-11-15 2017-12-01 丰田自动车株式会社 Nonaqueous electrolyte type secondary cell
JP5362132B2 (en) * 2012-01-20 2013-12-11 住友化学株式会社 Inorganic oxide powder, inorganic oxide-containing slurry, lithium ion secondary battery using the slurry, and manufacturing method thereof
HUE046842T2 (en) * 2013-03-21 2020-03-30 Zeon Corp Slurry for lithium ion secondary battery porous film, separator for lithium ion secondary battery, and lithium ion secondary battery
KR102513159B1 (en) 2013-04-29 2023-03-23 옵토도트 코포레이션 Nanoporous composite separators with increased thermal conductivity
WO2015140912A1 (en) * 2014-03-17 2015-09-24 株式会社東芝 Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack
CN105940520B (en) * 2014-10-16 2020-09-08 株式会社Lg化学 Electrode sheet coated with electrically insulating layer and secondary battery including the same
US10381623B2 (en) 2015-07-09 2019-08-13 Optodot Corporation Nanoporous separators for batteries and related manufacturing methods
JP6975525B2 (en) * 2015-10-02 2021-12-01 株式会社日本触媒 Lithium ion secondary battery
WO2019071239A1 (en) * 2017-10-06 2019-04-11 Farady&Future Inc. Dense energy-storage systems
US20190148692A1 (en) * 2017-11-16 2019-05-16 Apple Inc. Direct coated separators and formation processes

Also Published As

Publication number Publication date
JP2005235695A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
JP4454340B2 (en) Lithium ion secondary battery
JP4739958B2 (en) Lithium ion secondary battery
JP4541324B2 (en) Nonaqueous electrolyte secondary battery
JP4920423B2 (en) Lithium ion secondary battery
JP4927064B2 (en) Secondary battery
JP4794824B2 (en) Lithium ion secondary battery and manufacturing method thereof
US7189478B2 (en) Lithium secondary battery
US20070196738A1 (en) Lithium ion secondary battery
JP4694968B2 (en) Lithium secondary battery
US20060222943A1 (en) Cylindrical lithium secondary battery
JP2011181441A (en) Cylinder type nonaqueous electrolyte battery
JP5849234B2 (en) Nonaqueous electrolyte secondary battery
JP2013254561A (en) Cylindrical nonaqueous electrolyte secondary battery
JP2010003685A (en) Battery
JP5213003B2 (en) Nonaqueous electrolyte secondary battery
KR101606958B1 (en) Collector, electrode and secondary battery having the same
JP2005222780A (en) Lithium-ion secondary battery
JP2002246000A (en) Non-aqueous electrolyte secondary battery
JP4904857B2 (en) Non-aqueous electrolyte secondary battery
JP5880621B2 (en) Cylindrical non-aqueous electrolyte battery
JP4794820B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP2010244788A (en) Nonaqueous secondary battery
JP2017130320A (en) Secondary battery
JP2009277367A (en) Nonaqueous electrolyte secondary battery
JP2016024898A (en) Positive electrode, secondary battery using the same and method of manufacturing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees