JP4453753B2 - Fractional NPLL synthesizer and method for limiting oscillation frequency band of fractional NPLL synthesizer - Google Patents

Fractional NPLL synthesizer and method for limiting oscillation frequency band of fractional NPLL synthesizer Download PDF

Info

Publication number
JP4453753B2
JP4453753B2 JP2007316188A JP2007316188A JP4453753B2 JP 4453753 B2 JP4453753 B2 JP 4453753B2 JP 2007316188 A JP2007316188 A JP 2007316188A JP 2007316188 A JP2007316188 A JP 2007316188A JP 4453753 B2 JP4453753 B2 JP 4453753B2
Authority
JP
Japan
Prior art keywords
frequency
oscillation frequency
synthesizer
oscillation
shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007316188A
Other languages
Japanese (ja)
Other versions
JP2008104230A (en
Inventor
秀樹 笠井
正信 小川
和久 吉木
昌行 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2007316188A priority Critical patent/JP4453753B2/en
Publication of JP2008104230A publication Critical patent/JP2008104230A/en
Application granted granted Critical
Publication of JP4453753B2 publication Critical patent/JP4453753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

本発明は、フラクショナルNPLLシンセサイザ、フラクショナルNPLLシンセサイザの発振周波数帯域制限方法に関するものである。   The present invention relates to a fractional NPLL synthesizer and an oscillation frequency band limiting method for the fractional NPLL synthesizer.

フラクショナルNPLLシンセサイザは、設定可能な出力周波数間隔が基準信号の周波数と一致するインテジャーNPLLシンセサイザと違い、基準信号の周波数よりも小さな周波数間隔で出力信号の周波数を制御できるもので、その構成は図5に示すように、位相比較器1と、低域通過フィルタ2と、電圧制御発振器3と、可変分周器4と、分周比制御回路15とから構成される。   The fractional NPLL synthesizer can control the frequency of the output signal at a frequency interval smaller than the frequency of the reference signal, unlike the integer NPLL synthesizer whose settable output frequency interval matches the frequency of the reference signal. As shown in FIG. 5, the circuit includes a phase comparator 1, a low-pass filter 2, a voltage controlled oscillator 3, a variable frequency divider 4, and a frequency division ratio control circuit 15.

位相比較器1は、基準信号Frと可変分周器4の出力信号との位相差を検出して、検出結果を出力する回路である。低域通過フィルタ2は、位相比較器1の出力を平均化する回路である。電圧制御発振器3は、低域通過フィルタ2の出力電圧に応じた周波数の信号Fvcoを発振する回路である。可変分周器4は、電圧制御発振器3が出力する信号Fvcoの周波数を分周する回路である。分周比制御回路15は、キャリア周波数の設定信号と変調信号とを入力されて、可変分周器4の分周比を制御する回路である。   The phase comparator 1 is a circuit that detects a phase difference between the reference signal Fr and the output signal of the variable frequency divider 4 and outputs a detection result. The low-pass filter 2 is a circuit that averages the output of the phase comparator 1. The voltage controlled oscillator 3 is a circuit that oscillates a signal Fvco having a frequency corresponding to the output voltage of the low-pass filter 2. The variable frequency divider 4 is a circuit that divides the frequency of the signal Fvco output from the voltage controlled oscillator 3. The frequency division ratio control circuit 15 is a circuit that receives the carrier frequency setting signal and the modulation signal and controls the frequency division ratio of the variable frequency divider 4.

ここで、分周比制御回路15は可変分周器4の分周比を時間的に変化させ、平均値として整数でなく分数の精度で分周比を制御することを実現できるものである。この特性を利用し、電圧制御発振器3の出力信号Fvcoの周波数をキャリア周波数から所望の周波数偏移で発振させるFSK(Frequency Shift Keying)変調が可能となる。一般的に、図4(a)に示す1,0,1からなる変調信号を分周比制御回路15に入力すると、出力信号Fvcoの周波数偏移は図4(b)の様な正の周波数偏移と負の周波数偏移とを交互に行う矩形波になる例えば、特許文献1参照。)。 Here, the frequency division ratio control circuit 15 can change the frequency division ratio of the variable frequency divider 4 with time, and can control the frequency division ratio with an accuracy of a fraction instead of an integer as an average value. Using this characteristic, FSK (Frequency Shift Keying) modulation that oscillates the frequency of the output signal Fvco of the voltage controlled oscillator 3 from the carrier frequency with a desired frequency shift becomes possible. In general, when a modulation signal composed of 1, 0, 1 shown in FIG. 4A is input to the frequency division ratio control circuit 15, the frequency shift of the output signal Fvco is a positive frequency as shown in FIG. A rectangular wave in which a shift and a negative frequency shift are alternately performed ( for example, refer to Patent Document 1).

このように直接、FSK変調をかける事ができるフラクショナルNPLLシンセサイザにおいては、変調をかけた時の発振周波数帯域を制限する為、分周比制御回路15に変調信号を入力する際、フィルターを介して入力しており、そのときの出力信号Fvcoの周波数偏移は図4(c)の破線の様に図4(b)の矩形波に比べて鈍った波形となる。
特開2001−298363号公報(5頁左欄第31行〜第44行、図1)
In such a fractional NPLL synthesizer that can directly perform FSK modulation, in order to limit the oscillation frequency band when modulation is performed, when a modulation signal is input to the division ratio control circuit 15, a filter is used. The frequency shift of the output signal Fvco at that time becomes a dull waveform as compared with the rectangular wave of FIG. 4B, as indicated by the broken line of FIG.
JP 2001-298363 A (page 5, left column, lines 31 to 44, FIG. 1)

しかしながら上述の構成、方法では、特にフラクショナルNPLLシンセサイザの同チップ内にフィルタを構成する場合、チップ面積が増大して、コスト上昇の原因となってしまうという問題があった。   However, in the above-described configuration and method, there is a problem in that, when a filter is configured in the same chip of the fractional NPLL synthesizer, the chip area increases, resulting in an increase in cost.

本発明は、上記事由に鑑みてなされたものであり、その目的は、不要な発振周波数帯域制限をかける事が無く、必要な回路を減らして、小サイズ低コストで実現できるフラクショナルNPLLシンセサイザ、フラクショナルNPLLシンセサイザの発振周波数帯域制限方法を提供することにある。   SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned reasons, and the object thereof is to reduce the size of the fractional NPLL synthesizer and the fractional circuit that can be realized at a small size and at low cost without limiting unnecessary oscillation frequency band. An object of the present invention is to provide an oscillation frequency band limiting method for an NPLL synthesizer.

請求項1の発明は、入力の周波数を分周した信号を出力する可変分周器と、前記可変分周器の分周比を制御する分周比制御回路と、基準信号と前記可変分周器の出力信号との位相差を検出して、該検出結果を出力する位相比較器と、前記位相比較器の出力を平均化する低域通過フィルタと、前記低域通過フィルタの出力に応じた発振周波数を出力すると共に、発振周波数を前記可変分周器の入力とする電圧制御発振器とによって発振周波数を生成するフラクショナルNPLLシンセサイザにおいて、前記分周比制御回路は、周波数偏移をかける対象であるビット列信号を全ビットに亘って蓄積記憶し、蓄積記憶したビット列信号の全ビットに亘って極性の切り換わりを判別して、極性が切り換わっているときのみ分周比を段階毎に変化させて発振周波数の偏移を段階毎に行い、分周比が段階毎に変化する時間を設定することで、発振周波数が段階毎に偏移する時間を設定することを特徴とする。 According to the first aspect of the present invention, there is provided a variable frequency divider that outputs a signal obtained by dividing an input frequency, a frequency division ratio control circuit that controls a frequency division ratio of the variable frequency divider, a reference signal, and the variable frequency division. A phase comparator that detects a phase difference from the output signal of the detector and outputs the detection result, a low-pass filter that averages the output of the phase comparator, and an output according to the output of the low-pass filter In the fractional NPLL synthesizer that outputs an oscillation frequency and generates an oscillation frequency by a voltage-controlled oscillator that uses the oscillation frequency as an input to the variable frequency divider, the frequency division ratio control circuit is a target for frequency shift. Accumulate and store the bit string signal over all bits, determine the polarity switching over all bits of the accumulated bit string signal, and change the division ratio step by step only when the polarity is switched There row for each stage shift in resonant frequency, the frequency division ratio by setting a time that varies for each stage, the oscillation frequency and sets the time to shift per stage.

この発明によれば、従来別途設けていた変調信号用のフィルタ回路を削減でき、小サイズ低コストで発振周波数の帯域制限を実現することができる。さらに、周波数偏移をかける対象である信号ビット列の周波数波形列が同じ波形極性を連続して発生した場合に、その連続波形の途中に不要な発振周波数帯域制限をかける事が無く、従来別途設けていた変調信号用のフィルタ回路を備えることなしにこのフィルタ回路と同等の効果を実現することができ、発振周波数帯域の制限が可能になる。さらに、より最適な発振周波数の帯域制限が可能になる。 According to the present invention, it is possible to reduce the modulation signal filter circuit that has been separately provided conventionally, and to realize the band limitation of the oscillation frequency with a small size and low cost. In addition, when the frequency waveform sequence of the signal bit sequence that is the target of frequency deviation is generated with the same waveform polarity continuously, there is no need to limit unnecessary oscillation frequency band in the middle of the continuous waveform. An effect equivalent to that of this filter circuit can be realized without providing the filter circuit for the modulation signal, and the oscillation frequency band can be limited. Furthermore, it is possible to limit the bandwidth of the more optimal oscillation frequency.

請求項2の発明は、入力の周波数を分周した信号を出力する可変分周処理と、前記可変分周処理の分周比を制御する分周比制御処理と、基準信号と前記分周比制御処理による出力信号との位相差を検出して、該検出結果を出力する位相比較処理と、前記位相比較処理による出力を平均化する低域通過フィルタリング処理と、前記低域通過フィルタリング処理による出力に応じた発振周波数を出力すると共に、発振周波数を前記可変分周処理の入力とする電圧制御発振処理とによって発振周波数を生成するフラクショナルNPLLシンセサイザの発振周波数帯域制限方法において、周波数偏移をかける対象であるビット列信号を全ビットに亘って蓄積記憶し、蓄積記憶したビット列信号の全ビットに亘って極性の切り換わりを判別して、極性が切り換わっているときのみ分周比を段階毎に変化させて発振周波数の偏移を段階毎に行う分周比制御処理と、分周比が段階毎に変化する時間を設定することで、発振周波数が段階毎に偏移する時間を設定する偏移時間設定処理とを行うことを特徴とする。 The invention according to claim 2 is a variable frequency dividing process for outputting a signal obtained by dividing an input frequency, a frequency dividing ratio control process for controlling a frequency dividing ratio of the variable frequency dividing process, a reference signal and the frequency dividing ratio. A phase comparison process for detecting a phase difference from the output signal by the control process and outputting the detection result, a low-pass filtering process for averaging the output by the phase comparison process, and an output by the low-pass filtering process In an oscillation frequency band limiting method of a fractional NPLL synthesizer that generates an oscillation frequency by a voltage-controlled oscillation process that outputs an oscillation frequency according to the frequency division and uses the oscillation frequency as an input of the variable frequency division process, The bit string signal is accumulated and stored over all bits, and the polarity switching is determined over all bits of the accumulated bit string signal. Ri behalf and shift division ratio control process performed for each stage of the oscillation frequency dividing ratio is changed for each step only when is, by the division ratio to set the time between the stage by stage, the oscillation A shift time setting process for setting a time during which the frequency shifts for each stage is performed.

この発明によれば、従来別途設けていた変調信号用のフィルタ回路を削減でき、小サイズ低コストで発振周波数の帯域制限を実現することができる。さらに、周波数偏移をかける対象である信号ビット列の周波数波形列が同じ波形極性を連続して発生した場合に、その連続波形の途中に不要な発振周波数帯域制限をかける事が無く、従来別途設けていた変調信号用のフィルタ回路を備えることなしにこのフィルタ回路と同等の効果を実現することができ、発振周波数帯域の制限が可能になる。さらに、より最適な発振周波数の帯域制限が可能になる。 According to the present invention, it is possible to reduce the modulation signal filter circuit that has been separately provided conventionally, and to realize the band limitation of the oscillation frequency with a small size and low cost. In addition, when the frequency waveform sequence of the signal bit sequence that is the target of frequency deviation is generated with the same waveform polarity continuously, there is no need to limit unnecessary oscillation frequency band in the middle of the continuous waveform. An effect equivalent to that of this filter circuit can be realized without providing the filter circuit for the modulation signal, and the oscillation frequency band can be limited. Furthermore, it is possible to limit the bandwidth of the more optimal oscillation frequency.

以上説明したように、本発明では、従来別途設けていた変調信号用のフィルタ回路を削減でき、小サイズ低コストで発振周波数の帯域制限を実現することができるという効果がある。さらに、周波数偏移をかける対象である信号ビット列の周波数波形列が同じ波形極性を連続して発生した場合に、その連続波形の途中に不要な発振周波数帯域制限をかける事が無く、従来別途設けていた変調信号用のフィルタ回路を備えることなしにこのフィルタ回路と同等の効果を実現することができ、発振周波数帯域の制限が可能になるという効果がある。さらに、より最適な発振周波数の帯域制限が可能になる。 As described above, according to the present invention, it is possible to reduce the modulation signal filter circuit conventionally provided separately, and to achieve the band limitation of the oscillation frequency with a small size and low cost. In addition, when the frequency waveform sequence of the signal bit sequence that is the target of frequency deviation is generated with the same waveform polarity continuously, there is no need to limit unnecessary oscillation frequency band in the middle of the continuous waveform. An effect equivalent to that of this filter circuit can be realized without providing the filter circuit for the modulation signal that has been provided, and the oscillation frequency band can be limited. Furthermore, it is possible to limit the bandwidth of the more optimal oscillation frequency.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(基本構成)
フラクショナルNPLLシンセサイザは図3にその基本構成を示され、従来例を示す図5と同様の構成には同一の符号を付して説明は省略する。本基本構成では、図4(c)の破線に示す、変調信号にフィルタをかけたときの出力信号Fvcoの周波数偏移の波形と同等な、図4(c)の実線に示す周波数偏移を2段階に行う波形を実現する。
(Basic configuration)
The basic configuration of the fractional NPLL synthesizer is shown in FIG. 3, and the same components as those in FIG. In this basic configuration, the frequency shift indicated by the solid line in FIG. 4C is equivalent to the waveform of the frequency shift of the output signal Fvco when the modulated signal is filtered, as indicated by the broken line in FIG. A two-stage waveform is realized.

分周比制御回路5は、レジスタ51,52と、制御回路53と、スイッチ54,55と、加算器56とを備えており、アキュムレータを1段用いた簡単な例を示している。まず、出力信号FvcoをN分周している可変分周器4の出力をクロックにして、レジスタ51,52は各々に設定された値分までカウントし、そのカウント値を各々、K、ΔKとする。加算器56では、このカウント値の和K’=K+ΔKが設定されたM値を超えると、オーバーフローして可変分周器4において分周比N+1を選択、実行し、最初に戻る。これを繰り返して[数1]の様に、所望の周波数偏移を持った電圧制御発振器3の出力信号Fvcoを得ている。   The division ratio control circuit 5 includes registers 51 and 52, a control circuit 53, switches 54 and 55, and an adder 56, and shows a simple example using one stage of accumulator. First, the output of the variable frequency divider 4 that divides the output signal Fvco by N is used as a clock, and the registers 51 and 52 count up to the values set in the respective registers, and the count values are K, ΔK, respectively. To do. When the sum K ′ = K + ΔK of the count value exceeds the set M value, the adder 56 overflows and selects and executes the frequency division ratio N + 1 in the variable frequency divider 4 and returns to the beginning. By repeating this, the output signal Fvco of the voltage controlled oscillator 3 having a desired frequency shift is obtained as in [Equation 1].

Figure 0004453753
Figure 0004453753

ここでレジスタ52は2つのレジスタ521,522からなっており、そのカウント値を各々、αΔK,βΔKとする。ここで、αとβはΔKの係数であり、αとβの和は1である。また、それぞれにレジスタ51と接続・切断するためのスイッチ54,55が接続されており、スイッチ54,55は制御回路53によってオン,オフされる。   Here, the register 52 includes two registers 521 and 522, and the count values are αΔK and βΔK, respectively. Here, α and β are coefficients of ΔK, and the sum of α and β is 1. Further, switches 54 and 55 for connecting / disconnecting to / from the register 51 are connected to each other, and the switches 54 and 55 are turned on / off by the control circuit 53.

そして、図4(a)に示す変調速度1/T1が既知である変調信号が制御回路53に入ってきたときの出力信号Fvcoの周波数偏移を図4(c)に示す。変調信号のデータ1が制御回路53に入ってくると、変調信号の立ち上がりエッジA1でトリガーがかかり、まずスイッチ54をオンする。すると、カウント値αΔKによって可変分周器4の分周比が増加して、結果として出力信号Fvcoには、キャリア周波数に対して+f1の周波数偏移(αΔK分の周波数偏移)がかかる。同時に制御回路53内のタイマー(図示せず)が作動して、T2(<T1/2)の時間が経過するまでスイッチ54がオンした状態となり、出力信号Fvcoはこの間、+f1の周波数偏移がかかった状態となる。   FIG. 4C shows the frequency shift of the output signal Fvco when a modulation signal having a known modulation speed 1 / T1 shown in FIG. When data 1 of the modulation signal enters the control circuit 53, a trigger is applied at the rising edge A1 of the modulation signal, and the switch 54 is first turned on. Then, the frequency dividing ratio of the variable frequency divider 4 is increased by the count value αΔK, and as a result, the output signal Fvco is subjected to a frequency shift of + f1 (frequency shift of αΔK) with respect to the carrier frequency. At the same time, a timer (not shown) in the control circuit 53 is activated and the switch 54 is turned on until the time T2 (<T1 / 2) elapses. During this time, the output signal Fvco has a frequency shift of + f1. It will be in the state.

次に、T1−2・T2の時間が経過するまでスイッチ54と共にスイッチ55がオンすると、カウント値αΔK+βΔKによって可変分周器4の分周比がさらに増加して、出力信号Fvcoには、キャリア周波数に対して、+(f1+f2)の周波数偏移(αΔK+βΔK分の周波数偏移)がかかった状態となる。   Next, when the switch 55 is turned on together with the switch 54 until the time T1-2 · T2 elapses, the division ratio of the variable frequency divider 4 is further increased by the count value αΔK + βΔK, and the output signal Fvco includes a carrier frequency. In contrast, a frequency shift of + (f1 + f2) (a frequency shift of αΔK + βΔK) is applied.

スイッチ55がオンしてからT1−2・T2の時間が経過すると、スイッチ55がオフし、レジスタ522のカウント値βΔKは遮断される。スイッチ55がオフしてからT2の時間が経過するまでスイッチ54はオンのままで、可変分周器4の分周比はカウント値βΔK分減少して、出力信号Fvcoは、キャリア周波数に対して+f1の周波数偏移がかかった状態になる。その状態で立ち下がりエッジA2を検出しない場合は同じ極性のデータが続くということなので、上記動作を繰り返す。   When the time T1-2 · T2 elapses after the switch 55 is turned on, the switch 55 is turned off and the count value βΔK of the register 522 is cut off. The switch 54 remains on until the time T2 elapses after the switch 55 is turned off, the frequency division ratio of the variable frequency divider 4 decreases by the count value βΔK, and the output signal Fvco is equal to the carrier frequency. The frequency shift of + f1 is applied. If the falling edge A2 is not detected in this state, the same polarity data will continue, so the above operation is repeated.

以上、変調信号のデータ1が入力された場合を説明したが、変調信号のデータ0が入力された場合や変調信号のデータ1が入力された後に立ち下がりエッジA2を検出した時は、同様の動作でキャリア周波数を挟んで逆に周波数偏移がかかる。   Although the case where the modulation signal data 1 is input has been described above, the same applies when the modulation signal data 0 is input or when the falling edge A2 is detected after the modulation signal data 1 is input. On the contrary, frequency shift is applied across the carrier frequency in operation.

このようにして、可変分周器4の分周比を段階毎に変化させて出力信号Fvcoの周波数偏移を段階毎に行うことで、図4(c)破線のように高域成分を減衰させるためにフィルタをかけた信号波形と同等な、図4(c)実線のように発振周波数が2段階に偏移した信号波形を実現できる。ここでは、カウンタ値αΔKとβΔKの2段で説明したが、例えばさらにカウンタ値γΔKを増やせば、3段に、さらに増やせば4段と可能であるのは明らかである。また、総合してΔKを実現するそれぞれのαΔK,βΔK,...と、それらをオン,オフするスイッチと、各スイッチを制御する制御回路があれば、分周比制御回路5は、アキュムレータ多段で構成されていても、ΣΔモジュレーターで構成されていても、分周比を制御する回路であればよい。   In this way, by changing the frequency dividing ratio of the variable frequency divider 4 for each step and performing the frequency shift of the output signal Fvco for each step, the high frequency component is attenuated as shown by the broken line in FIG. Therefore, it is possible to realize a signal waveform in which the oscillation frequency is shifted in two steps as shown by a solid line in FIG. Here, the two stages of counter values αΔK and βΔK have been described. However, for example, if the counter value γΔK is further increased, it is apparent that the number of stages can be increased to three, and further increased to four. In addition, each αΔK, βΔK,. . . If there are a switch for turning them on and off, and a control circuit for controlling each switch, the frequency division ratio control circuit 5 can be divided by either an accumulator multistage or a ΣΔ modulator. Any circuit that controls the ratio may be used.

また、図3に示すレジスタ52内に構成されるレジスタ521とレジスタ522のカウンタ値の係数αとβのその和を1に保つ条件下で、係数α,βの各値を制御回路53経由で再設定することによって段階毎に変化する分周比を各々設定して、発振周波数が偏移する周波数を段階毎に任意に設定可能となる。偏移する段数が3段、4段などに増えても同様である。   Further, the values of the coefficients α and β are passed through the control circuit 53 under the condition that the sum of the coefficients α and β of the counter values of the register 521 and the register 522 configured in the register 52 shown in FIG. By resetting, the frequency dividing ratio that changes at each stage is set, and the frequency at which the oscillation frequency shifts can be arbitrarily set at each stage. The same is true even if the number of shift stages is increased to 3, 4, or the like.

さらに、制御回路53において、スイッチ54,55のいずれをオンするかオフするかを制御することによって分周比が変化する段数を設定して、レジスタ52内に構成されるレジスタ521,522の中から使用するレジスタを選択すると同時に、上記α,β等の係数を再設定することにより、1段階に変化させるのか、2段階に変化させるのか、あるいはさらに多くのレジスタを備えて3段階、4段階、...に変化させるのか等、その段数を任意に設定可能となる。   Further, in the control circuit 53, the number of stages in which the division ratio changes is set by controlling which of the switches 54 and 55 is turned on or off, and the contents of the registers 521 and 522 configured in the register 52 are set. At the same time as selecting the register to be used from the above, by resetting the coefficients such as α, β, etc., it can be changed in one step, in two steps, or with more registers, three steps, four steps ,. . . It is possible to arbitrarily set the number of stages, such as whether to change to.

そして、制御回路53内のタイマー(図示せず)において、例えば図4に示すT2の設定を変えることで、周波数偏移を段階的に変化させている時間を任意に設定可能となる。偏移する段数が3段、4段などに増えても同様である。   In a timer (not shown) in the control circuit 53, for example, by changing the setting of T2 shown in FIG. 4, it is possible to arbitrarily set the time during which the frequency shift is changed stepwise. The same is true even if the number of shift stages is increased to 3, 4, or the like.

このように本基本構成では、従来例のように変調信号の経路に別途フィルタを備えることなしに、発振周波数帯域の制限が可能になる。さらにシステムに応じて、発振周波数が偏移する周波数、段数、及び周波数偏移を段階的に変化させている時間を最適に設定することで、より最適な発振周波数帯域の制限が可能になり、目的の発振周波数帯域制限を成し遂げることができる。   As described above, in this basic configuration, it is possible to limit the oscillation frequency band without providing a separate filter in the path of the modulation signal as in the conventional example. Furthermore, depending on the system, it is possible to limit the oscillation frequency band more optimally by optimally setting the frequency at which the oscillation frequency shifts, the number of stages, and the time during which the frequency shift is changed stepwise. The desired oscillation frequency band limitation can be achieved.

(実施形態)
本実施形態の分周比制御回路5は図1に示すように、図3の分周比制御回路5にメモリバッファ57,58を付加したもので、他の構成は上記基本構成と同様であり、同様の構成には同一の符号を付して説明は省略する。図2は、制御回路53、及びメモリバッファ57,58の動作を説明するもので、まず、変調信号(送信データ)のビット数は予め判っており、メモリバッファ57はこのビット数以上に構成されており、分周比制御回路5に入力された送信データを一旦全てバッファする。この送信データを制御回路53が読み出して、そのビット毎のデータの極性が前のビットあるいは後のビットあるいは前後のビットの極性から変化していればそのビットにフラグFを付加してから、メモリバッファ58に格納する。
(Embodiment)
As shown in FIG. 1, the frequency division ratio control circuit 5 of the present embodiment is obtained by adding memory buffers 57 and 58 to the frequency division ratio control circuit 5 of FIG. 3, and other configurations are the same as the basic configuration described above. The same components are denoted by the same reference numerals and description thereof is omitted. FIG. 2 illustrates the operation of the control circuit 53 and the memory buffers 57 and 58. First, the number of bits of the modulation signal (transmission data) is known in advance, and the memory buffer 57 is configured to have more than this number of bits. All the transmission data input to the frequency division ratio control circuit 5 is once buffered. The control circuit 53 reads this transmission data, and if the polarity of the data for each bit has changed from the polarity of the previous bit, the subsequent bit, or the previous and subsequent bits, a flag F is added to the bit, and then the memory Store in buffer 58.

全ての送信データがメモリバッファ58に格納されると、制御回路53はメモリバッファ58からデータを読み出し、フラグFが付加されているビットについては基本構成で説明したように、可変分周器4の分周比を段階毎に変化させて出力信号Fvcoの周波数偏移を段階毎に行う発振周波数帯域制限方法を実施する。   When all the transmission data is stored in the memory buffer 58, the control circuit 53 reads the data from the memory buffer 58, and the bits to which the flag F is added are stored in the variable frequency divider 4 as described in the basic configuration. An oscillation frequency band limiting method is performed in which the frequency shift of the output signal Fvco is performed at each stage by changing the frequency division ratio at each stage.

対してフラグFが付加されていないビットについて発振周波数帯域制限の処理を行わない。例えば、データ1が連続した場合には、レジスタ52ではレジスタ521のカウンタ動作の係数α=1を設定し且つスイッチ54をオンさせ、レジスタ522のカウンタ動作の係数β=0を設定し且つスイッチ55をオフさせることで、出力信号Fvcoはデータ1が連続する間、キャリア周波数に対してカウント値ΔK分の周波数偏移がかかった状態を維持することができる。   On the other hand, the process of limiting the oscillation frequency band is not performed for the bits to which the flag F is not added. For example, when data 1 is continuous, the register 52 sets the counter operation coefficient α = 1 of the register 521 and turns on the switch 54, sets the counter operation coefficient β = 0 of the register 522 and sets the switch 55. By turning OFF, the output signal Fvco can maintain a state in which the frequency shift of the count value ΔK is applied to the carrier frequency while the data 1 continues.

なお、上記のようにレジスタ521のみを動作させても、あるいはレジスタ522のみ動作させてもよく、レジスタ522を動作させるときは、レジスタ522のカウンタ動作の係数β=1を設定し且つスイッチ55をオンさせ、レジスタ521のカウンタ動作の係数α=0を設定し且つスイッチ54をオフさせる。また、周波数偏移を3段,4段,...とした場合にはレジスタ52を構成するレジスタ521,522,...のうちいずれかのレジスタを一つだけ動作させればよい。   As described above, only the register 521 may be operated or only the register 522 may be operated. When the register 522 is operated, the coefficient β = 1 of the counter operation of the register 522 is set and the switch 55 is turned on. Then, the counter operation coefficient α = 0 of the register 521 is set and the switch 54 is turned off. Also, the frequency shift is set to 3, 4,. . . In this case, the registers 521, 522,. . . Only one of the registers needs to be operated.

実施形態のフラクショナルNPLLシンセサイザの構成を示す図である。It is a figure which shows the structure of the fractional NPLL synthesizer of embodiment. 同上の制御回路、及びメモリバッファの動作を示す図である。It is a figure which shows operation | movement of a control circuit same as the above, and a memory buffer. 基本構成のフラクショナルNPLLシンセサイザの構成を示す図である。It is a figure which shows the structure of the fractional NPLL synthesizer of a basic composition. (a)変調信号を示す図である。(b)従来の周波数偏移を示す図である。(c)本発明の周波数偏移を示す図である。(A) It is a figure which shows a modulation signal. (B) It is a figure which shows the conventional frequency shift. (C) It is a figure which shows the frequency shift of this invention. 従来のフラクショナルNPLLシンセサイザの構成を示す図である。It is a figure which shows the structure of the conventional fractional NPLL synthesizer.

1 位相比較器
2 低域通過フィルタ
3 電圧制御発振器
4 可変分周器
5 分周比制御回路
51,52 レジスタ
53 制御回路
54,55 スイッチ
56 加算器
57,58 メモリバッファ
DESCRIPTION OF SYMBOLS 1 Phase comparator 2 Low-pass filter 3 Voltage controlled oscillator 4 Variable frequency divider 5 Divider ratio control circuit 51,52 Register 53 Control circuit 54,55 Switch 56 Adder 57,58 Memory buffer

Claims (2)

入力の周波数を分周した信号を出力する可変分周器と、前記可変分周器の分周比を制御する分周比制御回路と、基準信号と前記可変分周器の出力信号との位相差を検出して、該検出結果を出力する位相比較器と、前記位相比較器の出力を平均化する低域通過フィルタと、前記低域通過フィルタの出力に応じた発振周波数を出力すると共に、発振周波数を前記可変分周器の入力とする電圧制御発振器とによって発振周波数を生成するフラクショナルNPLLシンセサイザにおいて、前記分周比制御回路は、周波数偏移をかける対象であるビット列信号を全ビットに亘って蓄積記憶し、蓄積記憶したビット列信号の全ビットに亘って極性の切り換わりを判別して、極性が切り換わっているときのみ分周比を段階毎に変化させて発振周波数の偏移を段階毎に行い、分周比が段階毎に変化する時間を設定することで、発振周波数が段階毎に偏移する時間を設定することを特徴とするフラクショナルNPLLシンセサイザ。 A variable frequency divider that outputs a signal obtained by dividing an input frequency, a frequency division ratio control circuit that controls a frequency division ratio of the variable frequency divider, a reference signal, and an output signal of the variable frequency divider. A phase comparator that detects a phase difference and outputs the detection result, a low-pass filter that averages the output of the phase comparator, and an oscillation frequency according to the output of the low-pass filter, In a fractional NPLL synthesizer that generates an oscillation frequency by a voltage controlled oscillator that uses an oscillation frequency as an input to the variable frequency divider, the frequency division ratio control circuit includes a bit string signal that is a target of frequency shift over all bits. The change in polarity is discriminated over all bits of the stored bit string signal, and only when the polarity is changed, the division ratio is changed step by step to change the oscillation frequency. There line to each floor, that the division ratio is set to the time varies from stage fractional NPLL synthesizer oscillation frequency and sets the time to shift per stage. 入力の周波数を分周した信号を出力する可変分周処理と、前記可変分周処理の分周比を制御する分周比制御処理と、基準信号と前記分周比制御処理による出力信号との位相差を検出して、該検出結果を出力する位相比較処理と、前記位相比較処理による出力を平均化する低域通過フィルタリング処理と、前記低域通過フィルタリング処理による出力に応じた発振周波数を出力すると共に、発振周波数を前記可変分周処理の入力とする電圧制御発振処理とによって発振周波数を生成するフラクショナルNPLLシンセサイザの発振周波数帯域制限方法において、周波数偏移をかける対象であるビット列信号を全ビットに亘って蓄積記憶し、蓄積記憶したビット列信号の全ビットに亘って極性の切り換わりを判別して、極性が切り換わっているときのみ分周比を段階毎に変化させて発振周波数の偏移を段階毎に行う分周比制御処理と、分周比が段階毎に変化する時間を設定することで、発振周波数が段階毎に偏移する時間を設定する偏移時間設定処理とを行うことを特徴とするフラクショナルNPLLシンセサイザの発振周波数帯域制限方法。 A variable frequency dividing process for outputting a signal obtained by dividing an input frequency, a frequency dividing ratio control process for controlling a frequency dividing ratio of the variable frequency dividing process, and a reference signal and an output signal by the frequency dividing ratio control process. A phase comparison process that detects a phase difference and outputs the detection result, a low-pass filtering process that averages the output of the phase comparison process, and an oscillation frequency according to the output of the low-pass filtering process In addition, in the oscillation frequency band limiting method of the fractional NPLL synthesizer that generates the oscillation frequency by the voltage-controlled oscillation processing using the oscillation frequency as the input of the variable frequency division processing, the bit string signal to be subjected to frequency shift is all bits When the polarity is switched over by determining the polarity switching over all the bits of the stored bit string signal. And shift division ratio control process performed for each stage of the oscillation frequency only by changing the frequency dividing ratio for each stage, that the dividing ratio to control the time between each step, for each oscillation frequency stage A method for limiting an oscillation frequency band of a fractional NPLL synthesizer, characterized by performing a shift time setting process for setting a shift time .
JP2007316188A 2007-12-06 2007-12-06 Fractional NPLL synthesizer and method for limiting oscillation frequency band of fractional NPLL synthesizer Expired - Fee Related JP4453753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007316188A JP4453753B2 (en) 2007-12-06 2007-12-06 Fractional NPLL synthesizer and method for limiting oscillation frequency band of fractional NPLL synthesizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007316188A JP4453753B2 (en) 2007-12-06 2007-12-06 Fractional NPLL synthesizer and method for limiting oscillation frequency band of fractional NPLL synthesizer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002310017A Division JP4085774B2 (en) 2002-10-24 2002-10-24 Wireless communication method using oscillation frequency band limiting method of fractional NPLL synthesizer

Publications (2)

Publication Number Publication Date
JP2008104230A JP2008104230A (en) 2008-05-01
JP4453753B2 true JP4453753B2 (en) 2010-04-21

Family

ID=39438128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007316188A Expired - Fee Related JP4453753B2 (en) 2007-12-06 2007-12-06 Fractional NPLL synthesizer and method for limiting oscillation frequency band of fractional NPLL synthesizer

Country Status (1)

Country Link
JP (1) JP4453753B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012143970A1 (en) * 2011-04-19 2014-07-28 三菱電機株式会社 Frequency synthesizer

Also Published As

Publication number Publication date
JP2008104230A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
EP2436119B1 (en) Phase lock loop with a multiphase oscillator
US7956696B2 (en) Techniques for generating fractional clock signals
US20070291173A1 (en) Phase lock loop and digital control oscillator thereof
KR100824791B1 (en) Clock multiplier and clock multiplying method
JP2006319399A (en) Pulse width modulation circuit and polyphase clock generating circuit
EP2571165B1 (en) Accumulator type fractional-n pll synthesizer and control method thereof
JP2002164782A (en) Clock reproducing device and clock signal reproducing method
JP2616582B2 (en) PLL frequency synthesizer
JP6831922B2 (en) Divider with selectable frequency and duty cycle
US9065459B1 (en) Clock generation circuits using jitter attenuation control circuits with dynamic range shifting
US8598929B1 (en) Bitwidth reduction in loop filters used for digital PLLS
JP4453753B2 (en) Fractional NPLL synthesizer and method for limiting oscillation frequency band of fractional NPLL synthesizer
WO2010134287A1 (en) Pll frequency synthesizer
US20060012440A1 (en) Phase locked loop
US6288614B1 (en) Phase-locked loop with improvements on phase jitter, MTIE tracking speed and locking speed
JP4085774B2 (en) Wireless communication method using oscillation frequency band limiting method of fractional NPLL synthesizer
US20040027181A1 (en) Clock multiplying PLL circuit
NL1023545C2 (en) Frequency synthesizer for reducing noise.
US7911283B1 (en) Low noise oscillator and method
KR101107722B1 (en) Wide-range digital frequency synthesizer
JP2004260411A (en) Digital signal transceiver
US20230421158A1 (en) Clock and data recovery device with pulse filter and operation method thereof
JPH08223003A (en) Clock multiplying circuit
KR20080014356A (en) Dual feed forward ring oscillator
JP2002108493A (en) Clock phase shifting circuit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4453753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees