JP4452421B2 - Solar radiation sensor - Google Patents

Solar radiation sensor Download PDF

Info

Publication number
JP4452421B2
JP4452421B2 JP2001206740A JP2001206740A JP4452421B2 JP 4452421 B2 JP4452421 B2 JP 4452421B2 JP 2001206740 A JP2001206740 A JP 2001206740A JP 2001206740 A JP2001206740 A JP 2001206740A JP 4452421 B2 JP4452421 B2 JP 4452421B2
Authority
JP
Japan
Prior art keywords
light receiving
output
solar radiation
radiation sensor
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001206740A
Other languages
Japanese (ja)
Other versions
JP2003023172A (en
Inventor
功 角田
育生 高松
清光 石川
洋 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Stanley Electric Co Ltd
Original Assignee
Honda Motor Co Ltd
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Stanley Electric Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001206740A priority Critical patent/JP4452421B2/en
Publication of JP2003023172A publication Critical patent/JP2003023172A/en
Application granted granted Critical
Publication of JP4452421B2 publication Critical patent/JP4452421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両に空調機器などを設けるときに、外部環境の計測の一部として光量の計測に加えて、太陽の高度(仰角)、方位などを計測ることで外部環境の予測の精度を高め、空調装置の温度調整などを乗員に対して一層に快適なものとするために設けられる日射センサに関するものである。
【0002】
【従来の技術】
従来のこの種の日射センサ90における受光素子91(a〜d)が4個のときの回路構成の例を示すものが図5であり、それぞれの受光素子91(a〜d)には、それぞれに出力電圧Voを取出すための負荷抵抗Rlに加えて、並列抵抗Rpが接続され、外部電源Vccとの接続の断線、或は、短絡の発生を検知可能な構成とされている。また、前記受光素子91(a〜d)は、太陽の仰角に応じて各受光素子91(a〜d)に光を配分する集光レンズ92により覆われている。
【0003】
このように構成することで、例えば外部環境が暗く、受光素子91(a〜d)の内部抵抗が高いときには、ほとんど電流が流れず、結果的には負荷抵抗Rlの両端に生じる出力電圧Voが0Vに極めて近くなり、外部電源Vccとの接続の断線か否かの判定が困難な状況でも、前記並列抵抗Rpを接続したことで、負荷抵抗Rlの両端の電圧は(Vcc×Rl)/(Rp+Rl)以下とは成らないものとなるので判定が可能となる。
【0004】
【発明が解決しようとする課題】
しかしながら、上記した従来の構成の日射センサ90においては、それぞれの受光素子91(a〜d)の並列抵抗Rpが接続されたことで、負荷抵抗Rlの両端に生じる出力電圧Vopは、受光素子91(a〜d)からの出力により生じる電圧と、並列抵抗Rpを流れる電流により生じる電圧とが合算されたものとなる。
【0005】
従って、太陽の仰角を測定するためには、前記出力電圧Vopから、並列抵抗Rpを流れる電流により生じる電圧を差引かなければ成らないものとなり、演算回路93に減算器SUBを設けざるを得ないものと成って、第一には、日射センサ90がコストアップする問題点を生じている。
【0006】
また、第二には、並列抵抗Rpそれぞれの抵抗値誤差、並列抵抗Rpそれぞれの温度係数の偏差、或は、減算器側SUB側との誤差などにより、出力電圧Vopから電圧Vpを減算して、正確な電圧Voを求めることは至難となり、結果的には日射センサ90の演算精度も低下する問題点を生じている。
【0007】
【課題を解決するための手段】
本発明は、前記した従来の課題を解決するための具体的手段として、所定のパターンに配置された複数の受光素子と、それら複数の受光素子の上方に配置されて太陽光を制御する受光レンズとから成り、太陽光の入射角度に応じてそれぞれの受光素子に生じる出力差から太陽仰角、太陽方位を検出してなる日射センサにおいて、前記受光素子中の適宜のものを基準素子とし、この基準素子からの直接出力と、前記基準素子以外の受光素子からの直接出力とを比較演算することで、断線、及び、短絡を検出することを特徴とする日射センサを提供することで課題を解決するものである。
【0008】
【発明の実施の形態】
つぎに、本発明を図に示す実施形態に基づいて詳細に説明する。図1に符号1で示すものは本発明に係る日射センサであり、この日射センサ1は従来例と同様に受光素子2と、演算回路3、及び、集光レンズ4とから構成されている。尚、この実施形態では従来例と同様に4個の受光素子2(a〜d)が採用されているものとして説明を行う。
【0009】
先ず、前記受光素子2(a〜d)について説明を行えば、本発明では、それぞれの受光素子2(a〜d)に直列に負荷抵抗Rlは接続されるが、従来例の如くに並列抵抗が接続されることはない。従って、前記負荷抵抗Rlに生じる出力電圧Voは太陽光により受光素子2(a〜d)が生じた直接出力である。
【0010】
また、前記演算回路3中に符号SLで示すものはセレクタであり、このセレクタSLは、前記受光素子2(a〜d)からの出力を切換え、増幅回路Ampを介してマイクロコンピュータMPUに前記出力電圧Vo(直接出力)を入力させる。そしてマイクロコンピュータMPUは内蔵するA/D変換器で電圧Voをデジタル値に変換して内部に保持し、それぞれの受光素子2(a〜d)からの出力を比較・演算することで仰角、方位角などの算出を行う。
【0011】
以上の説明のように、本発明では並列抵抗を省略したので、出力電圧Voが小さくなる周囲が暗い環境では外部電源Vccとの接続が断線しているのか否かの判定が困難なものとなっている。ここで、発明者は、前記各受光素子2(a〜d)間の出力比を測定することで、出力電圧Voの大小に係わらず判定できることを見いだしたのである。
【0012】
図2は、前記受光素子2(a〜d)の配置の例を示すものであり、ここでの図示は省略するが、上記にも説明したように、これら受光素子2(a〜d)は上方を集光レンズ4で覆われ、太陽からの光は仰角α、及び、方位角βに対応して、それぞれの受光素子2(a〜d)に配分が行われる。
【0013】
図3は、上記方位角βを0゜とした状態で、前記仰角αのみを変化させたときの各受光素子2(a〜d)間の出力電圧Voの出力比を示すものであり、仰角αが90゜のときには各受光素子2(a〜d)は同じ出力電圧Voを生じるものとなり、即ち、各受光素子2(a〜d)間の出力比は“1”である。
【0014】
よって、図3においては、この位置を基準値1としてグラフを作成している。そして、仰角αが小さくなるに従って、受光素子2aと他の受光素子2b、2c、2d間に、次第に出力の差を生じてくるものであることが判る。
【0015】
尚、図中では、受光素子2aからの出力には符号Vaを付し、受光素子2bからの出力には符号Vbを付し、受光素子2Cからの出力には符号Vcを付し、受光素子2dからの出力には符号Vdを付して示してある。
【0016】
図4は、上記図3の特性に鑑み、受光素子2aを基準素子とし、この基準素子の出力で他の受光素子2b、2c、2dの出力を除算して出力比N(b/a)、N(c/a)、N(d/a)を求めたものであり、この結果によれば、出力比は0.1〜1.0の範囲にあることが判る。そして、上記の演算で得られる出力比は、単位のない数であるので、太陽の明るさに影響を受けることはない。
【0017】
ここで、もしも、何れかの受光素子2、例えば受光素子2bが外部電源Vccに対して接続が行われていない状態となれば、基準素子に対する出力比は“0”となり、これは基準素子以外の受光素子2においても同様である。また、基準素子が外部電源Vccから外れたときには、その出力比は無限大となる。よって、断線の検知は可能となる。
【0018】
また、例えば受光素子2bに付属する負荷抵抗Rlが接地したときには、当然に受光素子2bからの出力電圧Voは0であり、出力比も“0”となる。更には、例えば、受光素子2bに短絡を生じたとすると、この受光素子2bと基準素子(例えば、受光素子2a)との出力比は“1以上”となる。よって、本発明の日射センサ1においては、上記に説明した出力比が0.1〜1の範囲外となったときに異常と判断させ、例えばマイクロコンピュータMPUのD端子から出力させることで、断線、短絡などを検知できるものとなる。尚、O端子は演算値の出力である。
【0019】
即ち、本発明によれば、従来例と異なり並列抵抗Rpを設けることなく断線、短絡の検出が可能となるので、仰角αの演算を演算回路3中のマイクロコンピュータMPUに行わせるときにも、前記並列抵抗Rpによる影響を除外するための減算器SUBを設ける必要はなくなり、演算回路3の構成が簡素化して、コストダウンと信頼性の向上とが共に可能なものとなる。
【0020】
同時に、前記並列抵抗Rpの個々の抵抗値誤差などに起因する精度の低下も排除して太陽の仰角α、方位角βに対する測定精度誤差も向上し、更には、前記減算器SUBにより演算を行うときに生じる誤差も排除し、一層に測定精度が向上するものとなる。尚、図1では理解を容易とするために負荷抵抗Rlは受光素子2(a〜d)のそれぞれに個別に設けられているものとして記載したが、これはセレクタSLの後段に設ければ1個でよいものであり、よって、負荷抵抗Rlによる誤差は生じない。
【0021】
【発明の効果】
以上に説明したように本発明により、受光素子中の適宜のものを基準素子とし、この基準素子からの直接出力と、基準素子以外の受光素子からの直接出力とを比較演算することで、断線、及び、短絡を検出する日射センサとしたことで、従来は断線、短絡の発生の検出のために、受光素子の個々に設けられていた並列抵抗を不要とすると共に、この並列抵抗を設けたことにより必要となっていた演算回路中の減算器も不要とし、もって日射センサの構成を簡素化して、コストダウンと信頼性の向上とに極めて優れた効果を奏するものである。
【0022】
加えて、上記並列抵抗、及び、減算器を不要としたことで、前記並列抵抗用の抵抗器の抵抗値のバラツキにより生じる誤差、及び、減算器により減算を行うときの演算誤差などもなくし、この種の日射センサにおける測定精度の一層の向上にも極めて優れた効果を奏するものである。
【図面の簡単な説明】
【図1】 本発明に係る日射センサの実施形態を示す略示的な配線図である。
【図2】 本発明に係る日射センサにおける受光素子の配置の例を示す説明図である。
【図3】 仰角90゜を基準とした各受光素子の出力を比率で示すグラフである。
【図4】 基準素子とした受光素子の出力で、他の受光素子の出力を除算した結果を示すグラフである。
【図5】 従来例を示す略示的な配線図である。
【符号の説明】
1……日射センサ
2(a〜d)……受光素子
3……演算回路
SL……セレクタ
Amp……増幅回路
MPU……マイクロコンピュータ
4……集光レンズ
Rl……負荷抵抗
[0001]
BACKGROUND OF THE INVENTION
The present invention improves the accuracy of prediction of the external environment by measuring the altitude (elevation angle), direction, etc. of the sun in addition to the measurement of the amount of light as part of the measurement of the external environment when an air conditioner is provided on the vehicle. The present invention relates to a solar radiation sensor that is provided in order to increase the temperature of an air conditioner and make it more comfortable for passengers.
[0002]
[Prior art]
FIG. 5 shows an example of a circuit configuration when there are four light receiving elements 91 (a to d) in the conventional solar radiation sensor 90 of this type, and each of the light receiving elements 91 (a to d) includes In addition to the load resistor Rl for extracting the output voltage Vo, a parallel resistor Rp is connected so that the disconnection of the connection to the external power source Vcc or the occurrence of a short circuit can be detected. The light receiving elements 91 (a to d) are covered by a condensing lens 92 that distributes light to the light receiving elements 91 (a to d) according to the elevation angle of the sun.
[0003]
With this configuration, for example, when the external environment is dark and the internal resistance of the light receiving element 91 (ad) is high, almost no current flows, and as a result, the output voltage Vo generated across the load resistor Rl is Even in a situation where it is extremely close to 0 V and it is difficult to determine whether or not the connection to the external power supply Vcc is broken, the voltage across the load resistor Rl is (Vcc × Rl) / ( Since it is not less than (Rp + Rl), determination is possible.
[0004]
[Problems to be solved by the invention]
However, in the solar radiation sensor 90 having the above-described conventional configuration, the output voltage Vop generated at both ends of the load resistor Rl is obtained by connecting the parallel resistors Rp of the respective light receiving elements 91 (a to d). The voltage generated by the output from (a to d) and the voltage generated by the current flowing through the parallel resistor Rp are added together.
[0005]
Therefore, in order to measure the elevation angle of the sun, the voltage generated by the current flowing through the parallel resistor Rp must be subtracted from the output voltage Vop, and the subtracter SUB must be provided in the arithmetic circuit 93. First, there is a problem that the solar radiation sensor 90 increases in cost.
[0006]
Second, the voltage Vp is subtracted from the output voltage Vop due to a resistance value error of each parallel resistor Rp, a temperature coefficient deviation of each parallel resistor Rp, or an error with the subtractor side SUB side. Therefore, it is difficult to obtain the accurate voltage Vo, and as a result, there is a problem that the calculation accuracy of the solar radiation sensor 90 is also lowered.
[0007]
[Means for Solving the Problems]
As specific means for solving the above-described conventional problems, the present invention provides a plurality of light receiving elements arranged in a predetermined pattern and a light receiving lens arranged above the plurality of light receiving elements to control sunlight. In a solar radiation sensor that detects a solar elevation angle and a solar direction from an output difference generated in each light receiving element according to the incident angle of sunlight, an appropriate one of the light receiving elements is used as a reference element, and this reference By solving a direct output from the element and a direct output from a light receiving element other than the reference element, a disconnection and a short circuit are detected to provide a solar radiation sensor that solves the problem. Is.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Below, this invention is demonstrated in detail based on embodiment shown in a figure. What is denoted by reference numeral 1 in FIG. 1 is a solar radiation sensor according to the present invention, and this solar radiation sensor 1 includes a light receiving element 2, an arithmetic circuit 3, and a condenser lens 4 as in the conventional example. In this embodiment, the description will be made assuming that four light receiving elements 2 (a to d) are employed as in the conventional example.
[0009]
First, the light receiving element 2 (a to d) will be described. In the present invention, a load resistor Rl is connected in series with each light receiving element 2 (a to d). Are never connected. Therefore, the output voltage Vo generated in the load resistor Rl is a direct output generated by the light receiving element 2 (a to d) by sunlight.
[0010]
In addition, what is indicated by a symbol SL in the arithmetic circuit 3 is a selector. The selector SL switches the output from the light receiving element 2 (ad), and outputs the output to the microcomputer MPU through the amplifier circuit Amp. The voltage Vo (direct output) is input. The microcomputer MPU converts the voltage Vo into a digital value by the built-in A / D converter and holds it inside, and compares and calculates the output from each light receiving element 2 (a to d) to calculate the elevation angle and direction. Calculate corners.
[0011]
As described above, since the parallel resistor is omitted in the present invention, it is difficult to determine whether or not the connection with the external power source Vcc is disconnected in an environment where the output voltage Vo is low and the surroundings are dark. ing. Here, the inventor has found that the output voltage Vo can be determined regardless of the magnitude of the output voltage Vo by measuring the output ratio between the light receiving elements 2 (a to d).
[0012]
FIG. 2 shows an example of the arrangement of the light receiving elements 2 (a to d). Although illustration is omitted here, as described above, these light receiving elements 2 (a to d) The upper part is covered with the condensing lens 4, and the light from the sun is distributed to each light receiving element 2 (ad) corresponding to the elevation angle α and the azimuth angle β.
[0013]
FIG. 3 shows the output ratio of the output voltage Vo between the light receiving elements 2 (a to d) when only the elevation angle α is changed with the azimuth angle β being 0 °. When α is 90 °, the light receiving elements 2 (a to d) generate the same output voltage Vo, that is, the output ratio between the light receiving elements 2 (a to d) is “1”.
[0014]
Therefore, in FIG. 3, the graph is created with this position as the reference value 1. Then, it can be seen that as the elevation angle α decreases, an output difference gradually occurs between the light receiving element 2a and the other light receiving elements 2b, 2c, and 2d.
[0015]
In the figure, the output from the light receiving element 2a is denoted by reference numeral Va, the output from the light receiving element 2b is denoted by reference numeral Vb, and the output from the light receiving element 2C is denoted by reference numeral Vc. The output from 2d is shown with the reference symbol Vd.
[0016]
In view of the characteristics shown in FIG. 3, FIG. 4 uses the light receiving element 2a as a reference element, and divides the outputs of the other light receiving elements 2b, 2c, and 2d by the output of the reference element to obtain an output ratio N (b / a), N (c / a) and N (d / a) are obtained, and according to this result, it is understood that the output ratio is in the range of 0.1 to 1.0. And since the output ratio obtained by said calculation is a unitless number, it is not influenced by the brightness of the sun.
[0017]
Here, if any one of the light receiving elements 2, for example, the light receiving element 2b is not connected to the external power source Vcc, the output ratio to the reference element becomes “0”, which is other than the reference element. The same applies to the light receiving element 2. Further, when the reference element is disconnected from the external power source Vcc, the output ratio becomes infinite. Therefore, disconnection can be detected.
[0018]
For example, when the load resistor Rl attached to the light receiving element 2b is grounded, the output voltage Vo from the light receiving element 2b is naturally 0 and the output ratio is also “0”. Further, for example, if a short circuit occurs in the light receiving element 2b, the output ratio between the light receiving element 2b and the reference element (for example, the light receiving element 2a) is “1 or more”. Therefore, in the solar radiation sensor 1 of the present invention, when the output ratio described above is out of the range of 0.1 to 1, it is determined that there is an abnormality, and for example, the disconnection is caused by outputting from the D terminal of the microcomputer MPU. It will be possible to detect short circuits. The O terminal is an output of the calculated value.
[0019]
That is, according to the present invention, unlike the conventional example, it is possible to detect a disconnection or a short circuit without providing a parallel resistor Rp. Therefore, when the microcomputer MPU in the arithmetic circuit 3 performs the calculation of the elevation angle α, There is no need to provide a subtracter SUB for eliminating the influence of the parallel resistor Rp, and the configuration of the arithmetic circuit 3 is simplified, so that both cost reduction and reliability improvement are possible.
[0020]
At the same time, a decrease in accuracy due to individual resistance value errors of the parallel resistor Rp is also eliminated to improve a measurement accuracy error with respect to the elevation angle α and azimuth β of the sun, and further, calculation is performed by the subtractor SUB. Errors that sometimes occur are also eliminated, and the measurement accuracy is further improved. In FIG. 1, for ease of understanding, the load resistor R1 is described as being individually provided for each of the light receiving elements 2 (a to d). Therefore, an error due to the load resistance Rl does not occur.
[0021]
【The invention's effect】
As described above, according to the present invention, an appropriate one of the light receiving elements is used as a reference element, and the direct output from the reference element is compared with the direct output from the light receiving elements other than the reference element, thereby causing a disconnection. In addition, since the solar radiation sensor detects a short circuit, the parallel resistance that is conventionally provided for each light receiving element is not required for detecting the occurrence of a disconnection or a short circuit, and this parallel resistance is provided. This eliminates the need for the subtracter in the arithmetic circuit, which simplifies the configuration of the solar radiation sensor, and has extremely excellent effects in reducing costs and improving reliability.
[0022]
In addition, by eliminating the need for the parallel resistor and the subtractor, there are no errors caused by variations in the resistance value of the resistor for the parallel resistor, and calculation errors when performing subtraction by the subtractor. This type of solar sensor also has an extremely excellent effect in further improving the measurement accuracy.
[Brief description of the drawings]
FIG. 1 is a schematic wiring diagram showing an embodiment of a solar radiation sensor according to the present invention.
FIG. 2 is an explanatory diagram showing an example of arrangement of light receiving elements in the solar radiation sensor according to the present invention.
FIG. 3 is a graph showing the output of each light receiving element based on an elevation angle of 90 ° as a ratio.
FIG. 4 is a graph showing the result of dividing the output of another light receiving element by the output of a light receiving element as a reference element.
FIG. 5 is a schematic wiring diagram showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Solar radiation sensor 2 (ad)-Light-receiving element 3-Operation circuit SL-Selector Amp-Amplifier circuit MPU-Microcomputer 4-Condensing lens Rl-Load resistance

Claims (2)

所定のパターンに配置された複数の受光素子と、それら複数の受光素子の上方に配置されて太陽光を制御する受光レンズとから成り、太陽光の入射角度に応じてそれぞれの受光素子に生じる出力差から太陽の仰角、太陽の方位角を検出してなる日射センサにおいて、前記受光素子中の適宜のものを基準素子とし、この基準素子からの直接出力と、前記基準素子以外の受光素子からの直接出力とを比較演算することで、断線、及び、短絡を検出することを特徴とする日射センサ。It consists of a plurality of light receiving elements arranged in a predetermined pattern and a light receiving lens arranged above the plurality of light receiving elements to control sunlight, and an output generated in each light receiving element according to the incident angle of sunlight In a solar radiation sensor that detects the elevation angle of the sun and the azimuth angle of the sun from the difference, an appropriate one in the light receiving element is used as a reference element, and a direct output from the reference element and a light receiving element other than the reference element The solar radiation sensor characterized by detecting a disconnection and a short circuit by performing a comparison operation with the direct output. 前記受光レンズは、前記基準素子からの直接出力と、基準素子以外の受光素子からの直接出力との出力比が0.1〜1.0の範囲内となるように光学設計が行われ、上記範囲以外の比較演算の結果が得られたときには断線、及び、短絡の発生の判定を行うものとすることを特徴とする請求項1記載の日射センサ。The light receiving lens is optically designed such that an output ratio between a direct output from the reference element and a direct output from a light receiving element other than the reference element is in a range of 0.1 to 1.0. 2. The solar radiation sensor according to claim 1, wherein when a result of a comparison operation other than the range is obtained, determination of occurrence of disconnection and short circuit is performed.
JP2001206740A 2001-07-06 2001-07-06 Solar radiation sensor Expired - Fee Related JP4452421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001206740A JP4452421B2 (en) 2001-07-06 2001-07-06 Solar radiation sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001206740A JP4452421B2 (en) 2001-07-06 2001-07-06 Solar radiation sensor

Publications (2)

Publication Number Publication Date
JP2003023172A JP2003023172A (en) 2003-01-24
JP4452421B2 true JP4452421B2 (en) 2010-04-21

Family

ID=19042827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001206740A Expired - Fee Related JP4452421B2 (en) 2001-07-06 2001-07-06 Solar radiation sensor

Country Status (1)

Country Link
JP (1) JP4452421B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5580770B2 (en) * 2011-03-25 2014-08-27 アズビル株式会社 Flame detection device
DE102019114537A1 (en) * 2019-05-29 2020-12-03 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung OPTOELECTRONIC SENSOR COMPONENT FOR LIGHT MEASUREMENT WITH BUILT-IN REDUNDANCY

Also Published As

Publication number Publication date
JP2003023172A (en) 2003-01-24

Similar Documents

Publication Publication Date Title
JP2003240620A (en) Gas flow measuring device
US7075464B2 (en) Circuit for current measurement and current monitoring
JP3329680B2 (en) Light sensor
JP4452421B2 (en) Solar radiation sensor
US6184511B1 (en) Photoelectric conversion apparatus
US4907446A (en) Flow sensor incorporating a thermoresistor
JPH11337382A (en) Heat generating resistor type air flow rate measuring apparatus
JP2012242294A (en) Three-wire system resistance measurement instrument
JP2000018989A (en) Ratiometric output-type heating resistor-type air flowmeter
JP3575573B2 (en) Thermal air flow meter
EP1118842B1 (en) Air meter
US6285206B1 (en) Comparator circuit
US10591332B2 (en) Airflow meter
JP3381562B2 (en) Potentiometer abnormality detector
JP2000241252A (en) Temperature detecting circuit
JP3070308B2 (en) Heat detector
JP2946907B2 (en) Temperature measuring device
JP4815282B2 (en) Photoelectric conversion device
KR0159236B1 (en) Method and device for sensing room temperature
JP2002350476A (en) Voltage detecting circuit
JPH0593658A (en) Disconnection locator position detector of resistance-type sensor
JP3066509B2 (en) Displacement gauge
JP3132510B2 (en) Optical sensor circuit
JPH085456A (en) Optical sensor circuit and control device using optical sensor circuit
JPH01216224A (en) Multipoint temperature measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees