JP4452539B2 - Flat coaxial cable using two-core parallel coaxial cable and many-to-coaxial cable - Google Patents

Flat coaxial cable using two-core parallel coaxial cable and many-to-coaxial cable Download PDF

Info

Publication number
JP4452539B2
JP4452539B2 JP2004101387A JP2004101387A JP4452539B2 JP 4452539 B2 JP4452539 B2 JP 4452539B2 JP 2004101387 A JP2004101387 A JP 2004101387A JP 2004101387 A JP2004101387 A JP 2004101387A JP 4452539 B2 JP4452539 B2 JP 4452539B2
Authority
JP
Japan
Prior art keywords
coaxial cable
core parallel
flat
parallel
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004101387A
Other languages
Japanese (ja)
Other versions
JP2005285696A (en
Inventor
保良 井上
敏浩 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Electric Co Ltd
Original Assignee
Nissei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Electric Co Ltd filed Critical Nissei Electric Co Ltd
Priority to JP2004101387A priority Critical patent/JP4452539B2/en
Publication of JP2005285696A publication Critical patent/JP2005285696A/en
Application granted granted Critical
Publication of JP4452539B2 publication Critical patent/JP4452539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、パソコン等の電子機器の高速信号伝送に適した2芯平行同軸ケーブルを使ったフラット同軸ケーブル、及び多対同軸ケーブルに関し、取り分け、シールド性及び耐久性に優れた極細同軸ケーブルに関するものである。 TECHNICAL FIELD The present invention relates to a flat coaxial cable using a two-core parallel coaxial cable suitable for high-speed signal transmission of electronic equipment such as a personal computer, and a multi-coaxial cable, and more particularly to an ultrafine coaxial cable excellent in shielding properties and durability. It is.

従来、高速信号伝送用ケーブルとしては、(a)内部導体上に絶縁体を設けた電線を2本平行に並べた状態で、これら2本の電線の外周に金属編組層からなる外部導体を設けた構造、或いは(b)内部導体上に絶縁体を設けた電線を2本平行に並べた状態で、これら2本の電線の外周に金属編組層からなる外部導体を設け、更に、この金属編組層の外側に金属テープ層からなる2層構造の外部導体を設けた構造の、所謂2芯平行同軸ケーブルが知られている(例えば、特許文献1参照。)。
ところが、前者の(a)のケースでは、外部導体が金属編組層1層のみなので、編組固有の隙間の存在により、十分なシールド特性が得られないという問題がある。
一方、後者の(b)のケースでは、ケーブル自体の外径が太くなってしまうという問題がある。又、金属テープ層は不可避的に偏れ易い。そして、この“偏れ”に伴ってシールド特性が劣化し併せて、ケーブルの全長に亘ってインピーダンス整合性が均一に維持されないという問題もあった。
一方、これらの問題を解消するため、外部導体として横巻きシールド層を採用し、該シールド層の外周に電気メッキ層を設けた同軸ケーブルが提案されている(例えば、特許文献2参照。)。
しかしながら、この提案による同軸ケーブルではそこそこのシールド性は確保されるものの、横巻には方向性があるので、耐屈曲性に問題がある。即ち、ケーブルを曲げて使用する場合、更には、ケーブルに絶えず曲げストレスが掛かる用途で使用した場合には、ストレスに最も弱い部分、すなわち横巻きシールド線の全周に亘る境界部の金属メッキ層にクラックが発生し易くなる。その結果、同軸ケーブルのシールド特性が劣化してしまうという問題があった。
Conventionally, as a cable for high-speed signal transmission, (a) two wires provided with an insulator on an inner conductor are arranged in parallel, and an outer conductor made of a metal braided layer is provided on the outer periphery of these two wires. Or (b) in the state in which two wires provided with an insulator on the inner conductor are arranged in parallel, an outer conductor made of a metal braid layer is provided on the outer periphery of the two wires, and this metal braid A so-called two-core parallel coaxial cable having a structure in which a two-layer outer conductor made of a metal tape layer is provided outside the layer is known (for example, see Patent Document 1).
However, in the former case (a), since the outer conductor is only one metal braid layer, there is a problem that sufficient shield characteristics cannot be obtained due to the presence of a gap unique to the braid.
On the other hand, the latter case (b) has a problem that the outer diameter of the cable itself becomes thick. Also, the metal tape layer is inevitably biased. In addition, the shield characteristics deteriorate due to this “bias”, and there is also a problem that the impedance matching is not uniformly maintained over the entire length of the cable.
On the other hand, in order to solve these problems, a coaxial cable is proposed in which a laterally wound shield layer is employed as an outer conductor and an electroplating layer is provided on the outer periphery of the shield layer (see, for example, Patent Document 2).
However, while the coaxial cable according to this proposal can ensure a reasonable shielding property, there is a problem in bending resistance because horizontal winding has directionality. That is, when the cable is bent and used, or when it is used for applications in which the cable is constantly subjected to bending stress, the metal plating layer at the boundary that is the weakest part of the stress, that is, the entire circumference of the laterally wound shield wire Cracks are likely to occur. As a result, there has been a problem that the shield characteristic of the coaxial cable is deteriorated.

特開2001−195924JP2001-195924 特開2003−45244JP 2003-45244 A

したがって、本発明の課題は、かかる従来技術の問題点を解消し、シールド性に優れ、しかも耐久性に優れた極細径の2芯平行同軸ケーブルを提供することにある。
更に、本発明の他の課題は、上記の2芯平行同軸ケーブルを利用したフラット同軸ケーブル並びに多対同軸ケーブルを提供することにある。
Accordingly, an object of the present invention is to solve the problems of the prior art, and to provide an ultrafine two-core parallel coaxial cable having excellent shielding properties and excellent durability.
Another object of the present invention is to provide a flat coaxial cable and a multi-pair coaxial cable using the above two-core parallel coaxial cable.

本発明者等は、上記課題を解決するために鋭意検討を重ねた結果、絶縁電線を2本平行に並べた状態で、それらの外周に、方向性のない金属編組層からなる外部導体を設け、そして、この金属編組層の隙間をメッキ用溶融金属で埋め込んだ2芯平行同軸ケーブルを複数本並列させた状態で、隣接する該外部導体の接点同志を熱接合により固着する
ことに着目した結果、優れたシールド性と耐久性を兼備した極細径の2芯平行同軸ケーブルを利用したフラット同軸ケーブル並びに多対同軸ケーブルを実現するに至った。
As a result of intensive studies to solve the above problems, the present inventors have provided an outer conductor made of a metal braided layer having no directivity on the outer periphery of two insulated wires arranged in parallel. And, as a result of paying attention to fixing the contacts of the adjacent external conductors by thermal bonding in a state where a plurality of two-core parallel coaxial cables in which the gaps of the metal braided layer are filled with molten metal for plating are arranged in parallel As a result, a flat coaxial cable and a multi-pair coaxial cable using an ultra-fine two-core parallel coaxial cable having both excellent shielding properties and durability have been realized.

本発明に使用する2芯平行同軸ケーブルでは従来と比較して、極細径であるにも拘らず、編組層の隙間にメッキ用溶融金属が埋め込まれるので、優れたシールド特性と耐久性とが同時に満足されるという格別顕著な効果が奏される。
更に、簡便なメッキ用溶融金属の採用により、2芯平行同軸ケーブルの構造が簡単になるので、従来の電気メッキ法と比較し、製造工程が簡略化でき、大幅なコスト低減が実現できる。
その結果、本発明の2芯平行同軸ケーブルを利用してなるフラット同軸ケーブルや多対同軸ケーブルでは隣り合う外部導体の接点同士を熱接合しているので、グランドバー等の一括アースが不要となり、配線までもが簡略化される等の効果が奏される。
Although the two-core parallel coaxial cable used in the present invention has a very small diameter compared to the conventional case, the molten metal for plating is embedded in the gap of the braided layer, so that excellent shielding characteristics and durability are simultaneously achieved. A particularly remarkable effect of satisfaction is achieved.
Furthermore, since the structure of the two-core parallel coaxial cable is simplified by adopting a simple molten metal for plating, the manufacturing process can be simplified and a significant cost reduction can be realized as compared with the conventional electroplating method.
As a result, since the contact points of the two-core formed by utilizing a parallel coaxial cable flat coaxial cable or many-to-adjacent the coaxial cable outer conductor of the present invention thermally bonded together ground such as the ground bar is not required, An effect such as simplification of wiring can be obtained.

以下、本発明の2芯平行同軸ケーブルを複数本並べて構成したフラット同軸ケーブルあるいは多対同軸ケーブルについて、添付図面を参照しながら説明する。
図1は、下記、図2または図3の本発明のフラット同軸ケーブルあるいは多対同軸ケーブルで使用する2芯平行同軸ケーブルの一例を示す横断面図である。
図2は、図1の2芯平行同軸ケーブルを複数本平行に並べて構成したフラット同軸ケーブルの横断面図である。
図3は、図1の2芯平行同軸ケーブルを複数本円筒状に集束させて構成した多対同軸ケーブルの横断面図である。
図1〜図3において、(1)は2芯平行同軸ケーブル、(2)は内部導体、(3)は絶縁体、(4)は外部導体で、金属編組層(5)内にメッキ用溶融金属(6)が埋め込まれた構造体の形状をとっている。更に、(7)はジャケット層、(8)はフラット同軸ケーブル(図2)、(9)は被覆材、(10)は多対同軸ケーブル(図3)である。
まず、図1に示した2芯平行同軸ケーブルについて述べる。
この例では、内部導体(2)上に絶縁体(3)を設けた電線を2本平行に並べた状態で、これら2本の電線の外周には、金属編組層(5)内にメッキ用溶融金属(6)を充填・固化してなる外部導体(4)が配されている。
本発明で肝要なことは、金属編組層(5)の隙間をメッキ用溶融金属(6)で埋め込んだことにある。
こうすることにより、得られる2芯平行同軸ケーブルのシールド特性が大幅に改善されるとともに、インピーダンス特性の不安定性も解消できる。
このとき、金属編組層(5)の編組密度の下限値は重要である。この下限値はメッキ用溶融金属が確実に編組の隙間を埋め、且つ所定のシールド特性を確保するために80%以上が妥当である。これらのことから金属編組層(5)の編組密度は80%〜98%が好ましい範囲であり、93%〜97%が特に好ましい範囲である。金属編組層(5)自体は、軟銅線或いは合金線の素線を編組して構成される。該素線の径としては0.02mm〜0.2mmの範囲の細径線を用いて編組層の厚さを極力薄くすることが好ましい。金属編組層(5)の厚さとしては、シールド特性と耐久性を勘案すると0.06mm〜0.6mmが好ましく、そのため編組の打数は8〜24、持数は3〜8が、編組ピッチは1mm〜12mmの範囲にあることが好ましい。
メッキ用溶融金属(6)の厚さは、十分なシールド特性及び耐久性を確保するため0.01mm〜1.0mmであることが好ましい。メッキ用溶融金属に使用する金属としては、特に限定は無く、その中でも溶融が容易なスズ、銀又はハンダが好ましい。
尚、本発明では、メッキ用溶融金属を編組層内に充填することが重要であるが、メッキ用溶融金属を編組層の上に若干被覆させてもよい。但し、この場合、編組層の厚さにメッキ用溶融金属の被覆厚さが加算されて外部導体の厚さが増加するので、極力薄い方が望ましい。目安としては、メッキ用溶融金属の被覆厚さは外部導体の厚さに対して10%以下の厚さとするのが望ましい。
又、内部導体(2)としては、一般に軟銅線或いは合金線の単線又は撚り合せた導体が使用される。内部導体の径は0.01mm〜1.27mmであることが望ましい。
絶縁体(3)としては、絶縁機能を有するものであればよいが、ケーブルの要求特性の一つである優れた高周波特性を考慮した場合、フッ素樹脂が好ましく、しかもこれを押出し被覆した形で適用するのが最も好ましい。この絶縁体(3)の厚さは0.04mm〜0.5mmの範囲にあるのが好ましい。
以上に述べた2芯平行同軸ケーブルには、必要に応じて、ポリエステルテープ等のプラスチックテープを横巻きするか、あるいは、熱可塑性樹脂の押出し成型によりジャケット層(7)を形成する。このジャケット層を構成するテープとしては、厚さを低減するため、片面にホットメルト剤が塗布されたプラスチックテープを用いるのが好ましい。これは、加熱溶融することによりホットメルトがメッキ用溶融金属(6)の表面全体に塗布・溶着されるので、接着強度および密閉性が向上するからである。併せて、作業工数が削減され生産性も向上するという利点も生じる。このジャケット層(7)の厚さは4μm以上の範囲にあることが好ましい。熱可塑性樹脂としては、PVC(塩ビ)、ポリオレフィン、フッ素樹脂等の樹脂を使用すればよい。
Hereinafter, a flat coaxial cable or a multi-pair coaxial cable configured by arranging a plurality of two-core parallel coaxial cables of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view showing an example of a two-core parallel coaxial cable used in the flat coaxial cable or the multi-pair coaxial cable of the present invention shown in FIG. 2 or FIG .
FIG. 2 is a cross-sectional view of a flat coaxial cable configured by arranging a plurality of the two-core parallel coaxial cables of FIG. 1 in parallel.
FIG. 3 is a cross-sectional view of a multi-pair coaxial cable configured by converging a plurality of the two-core parallel coaxial cables of FIG. 1 into a cylindrical shape.
1 to 3, (1) is a two-core parallel coaxial cable, (2) is an inner conductor, (3) is an insulator, and (4) is an outer conductor. It takes the shape of a structure embedded with metal (6). Further, (7) is a jacket layer, (8) is a flat coaxial cable (FIG. 2), (9) is a covering material, and (10) is a multi-pair coaxial cable (FIG. 3).
First, the two-core parallel coaxial cable shown in FIG. 1 will be described.
In this example, two wires provided with an insulator (3) are arranged in parallel on the inner conductor (2), and the outer periphery of the two wires is plated in the metal braid layer (5). An outer conductor (4) formed by filling and solidifying the molten metal (6) is disposed.
What is important in the present invention is that the gap of the metal braid layer (5) is filled with the molten metal for plating (6).
By doing so, the shield characteristic of the obtained two-core parallel coaxial cable is greatly improved and the instability of the impedance characteristic can be eliminated.
At this time, the lower limit value of the braid density of the metal braid layer (5) is important. The lower limit is appropriate to be 80% or more in order to ensure that the molten metal for plating fills the gaps of the braid and secures a predetermined shield characteristic. For these reasons, the braid density of the metal braid layer (5) is preferably in the range of 80% to 98%, particularly preferably in the range of 93% to 97%. The metal braid layer (5) itself is configured by braiding an annealed copper wire or an alloy wire. As the diameter of the wire, it is preferable to make the thickness of the braided layer as thin as possible by using a thin wire in the range of 0.02 mm to 0.2 mm. The thickness of the metal braid layer (5) is preferably 0.06 mm to 0.6 mm in consideration of the shield characteristics and durability. It is preferably in the range of 1 mm to 12 mm.
The thickness of the molten metal (6) for plating is preferably 0.01 mm to 1.0 mm in order to ensure sufficient shielding characteristics and durability. The metal used for the molten metal for plating is not particularly limited, and among them, tin, silver, or solder that can be easily melted is preferable.
In the present invention, it is important to fill the braided layer with the molten metal for plating, but the molten metal for plating may be slightly coated on the braided layer. However, in this case, the thickness of the outer conductor is increased by adding the coating thickness of the molten metal for plating to the thickness of the braided layer. As a guideline, the coating thickness of the molten metal for plating is desirably 10% or less with respect to the thickness of the outer conductor.
Further, as the internal conductor (2), a single wire of twisted copper wire or alloy wire or a twisted conductor is generally used. The diameter of the inner conductor is desirably 0.01 mm to 1.27 mm.
As the insulator (3), any material having an insulating function may be used. However, in consideration of excellent high-frequency characteristics, which is one of the required characteristics of the cable, a fluororesin is preferable, and this is formed by extrusion coating. Most preferably, it is applied. The thickness of this insulator (3) is preferably in the range of 0.04 mm to 0.5 mm.
In the two-core parallel coaxial cable described above, a jacket layer (7) is formed by laterally winding a plastic tape such as a polyester tape or by extrusion molding of a thermoplastic resin as necessary. As the tape constituting the jacket layer, it is preferable to use a plastic tape in which a hot melt agent is applied on one side in order to reduce the thickness. This is because the hot melt is applied and welded to the entire surface of the molten metal for plating (6) by heating and melting, so that the adhesive strength and the sealing performance are improved. In addition, there is an advantage that the number of work steps is reduced and the productivity is improved. The thickness of the jacket layer (7) is preferably in the range of 4 μm or more. As the thermoplastic resin, a resin such as PVC (polyvinyl chloride), polyolefin, or fluorine resin may be used.

次に、図2に示したフラット同軸ケーブル(8)、すなわち2芯平行同軸ケーブル(1)を複数本平行に並べて構成したフラット同軸ケーブル(8)について説明する。
図2に示すように、このフラット同軸ケーブル(8)は、図1に示した2芯平行同軸ケーブル(1)を複数本平行に並べ、その外周をケーブル群の上下から被覆材(9)で固着したものである。被覆材(9)としては、合成樹脂、特にポリエステルを基材とする粘着テープが好ましく採用される。
又、固着に先立ち、隣接する外部導体(4)同志の接触点(P)を熱接合させてから、被覆材(9)で固着することにより、ケーブル間に隙間が生じないので、被覆材(9)のみで固着した場合に比べて遥かに固着力が向上する。従って、使用する被覆材(9)の固着力が軽減でき、薄くて、安価な被覆材(9)で済み、コストダウンが可能となる。しかも、グランドバー等の一括アース部材も削減でき、構成が簡単になるというメリットがある。
尚、隣接する外部導体(4)同志の接触点(P)での、メッキ用溶融金属(6)の付着量が少なく固着力不足の懸念がある場合には、接触点(P)に、はんだを付着させた状態で接合すればよい。
Next, the flat coaxial cable (8) shown in FIG. 2, that is, the flat coaxial cable (8) constituted by arranging a plurality of two-core parallel coaxial cables (1) in parallel will be described.
As shown in FIG. 2, this flat coaxial cable (8) has a plurality of two-core parallel coaxial cables (1) shown in FIG. 1 arranged in parallel, and the outer periphery is covered with a covering material (9) from above and below the cable group. It is fixed. As the covering material (9), an adhesive tape based on a synthetic resin, particularly polyester, is preferably employed.
Prior to fixing, the contact points (P) of adjacent external conductors (4) are thermally bonded, and then fixed by the covering material (9), so that no gap is generated between the cables. Compared with the case of fixing only with 9), the fixing force is far improved. Therefore, the fixing force of the covering material (9) to be used can be reduced, and a thin and inexpensive covering material (9) can be used, and the cost can be reduced. In addition, there is an advantage that the collective grounding member such as a ground bar can be reduced, and the configuration becomes simple.
If the adhesion amount of the molten metal for plating (6) is small at the contact point (P) between the adjacent outer conductors (4), and there is a concern that the fixing force is insufficient, the solder at the contact point (P) What is necessary is just to join in the state which adhered.

最後に、図3に示した多対同軸ケーブル(10)、すなわち複数本の2芯平行同軸ケーブル(1)を円筒状に束ねて構成した多対同軸ケーブル(10)について述べる。
図3に示すように、この多対同軸ケーブル(10)は、複数本の2芯平行同軸ケーブル(1)を円筒状に束ね、その外周を被覆材(9)で固着したものである。被覆材(9)としては、フラット同軸ケーブル(8)の場合と同様、合成樹脂特にポリエステルを基材とする粘着テープ、あるいは押し出し成型による熱可塑性樹脂が好ましく採用される。
この場合も、複数本の2芯平行同軸ケーブル(1)間をより強固に固定するため、隣接する外部導体(4)の接点Pを熱接合すればよい。これにより、各2芯平行同軸ケーブル(1)間が強固に固定されるので、被覆材(9)の粘着力のみに頼る必要がなくなる。従って、薄くて安価な被覆材(9)で済むので、全体としてコスト軽減につながる。更に、各2芯平行同軸ケーブル(1)間に隙間が生じないので、多対同軸ケーブル(10)自身もよりコンパクト化、すなわちより細径化できるという効果が得られる。
このように、上記フラット同軸ケーブル(8)及び多対同軸ケーブル(10)においては、2芯平行同軸ケーブル(1)の複数本を平行に並べるか或いは複数本を束ねた状態で、その外周に被覆材(9)を固着するように構成したので、多信号を伝送する場合にも各2芯平行でのノイズ相殺効果により優れたシールド効果が奏されるという特長がある。
尚、本発明の応用例として、本発明の2芯平行同軸ケーブルと、従来の同軸ケーブルあるいは電源ケーブルとを組み合わせた複合同軸ケーブルもあることを付記しておく。
Finally, the multi-pair coaxial cable (10) shown in FIG. 3, that is, the multi-coaxial cable (10) formed by bundling a plurality of two-core parallel coaxial cables (1) in a cylindrical shape will be described.
As shown in FIG. 3, this multi-pair coaxial cable (10) is obtained by bundling a plurality of two-core parallel coaxial cables (1) in a cylindrical shape and fixing the outer periphery thereof with a covering material (9). As the covering material (9), as in the case of the flat coaxial cable (8), a synthetic resin, particularly a pressure-sensitive adhesive tape based on polyester, or a thermoplastic resin by extrusion molding is preferably employed.
In this case as well, in order to more firmly fix the plurality of two-core parallel coaxial cables (1), the contacts P of the adjacent outer conductors (4) may be thermally bonded. Thereby, since each 2 core parallel coaxial cable (1) is firmly fixed, it becomes unnecessary to rely only on the adhesive force of a coating | covering material (9). Accordingly, the thin and inexpensive coating material (9) is sufficient, which leads to cost reduction as a whole. Further, since no gap is generated between the two-core parallel coaxial cables (1), the effect of the multi-pair coaxial cable (10) itself can be made more compact, that is, the diameter can be further reduced.
As described above, in the flat coaxial cable (8) and the multi-pair coaxial cable (10), a plurality of two-core parallel coaxial cables (1) are arranged in parallel or bundled on the outer periphery thereof. Since the covering material (9) is configured to be fixed, there is a feature that an excellent shielding effect is exerted by a noise canceling effect in parallel with each of the two cores even when transmitting multiple signals.
It should be noted that as an application example of the present invention, there is a composite coaxial cable in which the two-core parallel coaxial cable of the present invention is combined with a conventional coaxial cable or a power cable.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれによって限定されるものではない。
[実施例1]
内部導体(2)として、外径0.203mmの銀メッキ銅合金線単線を用いた。又、絶縁体(3)はフッ素樹脂(PTFE)を0.23mmの厚さで内部導体(2)上に押出し被覆して、外径0.663mmの絶縁電線(1)を作成した。
次に、この絶縁電線(1)の2本を平行に並べた状態で、その外周に、外径0.05mmのスズメッキ軟銅線を打数16、持数6本、編組ピッチ6.6mmから7mmで編組した金属編組層(5)を設けた。
次いで、上記の編組電線を溶融スズ槽にディッピングして金属編組層(5)内にメッキ用溶融金属(6)を充填してから固化させた。これにより、金属編組層(5)とメッキ用溶融金属(6)の充填・固化層とからなる外部導体(4)が形成された、ジャケット層(7)を被覆しない状態の2芯平行同軸ケーブル(1)を6本作成した。このときのメッキ用溶融金属(6)の固化層の厚さは0.03mmであった。
次に、これら6本の2芯平行同軸ケーブル(1)を平行に並べた状態で、隣り合う外部導体(4)同志の接触点Pを加熱プレスにて熱接合(加熱温度300℃)して各ケーブル間を接合した。
最後に、上記の接合ケーブル構造体の外周に、被覆材(9)を形成し、図2に示すようなフラット同軸ケーブル(8)を得た。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by this.
[Example 1]
A silver-plated copper alloy wire having an outer diameter of 0.203 mm was used as the inner conductor (2). The insulator (3) was formed by extruding and coating fluororesin (PTFE) on the inner conductor (2) with a thickness of 0.23 mm to produce an insulated wire (1) having an outer diameter of 0.663 mm.
Next, in a state where two of the insulated wires (1) are arranged in parallel, a tin-plated annealed copper wire having an outer diameter of 0.05 mm is provided on the outer periphery thereof with 16 hits, 6 grips, and a braiding pitch of 6.6 mm to 7 mm. A braided metal braid layer (5) was provided.
Next, the braided wire was dipped in a molten tin bath, and the metal braided layer (5) was filled with the molten metal for plating (6), and then solidified. Thus, a two-core parallel coaxial cable in which the outer conductor (4) composed of the metal braided layer (5) and the filling / solidifying layer of the molten metal for plating (6) is formed and the jacket layer (7) is not covered. Six (1) were created. The thickness of the solidified layer of the molten metal for plating (6) at this time was 0.03 mm.
Next, in the state where these six two-core parallel coaxial cables (1) are arranged in parallel, the contact points P of the adjacent outer conductors (4) are thermally bonded (heating temperature 300 ° C.) with a heating press. Each cable was joined.
Finally, a covering material (9) was formed on the outer periphery of the above-mentioned joined cable structure, and a flat coaxial cable (8) as shown in FIG. 2 was obtained.

本発明の2芯平行同軸ケーブルを利用したフラット同軸ケーブルあるいは多対同軸ケーブルはコンパクトにして優れたシールド特性を具備するので、パソコンの他に、PDA、携帯電話、あるいはVICS等、各種情報端末機器のみならず、通信機能を有した、情報家電、さらには自動車関連機器へも同様に利用できる。 The flat coaxial cable or the multi-pair coaxial cable using the two-core parallel coaxial cable of the present invention is compact and has excellent shielding characteristics. Therefore, in addition to a personal computer, various information terminal devices such as a PDA, a mobile phone, or a VICS. It can be used not only for information home appliances with communication functions, but also for automobile-related equipment.

図1は本発明のフラット同軸ケーブルあるいは多対同軸ケーブルで使用する2芯平行同軸ケーブルの一例を示す横断面図である。
図2は図1の2芯平行同軸ケーブルを複数本平行に並べて構成したフラット同軸ケーブルの一例を示す横断面図である。
図3は図1の2芯平行同軸ケーブルを複数本円筒状に束ねて構成した多対同軸ケーブルの一例を示す横断面図である。
FIG. 1 is a cross-sectional view showing an example of a two-core parallel coaxial cable used in a flat coaxial cable or a multi-pair coaxial cable of the present invention.
FIG. 2 is a cross-sectional view showing an example of a flat coaxial cable formed by arranging a plurality of the two-core parallel coaxial cables of FIG. 1 in parallel.
FIG. 3 is a cross-sectional view showing an example of a multi-pair coaxial cable formed by bundling a plurality of two-core parallel coaxial cables of FIG. 1 into a cylindrical shape.

1 2芯平行同軸ケーブル
2 内部導体
3 絶縁体
4 外部導体
5 金属編組層
6 メッキ用溶融金属
7 ジャケット層
8 フラット同軸ケーブル
9 被覆材
10 多対同軸ケーブル
P 隣接する外部導体同志の接点
1 2-core parallel coaxial cable 2 Inner conductor 3 Insulator
4 Outer conductor
5 Metal braid layer 6 Molten metal for plating 7 Jacket layer
8 Flat coaxial cable
9 Covering material 10 Multi-pair coaxial cable P Contact between adjacent outer conductors

Claims (4)

内部導体上に絶縁体を設けた電線を2本平行に並べた状態でこれら2本の電線の外周に、金属編組層内にメッキ用溶融金属を充填・固化してなる外部導体が配されている2芯平行同軸ケーブルを複数本並列させた状態で、隣接する該外部導体の接点同志を熱接合により固着して構成したことを特徴とするフラット同軸ケーブル。 An outer conductor formed by filling and solidifying molten metal for plating in a metal braided layer is arranged on the outer periphery of two electric wires provided with an insulator on the inner conductor in a state of being arranged in parallel. the two-core parallel coaxial cable in a state of being plural parallel you are, characterized by being configured to contact of each of the adjacent external conductor is fixed by heat bonding flat coaxial cable. 請求項に記載の2芯平行同軸ケーブルを複数本並列させ、隣接する該外部導体の接点同志を熱接合により固着させた状態で、該状態を被覆材で固着して構成したことを特徴とするフラット同軸ケーブル。 A plurality of the two-core parallel coaxial cables according to claim 1 are juxtaposed, and the contact points of the adjacent outer conductors are fixed by thermal bonding, and the state is fixed by a covering material. Flat coaxial cable. 請求項に記載の2芯平行同軸ケーブルを複数本束ねた状態で、隣接する該外部導体の接点同志を熱接合により固着したことを特徴とする多対同軸ケーブル。 A multi-pair coaxial cable, wherein a plurality of the two-core parallel coaxial cables according to claim 1 are bundled, and the contacts of the adjacent outer conductors are fixed by thermal bonding. 請求項に記載の2芯平行同軸ケーブルを複数本束ね、隣接する外部導体の接点同志を熱接合により固着させた状態で、該状態を被覆材で固着して構成したことを特徴とする多対同軸ケーブル。
Bundling a plurality of two-core parallel coaxial cable according to claim 1, in a state where the contact of each of the adjacent outer conductor was fixed by thermal bonding, multi, characterized by being configured by fixing the state with a coating material To coaxial cable.
JP2004101387A 2004-03-30 2004-03-30 Flat coaxial cable using two-core parallel coaxial cable and many-to-coaxial cable Expired - Fee Related JP4452539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004101387A JP4452539B2 (en) 2004-03-30 2004-03-30 Flat coaxial cable using two-core parallel coaxial cable and many-to-coaxial cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101387A JP4452539B2 (en) 2004-03-30 2004-03-30 Flat coaxial cable using two-core parallel coaxial cable and many-to-coaxial cable

Publications (2)

Publication Number Publication Date
JP2005285696A JP2005285696A (en) 2005-10-13
JP4452539B2 true JP4452539B2 (en) 2010-04-21

Family

ID=35183832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101387A Expired - Fee Related JP4452539B2 (en) 2004-03-30 2004-03-30 Flat coaxial cable using two-core parallel coaxial cable and many-to-coaxial cable

Country Status (1)

Country Link
JP (1) JP4452539B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026220A2 (en) * 2005-08-30 2007-03-08 Ge Healthcare Limited Method for forming a vial holder device for a vial heater apparatus
EP1953768A3 (en) 2007-02-05 2010-12-22 Fujikura, Ltd. Electronic device and harness for wiring electronic device
US20100243293A1 (en) * 2007-10-30 2010-09-30 Fujikura Ltd. Cable wiring structure of sliding-type electronic apparatus, and electronic apparatus wiring harness
JPWO2010064579A1 (en) 2008-12-02 2012-05-10 株式会社フジクラ Transmission cable and signal transmission cable using the same

Also Published As

Publication number Publication date
JP2005285696A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
US20040026101A1 (en) Parallel two-core shielding wire and method for producing the same
US20210217542A1 (en) Electrical cable with electrically conductive coating
JP2015138751A (en) signal transmission cable
US11437692B2 (en) Coaxial cable and cable assembly
JP4044805B2 (en) Flat shielded cable
JP2020021701A (en) Multicore communication cable
JP4452539B2 (en) Flat coaxial cable using two-core parallel coaxial cable and many-to-coaxial cable
JP4445084B2 (en) Flat shielded cable
JP2008300249A (en) Paired strand communication cable
JP2009164039A (en) Two-core parallel cable
JP7265324B2 (en) insulated wire, cable
JP5595754B2 (en) Ultra-fine coaxial cable and manufacturing method thereof
JP7407627B2 (en) composite cable
JP2008004275A (en) Two-core parallel coaxial cable
JP2003187649A (en) Semi-flexible coaxial cable
JP7430139B2 (en) coaxial cable
JP2020024911A (en) Multicore communication cable
JP2022003613A (en) Coaxial cable, method for manufacturing coaxial cable, and cable assembly
JP2010073463A (en) High-speed differential cable
JP7474590B2 (en) Multi-core communication cable
JP2003223816A (en) Flat shield cable
JP2003031046A (en) Two-core parallel extra-file coaxial cable with longitudinally added deposited tape
JP6746641B2 (en) Multi-core communication cable
JP2020021713A (en) Multicore communication cable
JP7081699B2 (en) Coaxial cable and cable assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees