JP4452851B2 - Groundwater monitoring device and monitoring method - Google Patents

Groundwater monitoring device and monitoring method Download PDF

Info

Publication number
JP4452851B2
JP4452851B2 JP2006242863A JP2006242863A JP4452851B2 JP 4452851 B2 JP4452851 B2 JP 4452851B2 JP 2006242863 A JP2006242863 A JP 2006242863A JP 2006242863 A JP2006242863 A JP 2006242863A JP 4452851 B2 JP4452851 B2 JP 4452851B2
Authority
JP
Japan
Prior art keywords
water
sampling
groundwater
water sampling
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006242863A
Other languages
Japanese (ja)
Other versions
JP2008063825A (en
Inventor
貴紀 國丸
真一 細谷
Original Assignee
独立行政法人 日本原子力研究開発機構
株式会社ダイヤコンサルタント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人 日本原子力研究開発機構, 株式会社ダイヤコンサルタント filed Critical 独立行政法人 日本原子力研究開発機構
Priority to JP2006242863A priority Critical patent/JP4452851B2/en
Publication of JP2008063825A publication Critical patent/JP2008063825A/en
Application granted granted Critical
Publication of JP4452851B2 publication Critical patent/JP4452851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、ボーリング孔内の地下水を観測するためのモニタリング装置及びモニタリング方法に関する。   The present invention relates to a monitoring device and a monitoring method for observing groundwater in a borehole.

地盤内の地下水の流動状態を調査するために、例えば、特許文献1に示すように、ボーリング孔内の採水対象区間を閉塞するダブルパッカーと、採水対象区間内の地下水を地上に揚水する揚水手段と、採水対象区間の地下水を採水するための採水手段と、地上に揚水される地下水の電気伝導度、pH等を計測する水質測定手段とを備えた地下水の採水装置が開示されている。   In order to investigate the flow state of groundwater in the ground, for example, as shown in Patent Document 1, a double packer that closes the sampling target section in the borehole and the groundwater in the sampling target section is pumped to the ground. A groundwater sampling apparatus comprising a pumping means, a water sampling means for sampling groundwater in a sampling target section, and a water quality measuring means for measuring electrical conductivity, pH, etc. of the groundwater pumped to the ground. It is disclosed.

この採水装置を用いた採水方法は、揚水手段にて地上に揚水される地下水の電気伝導度、pH等を水質測定手段で常時測定してこの地下水が掘削水又は地層水のいずれであるかを判定し、揚水される地下水が地層水であると判断した場合に採水手段で採水対象区間の地下水を採水するものである。   In the water sampling method using this water sampling device, the electrical conductivity, pH, etc. of groundwater pumped to the ground by the pumping means are constantly measured by the water quality measuring means, and this groundwater is either excavated water or formation water. If the groundwater to be pumped is determined to be formation water, the groundwater in the water sampling target section is sampled by the water sampling means.

また、近年、地下水を採水するだけでなく、間隙水圧を長期間にわたって測定する機能を備えたモニタリング装置も開発されている。   In recent years, monitoring devices have been developed that not only collect groundwater but also have a function of measuring pore water pressure over a long period of time.

例えば、非特許文献1には、ボーリング孔内の深度方向に所定の間隔で設置される複数のパッカーにて7段に区分けされた各区間から孔口に向かって延設された7本の圧力伝達管内に圧力センサをそれぞれ設置して各区間の間隙水圧を測定するための間隙水圧測定手段と、圧力伝達管内の地下水を採水するための採水手段とから構成されるモニタリング装置が開示されている。   For example, Non-Patent Document 1 discloses seven pressures extending from each section divided into seven stages by a plurality of packers installed at predetermined intervals in the depth direction in the borehole toward the hole opening. Disclosed is a monitoring device comprising a pore water pressure measuring means for measuring the pore water pressure in each section by installing pressure sensors in the transmission pipe and a water sampling means for collecting groundwater in the pressure transmission pipe. ing.

このモニタリング装置を用いたモニタリング方法は、各圧力伝達管内にそれぞれ設置された圧力センサで7区間の間隙水圧を同時に連続して測定し、地下水を採水する際は、採水対象区間に接続されている圧力伝達管内の圧力センサを圧力伝達管の外に搬出し、採水手段を圧力伝達管内に挿入して地下水を採水するとともに、採水対象区間を除いた各区間の間隙水圧の測定を連続して行い、採水後は、採水手段を圧力伝達管の外に搬出し、圧力センサを圧力伝達管内に挿入して、再び採水対象区間の間隙水圧を測定するものである。   The monitoring method using this monitoring device measures the pore water pressure of 7 sections at the same time continuously with the pressure sensors installed in each pressure transmission pipe, and is connected to the sampling target section when sampling groundwater. The pressure sensor inside the pressure transmission pipe is taken out of the pressure transmission pipe, the water sampling means is inserted into the pressure transmission pipe to collect groundwater, and the pore water pressure in each section excluding the section to be sampled is measured. After sampling, the sampling means is taken out of the pressure transmission pipe, the pressure sensor is inserted into the pressure transmission pipe, and the pore water pressure in the sampling target section is measured again.

また、非特許文献2は、ボーリング孔内の深度方向に所定の間隔で設置される複数のパッカーにて多段に区分けされた各区間のケーシングパイプ部分に設置された圧力バルブポート及び採水バルブポートと、ケーシングパイプ内に挿通され、圧力バルブポートに接続して間隙水圧を測定するための圧力センサと、ケーシングパイプ内に挿通され、採水バルブポートに接続して地下水を採水するための採水手段とを備えたモニタリング装置が開示されている。   Non-Patent Document 2 discloses a pressure valve port and a water sampling valve port installed in a casing pipe portion of each section divided into a plurality of stages by a plurality of packers installed at predetermined intervals in the depth direction in the borehole. And a pressure sensor that is inserted into the casing pipe and connected to the pressure valve port to measure the pore water pressure, and a sampling sensor that is inserted into the casing pipe and connected to the sampling valve port to collect groundwater. A monitoring device comprising water means is disclosed.

このモニタリング装置を用いたモニタリング方法は、各区間のケーシングパイプの各圧力バルブポートにそれぞれ接続された一連の圧力センサで多区間の間隙水圧を同時に連続して測定し、地下水を採水する際は、ケーシングパイプ内の一連の圧力センサをすべてケーシングパイプの外に搬出し、1台の採水手段及び圧力センサをケーシングパイプ内に挿入し、それぞれを採水対象区間の採水用ポート、圧力バルブポートに接続して採水するとともに、採水対象区間の間隙水圧を測定し、採水後は、1台の採水手段及び圧力センサをケーシングパイプの外に搬出し、一連の圧力センサをケーシングパイプ内に挿入して圧力バルブポートに接続し、再び間隙水圧を測定するものである。
特開平9−25783号公報 HDB−2孔における地下水の水圧・水質長期モニタリング装置の設置、JNC TJ5410 2004−007、2004年3月、地熱技術開発株式会社 HDB−3、4孔における地下水の水圧・水質長期モニタリング装置の設置、JNC TJ5410 2004−006、2004年3月、清水建設株式会社
The monitoring method using this monitoring device is to measure the pore water pressure in multiple sections simultaneously and continuously with a series of pressure sensors connected to each pressure valve port of the casing pipe in each section, and when collecting groundwater A series of pressure sensors in the casing pipe are all carried out of the casing pipe, one water sampling means and a pressure sensor are inserted into the casing pipe, and a water sampling port and a pressure valve for each water sampling target section. Water is collected by connecting to the port, and the pore water pressure in the section to be sampled is measured. After sampling, one water sampling means and pressure sensor are taken out of the casing pipe, and a series of pressure sensors are installed in the casing. It is inserted into a pipe and connected to a pressure valve port, and the pore water pressure is measured again.
JP 9-255783 A Installation of long-term monitoring system for groundwater pressure and water quality at HDB-2 hole, JNC TJ5410 2004-007, March 2004, Geothermal Technology Development Co., Ltd. HDB-3, installation of long-term monitoring device for groundwater pressure and water quality at 4 holes, JNC TJ5410 2004-006, March 2004, Shimizu Corporation

しかしながら、特許文献1に記載されている採水装置では、採水対象区間の深度が深くなるとともに、採水手段の採水容器内の圧力(=ほぼ大気圧)と採水対象区間の孔内圧力との差が大きくなり、採水対象区間で採水容器の採水口を開放すると地下水を採水容器内に短時間で大量に引き込むために、孔内圧力及びパッカー圧力に影響を与え、孔内及び周辺地盤の環境を乱してしまうという問題点があった。さらに、採水時に減圧されることによって地下水中に含まれている気体成分が分離してしまうという問題点があった。   However, in the water sampling device described in Patent Document 1, the depth of the water sampling target section becomes deep, the pressure in the water sampling container of the water sampling means (= approximately atmospheric pressure) and the hole in the water sampling target section. When the sampling port of the sampling container is opened in the sampling target section, a large amount of groundwater is drawn into the sampling container in a short time, which affects the pressure in the hole and the packer pressure. There was a problem of disturbing the environment of the inner and surrounding ground. Furthermore, there has been a problem that the gas component contained in the groundwater is separated by reducing the pressure during sampling.

また、採水容器内の圧力と採水対象区間の孔内圧力との差を小さくするために、採水容器内に予め窒素ガスを圧入して採水容器内の圧力を採水対象区間の孔内圧力とを同程度にする方法も開示されているが、地下水中の成分が窒素ガスと反応する可能性があり、採水容器内の水質を分析しても本来の地下水の成分を把握することができない可能性があるという問題点があった。   In addition, in order to reduce the difference between the pressure in the water sampling container and the pressure in the hole of the water sampling target section, nitrogen gas is previously injected into the water sampling container and the pressure in the water sampling container is set in the water sampling target section. Although a method to make the pressure in the hole comparable is disclosed, there is a possibility that components in the groundwater may react with nitrogen gas, and even if the water quality in the water sampling container is analyzed, the original groundwater components can be grasped There was a problem that it may not be possible.

また、非特許文献1に記載のモニタリング装置では、採水時に採水対象区間の圧力センサを圧力伝達管の外に搬出し、採水終了後に再び圧力伝達管内に設置するために、採水作業以外の付帯作業に手間及び時間がかかるという問題点があった。さらに、採水対象区間を除いた他区間は、採水中も間隙水圧が測定できるが、採水対象区間は、採水手段が圧力センサを備えていないために採水直前、採水中及び採水直後に間隙水圧の測定ができないという問題点があった。   Further, in the monitoring device described in Non-Patent Document 1, in order to carry out the pressure sensor in the water sampling target section outside the pressure transmission pipe at the time of water sampling and install it again in the pressure transmission pipe after the water sampling is completed, There was a problem that it took time and labor for the incidental work other than the above. Furthermore, in other sections except the sampling target section, the pore water pressure can be measured even during sampling, but the sampling target section is not equipped with a pressure sensor, so the sampling sampling section does not have a pressure sensor, so Immediately after, there was a problem that the pore water pressure could not be measured.

そして、非特許文献2に記載のモニタリング装置では、採水時にすべての圧力センサをケーシングパイプの外に搬出し、採水終了後に再びケーシングパイプ内に設置するために、採水作業以外の付帯作業に手間及び時間がかかるという問題点があった。また、採水手段は採水対象区間のみを測定可能な圧力センサを連結することができるために、採水中も採水対象区間のみの間隙水圧は測定できるが、採水対象区間を除いた他区間は採水直前、採水中及び採水直後に間隙水圧の測定ができないという問題点があった。   In the monitoring device described in Non-Patent Document 2, all the pressure sensors are taken out of the casing pipe at the time of sampling, and are attached to the casing pipe again after the sampling is completed. There is a problem that it takes time and effort. In addition, since the water sampling means can be connected to a pressure sensor capable of measuring only the water sampling target section, it can measure the pore water pressure only in the water sampling target section even during water sampling. The section had a problem that the pore water pressure could not be measured immediately before sampling, immediately after sampling and immediately after sampling.

さらに、上記いずれの特許文献においても、水質と水圧を同時にモニタリングする技術についても実現されていないことが問題であった。   Furthermore, in any of the above-mentioned patent documents, there has been a problem that a technique for simultaneously monitoring water quality and water pressure has not been realized.

そこで、本発明は、上記の問題点を鑑みてなされたものであり、その目的は、ボーリング孔内の深度方向に所定の間隔で設置される複数の観測用パッカーにて多段に区分けされた各区間のうち採水対象区間の地下水の水質を観測するとともに採水が可能で、かつ、採水時も採水対象区間を含むすべての区間の間隙水圧を連続して測定可能な地下水のモニタリング装置及びモニタリング方法、並びにこのモニタリング装置を用いた透水係数の算出方法を提供することである。   Therefore, the present invention has been made in view of the above-described problems, and the purpose thereof is that each of the plurality of observation packers divided in multiple stages by a plurality of observation packers installed at predetermined intervals in the depth direction in the borehole. A groundwater monitoring device that can measure groundwater quality in the section subject to sampling and can collect water continuously, and can continuously measure the pore water pressure in all sections including the section subject to sampling even during sampling. And a monitoring method, and a method for calculating a hydraulic conductivity using the monitoring device.

前記目的を達成するため、本発明の地下水のモニタリング装置は、ボーリング孔内の深度方向に所定の間隔で設置される複数の観測用パッカーにて多段に区分けされた各区間の地下水を観測するためのモニタリング装置であって、前記観測用パッカー内に設置され、前記各区間の間隙水圧を測定するための圧力測定手段と、前記観測用パッカー内に設置され、前記各区間に連結される連結管を有するとともに、該連結管を介して前記各区間の地下水を内部に貯留可能な採水用ケーシングパイプと、前記採水用ケーシングパイプ内を昇降可能で、前記採水用ケーシングパイプ内の地下水を採水しつつ、水質を測定するための採水手段と、前記圧力測定手段及び前記採水手段にてそれぞれ測定した結果に基づいて解析を行う解析手段と、を備え、前記採水手段にて採水対象区間の地下水を採水し、地下水の水質を測定しつつ、前記圧力測定手段にて前記採水対象区間を含む複数の前記区間の間隙水圧を測定可能であることを特徴とする(第1の発明)。   In order to achieve the above object, the groundwater monitoring device of the present invention is for observing the groundwater in each section divided in multiple stages by a plurality of observation packers installed at predetermined intervals in the depth direction in the borehole. Monitoring device, a pressure measuring means for measuring the pore water pressure in each section, and a connecting pipe installed in the observation packer and connected to each section A water collection casing pipe capable of storing the ground water in each section through the connecting pipe, and the water collection casing pipe can be moved up and down, and the ground water in the water collection casing pipe can be Water sampling means for measuring water quality while collecting water, and analysis means for performing analysis based on results measured by the pressure measuring means and the water sampling means, It is possible to measure the pore water pressure of a plurality of the sections including the water sampling target section by the pressure measuring means while sampling the ground water of the water sampling target section by the water sampling means and measuring the quality of the ground water. (First invention).

本発明による地下水のモニタリング装置によれば、各区間の間隙水圧を測定するための圧力測定手段と、観測用パッカー内に設置される採水用ケーシングパイプと、この採水用ケーシングパイプ内の地下水を採水しつつ、水質を測定するための採水手段とを備えることにより、採水手段にて地下水を採水しつつ、圧力測定手段にて採水対象区間を含む複数の区間の間隙水圧を連続して測定することが可能となる。また、採水時に複数の区間の間隙水圧を測定することができるので、採水時における観測用パッカーの遮水効果を確認することが可能となる。さらに、採水と同時に水質も測定するために、採水中の水質を把握することが可能となる。   According to the groundwater monitoring device of the present invention, the pressure measuring means for measuring the pore water pressure in each section, the water sampling casing pipe installed in the observation packer, and the ground water in the water sampling casing pipe Water sampling means for measuring the water quality while sampling the groundwater with the water sampling means, and the pore water pressure of a plurality of sections including the water sampling target section with the pressure measuring means Can be measured continuously. In addition, since the pore water pressure in a plurality of sections can be measured at the time of sampling, it is possible to check the water shielding effect of the observation packer at the time of sampling. Furthermore, since the water quality is measured simultaneously with the water sampling, it is possible to grasp the water quality during the water sampling.

第2の発明は、第1の発明において、前記採水手段は、前記採水用ケーシングパイプ内に挿通され、採水対象区間を閉塞するための採水用パッカーと、該採水対象区間の地下水を採水するための採水ポンプと、該採水対象区間の地下水を保存するための採水容器と、該採水対象区間の水質を測定するための水質測定装置と、から構成されることを特徴とする。   According to a second invention, in the first invention, the water sampling means is inserted into the water sampling casing pipe, and a water sampling packer for closing the water sampling target section, and the water sampling target section A water sampling pump for collecting ground water, a water sampling container for storing ground water in the water sampling target section, and a water quality measuring device for measuring the water quality of the water sampling target section. It is characterized by that.

本発明による地下水のモニタリング装置によれば、採水対象区間を閉塞するための採水用パッカーを備えているために、各区間の中から採水を行う区間を選択することが可能となる。また、この採水対象区間のみの地下水を採水することが可能となる。さらに、採水対象区間の地下水を採水しつつ、採水対象区間の間隙水圧を連続して測定することが可能となる。そして、採水時における採水対象区間の間隙水圧を測定することができるので、採水対象区間内の水圧を必要以上に減圧して地下水中から気体成分が分離してしまうことを防止することが可能となる。また、水質測定装置を備えているために、採水対象区間内の水質を把握することが可能となる。さらに、水質を把握することにより、採水対象区間内の地下水が掘削水等から完全に地層水に置換されたことを確認することができるために、確実に地層水を採水することが可能となる。   According to the groundwater monitoring apparatus according to the present invention, since the water sampling packer for closing the water sampling target section is provided, it is possible to select a section for sampling from each section. Moreover, it becomes possible to collect the groundwater only in this water sampling object area. Furthermore, it becomes possible to continuously measure the pore water pressure in the sampling target section while sampling the groundwater in the sampling target section. And since the pore water pressure in the water sampling target section at the time of water sampling can be measured, the water pressure in the water sampling target section is reduced more than necessary to prevent the separation of gas components from the groundwater. Is possible. Moreover, since the water quality measuring device is provided, it is possible to grasp the water quality in the water sampling target section. In addition, by grasping the water quality, it is possible to confirm that the groundwater in the sampling area has been completely replaced by the formation water from the drilling water, etc., so it is possible to reliably collect the formation water It becomes.

第3の発明は、第1又は第2の発明において、前記水質は、電気伝導度、酸化還元電位、pH、溶存酸素、塩化物イオン濃度、水温の少なくともいずれかであることを特徴とする。   According to a third invention, in the first or second invention, the water quality is at least one of electrical conductivity, redox potential, pH, dissolved oxygen, chloride ion concentration, and water temperature.

本発明による地下水のモニタリング装置によれば、電気伝導度、酸化還元電位、pH、溶存酸素、塩化物イオン濃度、水温の少なくともいずれかを測定することにより、採水対象区間の水質を把握することが可能となる。また、これらを複数測定することにより、水質をより正確に把握でき、地下水が掘削水であるか地層水であるかを正確に判定することが可能となる。   According to the groundwater monitoring apparatus according to the present invention, the water quality of the section to be sampled is grasped by measuring at least one of electrical conductivity, redox potential, pH, dissolved oxygen, chloride ion concentration, and water temperature. Is possible. Further, by measuring a plurality of these, the water quality can be grasped more accurately, and it can be accurately determined whether the groundwater is excavated water or formation water.

第4の発明は、第2の発明において、前記採水容器は、地下水が流入出するための開口部を有するボトルと、前記開口部に取り付けられ、前記ボトル内の地下水の流入出を制御するとともに、前記ボトル内の圧力を保持するための採水用バルブと、を備えることを特徴とする。   4th invention is 2nd invention. WHEREIN: The said water collection container is attached to the said opening and the bottle which has an opening part for inflow and outflow of groundwater, and controls inflow / outflow of the groundwater in the said bottle And a water sampling valve for maintaining the pressure in the bottle.

本発明による地下水のモニタリング装置によれば、採水対象区間に採水容器を設置するとことにより、地下水を採水対象区間の圧力で採水することが可能となる。また、ボトルの開口部に取り付けられたバルブを閉止することにより、採水対象区間の圧力を保持したまま地下水をボトル内に保存する封圧採水が可能となる。   According to the groundwater monitoring device of the present invention, it is possible to collect groundwater with the pressure of the water sampling target section by installing the water sampling container in the water sampling target section. Further, by closing the valve attached to the opening of the bottle, sealed water sampling is possible in which groundwater is stored in the bottle while maintaining the pressure of the water sampling target section.

第5の発明は、第1〜第4のいずれかの発明において、前記各連結管は連結用バルブを備え、採水対象区間の地下水を採水する際は、この採水対象区間の連結用バルブを開放し、この採水対象区間以外の連結用バルブは閉止することを特徴とする。   According to a fifth invention, in any one of the first to fourth inventions, each of the connection pipes is provided with a connection valve, and when collecting the groundwater of the water sampling target section, for connecting the water sampling target section. The valve is opened, and the connecting valves other than the water sampling target section are closed.

本発明による地下水のモニタリング装置によれば、各連結管は連結用バルブを備えることにより、採水用ケーシングパイプ内に流入する地下水が区間毎に制御され、採水用ケーシングパイプ内で各区間の地下水が混合することを防止する。また、採水時は、採水対象区間に連結する連結管用バルブのみを開放するために、確実に採水対象区間の地下水を採水することが可能となる。   According to the groundwater monitoring apparatus of the present invention, each connecting pipe is provided with a connecting valve so that the groundwater flowing into the water sampling casing pipe is controlled for each section, and each section within the water sampling casing pipe is controlled. Prevent groundwater from mixing. Moreover, since only the connection pipe valve connected to the water sampling target section is opened at the time of water sampling, the ground water in the water sampling target section can be reliably sampled.

第6の発明の地下水のモニタリング方法は、ボーリング孔内の深度方向に所定の間隔で設置される複数の観測用パッカーにて多段に区分けされた各区間の地下水を観測するための方法において、前記観測用パッカー内に設置され、前記各区間の間隙水圧を測定するための圧力測定手段と、前記観測用パッカー内に設置され、前記各区間に連結される連結管を有するとともに、該連結管を介して前記各区間の地下水を内部に貯留可能な採水用ケーシングパイプと、前記採水用ケーシングパイプ内に挿通されて採水対象区間を閉塞するための採水用パッカーと該採水対象区間の地下水を採水するための採水ポンプと該採水対象区間の地下水を保存するための採水容器と、採水する地下水の水質を測定する水質測定装置とから構成され、前記採水用ケーシングパイプ内を昇降可能な採水手段と、を備えたモニタリング装置を用い、前記採水手段にて前記採水対象区間の地下水を採水し、地下水の水質を測定しつつ、前記圧力測定手段にて前記採水対象区間を含む複数の前記区間の間隙水圧を測定することを特徴とする。   The groundwater monitoring method of the sixth invention is a method for observing groundwater in each section divided in multiple stages by a plurality of observation packers installed at predetermined intervals in the depth direction in the borehole, A pressure measuring means installed in the observation packer for measuring the pore water pressure in each section; a connecting pipe installed in the observation packer and connected to each section; and A water sampling casing pipe capable of storing the groundwater in each section through the water sampling casing pipe, and a water sampling packer that is inserted into the water sampling casing pipe and closes the water sampling target section. A sampling pump for sampling the groundwater, a sampling container for storing the groundwater in the sampling target section, and a water quality measuring device for measuring the quality of the groundwater to be sampled. Using a monitoring device having a water sampling means capable of moving up and down in the singing pipe, and collecting the ground water in the water sampling target section with the water sampling means and measuring the quality of the ground water, the pressure measuring means And measuring pore water pressures in a plurality of the sections including the sampling target section.

第7の発明は、第6の発明において、前記モニタリング装置は、前記圧力測定手段及び前記採水手段にてそれぞれ測定した結果に基づいて解析を行う解析手段を備え、該解析手段は採水中及び採水前後の間隙水圧の経時変化に基づいて前記採水対象区間の透水係数を算出することを特徴とする。   According to a seventh invention, in the sixth invention, the monitoring device comprises analysis means for performing analysis based on results measured by the pressure measuring means and the water sampling means, respectively, The hydraulic conductivity of the water sampling target section is calculated based on the temporal change in the pore water pressure before and after sampling.

本発明による地下水のモニタリング装置及びモニタリング方法によれば、ボーリング孔内の深度方向に所定の間隔で設置される複数の観測用パッカーにて多段に区分けされた各区間のうち採水対象区間の地下水の水質を観測するとともに採水が可能で、かつ、採水時も採水対象区間を含むすべての区間の間隙水圧を連続測定することができる。
さらに、採水対象区間の間隙水圧測定結果より透水係数を算出することができる。
According to the groundwater monitoring device and the monitoring method of the present invention, the groundwater in the sampling target section among the sections divided in multiple stages by a plurality of observation packers installed at predetermined intervals in the depth direction in the borehole. In addition to observing water quality, water can be collected, and the pore water pressure in all sections including the sampling target section can be continuously measured even during sampling.
Furthermore, the hydraulic conductivity can be calculated from the pore water pressure measurement result in the water sampling target section.

以下、本発明に係る地下水のモニタリング装置及びモニタリング方法の好ましい実施形態について図面を用いて詳細に説明する。なお、本実施形態においては、深度約500mのボーリング孔にモニタリング装置を設置した例について説明するが、本発明は、深度約500mのボーリング孔に限定されるものではなく、様々な深度のボーリング孔に適用できることはいうまでもない。   Hereinafter, preferred embodiments of a groundwater monitoring device and a monitoring method according to the present invention will be described in detail with reference to the drawings. In addition, in this embodiment, although the example which installed the monitoring apparatus in the boring hole of about 500m depth is demonstrated, this invention is not limited to the boring hole of about 500m depth, Boring hole of various depths Needless to say, it can be applied to the above.

図1は、本実施形態に係る地下水のモニタリング装置1をボーリング孔3内に設置した状態を示す模式断面図である。   FIG. 1 is a schematic cross-sectional view showing a state in which the groundwater monitoring device 1 according to the present embodiment is installed in the borehole 3.

図1に示すように、ボーリング孔3は、例えば、深度約250m以浅は孔径215.9mm、深度約250m以深は孔径158.8mmで削孔されている。また、ボーリング孔3内には孔壁の崩落を防止するために、例えば、深度約250m以浅は外径177.8mm、内径164mm、深度約250m以深は外径112mm、内径103.9mmの孔壁保護用ケーシングパイプ5がそれぞれ設置されている。   As shown in FIG. 1, the boring hole 3 is drilled with a hole diameter of 215.9 mm when the depth is about 250 m or less, and with a hole diameter of 158.8 mm when the depth is about 250 m or less. In order to prevent the hole wall from collapsing in the borehole 3, for example, a hole wall having an outer diameter of 177.8 mm and an inner diameter of 164 mm shallower than about 250 m and an outer diameter of 112 mm and an inner diameter of 103.9 mm deeper than about 250 m. Protective casing pipes 5 are respectively installed.

ボーリング孔3内の深度方向に所定の間隔で設置された11個の観測用パッカー7にて多段に区分けされた各区間Sの地下水を観測するためのモニタリング装置1は、観測用パッカー7内に設置され、各区間Sの間隙水圧を測定するための圧力測定手段9と、観測用パッカー7内に設置され、各区間Sに連結される連結管11を有するとともに、この連結管11を介して各区間Sの地下水を内部に貯留可能な採水用ケーシングパイプ13と、採水用ケーシングパイプ13内を昇降し、採水対象区間WSの地下水を採水するための採水手段15と、圧力測定手段9及び採水手段15にてそれぞれ測定した圧力測定結果、水質測定結果に基づいて解析を行う解析手段16と、を備える。   A monitoring device 1 for observing the groundwater in each section S divided into multiple stages by 11 observation packers 7 installed at predetermined intervals in the depth direction in the borehole 3 is provided in the observation packer 7. A pressure measuring means 9 for measuring the pore water pressure in each section S and a connecting pipe 11 which is installed in the observation packer 7 and connected to each section S are provided via the connecting pipe 11. The water sampling casing pipe 13 that can store the ground water in each section S, the water sampling means 15 that moves up and down the water sampling casing pipe 13 to collect the ground water in the water sampling target section WS, and the pressure And an analysis means 16 for performing analysis based on the pressure measurement result and the water quality measurement result respectively measured by the measurement means 9 and the water sampling means 15.

図2A、図2Bは、それぞれ図1の点線丸枠内の拡大図、拡大斜視図である。
図2A及び図2Bに示すように、圧力測定手段9は、一端が観測用パッカー7の内周面に接続して区間Sに連結され、他端が孔口付近に開放端として配設される中空の圧力伝達管17と、該圧力伝達管17内に挿入され、区間Sの間隙水圧を測定するための水圧センサ19とから構成された間隙水圧測定装置21を11台備える。
2A and 2B are an enlarged view and an enlarged perspective view, respectively, in the dotted-line circle frame of FIG.
As shown in FIGS. 2A and 2B, the pressure measuring means 9 has one end connected to the inner peripheral surface of the observation packer 7 and connected to the section S, and the other end arranged as an open end near the hole. Eleven pieces of pore water pressure measuring devices 21 including a hollow pressure transmission pipe 17 and a water pressure sensor 19 inserted into the pressure transmission pipe 17 for measuring the pore water pressure in the section S are provided.

本実施形態において、圧力伝達管17は、深度50m以浅は水圧センサ19の挿入可能な外径21.3mm、内径15.8mmのPVCパイプを用い、深度50m以深は外径6mm、内径4mmのナイロンチューブを用いた。   In this embodiment, the pressure transmission pipe 17 uses a PVC pipe having an outer diameter of 21.3 mm and an inner diameter of 15.8 mm into which the water pressure sensor 19 can be inserted at a depth of 50 m or less, and nylon having an outer diameter of 6 mm and an inner diameter of 4 mm at a depth of 50 m or more. A tube was used.

水圧センサ19は、各圧力伝達管17の中に挿入され、地上に設置されたデータロガー23(図1)に接続されている。本実施形態において、水圧センサ19は、直径10mmのPDCR35/D(製品名:英国ドラック社製)を用いた。なお、図2Aに記載した水圧センサ19は、実際には深度50m以浅に設置されているが、モニタリング装置1の構造の理解を容易にするために図中に表示している。   The water pressure sensor 19 is inserted into each pressure transmission pipe 17 and connected to a data logger 23 (FIG. 1) installed on the ground. In this embodiment, the water pressure sensor 19 is a PDCR35 / D (product name: manufactured by UK Drag Co.) having a diameter of 10 mm. Although the water pressure sensor 19 shown in FIG. 2A is actually installed at a depth of 50 m or less, it is shown in the drawing for easy understanding of the structure of the monitoring device 1.

採水用ケーシングパイプ13の各連結管11は連結管用バルブ25を備えており、連結管用バルブ25の開閉により各区間Sから採水用ケーシングパイプ13内への地下水の流入を制御する。   Each connection pipe 11 of the water sampling casing pipe 13 includes a connection pipe valve 25, and the flow of ground water from each section S into the water sampling casing pipe 13 is controlled by opening and closing the connection pipe valve 25.

間隙水圧を測定する際は、地上に設けられたスイッチ27(図1)を操作して測定対象区間の連結管用バルブ25を閉止し、測定対象区間を閉塞する。そして、水圧センサ19により測定された間隙水圧の時系列データをデータロガー23(図1)に記録する。なお、本実施形態においては、採水手段15を採水用ケーシングパイプ13内に設置した状態で間隙水圧を測定する方法について説明したが、これに限定されるものではなく、図3に示すように、採水用ケーシングパイプ13内から採水手段15を撤去した状態で間隙水圧を測定してもよい。   When the pore water pressure is measured, the switch 27 (FIG. 1) provided on the ground is operated to close the connection pipe valve 25 in the measurement target section and close the measurement target section. Then, the time series data of the pore water pressure measured by the water pressure sensor 19 is recorded in the data logger 23 (FIG. 1). In the present embodiment, the method for measuring the pore water pressure in a state where the water sampling means 15 is installed in the water sampling casing pipe 13 has been described. However, the present invention is not limited to this, and as shown in FIG. Alternatively, the pore water pressure may be measured in a state in which the water sampling means 15 is removed from the water sampling casing pipe 13.

そして、採水手段15は、採水用ケーシングパイプ13内に挿通されて採水対象区間WSを閉塞するための下部側採水用パッカー31及び上部側採水用パッカー33と、採水対象区間WSの地下水を採水するための採水ポンプ35と、採水対象区間WSの地下水を保存するための採水容器36と、地下水の水質を測定するための水質測定装置37と、採水対象区間WSのデッドボリュームを減少するためのダミープローブ39とから構成される。   And the water sampling means 15 is inserted in the water sampling casing pipe 13 to close the water sampling target section WS, the lower side water sampling packer 31 and the upper side water sampling packer 33, and the water sampling target section A sampling pump 35 for sampling the groundwater of WS, a sampling container 36 for storing the groundwater in the sampling target section WS, a water quality measuring device 37 for measuring the quality of the groundwater, and a sampling target It comprises a dummy probe 39 for reducing the dead volume in the section WS.

採水手段15を構成するこれらの装置は、孔底側から孔口側に向かって、下部側採水用パッカー31、ダミープローブ39、上部側採水用パッカー33、採水容器36、水質測定装置37、採水ポンプ35の順番で直列に連結され、下部側採水用パッカー31及び上部側採水用パッカー33が採水対象区間WSを閉塞するように採水用ケーシングパイプ13内に設置されている。採水用ケーシングパイプ13内の下部側採水用パッカー31と上部側採水用パッカー33との間に流入した採水対象区間WSの地下水は、採水ポンプ35により上部側採水用パッカー33の下端部に設けられた採水口32から採水され、採水容器36内、水質測定装置37を通過し、採水ポンプ35の上部から地上まで延設されたナイロンチューブ41にて地上に送給され、ノッチタンク43(図1)に貯水される。   These devices constituting the water sampling means 15 are composed of a lower side water sampling packer 31, a dummy probe 39, an upper side water sampling packer 33, a water sampling container 36, water quality measurement from the hole bottom side toward the hole opening side. The apparatus 37 and the water sampling pump 35 are connected in series in this order, and the lower side water sampling packer 31 and the upper side water sampling packer 33 are installed in the water sampling casing pipe 13 so as to close the water sampling target section WS. Has been. Groundwater in the water sampling target section WS that flows between the lower-side water sampling packer 31 and the upper-side water sampling packer 33 in the water sampling casing pipe 13 is supplied by the water sampling pump 35 to the upper-side water sampling packer 33. Water is collected from a water sampling port 32 provided at the lower end of the water sample, passes through a water quality measuring device 37 in a water sampling container 36, and is sent to the ground by a nylon tube 41 extending from the upper part of the water sampling pump 35 to the ground. The water is supplied and stored in the notch tank 43 (FIG. 1).

ここで、水質測定装置37は、水質測定用のセンサ溶液等に地下水が接触して水質が変化することを防止するために、採水容器36よりも下流側(孔口側)に設置する。また、採水ポンプ35は、ポンプ部38(図4A)の可動によりモーター部40(図4A)が発熱して地下水がモーター部40の近傍を通過した際に温められて、水温が上昇することを防止するために、水質測定装置37よりも下流側(孔口側)に設置する。   Here, the water quality measuring device 37 is installed on the downstream side (hole side) of the water sampling container 36 in order to prevent the water quality from changing due to the contact of groundwater with the sensor solution for water quality measurement. Further, the water sampling pump 35 is heated when the pump unit 38 (FIG. 4A) moves and the motor unit 40 (FIG. 4A) generates heat and the groundwater passes near the motor unit 40, and the water temperature rises. In order to prevent this, the water quality measuring device 37 is installed on the downstream side (hole side).

図4Aは、採水ポンプ35の概略断面図で、図4Bは、採水ポンプ35の仕様を示す図である。図4Aに示すように、採水ポンプ35は、一端が水質測定装置37に接続され、他端がナイロンチューブ41に接続されたポンプ部38と、ポンプ部38を駆動するためのモーター部40と、モーター部に電気を供給するための電源29とから構成される。なお、本実施形態においては、図4Bに示すように、採水ポンプ35は、外径30mm、全長960mm、揚程1MPaのモイノポンプを用いた。   FIG. 4A is a schematic cross-sectional view of the water sampling pump 35, and FIG. 4B is a diagram showing the specifications of the water sampling pump 35. As shown in FIG. 4A, the water sampling pump 35 has a pump unit 38 having one end connected to the water quality measuring device 37 and the other end connected to the nylon tube 41, and a motor unit 40 for driving the pump unit 38. And a power source 29 for supplying electricity to the motor unit. In this embodiment, as shown in FIG. 4B, the water sampling pump 35 is a Moino pump having an outer diameter of 30 mm, a total length of 960 mm, and a lift of 1 MPa.

図5Aは、採水容器36の概略図で、図5Bは、採水容器36の仕様を示す図である。図5Aに示すように、採水容器36は、一端WLINが採水口32に接続され、他端WLOUTが水質測定装置37に接続された筒状のボトル45と、このボトル45の両端に取り付けられ、ボトル45内に流入した地下水の流出を防止するとともに、ボトル45内の圧力を保持するための採水用バルブ47とを備える。本実施形態において、図5Bに示すように、ボトル45は、外径34mm、全長500mm、保存容量187cmのステンレス管を用いた。 FIG. 5A is a schematic diagram of the water sampling container 36, and FIG. 5B is a diagram showing the specifications of the water sampling container 36. As shown in FIG. 5A, the water sampling container 36 is attached to both ends of the bottle 45 having a cylindrical bottle 45 having one end WLIN connected to the water sampling port 32 and the other end WLOUT connected to a water quality measuring device 37. And a water collection valve 47 for preventing the outflow of groundwater flowing into the bottle 45 and maintaining the pressure in the bottle 45. In this embodiment, as shown in FIG. 5B, the bottle 45 is a stainless steel tube having an outer diameter of 34 mm, a total length of 500 mm, and a storage capacity of 187 cm 3 .

図6Aは、水質測定装置37の概略図で、図6B〜図6Eは、それぞれ各センサの外観図及び仕様を示す図である。図6Aに示すように、水質測定装置37は、温度センサ51、ORPセンサ53、pHセンサ55と、これらのセンサを内包するためのセンサケース57とから構成され、採水容器36を通過してセンサケース57内に流入する地下水の酸化還元電位、pH、水温を測定する。これらのセンサは、孔底側から孔口側に向かって、温度センサ51、ORPセンサ53、pHセンサ55の順番で直列に連結される。各センサは地上に設置されたデータロガー23(図1)に多心ケーブル58で接続されており、測定結果はデータロガー23に記録されるとともに、解析手段16であるPCを介してモニタ59(図1)にて常時観測される。   FIG. 6A is a schematic diagram of the water quality measuring device 37, and FIGS. 6B to 6E are views showing an external view and specifications of each sensor, respectively. As shown in FIG. 6A, the water quality measuring device 37 is composed of a temperature sensor 51, an ORP sensor 53, a pH sensor 55, and a sensor case 57 for containing these sensors, and passes through the water sampling container 36. The oxidation-reduction potential, pH, and water temperature of the groundwater flowing into the sensor case 57 are measured. These sensors are connected in series in the order of the temperature sensor 51, the ORP sensor 53, and the pH sensor 55 from the hole bottom side to the hole opening side. Each sensor is connected to the data logger 23 (FIG. 1) installed on the ground by a multi-core cable 58, and the measurement result is recorded in the data logger 23, and the monitor 59 ( It is always observed in Fig. 1).

本実施形態において、図6Bに示すように、電気伝導度センサ49は、外径30mm、長さ240mmのUF−EC−EM(製品名:独国AMT社製)を用いた。
また、図6Cに示すように、温度センサ51は、外径27.6mm、長さ113mmのサーミスタ式温度計を用いた。
そして、図6Dに示すように、ORPセンサ53は、外径30mm、長さ240mmのUF−RE−EM(製品名:独国AMT社製)を用いた。
また、図6Eに示すように、pHセンサ55は、外径30mm、長さ240mmのUF−pH−EM(製品名:独国AMT社製)を用いた。
In this embodiment, as shown in FIG. 6B, the electrical conductivity sensor 49 is a UF-EC-EM (product name: manufactured by AMT, Germany) having an outer diameter of 30 mm and a length of 240 mm.
As shown in FIG. 6C, the temperature sensor 51 is a thermistor type thermometer having an outer diameter of 27.6 mm and a length of 113 mm.
As shown in FIG. 6D, the ORP sensor 53 used was a UF-RE-EM (product name: manufactured by AMT, Germany) having an outer diameter of 30 mm and a length of 240 mm.
As shown in FIG. 6E, the pH sensor 55 used was UF-pH-EM (product name: manufactured by AMT, Germany) having an outer diameter of 30 mm and a length of 240 mm.

上述したモニタリング装置1を用いて地下水の採水を行う際は、予め、採水対象区間WSを含むすべての区間Sの間隙水圧を連続して行う。   When sampling the groundwater using the monitoring device 1 described above, the pore water pressure in all sections S including the sampling target section WS is continuously performed in advance.

次に、採水手段15を採水用ケーシングパイプ13内の所定の深度に設置し、下部側採水用パッカー31と上部側採水用パッカー33とで採水対象区間WSを閉塞する。その後、採水対象区間WSの連結管用バルブ25を開放して採水対象区間WSの地下水を採水用ケーシングパイプ13内に流入させる。   Next, the water sampling means 15 is installed at a predetermined depth in the water sampling casing pipe 13, and the water sampling target section WS is closed by the lower side water sampling packer 31 and the upper side water sampling packer 33. Thereafter, the connection pipe valve 25 in the water sampling target section WS is opened, and the ground water in the water sampling target section WS flows into the water sampling casing pipe 13.

そして、採水ポンプ35を駆動すると、採水対象区間WSの地下水は、上部側採水用パッカー33の下端部に設けられた採水口32から採水され、採水容器36、水質測定装置37、採水ポンプ35を通過し、地上に送給される。   When the water sampling pump 35 is driven, the groundwater in the water sampling target section WS is sampled from the water sampling port 32 provided at the lower end of the upper side water sampling packer 33, and the water sampling container 36 and the water quality measuring device 37 are collected. Then, it passes through the water sampling pump 35 and is fed to the ground.

地下水が水質測定装置37を通過する際に測定される酸化還元電位、pH、水温及び圧力測定手段9にて測定されるすべての区間Sの間隙水圧を地上のPC16のモニタ59で常時モニタリングする。   The pore water pressure in all sections S measured by the redox potential, pH, water temperature and pressure measuring means 9 measured when the groundwater passes through the water quality measuring device 37 is constantly monitored by the monitor 59 of the PC 16 on the ground.

採水時に採水対象区間WSの上側又は下側の区間Sの間隙水圧が低下すると、この上側又は下側の区間Sから採水対象区間WSへの地下水の流入等が考えられるために、観測用パッカー7の圧力等を調整して地下水の流入を防止する。また、採水時に採水対象区間WSの間隙水圧が必要以上に減圧されると、地下水中に含まれる気体成分が分離するために、採水対象区間WSの間隙水圧を観測しながら採水ポンプ35を適宜調整し、採水量を制御する。   When the pore water pressure in the upper or lower section S of the water sampling target section WS decreases during water sampling, the inflow of groundwater from the upper or lower section S to the water sampling target section WS can be considered. Inflow of groundwater is prevented by adjusting the pressure of the packer 7 for use. In addition, when the pore water pressure in the water sampling target section WS is reduced more than necessary at the time of water sampling, the gas component contained in the groundwater is separated, so that the water sampling pump is monitored while observing the pore water pressure in the water sampling target section WS 35 is adjusted appropriately to control the water sampling amount.

図7は、地下水の水質測定結果の一例としてORPの測定結果を示した図である。図7に示すように、ORPは、採水ポンプ35を駆動した直後の11時45分頃はマイナス25mV程度であるが次第に減少して、13時頃にはマイナス68mV程度となり、ほぼ一定の値を示すようになった。   FIG. 7 is a diagram showing ORP measurement results as an example of groundwater quality measurement results. As shown in FIG. 7, the ORP is about −25 mV at about 11:45 immediately after driving the water sampling pump 35, but gradually decreases to about −68 mV at about 13:00, which is an almost constant value. Came to show.

また、電気伝導度、酸化還元電位、pH等の測定結果もORPと同様に、ほぼ一定の値を示すようになると、採水対象区間WS内、上・下部側採水用パッカー31、33間、採水容器36内及び水質測定装置37内は完全に地層水に置換されたものとしてボトル45で地下水を採水する。地下水が採水容器36内に充満された状態でボトル45の両端の採水用バルブ47を閉止することにより、地下水は封圧採水される。   Moreover, when the measurement results of electrical conductivity, oxidation-reduction potential, pH, and the like show almost constant values, as in ORP, the water sampling packers 31 and 33 in the water sampling target section WS In the water sampling container 36 and the water quality measuring device 37, the ground water is sampled with the bottle 45 on the assumption that the water has been completely replaced with the formation water. By closing the water sampling valves 47 at both ends of the bottle 45 in a state where the ground water is filled in the water sampling container 36, the ground water is subjected to sealed pressure water sampling.

なお、本実施形態においては、上・下部側採水用パッカー31、33にて採水対象区間WSを閉塞し、採水ポンプ35の駆動を開始してから一時間程度で採水を行ったが、この時間に限定されるものではなく、ORP、電気伝導度、酸化還元電位、pH等の水質測定結果がほぼ一定の値を示すようになってから採水を行う。   In the present embodiment, the sampling target section WS is closed by the upper and lower side water sampling packers 31 and 33, and water sampling was performed in about one hour after the driving of the water sampling pump 35 was started. However, it is not limited to this time, and water sampling is performed after water quality measurement results such as ORP, electrical conductivity, oxidation-reduction potential, pH, etc. show almost constant values.

図8は、採水対象区間WSの間隙水圧の経時変化を示す模式図である。図8に示すように、採水対象区間WSの間隙水圧は、採水ポンプ35の駆動を開始すると短時間で急激に減少し、これ以降は緩やかな傾きでさらに減少し続ける。そして、採水ポンプ35の駆動を停止すると、採水対象区間WSの間隙水圧は急激に増加し、これ以降は採水ポンプ35駆動前の間隙水圧の値に緩やかな傾きで徐々に近付いていく。この揚水量と間隙水圧と経過時間との関係に基づいて、PC16を用い一般的な単孔式透水試験による透水係数の算出方法で透水係数を算出する。   FIG. 8 is a schematic diagram showing a temporal change in the pore water pressure in the water sampling target section WS. As shown in FIG. 8, the pore water pressure in the water sampling target section WS decreases rapidly in a short time when the driving of the water sampling pump 35 is started, and thereafter continues to decrease further with a gentle slope. When the driving of the water sampling pump 35 is stopped, the pore water pressure in the water sampling target section WS increases rapidly, and thereafter, gradually approaches the value of the pore water pressure before the water sampling pump 35 is driven with a gentle slope. . Based on the relationship between the pumping amount, the pore water pressure, and the elapsed time, the permeability coefficient is calculated by the calculation method of the permeability coefficient by a general single hole permeability test using PC16.

なお、本実施形態においては、モニタリング装置1を単孔式透水試験に用いる方法について説明したが、これに限定されるものではなく、複数のボーリング孔3を利用した多孔式透水試験に利用してもよい。   In addition, in this embodiment, although the method of using the monitoring apparatus 1 for a single hole type water permeability test was demonstrated, it is not limited to this, It utilizes for the porous type water permeability test using several boring holes 3. Also good.

次に、水質と水圧のモニタリングとの関係について図2A及び図2Bを用いて説明する。   Next, the relationship between water quality and water pressure monitoring will be described with reference to FIGS. 2A and 2B.

地下水によるボーリング孔内の所定区間の圧力は、圧力伝達管17を経由して水圧センサ19によって常時測定することができ、また、他の区間についても同時測定が可能となっている。   The pressure in a predetermined section in the borehole due to groundwater can be constantly measured by the water pressure sensor 19 via the pressure transmission pipe 17 and can be simultaneously measured in other sections.

地下水の水質測定については、孔壁保護用ケーシングパイプ5の内部に水質測定専用の採水用ケーシングパイプ13を配置して、水圧測定とは独立させた地下水の流れ配置としている。これにより、地下水は、連通管11、連通管用バルブ25を経由して採水口32へと取り込まれ、採水容器36、水質測定装置37、採水ポンプ35によって水質の測定を実施することができる。   Regarding the water quality measurement of the groundwater, the water sampling casing pipe 13 dedicated to water quality measurement is arranged inside the hole wall protection casing pipe 5 so that the groundwater flow arrangement is made independent of the water pressure measurement. Thereby, the groundwater is taken into the water sampling port 32 via the communication pipe 11 and the communication pipe valve 25, and the water quality can be measured by the water sampling container 36, the water quality measuring device 37, and the water sampling pump 35. .

これらの配置構成により、水圧測定と、水質測定との空間が完全に独立したものとなり、両測定を全く独立した状態で、同時測定も可能としたものである。   With these arrangement configurations, the space between the water pressure measurement and the water quality measurement becomes completely independent, and simultaneous measurement is possible with both measurements completely independent.

以上説明した実施形態における地下水のモニタリング装置1によれば、ボーリング孔3内の深度方向に所定の間隔で設置される複数の観測用パッカー7にて多段に区分けされた各区間Sのうち採水対象区間WSの地下水を採水しつつ、採水対象区間WSを含むすべての区間Sの間隙水圧を測定することが可能となる。さらに、採水時は、採水対象区間WSに連結する連結管用バルブ25のみを開放するために、確実に採水対象区間WSの地下水を採水することが可能となる。   According to the groundwater monitoring device 1 in the embodiment described above, water is collected from each section S divided in multiple stages by a plurality of observation packers 7 installed at predetermined intervals in the depth direction in the borehole 3. It is possible to measure the pore water pressure in all the sections S including the sampling target section WS while sampling the groundwater in the target section WS. Furthermore, since only the connection pipe valve 25 connected to the water sampling target section WS is opened at the time of water sampling, the ground water in the water sampling target section WS can be reliably sampled.

また、水質測定装置37で採水対象区間WS内の電気伝導度、酸化還元電位、pH、溶存酸素、塩化物イオン濃度、水温を測定することにより、採水対象区間WSの水質を正確に、かつ、リアルタイムで把握することが可能となる。これら複数の項目を同時に測定することにより、採水対象区間WS内の地下水が掘削水等から完全に地層水に置換されたことを確認することができ、確実に地層水を採水することが可能となる。   In addition, by measuring the electrical conductivity, redox potential, pH, dissolved oxygen, chloride ion concentration, water temperature in the water sampling target section WS with the water quality measuring device 37, the water quality of the water sampling target section WS is accurately determined. And it becomes possible to grasp in real time. By measuring these multiple items at the same time, it can be confirmed that the groundwater in the water sampling target section WS has been completely replaced with the formation water from the drilling water, etc., and the formation water can be reliably collected. It becomes possible.

また、採水時も複数の区間Sの間隙水圧を測定することができるので、採水時における採水対象区間WSの上下の観測用パッカー7の遮水効果を確認することが可能となる。さらに、採水対象区間WSの圧力を必要以上に減圧して地下水中から気体成分が分離することを防止することが可能となる。   Further, since the pore water pressures in the plurality of sections S can be measured even during sampling, it is possible to confirm the water shielding effect of the observation packers 7 above and below the sampling target section WS during sampling. Furthermore, it is possible to prevent the gas component from being separated from the groundwater by reducing the pressure in the water sampling target section WS more than necessary.

そして、採水対象区間WSにボトル45を設置し、採水用バルブ47を閉止することにより、採水対象区間WSの地下水の圧力を保持したまま地下水をボトル45内に保存する封圧採水が可能となる。   Then, by installing the bottle 45 in the water sampling target section WS and closing the water sampling valve 47, the sealed water sampling for storing the ground water in the bottle 45 while maintaining the pressure of the ground water in the water sampling target section WS. Is possible.

また、本発明による地下水のモニタリング装置1を用いることにより、採水対象区間WSを含むすべての区間Sの間隙水圧を測定しつつ、採水対象区間WSの地下水を揚水することができるので、単孔式透水試験の実施が可能となる。この透水試験時の揚水量と間隙水圧測定値と時間との関係に基づいて透水係数を算出することができる。   Further, by using the groundwater monitoring device 1 according to the present invention, it is possible to pump the groundwater in the water sampling target section WS while measuring the pore water pressure in all the sections S including the water sampling target section WS. It is possible to conduct a hole-type water permeability test. The water permeability coefficient can be calculated based on the relationship between the pumping amount, the pore water pressure measurement value, and the time during the water permeability test.

本実施形態に係る地下水のモニタリング装置をボーリング孔内に設置した状態を示す模式断面図である。It is a schematic cross section which shows the state which installed the monitoring apparatus for groundwater concerning this embodiment in the borehole. 図1の点線丸枠内の拡大図である。It is an enlarged view in the dotted line round frame of FIG. 図1の点線丸枠内の拡大斜視図である。It is an expansion perspective view in the dotted line round frame of FIG. 間隙水圧の測定状態の例を示す概略断面図である。It is a schematic sectional drawing which shows the example of the measurement state of a pore water pressure. 採水ポンプの概略断面図である。It is a schematic sectional drawing of a water sampling pump. 採水ポンプの仕様を示す図である。It is a figure which shows the specification of a water sampling pump. 採水容器の概略図である。It is the schematic of a water sampling container. 採水容器の仕様を示す図である。It is a figure which shows the specification of a water sampling container. 水質測定装置の概略図である。It is the schematic of a water quality measuring device. 電気伝導度センサの外観図及び仕様を示す図である。It is a figure which shows the external view and specification of an electrical conductivity sensor. 温度センサの外観図及び仕様を示す図である。It is a figure which shows the external view and specification of a temperature sensor. ORPセンサの外観図及び仕様を示す図である。It is a figure which shows the external view and specification of an ORP sensor. pHセンサの外観図及び仕様を示す図である。It is a figure which shows the external view and specification of a pH sensor. 地下水の水質測定結果の一例としてORPの測定結果を示した図である。It is the figure which showed the measurement result of ORP as an example of the water quality measurement result of groundwater. 採水対象区間WSの間隙水圧の経時変化を示す模式図である。It is a schematic diagram which shows the time-dependent change of the pore water pressure of the water sampling object area WS.

符号の説明Explanation of symbols

1 モニタリング装置、3 ボーリング孔、5 孔壁保護用ケーシングパイプ、
7 観測用パッカー、9 圧力測定手段、11 連結管、
13 採水用ケーシングパイプ、15 採水手段、16 解析手段(=PC)、
17 圧力伝達管、19 水圧センサ、21 間隙水圧測定装置、
23 データロガー、25 連結管用バルブ、27 スイッチ、
29 電源、31 下部側採水用パッカー、32 採水口、
33 上部側採水用パッカー、35 採水ポンプ、36 採水容器、
37 水質測定装置、38 ポンプ部、39 ダミープローブ、
40 モーター部、41 ナイロンチューブ、43 ノッチタンク、
45 ボトル、47 採水用バルブ、49 電気伝導度センサ、
51 温度センサ、53 ORPセンサ、55 pHセンサ、
57 センサケース、58 多心ケーブル、59 モニタ、
S 区間、WS 採水対象区間
1 Monitoring device, 3 boring hole, 5 casing pipe for wall protection,
7 observation packer, 9 pressure measuring means, 11 connecting pipe,
13 water sampling casing pipe, 15 water sampling means, 16 analysis means (= PC),
17 pressure transmission pipe, 19 water pressure sensor, 21 pore water pressure measuring device,
23 data logger, 25 valve for connecting pipe, 27 switch,
29 Power supply, 31 Lower side water sampling packer, 32 Water sampling port,
33 Upper side water sampling packer, 35 Water sampling pump, 36 Water sampling container,
37 Water quality measuring device, 38 Pump part, 39 Dummy probe,
40 motor, 41 nylon tube, 43 notch tank,
45 bottles, 47 water sampling valves, 49 electrical conductivity sensors,
51 temperature sensor, 53 ORP sensor, 55 pH sensor,
57 Sensor case, 58 Multi-core cable, 59 Monitor,
S section, WS sampling target section

Claims (7)

ボーリング孔内の深度方向に所定の間隔で設置される複数の観測用パッカーにて多段に区分けされた各区間の地下水を観測するためのモニタリング装置であって、
前記観測用パッカー内に設置され、前記各区間の間隙水圧を測定するための圧力測定手段と、
前記観測用パッカー内に設置され、前記各区間に連結される連結管を有するとともに、該連結管を介して前記各区間の地下水を内部に貯留可能な採水用ケーシングパイプと、
前記採水用ケーシングパイプ内を昇降可能で、前記採水用ケーシングパイプ内の地下水を採水しつつ、水質を測定するための採水手段と、
前記圧力測定手段及び前記採水手段にてそれぞれ測定した結果に基づいて解析を行う解析手段と、を備え、
前記採水手段にて採水対象区間の地下水を採水し、地下水の水質を測定しつつ、前記圧力測定手段にて前記採水対象区間を含む複数の前記区間の間隙水圧を測定可能であることを特徴とする地下水のモニタリング装置。
A monitoring device for observing groundwater in each section divided in multiple stages by a plurality of observation packers installed at predetermined intervals in the depth direction in the borehole,
A pressure measuring means installed in the observation packer for measuring the pore water pressure in each section;
A water collection casing pipe that is installed in the observation packer and has a connecting pipe connected to each section, and that can store groundwater in each section through the connecting pipe,
A water sampling means for measuring the water quality while sampling the groundwater in the water sampling casing pipe, which can be moved up and down in the water sampling casing pipe;
Analyzing means for performing analysis based on the results measured by the pressure measuring means and the water sampling means, respectively,
It is possible to measure the pore water pressure of the plurality of sections including the sampling target section by the pressure measuring means while sampling the groundwater of the sampling target section by the sampling means and measuring the quality of the groundwater. Groundwater monitoring device characterized by that.
前記採水手段は、
前記採水用ケーシングパイプ内に挿通され、採水対象区間を閉塞するための採水用パッカーと、
該採水対象区間の地下水を採水するための採水ポンプと、
該採水対象区間の地下水を保存するための採水容器と、
該採水対象区間の水質を測定するための水質測定装置と、から構成されることを特徴とする請求項1に記載の地下水のモニタリング装置。
The water sampling means is
A water sampling packer that is inserted into the water sampling casing pipe and closes the water sampling target section;
A water sampling pump for sampling the groundwater of the water sampling target section;
A water sampling container for preserving the groundwater of the water sampling target section;
The groundwater monitoring device according to claim 1, comprising a water quality measuring device for measuring the water quality of the water sampling target section.
前記水質は、電気伝導度、酸化還元電位、pH、溶存酸素、塩化物イオン濃度、水温の少なくともいずれかであることを特徴とすることを特徴とする請求項1又は2に記載の地下水のモニタリング装置。   The groundwater monitoring according to claim 1 or 2, wherein the water quality is at least one of electrical conductivity, redox potential, pH, dissolved oxygen, chloride ion concentration, and water temperature. apparatus. 前記採水容器は、
地下水が流入出するための開口部を有するボトルと、
前記開口部に取り付けられ、前記ボトル内の地下水の流入出を制御するとともに、前記ボトル内の圧力を保持するための採水用バルブと、を備えることを特徴とする請求項2に記載の地下水のモニタリング装置。
The water sampling container is
A bottle having an opening for flowing in and out of groundwater;
The groundwater according to claim 2, further comprising: a water collection valve that is attached to the opening and controls the inflow and outflow of the groundwater in the bottle and holds the pressure in the bottle. Monitoring device.
前記各連結管は連結用バルブを備え、
採水対象区間の地下水を採水する際は、この採水対象区間の連結用バルブを開放し、この採水対象区間以外の連結用バルブは閉止することを特徴とする請求項1〜4のいずれかに記載の地下水のモニタリング装置。
Each connecting pipe includes a connecting valve;
5. When collecting groundwater in a water sampling target section, the connection valve of the water sampling target section is opened, and the connection valves other than the water sampling target section are closed. The groundwater monitoring apparatus in any one.
ボーリング孔内の深度方向に所定の間隔で設置される複数の観測用パッカーにて多段に区分けされた各区間の地下水を観測するためのモニタリング方法において、
前記観測用パッカー内に設置され、前記各区間の間隙水圧を測定するための圧力測定手段と、
前記観測用パッカー内に設置され、前記各区間に連結される連結管を有するとともに、該連結管を介して前記各区間の地下水を内部に貯留可能な採水用ケーシングパイプと、
前記採水用ケーシングパイプ内に挿通されて採水対象区間を閉塞するための採水用パッカーと該採水対象区間の地下水を採水するための採水ポンプと該採水対象区間の地下水を保存するための採水容器と、採水する地下水の水質を測定する水質測定装置とから構成され、前記採水用ケーシングパイプ内を昇降可能な採水手段と、を備えたモニタリング装置を用い、
前記採水手段にて前記採水対象区間の地下水を採水し、地下水の水質を測定しつつ、前記圧力測定手段にて前記採水対象区間を含む複数の前記区間の間隙水圧を測定することを特徴とする地下水のモニタリング方法。
In the monitoring method for observing the groundwater of each section divided into multiple stages by a plurality of observation packers installed at predetermined intervals in the depth direction in the borehole,
A pressure measuring means installed in the observation packer for measuring the pore water pressure in each section;
A water collection casing pipe that is installed in the observation packer and has a connecting pipe connected to each section, and that can store groundwater in each section through the connecting pipe,
A water sampling packer that is inserted into the water sampling casing pipe and closes the water sampling target section, a water sampling pump that collects ground water in the water sampling target section, and ground water in the water sampling target section. Using a monitoring device comprising a water sampling container for storage and a water quality measuring device for measuring the quality of ground water to be sampled, and a water sampling means capable of moving up and down in the water sampling casing pipe,
Measuring the pore water pressure in the plurality of sections including the sampling target section with the pressure measuring means while sampling the groundwater in the sampling target section with the sampling means and measuring the quality of the groundwater. A method for monitoring groundwater.
前記モニタリング装置は、前記圧力測定手段及び前記採水手段にてそれぞれ測定した結果に基づいて解析を行う解析手段を備え、
該解析手段は採水中及び採水前後の間隙水圧の経時変化に基づいて前記採水対象区間の透水係数を算出することを特徴とする請求項6に記載の地下水のモニタリング方法。
The monitoring device includes analysis means for performing analysis based on results measured by the pressure measurement means and the water sampling means,
The groundwater monitoring method according to claim 6, wherein the analysis means calculates a water permeability coefficient of the water sampling target section based on a temporal change in pore water pressure before and after sampling.
JP2006242863A 2006-09-07 2006-09-07 Groundwater monitoring device and monitoring method Active JP4452851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006242863A JP4452851B2 (en) 2006-09-07 2006-09-07 Groundwater monitoring device and monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006242863A JP4452851B2 (en) 2006-09-07 2006-09-07 Groundwater monitoring device and monitoring method

Publications (2)

Publication Number Publication Date
JP2008063825A JP2008063825A (en) 2008-03-21
JP4452851B2 true JP4452851B2 (en) 2010-04-21

Family

ID=39286772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006242863A Active JP4452851B2 (en) 2006-09-07 2006-09-07 Groundwater monitoring device and monitoring method

Country Status (1)

Country Link
JP (1) JP4452851B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024725A (en) * 2008-07-18 2010-02-04 Kajima Corp Hydraulic testing apparatus
CN101344515B (en) * 2008-08-29 2011-10-05 成都理工大学 Permeability coefficient determinator
KR101080096B1 (en) 2009-11-30 2011-11-04 한국지질자원연구원 Picking apparatus of underground water or co2 and system include thereof
JP2011145113A (en) * 2010-01-13 2011-07-28 Ohbayashi Corp Tube structure for measuring bedrock and system for measuring bedrock using the same
CN102507886B (en) * 2011-09-30 2015-05-27 北京雪迪龙科技股份有限公司 Online water quality monitoring method and instrument
KR101291227B1 (en) 2012-05-29 2013-08-07 한국건설기술연구원 Inspectation device for concrete of nuclear waste dump
ES2499915B1 (en) * 2013-03-27 2015-04-29 Fundación Attico Material layer thickness gauge
KR101677179B1 (en) 2014-08-28 2016-11-29 한국해양과학기술원 Water sampler
CN107677308B (en) * 2017-09-12 2024-02-23 北京市勘察设计研究院有限公司 Underground water solid oxidant depth-setting adding monitor
JP6529201B2 (en) * 2018-03-02 2019-06-12 国立研究開発法人農業・食品産業技術総合研究機構 Groundwater pumping system and pumping method using the system
CN111610064A (en) * 2020-06-17 2020-09-01 中国电建集团贵阳勘测设计研究院有限公司 Negative pressure method and device for layered sampling of underground water
CN114061649B (en) * 2020-08-07 2023-04-25 中国环境科学研究院 Automatic quick on-line monitoring equipment for underground water quality and water level synchronization
CN113567192B (en) * 2021-09-22 2021-12-21 核工业北京地质研究院 Groundwater sampling and monitoring apparatus and method
CN114152723A (en) * 2021-12-01 2022-03-08 江苏省环境科学研究院 Pre-installed underground water intelligent monitoring well device

Also Published As

Publication number Publication date
JP2008063825A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4452851B2 (en) Groundwater monitoring device and monitoring method
US7814782B2 (en) Downhole gas detection in drilling muds
US10301936B2 (en) Tight gas formation pressure determination method
NO338490B1 (en) Method, apparatus and system for in-situ determination of a formation parameter
MXPA05006833A (en) Downhole formation testing tool.
EP1907667A2 (en) Systems and methods for installation, design and operation of groundwater monitoring systems in boreholes
NO20121195A1 (en) Transport and analysis equipment for use in a borehole
NO344214B1 (en) Apparatus and methods for calculating a property of a downhole fluid using thermal properties of the fluid
US10718747B2 (en) Detection of inorganic gases
JP2007263658A (en) Method for in-situ water sealing test on borehole filler, system for in-situ water sealing test on the borehole filler, method for permeability coefficient analysis of borehole filler top part, method for intensity analysis of the borehole filler top part, and experimental device for borehole filler in water-sealed chamber
US8136394B2 (en) Methods and apparatus for analyzing a downhole fluid
JP2015017905A (en) Ground water quality measurement method and ground water quality measurement device
JP5141383B2 (en) Water sampling apparatus and water sampling method
US7757551B2 (en) Method and apparatus for collecting subterranean formation fluid
US6957573B2 (en) Vadose zone water fluxmeter
JP2010189873A (en) Water sampler
JP5208606B2 (en) Tracer test method
JP2015140528A (en) Hydraulic test device
JP2781368B2 (en) Drilling well discharge capacity management system
KR101540669B1 (en) Apparatus for hydraulic testing using double packer
NO20101450L (en) Apparatus and method for collecting fluid in boreholes
JP5944730B2 (en) Construction management method for residual soil saturation
US10145240B2 (en) Downhole formation fluid sampler having an inert sampling bag
JP5565751B2 (en) Water channel detection system and method in bedrock
AU2012216360B2 (en) Apparatus and method of combining zonal isolation and in situ spectroscopic analysis of reservoir fluids for coal seams

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4452851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250