JP4449051B2 - 3D motion measurement method and 3D motion measurement apparatus for an object - Google Patents

3D motion measurement method and 3D motion measurement apparatus for an object Download PDF

Info

Publication number
JP4449051B2
JP4449051B2 JP2001000996A JP2001000996A JP4449051B2 JP 4449051 B2 JP4449051 B2 JP 4449051B2 JP 2001000996 A JP2001000996 A JP 2001000996A JP 2001000996 A JP2001000996 A JP 2001000996A JP 4449051 B2 JP4449051 B2 JP 4449051B2
Authority
JP
Japan
Prior art keywords
calibration
psd
dimensional
dimensional coordinate
line segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001000996A
Other languages
Japanese (ja)
Other versions
JP2002206917A (en
Inventor
昭 桑田
Original Assignee
株式会社豊中研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊中研究所 filed Critical 株式会社豊中研究所
Priority to JP2001000996A priority Critical patent/JP4449051B2/en
Publication of JP2002206917A publication Critical patent/JP2002206917A/en
Application granted granted Critical
Publication of JP4449051B2 publication Critical patent/JP4449051B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、各種の物体の動きあるいは更にその物体の一部の動き、例えば身体の各部位の空間における三次元運動の実態を、半導***置検出素子(PSD:Position Sensitive Detector ) を用いて観測する方法と、その方法で物体の三次元運動を観測する測定装置に関するものである。
【0002】
【従来の技術】
身体各部の前後、左右、上下の動きのような、種々の物体(以下、対象物という)の三次元運動を、その対象物の三次元空間座標(x,y,z)の時間的変化として捉える手段として、複数のカメラでその対象物を異なる方向から撮影し、それらの撮像を画像処理してその対象物の動的位置を測定するDLT(Direct Linear Transformation )法が多用されている。しかし撮像の画像処理によって対象物の動的位置を測定するDLT法のような測定方法・装置では、測定に必要な画像情報量とその情報処理量が極めて多くなることから、測定に要する時間(情報処理に要する時間)が長くなり、また測定に要する時間を短縮するためには高度な画像処理回路が必要となる。
【0003】
一方、空間にある対象物の位置を一方向から見た二次元座標として電気的に検出するセンサーとしてPSD(Position Sensitive Detector)が知られている。PSDは、対象物からの光を受光して、その対象物の位置を検出することができる光センサー(半導***置検出素子)で、基本的にはフォトダイオードのような接合面をもつPIN構造の半導体である。
【0004】
すなわち、PSDは、図5に示すように、P層、N層それぞれの対向縁にX軸方向電極Px1,Px2ならびにZ軸方向電極Pz1,Pz2を形成したものであり、X軸とZ軸は二次元直交座標軸に相当する。そしてPSDの受光面に対象物Qから発するスポット状の光が受光点Q'に当たるとそこに電荷が発生し、P層で発生した電荷はX軸方向電極Px1,Px2にそれぞれ電流Ix1,Ix2となって分流し、N層で発生した電荷はZ軸方向電極Pz1,Pz2にそれぞれ電流Iz1,Iz2なって分流する。そしてX軸方向電極Px1,Px2に分流する電流Ix1,Ix2と、Z軸方向電極Pz1,Pz2に分流する電流Iz1,Iz2の大きさは、それぞれ各電極Px1,Px2,Pz1,Pz2から受光点Q'までの距離に反比例する。
【0005】
ちなみにX軸とZ軸の二次元面について見れば、X軸方向電極Px1,Px2間の距離をSx 、Z軸方向電極Pz1,Pz2間の距離をSz 、対象物Qすなわち受光点Q'の位置を座標Qx ,Qzで表せば、Ix1=Ixo(1/2 + Qx/Sx)、Ix2=Ix0(1/2 − Qx/Sx)、Iz1=Iz0(1/2 − Qz/Sz)、Iz2=Iz0(1/2 + Qz/Sz)、Ix0=Ix1+Ix2、Iz0=Iz1+Iz2となる。従ってこれらの電流Ix1,Ix2,Iz1,Iz2に対応するPSDのX軸方向出力電圧VxとZ軸方向出力電圧Vzを検知することにより、対象物Qの位置を二次元座標Qx ,Qzの視点から検出することができる。
【0006】
同様にX軸をY軸に置き換えて、Y軸とZ軸に関する二次元面のPSDについて見れば、図示は略すが、X軸方向電極Px1,Px2がY軸方向電極PY1,PY2に、電流Ix1,Ix2が電流Iy1,Iy2に、座標Qxが座標Qyにそれぞれ置き換わることから、Y軸方向電極PY1,PY2間の距離をSY 、Z軸方向電極Pz1,Pz2間の距離をSz 、対象物Qの位置すなわち受光点Q'の座標を座標Qy ,Qzで表せば、IY1=IYo(1/2+ Qy /SY)、IY2=IY0(1/2 − Qy/SY)、Iz1=Iz0(1/2 − Qz/Sz)、Iz2=Iz0(1/2 + Qz/Sz)、IY0=IY1+IY2、Iz0=Iz1+Iz2となる。従ってこれらの電流IY1,IY2,Iz1,Iz2に対応するPSDのY軸方向出力電圧VyとZ軸方向出力電圧Vzを検知することにより、対象物Qの位置を二次元座標Qy ,Qzの視点から検出することができる。このことから X軸とZ軸に関するPSDならびにY軸とZ軸に関するPSDを用いて、互いに直交する三次元座標軸X,Y,ZのX軸方向とY軸方向から同時に対象物Q座標Qx,Qy,Qz を検出することにより、対象物Qの三次元の運動を観測し測定することができる。
【0007】
【発明が解決しようとする課題】
この発明は、対象物からの光を二次元面のPSDで受光して直ちにその対象物の二次元座標を検知し得る既知のPSDカメラを2基用いて、対象物の三次元運動測定システムを構成し、これにより従来のDLT方式の三次元運動測定システムに比し、高度な画像処理装置などを要することなく、極めて簡単迅速に対象物の三次元運動を測定できるようにしようとするものである。そして所与の測定現場が、従来の測定手段では測定環境の設定が困難なところであっても、様々な測定現場で適用し得る三次元運動測定システムを構築しようとするものである。
【0008】
またこの発明は、測定に必須の2基のPSDカメラを、そのPSD受光画面を見ながら容易に所要の位置に正確に位置決めして設置し得る三次元運動測定システムを構築しようとするものである。
【0009】
またこの発明は、例えば人体の歯や指先の動きなど、比較的狭い空間で三次元運動する対象物の動きを、その対象物から比較的近い測定位置から簡便に測定できるように、予め測定条件を満たす位置にPSDカメラが設置されている測定手段を構成しようとするものである。
【0010】
またこの発明は、限られた測定空間において対象物とPSDカメラの間の距離が十分に得られない測定環境下において、PSDカメラの視野を等価的に拡大し、対象物のより広範な三次元運動を測定し得るようにすると共に、一旦設置したPSDカメラの設定状態を変えることなく対象物の動きを異なる視点から測定しようとするものである。
【0011】
さらにこの発明は、三次元空間で運動する対象物の時々の位置を表す三次元座標の演算を単純化しようとするものである。
【0012】
【課題を解決するための手段】
2基のPSDカメラを用いて対象物の三次元運動を迅速・簡単に測定するために、この発明は、三次元運動する対象物の運動領域を含む三次元空間内に基準面を設定し、この基準面上に少なくとも3本の較正用ポールPa ,Pb ,Pc を直立させ、この基準面上における較正用ポールPa ,Pb ,Pcの各設置点A,B,Cを、線分ABと線分ACがそれぞれ既知の長さKx ,Kyで且つ設置点Aで直交するように設定し、較正用ポールPa ,Pb ,Pcのそれぞれに基準面からの高さを違えて対をなす2個の較正用光体a1 ,a2 ;b1 ,b2 ;c1 ,c2 をそれぞれ設置すると共にそれらの対をなす2個の較正用光体の間の中点の前記基準面からの高さh0 を等しく設定し、焦点距離Fyが既知で前記較正用ポールPa およびPbから等距離に置かれるPSDカメラと焦点距離Fxが既知で前記較正用ポールPa およびPcから等距離に置かれるPSDカメラの、2基のPSDカメラを、前記三次元空間の三次元座標軸X,Y,Zの中の異なる座標軸方向に設置し、前記較正用ポールPa,Pb ,Pc上の較正用光体を2基のPSDカメラのPSD受光面に撮像することにより、前記三次元座標軸X,Y,Zを構成する別方向の二次元座標軸に対応する二次元座標軸を、2基の各PSDカメラのPSD受光面上に分担させて較正設定し、前記各PSDカメラの光軸を前記三次元座標軸X,Y,Zの原点に合わせ且つ前記各PSDカメラを前記原点からそれぞれ距離Ly ,Lx を隔てて設定し、その後、前記2基のPSDカメラで同時且つ時系列的に対象物の位置検出用光体を撮像して得た前記対象物の時系列位置データを前記三次元座標軸X,Y,Zに対する時系列座標データに変換して対象物の三次元運動を測定する。
【0013】
この三次元運動測定方法に用いる測定装置として、この発明は、三次元運動する対象物の位置を表すための三次元座標軸X,Y,Zが形成される三次元空間内に設定される基準面に直立させる少なくとも3本の較正用ポールPa ,Pb ,Pc と、その各較正用ポールPa ,Pb ,Pcのそれぞれに基準面からの高さを違えて設置される2個の対をなす較正用光体a1 ,a2 ;b1 ,b2 ;c1 ,c2 と、既知の焦点距離Fyを備え前記較正用ポールPa および較正用ポールPb から等距離で且つ三次元座標軸X,Y,Zの原点から距離Ly を隔てて設置されるPSDカメラと、既知の焦点距離Fxを備え前記較正用ポールPa および較正用ポールPc から等距離で且つ三次元座標軸X,Y,Zの原点から距離Lx を隔てて設置されるPSDカメラの、2基のPSDカメラと、その2基のPSDカメラで同時且つ時系列的に対象物に付した位置検出用光体を撮像して得た対象物の時系列位置データを前記三次元座標軸X,Y,Zに対する時系列座標データに変換演算するコンピュータとで測定装置の主要部を構成し、前記各較正用ポールPa ,Pb ,Pc の設置点A,B,C に関し、線分ABと線分ACがそれぞれ既知の長さKx ,Kyで且つ設置点Aで直交するように設定し、前記対をなす2個の較正用光体a1 ,a2 ;b1 ,b2 ;c1 ,c2の各中点の基準面からの高さh0 を等しく設定する。
【0014】
また、対象物の三次元運動の測定に必要な2基のPSDカメラを、そのPSD受光画面を見ながら容易に所要の位置に正確に位置決めして設置できるようにするために、この発明は、三次元運動する対象物の運動領域を含む三次元空間内に基準面を設定し、この基準面上に5本の較正用ポールの設置点A,B,C,D,Eを設け、設置点A,B,C,D,Eの位置関係に関して、線分ABと線分ACが設置点Aで直交するように設置点A,B,Cを配設し、線分ABを底辺とする二等辺三角形の頂点に設置点Dを配設し、線分ACを底辺とする二等辺三角形の頂点に設置点Eを配設し、線分ABと線分ACを既知の長さKx ,Kyに設定し、これら各設置点A,B,C,D,Eにそれぞれ較正用ポールPa ,Pb ,Pc ,Pd , Pe を位置させて前記基準面上に5本の較正用ポールPa ,Pb ,Pc ,Pd ,Peを直立させ、較正用ポールPd ,Pe のそれぞれに1個の較正用光体d0 ,e0を設置し、較正用ポールPa ,Pb ,Pcのそれぞれに前記基準面からの高さを違えて対をなす2個の較正用光体a1 ,a2 ;b1 ,b2 ;c1 ,c2 をそれぞれ設置し、それらの対をなす2個の較正用光体a1 ,a2 ;b1 ,b2 ;c1 ,c2の間の中点の前記基準面からの高さh0 を較正用ポールPd ,Pe のそれぞれの較正用光体d0 ,e0 の前記基準面からの高さh0 と等しく設定し、焦点距離Fyが既知で前記較正用ポールPa およびPbから等距離に置かれるPSDカメラと、焦点距離Fxが既知で前記較正用ポールPa およびPcから等距離に置かれるPSDカメラの、2基のPSDカメラを前記三次元空間の三次元座標軸X,Y,Zの中の別の二つの座標軸方向(例えばX軸方向とY軸方向)に設置し、較正用ポールPa ,Pb ,Pc ,Pd , Pe 上の較正用光体a1 ,a2 ;b1 ,b2 ;c1 ,c2 ;d0 ,e0 を2基のPSDカメラのPSD受光面に撮像しながら、前記三次元座標軸X,Y,Zを構成する別方向の二次元座標軸に対応する二次元座標軸を2基の各PSDカメラの各PSD受光面上に分担させて較正設定し、2基の各PSDカメラの光軸を前記三次元座標軸X,Y,Zの原点に合わせ且つ各PSDカメラを前記原点からそれぞれ距離Ly ,Lxを隔てて設定し、その後、2基のPSDカメラで同時且つ時系列的に対象物の位置検出用光体を撮像して得た対象物の時系列位置データを前記三次元座標軸X,Y,Zに対する時系列座標データに変換して対象物の三次元運動を測定する。
【0015】
そして、測定に必要な2基のPSDカメラをそのPSD受光画面を見ながら容易に所要の位置に正確に位置決めできる測定装置として、この発明は、三次元運動する対象物の運動領域を含みその対象物の位置を表す三次元座標軸X,Y,Zが形成される三次元空間内に設定される基準面に配設された5個の設置点A,B,C,D,Eにそれぞれ直立させる5本の較正用ポールPa ,Pb ,Pc ,Pd ,Pe と、その較正用ポールPd ,Pe のそれぞれに1個設置される較正用光体d0 ,e0 と、前記較正用ポールPa ,Pb ,Pcのそれぞれに前記基準面からの高さを違えて設置される2個の対をなす較正用光体a1 ,a2 ;b1 ,b2 ;c1 ,c2 と、既知の焦点距離Fyを備え前記較正用ポールPa および較正ポールPbから等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Ly を隔てて設置されるPSDカメラと、既知の焦点距離Fxを備え前記較正用ポールPa および較正用ポールPcから等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Lx を隔てて設置されるPSDカメラの、2基のPSDカメラと、その2基のPSDカメラで同時且つ時系列的に対象物の位置検出用光体を撮像して得た前記対象物の時系列位置データを前記三次元座標軸X,Y,Zに対する時系列座標データに変換演算するコンピュータとで測定装置の主要部を構成し、前記5本の較正用ポールPa ,Pb ,Pc ,Pd ,Pe の設置点A,B,C,D,Eの位置関係に関して、線分ABと線分ACがそれぞれ既知の長さKx ,Ky で設置点Aで直交するように設定し、線分ABを底辺とする二等辺三角形の頂点に設置点Dを配設し、線分ACを底辺とする二等辺三角形の頂点に設置点Eを配設し、前記対をなす2個の較正用光体a1 ,a2 ;b1 ,b2 ;c1 ,c2の各中点の前記基準面からの高さh0 を前記較正用ポールPd ,Pe のそれぞれの較正用光体d0 ,e0 の前記基準面からの高さh0 と等しく設定する。
【0016】
また比較的狭い空間で三次元運動する対象物を近い位置から簡便に測定できるように、この発明は、三次元運動する対象物の運動領域を含みその対象物の位置を表す三次元座標軸X,Y,Zが設定される三次元空間内に、直角三角形を含む基準面を設定し、この直角三角形の直角頂点Aと他の2頂点B,Cをそれぞれ較正用ポールの設置点A,B,Cとして、これら各設置点A,B,Cにそれぞれ較正用ポールPa ,Pb ,Pc を位置させて前記基準面上に3本の較正用ポールPa ,Pb ,Pc を直立させ、前記直角三角形の線分ABと線分ACを既知の長さKx ,Kyに設定し、前記較正用ポールPa ,Pb ,Pcのそれぞれに前記基準面からの高さを違えて対をなす2個の較正用光体a1 ,a2 ;b1 ,b2 ;c1 ,c2 をそれぞれ設置すると共にそれらの対をなす2個の較正用光体の間の中点の前記基準面からの高さh0 を等しく設定し、既知の焦点距離Fyを備え前記一つの線分AB上の2本の各較正用ポールPa およびPbから等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Lyを隔てて置かれるPSDカメラと、既知の焦点距離Fxを備え前記他の線分AC上の2本の各較正用ポールPa およびPcから等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Lxを隔てて置かれるPSDカメラの、2基のPSDカメラを前記基準面と共に予めセットアップし、前記対象物には位置検出用光体を設置し、前記較正用ポールPa ,Pb ,Pc上の較正用光体を前記2基のPSDカメラのPSD受光面に撮像することにより、三次元座標軸X,Y,Zに対応する二次元座標軸を前記各PSDカメラのPSD受光面上に較正設定し、前記2基のPSDカメラで同時且つ時系列的に前記対象物の位置検出用光体を撮像して得た前記対象物の時系列位置データを前記三次元座標軸X,Y,Zに対する時系列座標データに変換して前記対象物の三次元運動を測定する。
【0017】
上記の測定方法に用いる測定装置として、この発明は、位置検出用光体が設置されて三次元運動する対象物の運動領域を含みその対象物の位置を表す三次元座標軸X,Y,Zが形成される三次元空間内に設定される直角三角形を含む基準面と、この直角三角形の直角頂点Aと他の2頂点B,Cにそれぞれ位置する設置点A,B,Cにそれぞれ直立させる3本の較正用ポールPa ,Pb ,Pc と、これらの各較正用ポールPa ,Pb ,Pcのそれぞれに前記基準面からの高さを違えて設置される2個の対をなす較正用光体a1 ,a2 ;b1 ,b2 ;c1 ,c2 と、既知の焦点距離Fyを備え前記較正用ポールPa および較正用ポールPbから等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Lyを隔てて設置されるPSDカメラと、既知の焦点距離Fxを備え前記較正用ポールPa および較正用ポールPcから等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Lxを隔てて設置されるPSDカメラの、2基のPSDカメラを一体的にセットアップし、前記2基のPSDカメラで同時且つ時系列的に前記対象物の位置検出用光体を撮像して得た前記対象物の時系列位置データを前記三次元座標軸X,Y,Zに対する時系列座標データに変換演算するコンピュータを備え、前記直角三角形の線分ABと線分ACを既知の長さKx ,Ky に設定し、前記対をなす2個の較正用光体a1 ,a2 ;b1 ,b2 ;c1 ,c2の各中点の前記基準面からの高さh0 を等しく設定して必要に応じて簡単に移動設置できる三次元運動測定装置を構成する。
【0018】
また、対象物とFSDカメラの間の距離を十分とることができない測定環境下においてもPSDカメラの視野を等価的に広げて対象物のより広範な三次元運動を測定できるようにするために、また一旦設置したPSDカメラの設定状態を変えることなく対象物の動きを異なる視点・角度から測定するために、この発明は、予め設定された運動領域で三次元運動する対象物に設置した位置検出用光体を映す鏡を配設し、その鏡に映った対象物の位置検出光体を2基のPSDカメラで撮像して得た前記対象物の時系列位置データを三次元座標軸X,Y,Zに対する時系列座標データに変換して対象物の三次元運動を測定する。
【0019】
さらに、三次元運動する対象物の時々の位置を表す三次元座標の演算を簡略化するために、この発明は、前述の測定方法あるいは測定装置において、設置点A,B間の長さKx と設置点A,C間の長さKy を等しく設定し、三次元座標軸X,Y,Zの原点と2基の各PSDカメラとの間のそれぞれの距離Ly ,Lx を等しく設定し、2基のPSDカメラの各焦点距離Fy ,Fx を等しく設定し、また線分ABを底辺とする二等辺三角形の高さと、線分ACを底辺とする二等辺三角形の高さと、設置点A,B間の長さKx と、設置点A,C間の長さKy とを等しく設定する。
【0020】
【発明の実施の形態】
この発明の基本的な実施形態の一つは、三次元運動する対象物の運動領域を含む三次元空間内に基準面を設定し、この基準面上に少なくとも3本の較正用ポールPa ,Pb ,Pc を直立させ、これら較正用ポールPa ,Pb ,Pcの前記基準面上における各設置点A,B,Cを、線分ABと線分ACがそれぞれ既知の長さKx ,Kyで且つ設置点Aで直交するように設定し、前記較正用ポールPa ,Pb ,Pcのそれぞれに前記基準面からの高さを違えて対をなす2個の較正用光体a1 ,a2 ;b1,b2 ;c1 ,c2 をそれぞれ設置すると共にそれらの対をなす2個の較正用光体の間の中点の前記基準面からの高さh0 を等しく設定し、焦点距離Fyが既知で前記一つの線分AB上の2本の各較正用ポールPa およびPbから等距離に置かれるPSDカメラと焦点距離Fxが既知で前記他の線分AC上の2本の各較正用ポールPa およびPcから等距離に置かれるPSDカメラの2基のPSDカメラを設置し、前記較正用ポールPa ,Pb ,Pc上の較正用光体を前記2基のPSDカメラのPSD受光面に撮像することにより、前記三次元空間内における前記対象物の位置を表すための前記三次元空間内の三次元座標軸X,Y,Zに対応する二次元座標軸を前記各PSDカメラのPSD受光面上に較正設定し、前記各PSDカメラの光軸を前記三次元座標軸X,Y,Zの原点に合わせ且つ前記各PSDカメラを前記原点からそれぞれ距離Ly ,Lx を隔てて設定し、前記対象物には位置検出用光体を設置し、前記2基のPSDカメラで同時且つ時系列的に前記対象物の位置検出用光体を撮像して得た前記対象物の時系列位置データを前記三次元座標軸X,Y,Zに対する時系列座標データに変換して前記対象物の動きを検知する物体の三次元運動測定方法である。
【0021】
この発明の実施形態は、三次元運動する対象物の運動領域を含みその対象物の位置を表す三次元座標軸X,Y,Zが設定される三次元空間内に、直角三角形を含む基準面を設定し、この直角三角形の直角頂点Aと他の2頂点B,Cをそれぞれ較正用ポールの設置点A,B,Cとして、これら各設置点A,B,Cにそれぞれ較正用ポールPa ,Pb ,Pc を位置させて前記基準面上に3本の較正用ポールPa ,Pb ,Pc を直立させ、前記直角三角形の線分ABと線分ACを既知の長さKx ,Kyに設定し、前記較正用ポールPa ,Pb ,Pcのそれぞれに前記基準面からの高さを違えて対をなす2個の較正用光体a1 ,a2 ;b1 ,b2 ;c1 ,c2 をそれぞれ設置すると共にそれらの対をなす2個の較正用光体の間の中点の前記基準面からの高さh0 を等しく設定し、既知の焦点距離Fyを備え前記一つの線分AB上の2本の各較正用ポールPa およびPbから等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Lyを隔てて置かれるPSDカメラと、既知の焦点距離Fxを備え前記他の線分AC上の2本の各較正用ポールPa およびPcから等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Lxを隔てて置かれるPSDカメラの、2基のPSDカメラを前記基準面と共に予めセットアップし、前記対象物には位置検出用光体を設置し、前記較正用ポールPa ,Pb ,Pc上の較正用光体を前記2基のPSDカメラのPSD受光面に撮像することにより、三次元座標軸X,Y,Zに対応する二次元座標軸を前記各PSDカメラのPSD受光面上に較正設定し、前記2基のPSDカメラで同時且つ時系列的に前記対象物の位置検出用光体を撮像して得た前記対象物の時系列位置データを前記三次元座標軸X,Y,Zに対する時系列座標データに変換して前記対象物の動きを検知する物体の三次元運動測定方法である。
【0022】
この発明の他の実施形態は、三次元運動する対象物の運動領域を含む三次元空間内に基準面を設定し、この基準面上に5本の較正用ポールの設置点A,B,C,D,Eを設け、前記設置点A,B,C,D,Eの位置関係に関して、線分ABと線分ACが設置点Aで直交するように設置点A,B,Cを配設し、線分ABを底辺とする二等辺三角形の頂点に設置点Dを配設し、線分ACを底辺とする二等辺三角形の頂点に設置点Eを配設し、前記線分ABと線分ACを既知の長さKx ,Kyに設定し、これら各設置点A,B,C,D,Eにそれぞれ較正用ポールPa ,Pb,Pc ,Pd , Pe を位置させて前記基準面上に5本の較正用ポールPa ,Pb ,Pc,Pd ,Pe 直立させ、前記較正用ポールPd ,Pe のそれぞれに1個の較正用光体d0 ,e0を設置し、前記較正用ポールPa ,Pb ,Pcのそれぞれに前記基準面からの高さを違えて対をなす2個の較正用光体a1 ,a2 ;b1 ,b2 ;c1 ,c2 をそれぞれ設置し、それらの対をなす2個の較正用光体a1 ,a2 ;b1 ,b2 ;c1 ,c2の間の中点の前記基準面からの高さh0 を前記較正用ポールPd ,Pe のそれぞれの較正用光体d0 ,e0 の前記基準面からの高さh0 と等しく設定し、焦点距離Fyが既知で前記一つの線分AB上の2本の各較正用ポールPa およびPbから等距離に置かれるPSDカメラと、焦点距離Fxが既知で前記他の線分AC上の2本の各較正用ポールPa およびPcから等距離に置かれるPSDカメラの、2基のPSDカメラを設置し、前記較正用ポールPa ,Pb ,Pc ,Pd , Pe 上の較正用光体a1,a2 ;b1 ,b2 ;c1 ,c2 ;d0 ,e0 を前記2基のPSDカメラのPSD受光面に撮像することにより、前記三次元空間内における前記対象物の位置を表すための前記三次元空間内の三次元座標軸X,Y,Zに対応する二次元座標軸を前記各PSDカメラのPSD受光面上に較正設定し、前記各PSDカメラの光軸を前記三次元座標軸X,Y,Zの原点に合わせ且つ各PSDカメラを前記原点からそれぞれ距離Ly ,Lxを隔てて設定し、前記対象物には位置検出用光体を設置し、前記2基のPSDカメラで同時且つ時系列的に前記対象物の位置検出用光体を撮像して得た前記対象物の時系列位置データを前記三次元座標軸X,Y,Zに対する時系列座標データに変換して前記対象物の動きを検知する物体の三次元運動測定方法である。
【0023】
この発明の他の基本的な実施形態は、位置検出用光体が設置されて三次元運動する対象物の運動領域を含みその対象物の位置を表す三次元座標軸X,Y,Zが形成される三次元空間内に設定される基準面に配設された少なくとも3個の設置点A,B,Cにそれぞれ直立させる少なくとも3本の較正用ポールPa ,Pb ,Pc と、これらの各較正用ポールPa ,Pb ,Pcのそれぞれに前記基準面からの高さを違えて設置される2個の対をなす較正用光体a1 ,a2 ;b1 ,b2 ;c1 ,c2 と、既知の焦点距離Fyを備え前記較正用ポールPa および較正用ポールPb から等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Ly を隔てて設置されるPSDカメラと、既知の焦点距離Fxを備え前記較正用ポールPa および較正用ポールPc から等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Lx を隔てて設置されるPSDカメラの、2基のPSDカメラと、前記2基のPSDカメラで同時且つ時系列的に前記対象物の位置検出用光体を撮像して得た前記対象物の時系列位置データを前記三次元座標軸X,Y,Zに対する時系列座標データに変換演算するコンピュータを備え、前記設置点A,B,C に関し、線分ABと線分ACがそれぞれ既知の長さKx ,Kyで且つ設置点Aで直交するように設定し、前記対をなす2個の較正用光体a1 ,a2 ;b1 ,b2 ;c1 ,c2の各中点の前記基準面からの高さh0 を等しく設定した物体の三次元運動測定装置である。
【0024】
この発明の他の実施形態は、位置検出用光体が設置されて三次元運動する対象物の運動領域を含みその対象物の位置を表す三次元座標軸X,Y,Zが形成される三次元空間内に設定される直角三角形を含む基準面と、この直角三角形の直角頂点Aと他の2頂点B,Cにそれぞれ位置する設置点A,B,Cにそれぞれ直立させる3本の較正用ポールPa ,Pb ,Pc と、これらの各較正用ポールPa ,Pb ,Pcのそれぞれに前記基準面からの高さを違えて設置される2個の対をなす較正用光体a1 ,a2 ;b1 ,b2 ;c1 ,c2 と、既知の焦点距離Fyを備え前記較正用ポールPa および較正用ポールPbから等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Lyを隔てて設置されるPSDカメラと、既知の焦点距離Fxを備え前記較正用ポールPa および較正用ポールPcから等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Lxを隔てて設置されるPSDカメラの、2基のPSDカメラを一体的にセットアップし、前記2基のPSDカメラで同時且つ時系列的に前記対象物の位置検出用光体を撮像して得た前記対象物の時系列位置データを前記三次元座標軸X,Y,Zに対する時系列座標データに変換演算するコンピュータを備え、前記直角三角形の線分ABと線分ACを既知の長さKx ,Ky に設定し、前記対をなす2個の較正用光体a1 ,a2 ;b1 ,b2 ;c1 ,c2の各中点の前記基準面からの高さh0 を等しく設定した物体の三次元運動測定装置である。
【0025】
この発明の他の実施形態は、位置検出用光体が設置されて三次元運動する対象物の運動領域を含みその対象物の位置を表す三次元座標軸X,Y,Zが形成される三次元空間内に設定される基準面に配設された5個の設置点A,B,C,D,Eにそれぞれ直立させる5本の較正用ポールPa ,Pb ,Pc ,Pd ,Pe と、前記較正用ポールPd ,Pe のそれぞれに1個設置される較正用光体d0 ,e0 と、前記較正用ポールPa ,Pb ,Pcのそれぞれに前記基準面からの高さを違えて設置される2個の対をなす較正用光体a1 ,a2 ;b1 ,b2 ;c1 ,c2 と、既知の焦点距離Fyを備え前記較正用ポールPa および較正ポールPbから等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Ly を隔てて設置されるPSDカメラと、既知の焦点距離Fxを備え前記較正用ポールPa および較正用ポールPcから等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Lx を隔てて設置されるPSDカメラの、2基のPSDカメラと、前記2基のPSDカメラで同時且つ時系列的に前記対象物の位置検出用光体を撮像して得た前記対象物の時系列位置データを前記三次元座標軸X,Y,Zに対する時系列座標データに変換演算するコンピュータを備え、前記設置点A,B,C,D,Eの位置関係に関して、線分ABと線分ACがそれぞれ既知の長さKx ,Ky で設置点Aで直交するように設定し、線分ABを底辺とする二等辺三角形の頂点に設置点Dを配設し、線分ACを底辺とする二等辺三角形の頂点に設置点Eを配設し、前記対をなす2個の較正用光体a1 ,a2 ;b1 ,b2 ;c1 ,c2の各中点の前記基準面からの高さh0 を前記較正用ポールPd ,Pe のそれぞれの較正用光体d0 ,e0 の前記基準面からの高さh0 と等しく設定した物体の三次元運動測定装置である。
【0026】
この発明の他の基本的な実施形態は、予め設定された運動領域で三次元運動する対象物に設置した位置検出用光体を映す鏡を配設し、その鏡に映った対象物の位置検出光体を2基のPSDカメラで撮像して得た前記対象物の時系列位置データを三次元座標軸X,Y,Zに対する時系列座標データに変換して前記対象物の動きを検知する物体の三次元運動測定方法ならびに三次元運動測定装置である。
【0027】
【実施例】
以下図面を参考にこの発明の実施例を説明する。図1ないし図3はこの発明に係る物体の三次元運動測定装置の一実施例を示すもので、床面上で前後・左右・上下に動く人体の特定部位の運動状態をその特定部位の三次元座標変化として観測する三次元運動測定装置の例である。図1は同装置の基本構成を示す斜視図、図2は同装置の機能説明用の平面図、図3は同装置の機能説明用の立面図である。
【0028】
図1ないし図3において、Hは三次元空間内で前後・左右・上下に三次元運動する人体で、人体Hの一部の箇所を測定の対象物として、その対象物に位置検出用光体Rが設置されている。したがってRは実質的に対象物である。位置検出用光体Rは、LED (Light Emitting Diode)などの発光体あるいは対象物に照射される光を反射する光反射体である。
【0029】
Gは対象物Rの運動領域を含む三次元空間内に形成した基準面で、この実施例では人体が立つ水平な床面である。そして運動測定範囲の三次元空間とその三次元空間内の三次元直交座標軸X,Y,Zを決定するために、基準面G上に5個の設置点(較正用ポールを設置する点)A,B,C,D,Eを設定する。その場合、線分ABと、線分ACとが設置点Aで直交するように計測して設置点A,B,Cを配設し、線分ABを底辺とする二等辺三角形の頂点に設置点Dを配設し、線分ACを底辺とする二等辺三角形の頂点に設置点Eを配設し、設置点A,B間の距離(線分ABの長さ)を予め定めた長さKxに設定し、設置点A,C間の距離(線分ACの長さ)を予め定めた長さKyに設定している。また、対象物Rの位置の測定演算を簡易化するために、設置点Dを頂点とし線分ABを底辺とする二等辺三角形の高さを線分ACの長さKyに合わせ、設置点Eを頂点とし線分ACを底辺とする二等辺三角形の高さを線分ABの長さKxに合わせている。
【0030】
次に各設置点A,B,C,D,Eにおいて、それぞれ較正用ポールPa,Pb,Pc,Pd,Peを基準面Gに対し直立させ(垂直に立て)、較正用ポールPd,Peには基準面Gから高さh0の位置にそれぞれ1個の較正用光体do,e0を設置し、較正用ポールPa,Pb,Pcのそれぞれには、基準面Gからの高さを違えて対をなす2個の較正用光体a1,a2;b1,b2;c1,c2をそれぞれ設置し、それらの対をなす2個の較正用光体a1,a2;b1,b2;c1,c2の間の中点の前記基準面Gからの高さh0を前記較正用ポールPd,Peのそれぞれの較正用光体do,e0の前記基準面Gからの高さh0と等しく設定している。
【0031】
そして前記三次元空間内に三次元座標軸(三次元直交座標軸)X,Y,Zが仮想設定される。点Oは三次元座標軸X,Y,Zの原点を示している。座標軸Xは線分ABと平行に、座標軸Yは線分ACと平行に、かつ座標軸X,Yが基準面Gに対し平行になるように設定され、座標軸Zは基準面Gに対し垂直で、線分ABからの距離がKy/2、線分ACからの距離がKx/2にある点O'(座標軸Zが基準面Gを通る点)を通るように設定されている。そして設置点A,B,C,D,Eおよび点O'の設定位置関係から、点O'と設置点E間の距離(三次元座標軸X,Y,Zの原点Oと較正用ポールPeの間の距離)はKx/2となり、点O'と設置点D間の距離(三次元座標軸X,Y,Zの原点Oと較正用ポールPdの間の距離)はKy/2になっている。
【0032】
10はX軸方向PSDカメラで、座標軸Xの方向に向けて設置されて対象物Rの動きを撮像する。X軸方向PSDカメラ10はレンズ11とPSD受光面12を備え、レンズ11の焦点距離Fxは既知である。そしてX軸方向PSDカメラ10は、そのレンズ11の光軸が座標軸Xと合致し、PSDカメラ10(レンズ11)は仮想の原点Oから距離Lxだけ離れて設置される。また20はY軸方向PSDカメラで、座標軸Yの方向に向けて対象物Rの動きを撮像する。Y軸方向PSDカメラ20はレンズ21とPSD受光面22を備え、レンズ21の焦点距離Fyは既知である。そしてY軸方向PSDカメラ20は、そのレンズ21の光軸が座標軸Yと合致し、PSDカメラ(レンズ21)は仮想の原点Oから距離Lyだけ離れた状態で設置されている。
【0033】
図1ならびに図2に示したように、設置点A,B,C,D,Eにそれぞれ較正用ポールPa(較正用光体a1,a2),較正用ポールPb(較正用光体b1,b2),較正用ポールPc(較正用光体c1,c2),較正用ポールPd(較正用光体d0),較正用ポールPe(較正用光体e0)を設定し、三次元座標軸X,Y,Zと原点Oを仮想設定して、X軸方向PSDカメラ10をX軸方向に向けて較正ポールPa,Pb,Pc,Pd,Peを捉えると、各較正用光体a1,a2,b1,b2,c1,c2,d0,e0からの光をPSD受光面12で受光して、図2に示すようにPSD受光面12のY軸・Z軸座標面上に、較正用光体a1,a2,b1,b2,c1,c2,d0,e0のそれぞれの三次元座標軸X,Y,Zにおけるy座標・z座標に対応する位置関係で撮像a1´,a2´,b1´,b2´,c1´,c2´,d0´,e0´が現れる。したがって、PSD受光面12上の撮像a1´,a2´,b1´,b2´,c1´,c2´,d0´,e0´の位置を見ながら、線分d0´ e0´がPSD受光面12上に定められた座標軸Yと合致し、PSD受光面12上の撮像e0´がPSD受光面12上に表された原点nと合致するようにX軸方向PSDカメラ10の位置と向きを調整することにより、X軸方向PSDカメラ10を所要の正確な位置に極めて簡単に設置できる。
【0034】
同様にY軸方向PSDカメラ20についても、Y軸方向PSDカメラ20をY軸方向に向けて較正ポールPa,Pb,Pc,Pd,Peを捉えると、各較正用光体a1,a2,b1,b2,c1,c2,d0,e0からの光をPSD受光面22で受光して、図2に示すように、PSD受光面22のX軸・Z軸座標面上に、較正用光体a1,a2,b1,b2,c1,c2,d0,e0のそれぞれの三次元座標軸X,Y,Zにおけるx座標・z座標に対応する位置関係で撮像a1´,a2´,b1´,b2´,c1´,c2´,d0´,e0´が現れる。したがってPSD受光面22上の撮像a1´,a2´,b1´,b2´,c1´,c2´,d0´,e0´の位置を見ながら線分d0´e0´がPSD受光面22上に定められた座標軸Xと合致し、PSD受光面22上の撮像e0´がPSD受光面22上に表された原点nと合致するようにY軸方向PSDカメラ20の位置と向きを調整することにより、Y軸方向PSDカメラ20を所要の正確な位置に極めて簡単に設定できる。
【0035】
しかし対象物の運動領域の三次元空間に仮想設定した三次元座標X,Y,Zの原点Oの位置を直接実測して確認することは現実問題として極めて困難であり、したがって原点OとPSDカメラ10の間の距離Lxならびに原点OとPSDカメラ20の間の距離Lyも実測は事実上できない。そこで三次元座標X,Y,Zの原点Oの位置と、距離Lxならびに距離Lyは、較正用光体a1,a2,b1,b2,c1,c2,d0,e0の既知の位置(較正用ポールPa,Pb,Pc,Pd,Peの既知の位置)とこれらに対するX軸方向PSDカメラ10およびY軸方向PSDカメラ20の関係位置を基に演算によって求める。すなわち図2に示すように、既知の位置に正確に設置された較正用光体a1,a2,b1,b2,c1,c2,d0,e0の撮像a1´,a2´,b1´,b2´,c1´,c2´,d0´,e0´がX方向PSDカメラ10のPSD受光面12上と、Y方向PSDカメラ20のPSD受光面22上に表示される。X方向PSDカメラ10のPSD受光面12上について見れば、撮像a1´と撮像c2´を結ぶ線分と、撮像a2´と撮像c1´を結ぶ線分の交点が三次元座標X,Y,Zの原点Oに対応するPSD受光面12上の原点nとなる。そして撮像a1´,a2´,c1´,c2´の座標を基に、撮像a1´と撮像c2´を結ぶ線分、撮像a2´と撮像c1´を結ぶ線分、およびその両線分の交点nを演算で求めて表示することができる。これらの演算処理はコンピュータWで行われる。同様にY方向PSDカメラ20のPSD受光面22上について見れば、撮像a1´と撮像b2´を結ぶ線分と、撮像a2´と撮像b1´を結ぶ線分の交点が三次元座標X,Y,Zの原点Oに対応するPSD受光面22上の原点nとなり、ここでも撮像a1´,a2´,b1´,b2´の座標を基に原点nの位置を演算してPSD受光面22上表示することができる。したがってX方向PSDカメラ10ならびにY方向PSDカメラ20の設定位置・角度を調整して、X方向PSDカメラ10においては撮像e0´を原点nと合致させ、Y方向PSDカメラ20においては撮像d0´を原点nと合致させてX方向PSDカメラ10ならびにY方向PSDカメラ20を設置すれば、X方向PSDカメラ10ならびにY方向PSDカメラ20を正しい位置・角度に正確に設置することができる。
【0036】
次に考察上、図2中に幾つかの点、点101(X方向PSDカメラのレンズ11の位置),点102(設置点A,Cの中点),点103(X方向PSDカメラ10の光軸すなわち三次元座標軸のX軸とX方向PSDカメラの受光面12の交点),点104(撮像c1´,撮像c2´のy座標位置),点201(Y方向PSDカメラのレンズ20の位置),点202(設置点A,Bの中点),点203(Y方向PSDカメラ20の光軸すなわち三次元座標軸のY軸とY方向PSDカメラの受光面22の交点),点204(撮像b1´,撮像b2´のx座標位置)を置いてみる。これらの点の関係位置から、点103,101,104からなる三角形と、点102,101,Cからなる三角形は互いに相似の三角形である。そして点101,103間の長さはレンズ11の焦点距離Fxで既知であり、点103,104間の長さはPSD受光面12上で測定可能であり、点102,C間の長さはKy/2に設定されて既知であることから、これらの知られた数値から、点101,102間の長さ(Lx−Kx/2)を簡単な演算で求めることができ、したがってX方向PSDカメラ10(レンズ11)と原点Oの間の距離はX方向PSDカメラ10を正しく設置したときに簡単な演算で算出できる。
【0037】
またY軸方向PSDカメラ20につても全く同様で、点203,201,204からなる三角形と、点202,201,Bからなる三角形は互いに相似の三角形で、レンズ21の焦点距離Fyは既知であり、点203,204間の長さはPSD受光面22上で測定可能であり、点202,B間の長さはKx/2に設定されて既知であることから、これらの知られた数値から、点201,202間の長さ(Ly−Ky/2)を簡単な演算で求めることができ、したがってY方向PSDカメラ20(レンズ21)と原点Oの間の距離はX方向PSDカメラ10を正しく設置したときに簡単な演算で算出できる。
【0038】
この状態において、座標軸X,Y,Zが仮想形成された空間で三次元運動する対象物Rの位置は、X軸方向PSDカメラ10とY軸方向PSDカメラ20で捉えられて、それぞれのPSD受光面12,22上に撮像r'として現れる。なお、三次元運動領域における三次元座標軸X,Y,Zに対する対象物Rのx座標,y座標,z座標をそれぞれRx ,Ry ,Rz で示し、PSD受光面12上の座標軸Y,ZならびにPSD受光面22上の座標軸X,Zに対する撮像r'のx座標,y座標,z座標をそれぞれr'x ,r'y ,r'z で示す
【0039】
一方見方を変えれば、PSD受光面12,22上に表された対象物の撮像r'がそれぞれ逆にレンズ11,21を通して運動空間の三次元座標軸X,Y,ZのY軸・Z軸座標面とX軸・Z軸座標面に拡大されて対象物Rの投影像が形成されると見ることができる。そしてX軸方向PSDカメラ10とY軸方向PSDカメラ20で捉えた対象物Rの見掛けの(上記投影像の)x座標,y座標,z座標をそれぞれrx ,ry ,rz で示す。ここでX軸方向PSDカメラ10の焦点距離Fxと原点Oまでの距離Lx、ならびにY軸方向PSDカメラ20の焦点距離Fyと原点Oまでの距離Lyが分かっているので、PSD受光面12,22上に表れた対象物Rの撮像r'の位置(座標r'x ,r'y ,r'z)を読み取って、前記Y軸・Z軸座標面とX軸・Z軸座標面のそれぞれにおける対象物Rの見掛けの座標rx ,ry ,rzを算出することができ、さらにその座標rx ,ry ,rzを基にして運動空間における三次元座標軸X,Y,Zに対する対象物Rの現場の真の位置を示す座標Rx ,Ry ,Rzを演算して算出することができる。
【0040】
先に図5でPSDの機能について記したところから、対象物Rの撮像r'の位置(二次元座標)とPSDカメラの出力電圧の関係は次式:(式1)(式2)(式3)で示される。
但し、r'x ,r'y ,r'z :対象物Rの撮像r'のx座標,y座標,z座標.
Vx :PSDカメラのX軸方向出力電圧.
Vy :PSDカメラのY軸方向出力電圧.
Vz :PSDカメラのZ軸方向出力電圧.
Jx ,Jy ,Jz :PSDカメラの固有の定数(X軸方向PSDカメラ10とY軸方向PSDカメラ20の特性によって定まる定数).
そして、PSDカメラの出力電圧Vx ,Vy ,Vz と座標r'x ,r'y ,r'z
を実測することにより、定数Jx ,Jy ,Jz の値が分かる。
【0041】
【数1】

Figure 0004449051
【0042】
また図2を参考にすれば明らかなように、校正用光体e0は運動空間の座標軸X上にあるので校正用光体e0自体の位置と、運動空間のX軸・Z軸座標面に対する校正用光体e0の前記投影像の位置は合致しており、校正用光体d0は運動空間の座標軸Y上にあるので校正用光体d0自体の位置と、運動空間のY軸・Z軸座標面に対する校正用光体d0の前記投影像の位置は合致している。したがって校正用光体e0の位置とその撮像e0´の位置の関係、ならびに校正用光体d0の位置とその撮像d0´の位置の関係は次式:(式4)ないし(式13)で示される。
但し、θex:Y軸方向PSDカメラ20から見た校正用光体e0のX軸方向角度.
θdy :X軸方向PSDカメラ10から見た校正用光体d0 のY軸方向角度.
e0x=e0´:校正用光体e0の撮像e0´のx座標(原点nからの長さ)
d0y=d0´:校正用光体d0の撮像d0´のy座標(原点nからの長さ)
【0043】
【数2】
Figure 0004449051
【0044】
そして運動空間の三次元座標軸X,Y,Zに対する較正用光体e0 のx座標(原点Oからの距離)が既知の値、Kx /2に設定されていることから、Y軸方向PSDカメラ20のPSD受光面22の上の撮像e0´のX軸方向長さ(x座標)e0x 、すなわちそのX軸方向長さ(x座標)e0x に対応するX軸方向出力電圧Vxを検知することにより、X軸方向出力電圧Vx の単位電圧当たりの対象物の現場のX座標の換算値(式8に示したKx /2Vx)が分かる。また、三次元座標軸X,Y,Zに対する較正用光体d0 のy座標(原点Oからの距離)が既知の値、Ky /2に設定されていることから、X軸方向PSDカメラ10のPSD受光面12の上の撮像d0´のY軸方向長さ(y座標)d0y 、すなわちそのY軸方向長さ(y座標)d0y に対応するY軸方向出力電圧Vyを検知することにより、Y軸方向出力電圧Vyの単位電圧当たりの対象物の現場のY座標の換算値(式13に示したKy /2Vy)が分かる。同様にしてPSDカメラのZ軸方向出力電圧 Vz の単位電圧当たりの対象物の現場のZ座標の換算値についても算出されて知ることができる。
【0045】
このようにX軸方向PSDカメラ10とY軸方向PSDカメラ20を関係付けて設置した後、X軸方向PSDカメラ10とY軸方向PSDカメラ20で対象物Rの動きを撮像しながら測定する。そしてその場合の撮像時系列のある時点T=tnにおける対象物Rのx座標Rx ,y座標Ry ,z座標Rz は、前記の式1ないし式13の関係と図2および図3に示すところから明らかなように、次式:(式14)ないし(式30)に基づいて演算し算出することができる。
但し、Fx :X軸方向PSDカメラ10のレンズ11の焦点距離.
Fy :Y軸方向PSDカメラ20のレンズ21の焦点距離.
Lx :X軸方向PSDカメラ10(レンズ11)と原点Oの間の距離.
Ly :Y軸方向PSDカメラ20(レンズ21)と原点Oの間の距離.
Mx ,My ,Mz :対象物Rの見掛けのx座標,y座標,z座標と
真のx座標,y座標,z座標とのそれぞれの差
θrx :Y軸方向PSDカメラ20から見た対象物RのX軸方向角度
θry :X軸方向PSDカメラ10から見た対象物RのY軸方向角度
θrz :X軸方向PSDカメラ10から見た対象物RのZ軸方向角度
【0046】
【数3】
Figure 0004449051
【0047】
ここで(式23)を(式18)に代入すると、
【0048】
【数4】
Figure 0004449051
【0049】
ここで(式18)を(式23)に代入すると、
【0050】
【数5】
Figure 0004449051
【0051】
【数6】
Figure 0004449051
【0052】
すなわち、対象物Rの各時点での位置(対象物Rのx座標Rx,y座標Ry,z座標Rz は、それぞれ(式25)、(式27)、(式30)で算出されるが、PSDカメラの焦点距離Fx ,Fx 、距離Lx ,Ly 、定数 Jx ,Jy ,Jz は既知であるから、PSDカメラの出力電圧Vx ,Vy ,Vz を計測することにより対象物Rの位置を測定することができ、その測定位置を時系列に連ねれば対象物の運動を測定することができる。
【0053】
Wはコンピュータで、PSDカメラの出力電圧Vx ,Vy ,Vz を入力する入力装置W1と、対象物Rのx座標Rx,y座標Ry,z座標Rz を求める(式25)、(式27)、(式30)の演算プログラムを備えた記憶装置W2 と、この演算プログラムでPSDカメラの出力電圧Vx ,Vy ,Vz を演算処理するCPU(W3) と、その演算結果を対象物Rの運動測定値として出力する出力装置W4からなる。そして対象物Rの動きを、2基のPSDカメラで捉えた撮像r’の位置を基にコンピュータWで前記数式に沿う演算をして対象物Rの位置を時系列的に算出し対象物Rの三次元運動を測定することができる。また対象物Rの運動範囲や運動測定データの使用目的によっては、演算数式をより単純化した近似式としてコンピュータWの演算処理を簡略化することもできる。
【0054】
図4は、この発明の他の実施例であるところの歯の動きを測定する三次元運動測定装置の機能説明用の平面図である。対象物Rが人体の一部であっても、その対象物Rが図4におけるように歯の場合、あるいは指先の動きなどを解析する場合には、対象物Rの運動範囲(運動空間)は極めて狭く極めて狭い視野の中で撮像することができる。したがって広い測定空間は必要でなく、むしろ対象物を近距離から撮像することが効果的である場合も多い。また機械的に固定された視野において三次元空間を得たい場合もある。図4の実施形態は、そのような対象物あるいは測定環境下で簡便に適用できる三次元運動測定方法と測定装置に関する。図4に示す方式は基本的には図1、図2に共通するところが多いが、図1、図2の方式で用いた較正用ポールPa ,Pb ,Pc ,Pd ,Pe のうち 較正用ポールPd ,Pe を省き、3本の較正用ポールPa ,Pb ,Pc のみを組み入れて用いると共に、2基のPSDカメラを予め設定位置調整してアームに装着し必要に応じて基準面も含めて汎用装置としてセットアップしたものである。
【0055】
すなわち図1、図2を参考に図4に示すように、位置検出用光体が付着された対象物Rの比較的狭い運動領域を含む三次元空間に配設される基準面41を設け、その三次元空間には対象物Rの位置を表すための三次元座標軸X,Y,Zが仮想形成され、基準面41上には直角三角形(頂点B,A,Cからなる直角三角形)を形成し、その直角三角形の直角頂点Aと他の2頂点B,Cにそれぞれ位置する設置点A,B,Cにそれぞれ着脱自在に直立させる3本の較正用ポールPa ,Pb ,Pc を設け、また既知の焦点距離Fyを有し較正用ポールPa および較正用ポールPbから等距離で且つ前記三次元座標軸X,Y,Zの原点Oから距離Lyをもって設置されるY軸方向PSDカメラ20と、既知の焦点距離Fxを有し較正用ポールPa および較正用ポールPcから等距離で且つ前記三次元座標軸X,Y,Zの原点Oから距離Lxをもって設置されるX軸方向PSDカメラ10を設けている。各較正用ポールPa ,Pb ,Pcのそれぞれには基準面41からの高さを違えて2個の対をなす較正用光体a1 ,a2 ;b1 ,b2 ;c1 ,c2 が装着されている。
【0056】
そして、X軸方向PSDカメラ10とY軸方向PSDカメラ20を数10cm離して且つ両者の光軸がX軸、Y軸として直交するように調整してアーム40に一体的にセットアップしたものである。また必要に応じて、基準面41もアーム40にX軸方向PSDカメラ10およびY軸方向PSDカメラ20と共に一体的にセットアップされる。アーム40は雲台を介してカメラ三脚上に据付けられ、歯などの小さな動きをする対象物Rの近くに設置される。またX軸方向PSDカメラ10とY軸方向PSDカメラ20は、点O,Aを通る線を基準に左右対称に矢印I方向に移動調節が可能である。そして図1および図2で示したところと同様に、X軸方向PSDカメラ10とY軸方向PSDカメラ20でそのPSD受光面12,22上に対象物Rの撮像r’を捉え、撮像r’の位置を基にコンピュータWで演算して対象物Rの動きを測定することができる。また、基準面41上の直角三角形の角に位置する設置点A,B,CとX軸方向PSDカメラ10ならびにY軸方向PSDカメラ20の基本的な相対関係位置は、それらの全体が占めるエリアが狭いことから、事前に正確に実測して設定している。なお、X軸方向PSDカメラ10、Y軸方向PSDカメラ20、コンピュータW、鏡30などの作用ならびには、前記の図1および図2に示したものと同じである。このように図4に示す三次元運動測定装置は、基準面、較正用ポール、PSDカメラからなる測定主要部が予めコンパクトに纏められているので、汎用性が高く測定現場に容易に持ち込んで簡単に設置して簡便に測定操作することができる。
【0057】
【発明の効果】
上記の実施例からも明らかなように、この発明による物体の3次元運動の測定方法およびその測定装置は、2基のPSDカメラを用いてPSD受光面上に捉えた対象物のスポット画像の位置を基に対象物の運動位置を算出するもので、物体の3次元の動きをその物体の撮像の形状を画像処理して求めるものではないので、演算処理に関わる情報量と情報処理量は極めて少なくて済み、一方PSDによる発光体(対象物)の位置検出応答速度は極めて早いことから、物体の高速運動に対してもその運動を迅速に測定することができる。また5本の較正用ポールを設置することにより、PSDカメラの受光面に捉えた較正用ポールの較正用光体の撮像を見ながら容易に2基のPSDカメラを所要の位置に正確に設置することができる。
【0058】
また、基準面とその基準面上の較正用ポール設置点と、2基のPSDカメラの相対関係位置を予めコンパクトにセットアップすることにより、汎用性が高く対象物の近くに手軽に設置し得る三次元運動測定装置を較正することができる。
【0059】
さらに、鏡を付加設置し、その鏡を介してPSDカメラが対象物を撮像するようにすることにより、一旦設置したPSDカメラの設定状態を変えることなく、対象物の動きを異なる方向から捉えて測定することができ、また対象物とPSDカメラの間に十分な距離が取れない測定環境下においても、鏡を介することにより、PSDカメラの視野を等価的に拡大して、対象物のより広範な三次元運動を測定できるようになる。
【図面の簡単な説明】
【図1】この発明の一実施例を示す物体の三次元運動測定装置の基本構成を示す斜視図。
【図2】同装置の機能説明用の平面図。
【図3】同装置の機能説明用の立面図。
【図4】この発明の他の実施例を示す三次元運動測定装置の機能説明用の平面図。
【図5】PSD(半導***置検出素子)の基本構成を示す斜視図。
【符号の説明】
10 :X軸方向PSDカメラ
11 :X軸方向PSDカメラのレンズ
12 :X軸方向PSDカメラのPSD受光面
20 :Y軸方向PSDカメラ
21 :Y軸方向PSDカメラのレンズ
22 :Y軸方向PSDカメラのPSD受光面
30 :鏡
40 :アーム
41 :基準面
A,B,C,D,E :設置点
a1 ,a2 ,b1 ,b2 ,c1 ,c2 ,d0 ,e0 :較正用光体
a1´ ,a2´,b1´,b2´,c1´,c2´,d0´,e0´:較正用光体の撮像
G :基準面
H :人体
n :PSD受光面12,22上の座標軸の原点
O :三次元座標軸X,Y,Zの原点
O´:点(座標軸Zが基準面Gを通る点)
Pa ,Pb ,Pc ,Pd ,Pe :較正用ポール
R :対象物(位置検出用光体)
Rx ,Ry ,Rz :対象物Rのx座標,y座標,z座標
rx ,ry ,rz :対象物Rの見掛けのx座標,y座標,z座標
r'x ,r'y ,r'z :対象物Rの撮像r'のx座標,y座標,z座標
W :コンピュータ
W1 :入力装置
W2 :記憶装置
W3 :CPU
W4 :出力装置
X,Y,Z :三次元座標軸(三次元直交座標軸)
Fx :X軸方向PSDカメラ10のレンズ11の焦点距離
Fy :Y軸方向PSDカメラ20のレンズ21の焦点距離
h0 :高さ
Jx ,Jy ,Jx :定数
Lx :X軸方向PSDカメラ10(レンズ11)と原点Oの間の距離
Ly :Y軸方向PSDカメラ20(レンズ21)と原点Oの間の距離
e0x :較正用光体e0の撮像e0´のx座標(原点nからの長さ)
d0y :較正用光体d0の撮像d0´のy座標(原点nからの長さ)
Kx :設置点A,B間の距離(線分ABの長さ)
Ky :設置点A,C間の距離(線分ACの長さ)
Mx ,My ,Mz :対象物Rの見掛けのx座標,y座標,z座標と真のx座標,y座標,z座標とのそれぞれの差
Vx :PSDカメラのX軸方向出力電圧
Vy :PSDカメラのY軸方向出力電圧
Vz :PSDカメラのZ軸方向出力電圧
θex :Y軸方向PSDカメラ20から見た校正用光体e0 のX軸方向角度
θdy :X軸方向PSDカメラ10から見た校正用光体d0 のY軸方向角度
θrx :Y軸方向PSDカメラ20から見た対象物RのX軸方向角度
θry :X軸方向PSDカメラ10から見た対象物RのY軸方向角度
θrz :X軸方向PSDカメラ10から見た対象物RのZ軸方向角度[0001]
BACKGROUND OF THE INVENTION
The present invention observes the movement of various objects or even a part of the object, for example, the actual state of three-dimensional movement in the space of each part of the body, using a semiconductor position detector (PSD). The present invention relates to a method and a measuring apparatus for observing a three-dimensional motion of an object by the method.
[0002]
[Prior art]
Three-dimensional movements of various objects (hereinafter referred to as objects) such as back and forth, left and right, and up and down movements of each part of the body are represented as temporal changes in the three-dimensional spatial coordinates (x, y, z) of the objects. As a means for capturing, a DLT (Direct Linear Transformation) method is often used in which a plurality of cameras are used to photograph the object from different directions, and the captured image is processed to measure the dynamic position of the object. However, in a measurement method / apparatus such as the DLT method that measures the dynamic position of an object by imaging image processing, the amount of image information required for measurement and the amount of information processing thereof are extremely large. In order to shorten the time required for measurement, an advanced image processing circuit is required.
[0003]
On the other hand, PSD (Position Sensitive Detector) is known as a sensor that electrically detects the position of an object in space as two-dimensional coordinates viewed from one direction. A PSD is a light sensor (semiconductor position detection element) that can receive light from an object and detect the position of the object, and basically has a PIN structure having a junction surface like a photodiode. It is a semiconductor.
[0004]
That is, as shown in FIG. 5, the PSD has an X-axis direction electrode P on the opposite edge of each of the P layer and the N layer.x1, Px2And Z-axis direction electrode Pz1, Pz2The X axis and the Z axis correspond to two-dimensional orthogonal coordinate axes. Then, when spot-like light emitted from the object Q hits the light receiving point Q ′ on the light receiving surface of the PSD, charges are generated there, and the charges generated in the P layer are X-axis direction electrodes Px1, Px2Current Ix1, Ix2The charge generated in the N layer is Z-axis direction electrode Pz1, Pz2Current Iz1, Iz2And divert. And X-axis direction electrode Px1, Px2Current I shunted intox1, Ix2Z-axis direction electrode Pz1, Pz2Current I shunted intoz1, Iz2The size of each electrode Px1, Px2, Pz1, Pz2Is inversely proportional to the distance from the light receiving point Q ′.
[0005]
By the way, the X-axis direction electrode Px1, Px2The distance between Sx Z-axis direction electrode Pz1, Pz2The distance between Sz , The position of the object Q, ie the light receiving point Q ′x , QzIx1= Ixo(1/2 + Qx/ Sx), Ix2= Ix0(1/2-Qx/ Sx), Iz1= Iz0(1/2-Qz/ Sz), Iz2= Iz0(1/2 + Qz/ Sz), Ix0= Ix1+ Ix2, Iz0= Iz1+ Iz2It becomes. Therefore these currents Ix1, Ix2, Iz1, Iz2PSD output voltage V corresponding toxAnd Z-axis output voltage VzBy detecting the position of the object Q, the two-dimensional coordinate Qx , QzCan be detected from the viewpoint.
[0006]
Similarly, if the X-axis is replaced with the Y-axis and the two-dimensional PSD regarding the Y-axis and the Z-axis is seen, the illustration is omitted, but the X-axis direction electrode Px1, Px2Y-axis direction electrode PY1, PY2Current Ix1, Ix2Is the current Iy1, Iy2The coordinate QxIs the coordinate QyAre replaced by Y-axis direction electrode P.Y1, PY2The distance between SY Z-axis direction electrode Pz1, Pz2The distance between Sz , The position of the object Q, that is, the coordinates of the light receiving point Q 'y , QzIY1= IYo(1/2 + Qy / SY), IY2= IY0(1/2-Qy/ SY), Iz1= Iz0(1/2-Qz/ Sz), Iz2= Iz0(1/2 + Qz/ Sz), IY0= IY1+ IY2, Iz0= Iz1+ Iz2It becomes. Therefore these currents IY1, IY2, Iz1, Iz2PSD output voltage V corresponding toyAnd Z-axis output voltage VzBy detecting the position of the object Q, the two-dimensional coordinate Qy , QzCan be detected from the viewpoint. From this, using the PSD for the X and Z axes and the PSD for the Y and Z axes, the object Q coordinate Q from the X axis direction and the Y axis direction of the three-dimensional coordinate axes X, Y, Z orthogonal to each other at the same timex, Qy, Qz By detecting, the three-dimensional motion of the object Q can be observed and measured.
[0007]
[Problems to be solved by the invention]
The present invention provides a system for measuring a three-dimensional motion of an object using two known PSD cameras that can detect light from the object with a PSD on a two-dimensional surface and immediately detect the two-dimensional coordinates of the object. This makes it possible to measure the three-dimensional motion of an object very easily and quickly without the need for an advanced image processing device or the like as compared with the conventional three-dimensional motion measurement system of the DLT method. is there. Then, even if a given measurement site is a place where it is difficult to set a measurement environment with the conventional measurement means, an attempt is made to construct a three-dimensional motion measurement system that can be applied to various measurement sites.
[0008]
Further, the present invention is intended to construct a three-dimensional motion measurement system that can easily position and install two PSD cameras essential for measurement while accurately observing the PSD light receiving screen at a required position. .
[0009]
In addition, the present invention provides a measurement condition in advance so that the movement of an object that moves three-dimensionally in a relatively narrow space, such as the movement of a human tooth or fingertip, can be easily measured from a measurement position relatively close to the object. It is intended to constitute measuring means in which a PSD camera is installed at a position that satisfies the above.
[0010]
In addition, the present invention equivalently expands the field of view of the PSD camera in a measurement environment where a sufficient distance between the object and the PSD camera cannot be obtained in a limited measurement space, and a wider three-dimensional range of the object. In addition to being able to measure motion, it is intended to measure the motion of an object from different viewpoints without changing the setting state of the PSD camera once installed.
[0011]
Furthermore, the present invention is intended to simplify the calculation of three-dimensional coordinates representing the position of an object that moves in a three-dimensional space.
[0012]
[Means for Solving the Problems]
In order to quickly and easily measure the three-dimensional movement of an object using two PSD cameras, the present invention sets a reference plane in a three-dimensional space including a movement area of the three-dimensional movement object, At least three calibration poles P on this reference planea , Pb , Pc The calibration pole P on this reference planea , Pb , PcThe installation points A, B, and C of the line segment AB and line segment AC are known lengths K, respectively.x , KyAnd set to be orthogonal at installation point A, and calibration pole Pa , Pb , PcTwo calibration light bodies a that are paired with different heights from the reference plane.1 , A2 B1 , B2 C1 , C2 And the height h from the reference plane at the midpoint between the two calibration light bodies that are paired with each other0 Are set equal and focal length FyIs known and the calibration pole Pa And PbPSD camera and focal length F placed equidistant fromxIs known and the calibration pole Pa And PcTwo PSD cameras of the PSD camera placed equidistant from each other are placed in different coordinate axis directions among the three-dimensional coordinate axes X, Y, Z of the three-dimensional space, and the calibration pole Pa, Pb , PcBy imaging the calibration light body on the PSD light receiving surfaces of two PSD cameras, two two-dimensional coordinate axes corresponding to two-dimensional coordinate axes in different directions constituting the three-dimensional coordinate axes X, Y, Z are obtained. Each PSD camera is assigned and calibrated on the PSD light-receiving surface, the optical axis of each PSD camera is aligned with the origin of the three-dimensional coordinate axes X, Y, and Z, and each PSD camera is distanced L from the origin.y , Lx Then, the time-series position data of the object obtained by imaging the object position detection light body simultaneously and time-series with the two PSD cameras are set as the three-dimensional coordinate axes X, It is converted into time series coordinate data for Y and Z, and the three-dimensional motion of the object is measured.
[0013]
As a measuring device used in this three-dimensional motion measurement method, the present invention provides a reference plane set in a three-dimensional space in which three-dimensional coordinate axes X, Y, and Z for representing the position of a three-dimensionally moving object are formed. At least 3 calibration poles P uprighta , Pb , Pc And each calibration pole Pa , Pb , PcTwo pairs of calibration light bodies a that are installed at different heights from the reference plane.1 , A2 B1 , B2 C1 , C2 And the known focal length FyThe calibration pole Pa And calibration pole Pb Distance L from the origin of the three-dimensional coordinate axes X, Y, Zy A PSD camera installed across the camera and a known focal length FxThe calibration pole Pa And calibration pole Pc Two PSD cameras, which are equidistant from each other and spaced from the origin of the three-dimensional coordinate axes X, Y, Z by a distance Lx, and the two PSD cameras simultaneously and in time series The main part of the measuring apparatus is composed of a computer that converts the time-series position data of the object obtained by imaging the position detection light body attached to to the time-series coordinate data for the three-dimensional coordinate axes X, Y, Z. And each calibration pole Pa , Pb , Pc , The line segment AB and the line segment AC are respectively known lengths K.x , KyAnd two calibration light bodies a which are set so as to be orthogonal to each other at the installation point A and make a pair.1 , A2 B1 , B2 C1 , C2Height of each midpoint from the reference plane h0 Are set equal.
[0014]
Further, in order to enable the two PSD cameras necessary for measuring the three-dimensional motion of the object to be accurately positioned and installed at a required position while looking at the PSD light receiving screen, the present invention provides: A reference plane is set in a three-dimensional space including a motion area of a three-dimensional moving object, and five calibration pole installation points A, B, C, D, E are provided on the reference plane. Regarding the positional relationship between A, B, C, D, and E, the installation points A, B, and C are arranged so that the line segment AB and the line segment AC are orthogonal to each other at the installation point A, and the line segment AB is the bottom. An installation point D is arranged at the apex of the equilateral triangle, an installation point E is arranged at the apex of the isosceles triangle whose base is the line segment AC, and the line segment AB and the line segment AC are set to a known length K.x , KyAnd each of these installation points A, B, C, D, E has a calibration pole Pa , Pb , Pc , Pd , Pe 5 calibration poles P on the reference planea , Pb , Pc , Pd , PeThe pole P for calibrationd , Pe One calibration light d for each0 , E0Install the calibration pole Pa , Pb , PcTwo calibration light bodies a that are paired with different heights from the reference plane.1 , A2 B1 , B2 C1 , C2 , And two calibration light beams a1 , A2 B1 , B2 C1 , C2The height h from the reference plane of the midpoint between0 The calibration for pole Pd , Pe Each calibration light body d0 , E0 The height h from the reference plane0 Set equal to the focal length FyIs known and the calibration pole Pa And PbPSD camera placed equidistant from the camera and focal length FxIs known and the calibration pole Pa And PcTwo PSD cameras, which are placed equidistant from each other, are installed in two other coordinate axis directions (for example, the X-axis direction and the Y-axis direction) among the three-dimensional coordinate axes X, Y, and Z in the three-dimensional space. Calibration pole Pa , Pb , Pc , Pd , Pe Upper calibration light a1 , A2 B1 , B2 C1 , C2  D0 , E0 The two-dimensional coordinate axes corresponding to the two-dimensional coordinate axes in the different directions constituting the three-dimensional coordinate axes X, Y, Z are received by the PSD light receiving surfaces of the two PSD cameras. The calibration is set by sharing them on the surface, the optical axes of the two PSD cameras are aligned with the origins of the three-dimensional coordinate axes X, Y, and Z, and each PSD camera is set at a distance L from the origin.y , LxThen, the time-series position data of the object obtained by imaging the object position detecting light body simultaneously and time-series with two PSD cameras are set as the three-dimensional coordinate axes X, Y, It is converted into time-series coordinate data for Z, and the three-dimensional motion of the object is measured.
[0015]
As a measuring device that can easily position two PSD cameras necessary for measurement accurately at a required position while looking at the PSD light receiving screen, the present invention includes a motion region of a three-dimensionally moving object. Each of the five installation points A, B, C, D, E arranged on the reference plane set in the three-dimensional space in which the three-dimensional coordinate axes X, Y, Z representing the position of the object are formed is set upright. 5 calibration poles Pa , Pb , Pc , Pd , Pe And its calibration pole Pd , Pe One calibration light d installed in each0 , E0 And the calibration pole Pa , Pb , PcTwo pairs of calibration light bodies a that are installed at different heights from the reference plane.1 , A2 B1 , B2 C1 , C2 And the known focal length FyThe calibration pole Pa And calibration pole PbAnd the distance L from the origin of the three-dimensional coordinate axes X, Y, Zy A PSD camera installed across the camera and a known focal length FxThe calibration pole Pa And calibration pole PcAnd the distance L from the origin of the three-dimensional coordinate axes X, Y, Zx Time series of the object obtained by imaging the two PSD cameras of the PSD camera set apart from each other and the position detection light body simultaneously and in time series by the two PSD cameras A computer for converting the position data into time-series coordinate data for the three-dimensional coordinate axes X, Y, and Z constitutes a main part of the measuring device, and the five calibration poles Pa , Pb , Pc , Pd , Pe As for the positional relationship between the installation points A, B, C, D, and E, the line segment AB and the line segment AC are each of a known length Kx , Ky Is set to be orthogonal at the installation point A, the installation point D is arranged at the apex of the isosceles triangle with the line segment AB as the base, and the installation point E is set at the apex of the isosceles triangle with the line segment AC as the base. Two calibration light bodies a arranged and paired with each other1 , A2 B1 , B2 C1 , C2Height h of each midpoint from the reference plane0 The calibration pole Pd , Pe Each calibration light body d0 , E0 The height h from the reference plane0 Set equal to.
[0016]
In addition, in order to easily measure an object moving three-dimensionally in a relatively narrow space from a close position, the present invention includes a three-dimensional coordinate axis X, which represents the position of the object including the movement region of the object moving three-dimensionally. A reference plane including a right triangle is set in a three-dimensional space in which Y and Z are set, and the right vertex A and the other two vertices B and C of the right triangle are set as calibration calibration points A, B, C is a calibration pole P at each of these installation points A, B, C.a , Pb , Pc 3 calibration poles P on the reference planea , Pb , Pc , And the line segment AB and line segment AC of the right triangle are of known length Kx , KySet the calibration pole P toa , Pb , PcTwo calibration light bodies a that are paired with different heights from the reference plane.1 , A2 B1 , B2 C1 , C2 And the height h from the reference plane at the midpoint between the two calibration light bodies that are paired with each other0 Set equal and known focal length FyEach of the two calibration poles P on the one line segment ABa And PbAnd the distance L from the origin of the three-dimensional coordinate axes X, Y, ZyWith a PSD camera and a known focal length FxEach of the two calibration poles P on the other line ACa And PcTwo PSD cameras, which are equidistant from each other and spaced apart from the origin of the three-dimensional coordinate axes X, Y, Z by a distance Lx, are set up with the reference plane in advance, and the object is for position detection. Install the light body and the calibration pole Pa , Pb , PcThe above calibration light bodies are imaged on the PSD light receiving surfaces of the two PSD cameras, so that the two-dimensional coordinate axes corresponding to the three-dimensional coordinate axes X, Y, and Z are calibrated on the PSD light receiving surfaces of the PSD cameras. The time series position data of the object obtained by imaging the object position detecting light body simultaneously and time series with the two PSD cameras is obtained with respect to the three-dimensional coordinate axes X, Y, and Z. The three-dimensional motion of the object is measured by converting into series coordinate data.
[0017]
As a measuring apparatus used in the above-described measuring method, the present invention has three-dimensional coordinate axes X, Y, and Z representing the position of the object including the motion region of the object that moves three-dimensionally with the position detection light body. A reference plane including a right triangle set in the three-dimensional space to be formed, and upright at the installation points A, B, and C respectively located at the right vertex A and the other two vertices B and C of the right triangle 3 Book calibration pole Pa , Pb , Pc And each of these calibration poles Pa , Pb , PcTwo pairs of calibration light bodies a that are installed at different heights from the reference plane.1 , A2 B1 , B2 C1 , C2 And the known focal length FyThe calibration pole Pa And calibration pole PbAnd the distance L from the origin of the three-dimensional coordinate axes X, Y, ZyA PSD camera installed across the camera and a known focal length FxThe calibration pole Pa And calibration pole PcSet up two PSD cameras, which are equidistant from each other and spaced apart from the origin of the three-dimensional coordinate axes X, Y, Z by a distance Lx. A computer for converting and calculating time-series position data of the object obtained by imaging the object position detection light body in time series into time-series coordinate data for the three-dimensional coordinate axes X, Y, Z; A line segment AB and a line segment AC of the right triangle are set to a known length K.x , Ky And the two calibration light bodies a1 , A2 B1 , B2 C1 , C2Height h of each midpoint from the reference plane0 Are set to be equal to each other, and a three-dimensional motion measuring apparatus which can be easily moved and installed as necessary is configured.
[0018]
In addition, in order to be able to measure a broader three-dimensional motion of an object by equivalently expanding the field of view of the PSD camera even in a measurement environment where the distance between the object and the FSD camera cannot be sufficiently secured, In addition, in order to measure the movement of an object from different viewpoints / angles without changing the setting state of the PSD camera once installed, the present invention detects the position installed on the object that moves three-dimensionally in a preset movement area. A mirror for projecting a light object is arranged, and the position detection light body of the object reflected on the mirror is imaged with two PSD cameras, and the time-series position data of the object obtained by three-dimensional coordinate axes X, Y , Z is converted into time series coordinate data, and the three-dimensional motion of the object is measured.
[0019]
Furthermore, in order to simplify the calculation of the three-dimensional coordinates representing the position of the object that moves three-dimensionally, the present invention provides a method for measuring the length K between the installation points A and B in the above-described measurement method or apparatus.x And length K between installation points A and Cy Are set equal, and the respective distances L between the origins of the three-dimensional coordinate axes X, Y, and Z and the two PSD cameras are set.y , Lx Are set equal and each focal length F of two PSD camerasy , Fx Are set equal to each other, and the height of an isosceles triangle whose base is the line segment AB, the height of an isosceles triangle whose base is the line segment AC, and the length K between the installation points A and Bx And length K between installation points A and Cy And are set equal.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
In one basic embodiment of the present invention, a reference plane is set in a three-dimensional space including a motion region of a three-dimensional moving object, and at least three calibration poles P are provided on the reference plane.a , Pb , Pc The calibration pole Pa , Pb , PcThe installation points A, B, and C on the reference plane of the line segment AB and line segment AC are known lengths K, respectively.x , KyAnd set to be orthogonal at the installation point A, and the calibration pole Pa , Pb , PcTwo calibration light bodies a that are paired with different heights from the reference plane.1 , A2 B1, B2 C1 , C2 And the height h from the reference plane at the midpoint between the two calibration light bodies that are paired with each other0 Are set equal and focal length FyIs known and each of the two calibration poles P on the one line segment ABa And PbPSD camera and focal length F placed equidistant fromxEach of the two calibration poles P on the other line segment ACa And PcTwo PSD cameras that are placed equidistant from each other are installed, and the calibration pole Pa , Pb , PcBy imaging the calibration light body on the PSD light receiving surfaces of the two PSD cameras, the three-dimensional coordinate axes X and Y in the three-dimensional space for representing the position of the object in the three-dimensional space. , Z is calibrated and set on the PSD light-receiving surface of each PSD camera, the optical axis of each PSD camera is aligned with the origin of the three-dimensional coordinate axes X, Y, and Z, and each PSD camera is Distance L from the originy , Lx The object obtained by setting a position detection light body on the object and imaging the position detection light body of the object simultaneously and in time series with the two PSD cameras This is a method for measuring the three-dimensional motion of an object by detecting the movement of the object by converting time-series position data of the object into time-series coordinate data with respect to the three-dimensional coordinate axes X, Y, and Z.
[0021]
In an embodiment of the present invention, a reference plane including a right triangle is provided in a three-dimensional space in which a three-dimensional coordinate axis X, Y, Z representing the position of the target object including the motion region of the target object moving three-dimensionally is set. The right angle vertex A and the other two vertices B and C of the right triangle are set as the calibration pole installation points A, B and C, respectively, and the calibration poles P are connected to the installation points A, B and C, respectively.a , Pb , Pc 3 calibration poles P on the reference planea , Pb , Pc , And the line segment AB and line segment AC of the right triangle are of known length Kx , KySet the calibration pole P toa , Pb , PcTwo calibration light bodies a that are paired with different heights from the reference plane.1 , A2 B1 , B2 C1 , C2 And the height h from the reference plane at the midpoint between the two calibration light bodies that are paired with each other0 Set equal and known focal length FyEach of the two calibration poles P on the one line segment ABa And PbAnd the distance L from the origin of the three-dimensional coordinate axes X, Y, ZyWith a PSD camera and a known focal length FxEach of the two calibration poles P on the other line ACa And PcTwo PSD cameras, which are equidistant from each other and spaced apart from the origin of the three-dimensional coordinate axes X, Y, Z by a distance Lx, are set up with the reference plane in advance, and the object is for position detection. Install the light body and the calibration pole Pa , Pb , PcThe above calibration light bodies are imaged on the PSD light receiving surfaces of the two PSD cameras, so that the two-dimensional coordinate axes corresponding to the three-dimensional coordinate axes X, Y, and Z are calibrated on the PSD light receiving surfaces of the PSD cameras. The time series position data of the object obtained by imaging the object position detecting light body simultaneously and time series with the two PSD cameras is obtained with respect to the three-dimensional coordinate axes X, Y, and Z. This is a method for measuring the three-dimensional motion of an object, which is converted into series coordinate data and detects the motion of the object.
[0022]
In another embodiment of the present invention, a reference plane is set in a three-dimensional space including a motion region of a three-dimensional moving object, and five calibration pole installation points A, B, C are provided on the reference plane. , D, E are provided, and the installation points A, B, C are arranged so that the line segment AB and the line segment AC are orthogonal to the installation point A with respect to the positional relationship between the installation points A, B, C, D, E. An installation point D is arranged at the apex of the isosceles triangle whose base is the line segment AB, and an installation point E is arranged at the apex of the isosceles triangle whose base is the line segment AC. Minute AC is known length Kx , KyAnd each of these installation points A, B, C, D, E has a calibration pole Pa , Pb, Pc , Pd , Pe 5 calibration poles P on the reference planea , Pb , Pc, Pd , Pe Let the calibration pole P stand uprightd , Pe One calibration light d for each0 , E0The calibration pole Pa , Pb , PcTwo calibration light bodies a that are paired with different heights from the reference plane.1 , A2 B1 , B2 C1 , C2 , And two calibration light beams a1 , A2 B1 , B2 C1 , C2The height h from the reference plane of the midpoint between0 The calibration pole Pd , Pe Each calibration light body d0 , E0 The height h from the reference plane0 Set equal to the focal length FyIs known and each of the two calibration poles P on the one line segment ABa And PbPSD camera placed equidistant from the camera and focal length FxEach of the two calibration poles P on the other line segment ACa And PcTwo PSD cameras, which are equidistant from the camera, are installed, and the calibration pole Pa , Pb , Pc , Pd , Pe Upper calibration light a1, A2 B1 , B2 C1 , C2  D0 , E0 Are imaged on the PSD light-receiving surfaces of the two PSD cameras, and the two corresponding to the three-dimensional coordinate axes X, Y, Z in the three-dimensional space for representing the position of the object in the three-dimensional space. The dimensional coordinate axes are calibrated and set on the PSD light-receiving surface of each PSD camera, the optical axes of the PSD cameras are aligned with the origins of the three-dimensional coordinate axes X, Y, and Z, and each PSD camera is a distance L from the origin.y , LxThe object obtained by setting a position detection light body on the object and imaging the position detection light body of the object simultaneously and in time series by the two PSD cameras This is a method for measuring the three-dimensional motion of an object by detecting the movement of the object by converting time-series position data of the object into time-series coordinate data with respect to the three-dimensional coordinate axes X, Y, and Z.
[0023]
In another basic embodiment of the present invention, three-dimensional coordinate axes X, Y, and Z representing the position of the object including the motion region of the object that moves three-dimensionally by installing the position detection light body are formed. And at least three calibration poles P, which stand upright at at least three installation points A, B, C arranged on a reference plane set in a three-dimensional space.a , Pb , Pc And each of these calibration poles Pa , Pb , PcTwo pairs of calibration light bodies a that are installed at different heights from the reference plane.1 , A2 B1 , B2 C1 , C2 And the known focal length FyThe calibration pole Pa And calibration pole Pb And the distance L from the origin of the three-dimensional coordinate axes X, Y, Zy A PSD camera installed across the camera and a known focal length FxThe calibration pole Pa And calibration pole Pc The two PSD cameras of the PSD camera that are equidistant from each other and spaced from the origin of the three-dimensional coordinate axes X, Y, and Z by the distance Lx and the two PSD cameras simultaneously and in time series A computer for converting the time-series position data of the object obtained by imaging the position-detecting light body of the object into time-series coordinate data for the three-dimensional coordinate axes X, Y, Z; For B and C, line segment AB and line segment AC are known lengths K, respectively.x , KyAnd two calibration light bodies a which are set so as to be orthogonal to each other at the installation point A and make a pair.1 , A2 B1 , B2 C1 , C2Height h of each midpoint from the reference plane0 Is a three-dimensional motion measuring apparatus for an object with equality set.
[0024]
In another embodiment of the present invention, a three-dimensional coordinate axis X, Y, Z is formed that includes a motion region of a target object that is three-dimensionally moved by installing a position detection light body and that represents the position of the target object. A reference plane including a right triangle set in space, and three calibration poles standing upright at installation points A, B, and C respectively located at the right vertex A and the other two vertices B and C of the right triangle Pa , Pb , Pc And each of these calibration poles Pa , Pb , PcTwo pairs of calibration light bodies a that are installed at different heights from the reference plane.1 , A2 B1 , B2 C1 , C2 And the known focal length FyThe calibration pole Pa And calibration pole PbAnd the distance L from the origin of the three-dimensional coordinate axes X, Y, ZyA PSD camera installed across the camera and a known focal length FxThe calibration pole Pa And calibration pole PcAnd the distance L from the origin of the three-dimensional coordinate axes X, Y, ZxThe two PSD cameras of the PSD cameras installed at a distance from each other are set up integrally, and the two PSD cameras are used to simultaneously and time-sequentially image the position detection light body. A computer that converts the time-series position data of the object into time-series coordinate data for the three-dimensional coordinate axes X, Y, and Z, and the line segment AB and the line segment AC of the right triangle are known lengths K;x , Ky And the two calibration light bodies a1 , A2 B1 , B2 C1 , C2Height h of each midpoint from the reference plane0 Is a three-dimensional motion measuring apparatus for an object with equality set.
[0025]
In another embodiment of the present invention, a three-dimensional coordinate axis X, Y, Z is formed that includes a motion region of a target object that is three-dimensionally moved by installing a position detection light body and that represents the position of the target object. Five calibration poles P standing upright at five installation points A, B, C, D, E arranged on a reference plane set in the spacea , Pb , Pc , Pd , Pe And the calibration pole Pd , Pe One calibration light d installed in each0 , E0 And the calibration pole Pa , Pb , PcTwo pairs of calibration light bodies a that are installed at different heights from the reference plane.1 , A2 B1 , B2 C1 , C2 And the known focal length FyThe calibration pole Pa And calibration pole PbAnd the distance L from the origin of the three-dimensional coordinate axes X, Y, Zy A PSD camera installed across the camera and a known focal length FxThe calibration pole Pa And calibration pole PcAnd the distance L from the origin of the three-dimensional coordinate axes X, Y, Zx Two PSD cameras installed at a distance from each other, and the object obtained by imaging the position detecting light body of the object simultaneously and in time series with the two PSD cameras. A computer for converting the sequence position data into time-series coordinate data for the three-dimensional coordinate axes X, Y, and Z, and regarding the positional relationship between the installation points A, B, C, D, and E, the line segment AB and the line segment AC; Each has a known length Kx , Ky Is set to be orthogonal at the installation point A, the installation point D is arranged at the apex of the isosceles triangle with the line segment AB as the base, and the installation point E is set at the apex of the isosceles triangle with the line segment AC as the base. Two calibration light bodies a arranged and paired with each other1 , A2 B1 , B2 C1 , C2Height h of each midpoint from the reference plane0 The calibration pole Pd , Pe Each calibration light body d0 , E0 The height h from the reference plane0 Is a device for measuring the three-dimensional motion of an object set equal to.
[0026]
According to another basic embodiment of the present invention, a mirror that reflects a position detecting light body installed on an object that moves three-dimensionally in a predetermined motion region is provided, and the position of the object reflected in the mirror is arranged. An object for detecting the movement of the object by converting the time-series position data of the object obtained by imaging the detection light body with two PSD cameras into the time-series coordinate data for the three-dimensional coordinate axes X, Y, and Z 3D motion measuring method and 3D motion measuring apparatus.
[0027]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 show an embodiment of a three-dimensional motion measuring apparatus for an object according to the present invention. The motion state of a specific part of a human body that moves back and forth, left and right, and up and down on the floor surface is represented by the tertiary of the specific part. It is an example of the three-dimensional motion measuring apparatus observed as original coordinate change. 1 is a perspective view showing the basic configuration of the apparatus, FIG. 2 is a plan view for explaining the function of the apparatus, and FIG. 3 is an elevation view for explaining the function of the apparatus.
[0028]
1 to 3, H is a human body that moves three-dimensionally back and forth, left and right, and up and down in a three-dimensional space, and a part of the human body H is an object to be measured, and a position detecting light body is attached to the object. R is installed. Accordingly, R is substantially an object. The position detection light body R is a light reflector such as an LED (Light Emitting Diode) or the like, or a light reflector that reflects light applied to an object.
[0029]
G is a reference plane formed in a three-dimensional space including the motion region of the object R, and in this embodiment is a horizontal floor on which a human body stands. Then, in order to determine the three-dimensional space of the motion measurement range and the three-dimensional orthogonal coordinate axes X, Y, Z in the three-dimensional space, five installation points (points where calibration poles are installed) A on the reference plane G , B, C, D, E are set. In that case, the line segment AB and the line segment AC are measured so that they are orthogonal to each other at the installation point A, the installation points A, B, and C are arranged, and installed at the apex of an isosceles triangle with the line segment AB as the base A point D is provided, an installation point E is provided at the apex of an isosceles triangle with the line segment AC as a base, and a distance between the installation points A and B (the length of the line segment AB) is determined in advance. KxThe distance between the installation points A and C (the length of the line segment AC) is a predetermined length K.yIs set. In order to simplify the measurement calculation of the position of the object R, the height of the isosceles triangle with the installation point D as the apex and the line segment AB as the base is the length K of the line segment AC.yThe height of the isosceles triangle with the installation point E as the apex and the line segment AC as the base is the length K of the line segment AB.xTo match.
[0030]
Next, at each installation point A, B, C, D, E, the calibration pole Pa, Pb, Pc, Pd, PeIs upright with respect to the reference plane G (vertical), and the calibration pole Pd, PeHas a height h from the reference plane G0One calibration light body d at each of the positionso, E0Install the calibration pole Pa, Pb, PcEach includes two calibration light bodies a which are paired with different heights from the reference plane G.1, A2B1, B2C1, C2, And two calibration light beams a1, A2B1, B2C1, C2The height h from the reference plane G of the midpoint between0The calibration light beams do, e of the calibration poles Pd, Pe0Height from the reference plane G0Is set equal to
[0031]
Then, three-dimensional coordinate axes (three-dimensional orthogonal coordinate axes) X, Y, Z are virtually set in the three-dimensional space. A point O indicates the origin of the three-dimensional coordinate axes X, Y, and Z. The coordinate axis X is set parallel to the line segment AB, the coordinate axis Y is set parallel to the line segment AC, and the coordinate axes X and Y are set parallel to the reference plane G. The coordinate axis Z is perpendicular to the reference plane G. It is set so as to pass through a point O ′ (a point where the coordinate axis Z passes through the reference plane G) whose distance from the line segment AB is Ky / 2 and whose distance from the line segment AC is Kx / 2. The distance between the point O ′ and the installation point E (the origin O of the three-dimensional coordinate axes X, Y, Z and the calibration pole Pe) is determined from the set positional relationship of the installation points A, B, C, D, E and the point O ′. The distance between the point O ′ and the installation point D (the distance between the origin O of the three-dimensional coordinate axes X, Y, and Z and the calibration pole Pd) is Ky / 2. .
[0032]
An X-axis direction PSD camera 10 is installed in the direction of the coordinate axis X and images the movement of the object R. The X-axis direction PSD camera 10 includes a lens 11 and a PSD light receiving surface 12, and the focal length Fx of the lens 11 is known. In the X-axis direction PSD camera 10, the optical axis of the lens 11 coincides with the coordinate axis X, and the PSD camera 10 (lens 11) is set away from the virtual origin O by a distance Lx. Reference numeral 20 denotes a Y-axis direction PSD camera that images the movement of the object R in the direction of the coordinate axis Y. The Y-axis direction PSD camera 20 includes a lens 21 and a PSD light receiving surface 22, and the focal length Fy of the lens 21 is known. The Y-axis direction PSD camera 20 is installed in a state where the optical axis of the lens 21 coincides with the coordinate axis Y, and the PSD camera (lens 21) is separated from the virtual origin O by the distance Ly.
[0033]
As shown in FIG. 1 and FIG. 2, calibration poles Pa (calibration light beams a) are provided at installation points A, B, C, D, and E, respectively.1, A2), Calibration pole Pb (calibration light body b)1, B2), Calibration pole Pc (calibration light body c)1, C2), Calibration pole Pd (calibration light body d)0), Calibration pole Pe (calibration light body e)0), Three-dimensional coordinate axes X, Y, Z and origin O are virtually set, and the calibration poles Pa, Pb, Pc, Pd, Pe are captured with the PSD camera 10 in the X-axis direction facing the X-axis direction. Each calibration light a1, A2, B1, B2, C1, C2, D0, E0Is received by the PSD light-receiving surface 12, and the calibration light a is placed on the Y-axis / Z-axis coordinate surface of the PSD light-receiving surface 12 as shown in FIG.1, A2, B1, B2, C1, C2, D0, E0Imaging in a positional relationship corresponding to the y-coordinate and z-coordinate in the respective three-dimensional coordinate axes X, Y, and Z1´, a2´, b1´, b2´, c1´, c2´, d0´, e0'Appears. Therefore, imaging a on the PSD light receiving surface 121´, a2´, b1´, b2´, c1´, c2´, d0´, e0While looking at the position of ´, line segment d0´ e0'Coincides with the coordinate axis Y defined on the PSD light receiving surface 12, and the imaging e on the PSD light receiving surface 120By adjusting the position and orientation of the X-axis direction PSD camera 10 so that 'coincides with the origin n represented on the PSD light receiving surface 12, the X-axis direction PSD camera 10 can be very easily and accurately positioned. Can be installed.
[0034]
Similarly, with respect to the Y-axis direction PSD camera 20, the calibration pole P is set so that the Y-axis direction PSD camera 20 faces the Y-axis direction.a, Pb, Pc, Pd, PeEach calibration light a1, A2, B1, B2, C1, C2, D0, E0Is received by the PSD light-receiving surface 22 and, as shown in FIG. 2, the calibration light body a is placed on the X-axis / Z-axis coordinate surface of the PSD light-receiving surface 22.1, A2, B1, B2, C1, C2, D0, E0Imaging a with a positional relationship corresponding to the x-coordinate and z-coordinate in each of the three-dimensional coordinate axes X, Y, and Z1´, a2´, b1´, b2´, c1´, c2´, d0´, e0'Appears. Therefore, imaging a on the PSD light receiving surface 221´, a2´, b1´, b2´, c1´, c2´, d0´, e0While looking at the position of ´0´e0'Coincides with the coordinate axis X defined on the PSD light receiving surface 22, and imaging e on the PSD light receiving surface 220By adjusting the position and orientation of the Y-axis direction PSD camera 20 so that 'coincides with the origin n represented on the PSD light-receiving surface 22, the Y-axis direction PSD camera 20 can be very easily and accurately positioned. Can be set.
[0035]
However, it is extremely difficult to directly measure and confirm the position of the origin O of the three-dimensional coordinates X, Y, and Z virtually set in the three-dimensional space of the movement region of the object. Therefore, the origin O and the PSD camera are extremely difficult. Distance L between 10xAnd the distance L between the origin O and the PSD camera 20yHowever, actual measurements are not possible. Therefore, the position of the origin O of the three-dimensional coordinates X, Y, Z and the distance LxAnd distance LyA calibration light a1, A2, B1, B2, C1, C2, D0, E0Are obtained by calculation based on the known positions (known positions of the calibration poles Pa, Pb, Pc, Pd, Pe) and the relative positions of the PSD camera 10 in the X-axis direction and the PSD camera 20 in the Y-axis direction. That is, as shown in FIG. 2, a calibration light body a accurately placed at a known position a.1, A2, B1, B2, C1, C2, D0, E0Imaging of a1´, a2´, b1´, b2´, c1´, c2´, d0´, e0'Is displayed on the PSD light receiving surface 12 of the X direction PSD camera 10 and on the PSD light receiving surface 22 of the Y direction PSD camera 20. When looking on the PSD light receiving surface 12 of the PSD camera 10 in the X direction, imaging a1´ and imaging c2Line connecting ´ and imaging a2´ and imaging c1The intersection of the line segments connecting ′ is the origin n on the PSD light receiving surface 12 corresponding to the origin O of the three-dimensional coordinates X, Y, Z. And imaging a1´, a2´, c1´, c2Based on the coordinates of ´1´ and imaging c2Line connecting ´, imaging a2´ and imaging c1The line segment connecting 'and the intersection n of both line segments can be obtained by calculation and displayed. These arithmetic processes are performed by the computer W. Similarly, when looking at the PSD light-receiving surface 22 of the Y-direction PSD camera 20, the imaging a1´ and imaging b2Line connecting ´ and imaging a2´ and imaging b1The intersection of the line segments connecting ′ becomes the origin n on the PSD light-receiving surface 22 corresponding to the origin O of the three-dimensional coordinates X, Y, and Z.1´, a2´, b1´, b2Based on the coordinates of ′, the position of the origin n can be calculated and displayed on the PSD light receiving surface 22. Therefore, the setting position and angle of the X direction PSD camera 10 and the Y direction PSD camera 20 are adjusted, and the X direction PSD camera 10 takes an image e.0'Is matched with the origin n, and in the Y direction PSD camera 20, the image is d0If the X-direction PSD camera 10 and the Y-direction PSD camera 20 are installed with ′ matched with the origin n, the X-direction PSD camera 10 and the Y-direction PSD camera 20 can be accurately installed at the correct positions and angles.
[0036]
Next, in consideration, several points in FIG. 2, point 101 (the position of the lens 11 of the X direction PSD camera), point 102 (the midpoint of the installation points A and C), and point 103 (the X direction PSD camera 10). The optical axis, that is, the intersection of the X axis of the three-dimensional coordinate axis and the light receiving surface 12 of the X direction PSD camera), point 104 (imaging c1', Imaging c2'Y coordinate position), point 201 (position of lens 20 of Y direction PSD camera), point 202 (midpoint of installation points A and B), point 203 (optical axis of Y direction PSD camera 20, that is, three-dimensional coordinate axis) Intersection point of light receiving surface 22 of Y axis and Y direction PSD camera), point 204 (imaging b)1', Imaging b2Let's put 'x coordinate position). From the relational positions of these points, the triangle composed of the points 103, 101, 104 and the triangle composed of the points 102, 101, C are similar to each other. The length between the points 101 and 103 is known from the focal length Fx of the lens 11, the length between the points 103 and 104 can be measured on the PSD light receiving surface 12, and the length between the points 102 and C is Since it is set to Ky / 2 and is known, the length (Lx−Kx / 2) between the points 101 and 102 can be obtained from these known numerical values by a simple calculation, and therefore, the PSD in the X direction The distance between the camera 10 (lens 11) and the origin O can be calculated by a simple calculation when the X-direction PSD camera 10 is correctly installed.
[0037]
The same applies to the PSD camera 20 in the Y-axis direction. The triangle composed of the points 203, 201, 204 and the triangle composed of the points 202, 201, B are similar to each other, and the focal length Fy of the lens 21 is known. Yes, since the length between the points 203 and 204 can be measured on the PSD light-receiving surface 22, and the length between the points 202 and B is set to Kx / 2 and known, Therefore, the length (Ly−Ky / 2) between the points 201 and 202 can be obtained by a simple calculation, and therefore the distance between the Y direction PSD camera 20 (lens 21) and the origin O is the X direction PSD camera 10. Can be calculated with a simple calculation when installed correctly.
[0038]
In this state, the position of the object R that moves three-dimensionally in the space in which the coordinate axes X, Y, and Z are virtually formed is captured by the PSD camera 10 in the X-axis direction and the PSD camera 20 in the Y-axis direction. Appears on the surfaces 12 and 22 as imaging r ′. The x, y, and z coordinates of the object R with respect to the three-dimensional coordinate axes X, Y, and Z in the three-dimensional motion region are R, respectively.x , Ry , Rz The x, y, and z coordinates of the imaging r ′ with respect to the coordinate axes Y and Z on the PSD light receiving surface 12 and the coordinate axes X and Z on the PSD light receiving surface 22 are denoted by r ′.x , R 'y , R 'z Indicated by
[0039]
On the other hand, if the view is changed, the imaging r ′ of the object represented on the PSD light-receiving surfaces 12 and 22 passes through the lenses 11 and 21 respectively, and the Y-axis and Z-axis coordinates of the three-dimensional coordinate axes X, Y, and Z of the motion space. It can be seen that the projection image of the object R is formed by being enlarged to the plane and the X-axis / Z-axis coordinate plane. The apparent x coordinate, y coordinate, and z coordinate of the object R captured by the X axis direction PSD camera 10 and the Y axis direction PSD camera 20 are respectively rx , Ry , Rz It shows with. Here, the focal length F of the PSD camera 10 in the X-axis directionxDistance L to origin Ox, And the focal length F of the Y-axis direction PSD camera 20yDistance L to origin OyIs known, the position (coordinate r ′) of the imaging r ′ of the object R appearing on the PSD light receiving surfaces 12 and 22x , R 'y , R 'z) And the apparent coordinates r of the object R on each of the Y-axis / Z-axis coordinate plane and the X-axis / Z-axis coordinate planex , Ry , RzAnd the coordinates rx , Ry , RzA coordinate R indicating the true position of the object R in the field with respect to the three-dimensional coordinate axes X, Y, Z in the motion spacex , Ry , RzCan be calculated.
[0040]
From the above description of the PSD function in FIG. 5, the relationship between the position (two-dimensional coordinates) of the imaging r ′ of the object R and the output voltage of the PSD camera is expressed by the following formulas: (Formula 1) (Formula 2) (Formula 3).
However, r 'x , R 'y , R 'z : X-coordinate, y-coordinate, z-coordinate of imaging r ′ of object R.
Vx  : Output voltage in the X-axis direction of the PSD camera.
Vy  : Y-axis direction output voltage of the PSD camera.
Vz  : Output voltage in the Z-axis direction of the PSD camera.
Jx , Jy , Jz : Inherent constant of the PSD camera (a constant determined by the characteristics of the PSD camera 10 in the X-axis direction and the PSD camera 20 in the Y-axis direction).
The output voltage V of the PSD camerax , Vy , Vz And coordinates r 'x , R 'y , R 'z
By measuring the constant Jx , Jy , Jz The value of is understood.
[0041]
[Expression 1]
Figure 0004449051
[0042]
As is clear from FIG. 2, the calibration light e0Is on the coordinate axis X of the motion space, so the calibration light e0Calibration body e for the position of itself and the X-axis / Z-axis coordinate plane of the motion space0The positions of the projected images of the calibration light body d match.0Is on the coordinate axis Y of the motion space, so the calibration light body d0Calibration body for the position of itself and the Y-axis / Z-axis coordinate plane of the motion space0The positions of the projected images are matched. Calibration light e0Position and its imaging0′ Position relationship and calibration light body d0Position and its imaging0The relationship of the position of ′ is represented by the following formulas: (Formula 4) to (Formula 13).
Where θex: Calibration light body viewed from the PSD camera 20 in the Y-axis direction e0X-axis direction angle.
θdy : Calibration light body d viewed from the PSD camera 10 in the X-axis direction0 Y-axis direction angle.
e0x= E0': Calibration light e0Imaging0'X coordinate (length from origin n)
d0y= D0': Calibration light d0Imaging0'Y coordinate (length from origin n)
[0043]
[Expression 2]
Figure 0004449051
[0044]
Then, a calibration light body e for the three-dimensional coordinate axes X, Y, and Z of the motion space0 X coordinate (distance from origin O) is a known value, Kx Since it is set to / 2, the image on the PSD light receiving surface 22 of the PSD camera 20 in the Y-axis direction e0´ length in X-axis direction (x coordinate) e0x That is, its length in the X-axis direction (x coordinate) e0x X-axis direction output voltage V corresponding toxX-axis direction output voltage Vx X-coordinate converted value of the object per unit voltage of the object (K shown in Equation 8)x / 2Vx) Further, a calibration light body d for the three-dimensional coordinate axes X, Y, and Z0 Y coordinate (distance from origin O) is a known value, Ky Since it is set to / 2, imaging d on the PSD light receiving surface 12 of the PSD camera 10 in the X-axis direction0'Y-axis direction length (y coordinate) d0y That is, the length in the Y-axis direction (y coordinate) d0y Y-axis direction output voltage V corresponding toyY-axis direction output voltage VyThe converted value of the local Y coordinate of the object per unit voltage (K shown in Equation 13)y / 2Vy) Similarly, output voltage V in the Z-axis direction of the PSD cameraz The calculated value of the Z coordinate of the object per unit voltage of the field can also be calculated and found.
[0045]
After the X-axis direction PSD camera 10 and the Y-axis direction PSD camera 20 are related and installed in this way, the X-axis direction PSD camera 10 and the Y-axis direction PSD camera 20 measure the movement of the object R while imaging. And a certain time T = t in the imaging time series in that casenX coordinate R of object R atx , Y coordinate Ry , Z coordinate Rz Can be calculated and calculated based on the following equations: (Equation 14) to (Equation 30), as is clear from the relationship of Equations 1 to 13 and the location shown in FIGS.
However, Fx  : The focal length of the lens 11 of the PSD camera 10 in the X-axis direction.
Fy  : Focal length of the lens 21 of the PSD camera 20 in the Y-axis direction.
Lx  : Distance between the PSD camera 10 (lens 11) in the X-axis direction and the origin O.
Ly  : Distance between the Y-axis direction PSD camera 20 (lens 21) and the origin O.
Mx  , My , Mz : Apparent x coordinate, y coordinate, z coordinate of the object R
Difference between true x-coordinate, y-coordinate and z-coordinate
θrx : X-axis direction angle of the object R viewed from the Y-axis direction PSD camera 20
θry : Y-axis direction angle of the object R viewed from the PSD camera 10 in the X-axis direction
θrz : Z-axis direction angle of the object R viewed from the PSD camera 10 in the X-axis direction
[0046]
[Equation 3]
Figure 0004449051
[0047]
If (Equation 23) is substituted into (Equation 18),
[0048]
[Expression 4]
Figure 0004449051
[0049]
Here, if (Equation 18) is substituted into (Equation 23),
[0050]
[Equation 5]
Figure 0004449051
[0051]
[Formula 6]
Figure 0004449051
[0052]
That is, the position of the object R at each time point (the x-coordinate R of the object Rx, Y coordinate Ry, Z coordinate Rz Are calculated by (Equation 25), (Equation 27), and (Equation 30), respectively, but the focal length F of the PSD camera is calculated.x , Fx , Distance Lx , Ly , Constant Jx , Jy , Jz Is known, the output voltage V of the PSD camerax , Vy , Vz The position of the object R can be measured by measuring, and the movement of the object can be measured by connecting the measurement positions in time series.
[0053]
W is a computer, output voltage V of the PSD camerax , Vy , Vz Input device W1And the x-coordinate R of the object Rx, Y coordinate Ry, Z coordinate Rz The storage device W having the calculation program of (Equation 25), (Equation 27), and (Equation 30)2 And the output voltage V of the PSD camerax , Vy , Vz CPU (WThree) And an output device W that outputs the calculation result as a motion measurement value of the object RFourConsists of. Then, based on the position of the imaging r ′ captured by the two PSD cameras, the motion of the object R is calculated by the computer W according to the above mathematical formula, and the position of the object R is calculated in time series. It is possible to measure the three-dimensional motion. Further, depending on the purpose of use of the motion range of the object R and the motion measurement data, the computation processing of the computer W can be simplified as an approximation formula obtained by simplifying the computation formula.
[0054]
FIG. 4 is a plan view for explaining functions of a three-dimensional motion measuring apparatus for measuring tooth movement according to another embodiment of the present invention. Even if the object R is a part of a human body, when the object R is a tooth as shown in FIG. 4 or when the movement of the fingertip is analyzed, the movement range (movement space) of the object R is Images can be taken in a very narrow and very narrow field of view. Therefore, a wide measurement space is not necessary, and it is often effective to image an object from a short distance. There are also cases where it is desired to obtain a three-dimensional space in a mechanically fixed field of view. The embodiment of FIG. 4 relates to a three-dimensional motion measurement method and a measurement apparatus that can be easily applied under such an object or measurement environment. The method shown in FIG. 4 is basically common to FIGS. 1 and 2, but the calibration pole P used in the method of FIGS.a , Pb , Pc , Pd , Pe Out of calibration pole Pd , Pe 3 calibration poles Pa , Pb , Pc In addition, two PSD cameras are pre-adjusted and mounted on an arm and set up as a general-purpose device including a reference surface as necessary.
[0055]
That is, as shown in FIG. 4 with reference to FIG. 1 and FIG. 2, a reference plane 41 is provided that is disposed in a three-dimensional space including a relatively narrow motion region of the object R to which the position detection light body is attached, In the three-dimensional space, three-dimensional coordinate axes X, Y, and Z for representing the position of the object R are virtually formed, and a right triangle (a right triangle composed of vertices B, A, and C) is formed on the reference plane 41. The three calibration poles P are detachably upright at the installation points A, B and C respectively located at the right vertex A and the other two vertices B and C of the right triangle.a , Pb , Pc And a known focal length FyCalibration pole Pa And calibration pole PbAnd the distance L from the origin O of the three-dimensional coordinate axes X, Y, ZyY-axis direction PSD camera 20 installed with a known focal length FxCalibration pole Pa And calibration pole PcThe X-axis direction PSD camera 10 is provided at an equal distance from the origin O and at a distance Lx from the origin O of the three-dimensional coordinate axes X, Y, and Z. Each calibration pole Pa , Pb , PcEach of which has two pairs of calibration light bodies a with different heights from the reference plane 41.1 , A2 B1 , B2 C1 , C2 Is installed.
[0056]
Then, the X-axis direction PSD camera 10 and the Y-axis direction PSD camera 20 are set to be integrated with the arm 40 by adjusting them so that their optical axes are orthogonal to each other as the X and Y axes. . If necessary, the reference surface 41 is also set up integrally with the arm 40 together with the X-axis direction PSD camera 10 and the Y-axis direction PSD camera 20. The arm 40 is installed on a camera tripod through a pan head, and is installed near an object R that makes a small movement such as a tooth. Further, the X-axis direction PSD camera 10 and the Y-axis direction PSD camera 20 can be moved and adjusted in the arrow I direction symmetrically with respect to a line passing through the points O and A. 1 and FIG. 2, the X-axis direction PSD camera 10 and the Y-axis direction PSD camera 20 capture the imaging r ′ of the object R on the PSD light receiving surfaces 12 and 22 and capture the imaging r ′. The movement of the object R can be measured by calculating with the computer W based on the position of. Further, the basic relative positions of the installation points A, B, C located at the corners of the right triangle on the reference plane 41 and the PSD camera 10 in the X-axis direction and the PSD camera 20 in the Y-axis direction are the areas occupied by the whole Because of the narrowness, it is measured and set accurately in advance. The operations of the X-axis direction PSD camera 10, the Y-axis direction PSD camera 20, the computer W, the mirror 30, and the like are the same as those shown in FIGS. As described above, the three-dimensional motion measuring apparatus shown in FIG. 4 is preliminarily compactly integrated with the main measurement unit consisting of the reference plane, calibration pole, and PSD camera, so it is highly versatile and easily brought into the measurement site. It can be installed and installed for easy measurement.
[0057]
【The invention's effect】
As is clear from the above embodiments, the method and apparatus for measuring the three-dimensional motion of an object according to the present invention is the position of the spot image of the object captured on the PSD light-receiving surface using two PSD cameras. Since the motion position of the object is calculated based on the image, and the three-dimensional motion of the object is not obtained by image processing of the shape of imaging of the object. On the other hand, the position detection response speed of the illuminant (object) by the PSD is extremely fast, so that the movement can be measured quickly even for a high-speed movement of the object. In addition, by installing five calibration poles, two PSD cameras can be easily installed accurately at the required positions while observing the image of the calibration light body of the calibration pole captured on the light receiving surface of the PSD camera. be able to.
[0058]
In addition, by setting up the reference plane, the calibration pole installation point on the reference plane, and the relative positions of the two PSD cameras in advance in a compact manner, the tertiary is highly versatile and can be easily installed near the object. The original motion measuring device can be calibrated.
[0059]
Furthermore, by adding a mirror and allowing the PSD camera to capture the object through the mirror, the movement of the object can be captured from different directions without changing the setting state of the PSD camera once installed. Even in a measurement environment in which measurement is possible and a sufficient distance between the object and the PSD camera cannot be obtained, the field of view of the PSD camera is equivalently enlarged by using a mirror, so that a wider range of the object can be obtained. 3D movement can be measured.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the basic configuration of an object three-dimensional motion measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a plan view for explaining functions of the apparatus.
FIG. 3 is an elevation view for explaining the function of the apparatus.
FIG. 4 is a plan view for explaining functions of a three-dimensional motion measuring apparatus according to another embodiment of the present invention.
FIG. 5 is a perspective view showing a basic configuration of a PSD (semiconductor position detection element).
[Explanation of symbols]
10: X-axis direction PSD camera
11: X-axis direction PSD camera lens
12: PSD light receiving surface of the PSD camera in the X-axis direction
20: Y-axis direction PSD camera
21: Y-axis direction PSD camera lens
22: PSD light-receiving surface of the Y-axis direction PSD camera
30: Mirror
40: Arm
41: Reference plane
A, B, C, D, E: Installation point
a1 , A2 , B1 , B2 , C1 , C2 , D0 , E0  : Calibration light
a1´ 、 a2´,b1´, b2´, c1´, c2´, d0´, e0': Imaging of light body for calibration
G: Reference plane
H: Human body
n: Origin of coordinate axes on PSD light receiving surfaces 12 and 22
O: Origin of 3D coordinate axes X, Y, Z
O ′: point (point where coordinate axis Z passes through reference plane G)
Pa , Pb , Pc , Pd , Pe  : Calibration pole
R: Object (position detection light body)
Rx , Ry , Rz : X coordinate, y coordinate, z coordinate of the object R
rx , Ry , Rz  : Apparent x coordinate, y coordinate, z coordinate of the object R
r 'x , R 'y , R 'z : X coordinate, y coordinate, z coordinate of imaging r ′ of object R
W: Computer
W1 : Input device
W2 :Storage device
WThree : CPU
WFour : Output device
X, Y, Z: 3D coordinate axis (3D Cartesian coordinate axis)
Fx  : Focal length of the lens 11 of the PSD camera 10 in the X-axis direction
Fy  : Focal length of the lens 21 of the PSD camera 20 in the Y-axis direction
h0  :height
Jx , Jy , Jx :constant
Lx  : Distance between the PSD camera 10 (lens 11) in the X-axis direction and the origin O
Ly  : Distance between the Y-axis direction PSD camera 20 (lens 21) and the origin O
e0x : Calibration light e0Imaging0'X coordinate (length from origin n)
d0y : Calibration light d0Imaging0'Y coordinate (length from origin n)
Kx  : Distance between installation points A and B (length of line segment AB)
Ky  : Distance between installation points A and C (length of line segment AC)
Mx  , My , Mz : The difference between the apparent x-coordinate, y-coordinate, and z-coordinate of the object R and the true x-coordinate, y-coordinate, and z-coordinate
Vx  : PSD camera X-axis direction output voltage
Vy  : PSD camera Y-axis direction output voltage
Vz  : PSD camera Z-axis output voltage
θex : Calibration light body viewed from the PSD camera 20 in the Y-axis direction e0 X-axis direction angle
θdy : Calibration light body d viewed from the PSD camera 10 in the X-axis direction0 Y-axis direction angle
θrx : X-axis direction angle of the object R viewed from the Y-axis direction PSD camera 20
θry : Y-axis direction angle of the object R viewed from the PSD camera 10 in the X-axis direction
θrz : Z-axis direction angle of the object R viewed from the PSD camera 10 in the X-axis direction

Claims (12)

三次元運動する対象物の運動領域を含みその対象物の位置を表す三次元座標軸X,Y,Zが設定される三次元空間内に基準面を設定し、この基準面上に少なくとも3本の較正用ポールP,P,P前記三次元座標軸Zと並行に直立させ、これら較正用ポールP,P,Pの前記基準面上における各設置点A,B,Cを、前記三次元座標軸Xと平行する線分ABと、前記三次元座標軸Yと平行する線分ACとが、それぞれ既知の長さK,Kで且つ設置点Aで直交するように設定し、前記較正用ポールP,P,Pのそれぞれに前記基準面からの高さを違えて対をなす2個の較正用光体a,a;b,b;c,cをそれぞれ設置すると共にそれらの対をなす2個の較正用光体の間の中点の前記基準面からの高さhを等しく設定し、焦点距離Fが既知で前記一つの線分AB上の2本の各較正用ポールPおよびPから等距離に置かれるPSDカメラと焦点距離Fが既知で前記他の線分AC上の2本の各較正用ポールPおよびPから等距離に置かれるPSDカメラの2基のPSDカメラを設置し、前記較正用ポールP,P,P上の較正用光体を前記2基のPSDカメラのPSD受光面に撮像することにより、前記三次元空間内における前記対象物の位置を表すための前記三次元空間内の三次元座標軸X,Y,Zに対応する二次元座標軸を前記各PSDカメラのPSD受光面上に較正設定し、前記各PSDカメラの光軸を前記三次元座標軸X,Y,Zの原点に合わせ且つ前記各PSDカメラを前記原点からそれぞれ距離L,Lを隔てて設定し、前記対象物には位置検出用光体を設置し、前記2基のPSDカメラで同時且つ時系列的に前記対象物の位置検出用光体を撮像して得た前記対象物の時系列位置データを前記三次元座標軸X,Y,Zに対する時系列座標データに変換して前記対象物の動きを検知することを特徴とする物体の三次元運動測定方法。At least three regions of motion of the object three-dimensional coordinate axes X representing the position of the object containing miso, Y, and sets a reference plane in the three-dimensional space Z is set, on the reference plane movement three-dimensional The calibration poles P a , P b , and P c are set upright in parallel with the three-dimensional coordinate axis Z, and the installation points A, B, and C of the calibration poles P a , P b , and P c on the reference plane are set. Is set so that the line segment AB parallel to the three-dimensional coordinate axis X and the line segment AC parallel to the three-dimensional coordinate axis Y are orthogonal to each other at the installation points A with known lengths K x and K y. Then, two calibration light bodies a 1 , a 2 ; b 1 , b 2 ; c paired with the calibration poles P a , P b , P c at different heights from the reference plane, respectively. 1, c 2 and with installed respectively, before the midpoint between the two calibration light body forming those pairs Set equal to the height h 0 of the reference plane, and PSD camera focal length F y are placed from the two respective calibration pole P a and P b of the said one line segment AB in a known equidistant, focal length F x is set up two PSD camera 2 group of the PSD camera placed equidistant from each calibration pole P a and P c on the other line segment AC known, the calibration pole P In the three-dimensional space for representing the position of the object in the three-dimensional space by imaging the calibration light bodies on a , P b , and P c on the PSD light receiving surfaces of the two PSD cameras. The two-dimensional coordinate axes corresponding to the three-dimensional coordinate axes X, Y, and Z are calibrated on the PSD light-receiving surface of each PSD camera, and the optical axis of each PSD camera is set to the origin of the three-dimensional coordinate axes X, Y, and Z. And align each PSD camera from the origin. The distances L y and L x are set apart from each other, a position detection light body is installed on the object, and the position detection light of the object is simultaneously and time-series by the two PSD cameras. A third order of an object characterized in that time series position data of the object obtained by imaging a body is converted into time series coordinate data with respect to the three-dimensional coordinate axes X, Y, and Z to detect the movement of the object. Former motion measurement method. 三次元運動する対象物の運動領域を含みその対象物の位置を表す三次元座標軸X,Y,Zが設定される三次元空間内に、直角三角形を含む基準面を設定し、この直角三角形の直角頂点Aと他の2頂点B,Cをそれぞれ較正用ポールの設置点A,B,Cとして、これら各設置点A,B,Cに3本の較正用ポールP,P,Pそれぞれ位置させて前記基準面上に直立させ、前記三次元座標軸Xと平行する前記直角三角形の線分ABと、前記三次元座標軸Yと平行する前記直角三角形の線分ACを、それぞれ既知の長さK,Kに設定し、前記較正用ポールP,P,Pのそれぞれに前記基準面からの高さを違えて対をなす2個の較正用光体a,a;b,b;c,cをそれぞれ設置すると共にそれらの対をなす2個の較正用光体の間の中点の前記基準面からの高さhを等しく設定し、既知の焦点距離Fを備え前記一つの線分AB上の2本の各較正用ポールPおよびPから等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Lを隔てて置かれるPSDカメラと、既知の焦点距離Fを備え前記他の線分AC上の2本の各較正用ポールPおよびPから等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Lxを隔てて置かれるPSDカメラの、2基のPSDカメラを前記基準面と共に予めセットアップし、前記対象物には位置検出用光体を設置し、前記較正用ポールP,P,P上の較正用光体を前記2基のPSDカメラのPSD受光面に撮像することにより、三次元座標軸X,Y,Zに対応する二次元座標軸を前記各PSDカメラのPSD受光面上に較正設定し、前記2基のPSDカメラで同時且つ時系列的に前記対象物の位置検出用光体を撮像して得た前記対象物の時系列位置データを前記三次元座標軸X,Y,Zに対する時系列座標データに変換して前記対象物の動きを検知することを特徴とする物体の三次元運動測定方法。A reference plane including a right triangle is set in a three-dimensional space in which the three-dimensional coordinate axes X, Y, and Z representing the position of the object including the motion region of the three-dimensional moving object are set. The right vertex A and the other two vertices B and C are set as calibration pole installation points A, B, and C, respectively, and three calibration poles P a , P b , and P c are provided at the installation points A, B, and C, respectively. Are positioned upright on the reference plane, and the right triangle line segment AB parallel to the three-dimensional coordinate axis X and the right triangle line segment AC parallel to the three-dimensional coordinate axis Y are respectively known. Two calibration light bodies a 1 , a which are set to lengths K x , K y and are paired with different heights from the reference plane on the calibration poles P a , P b , P c respectively. 2; b 1, b 2; c 1, with c 2 the installation respectively, their And two set equal to the height h 0 from the reference surface of the middle point between the calibration light body which forms a two respective calibration on a known focal length F y to comprise segments of said one AB use pole P a and P b from and the three-dimensional coordinate axes X equidistantly, Y, the other line segment AC with the PSD camera placed at a distance L y from the origin of the Z, the known focal length F x and said three-dimensional coordinate axes X of two each calibration pole P a and P c at equidistant above, Y, of the PSD camera placed at a distance Lx from the origin of Z, the reference PSD camera 2 group Set up in advance with a surface, a position detecting light body is installed on the object, and the calibration light bodies on the calibration poles P a , P b , and P c are placed on the PSD light receiving surfaces of the two PSD cameras. Two-dimensional seats corresponding to the three-dimensional coordinate axes X, Y, and Z by imaging A time series of the object obtained by calibrating and setting the axis on the PSD light receiving surface of each PSD camera and imaging the position detecting light body of the object simultaneously and time series by the two PSD cameras. A method for measuring a three-dimensional motion of an object, wherein position data is converted into time-series coordinate data for the three-dimensional coordinate axes X, Y, and Z to detect the movement of the object. 設置点A,B間の長さKと設置点A,C間の長さKを等しく設定し、三次元座標軸X,Y,Zの原点と2基の各PSDカメラとの間のそれぞれの距離L,Lを等しく設定し、前記2基のPSDカメラの各焦点距離F,Fを等しく設定したことを特徴とする請求項2に記載した物体の三次元運動測定方法。The length K x between the installation points A and B and the length K y between the installation points A and C are set to be equal to each other between the origin of the three-dimensional coordinate axes X, Y and Z and the two PSD cameras. 3. The method for measuring a three-dimensional motion of an object according to claim 2, wherein the distances L y and L x are set equal to each other, and the focal lengths F y and F x of the two PSD cameras are set equal to each other. 三次元運動する対象物の運動領域を含みその対象物の位置を表す三次元座標軸X,Y,Zが設定される三次元空間内に基準面を設定し、この基準面上に5本の較正用ポールの設置点A,B,C,D,Eを設け、前記設置点A,B,C,D,Eの位置関係に関して、前記三次元座標軸Xと平行する線分ABと、前記三次元座標軸Yと平行する線分ACが設置点Aで直交するように設置点A,B,Cを配設し、線分ABを底辺とする二等辺三角形の頂点に設置点Dを配設し、線分ACを底辺とする二等辺三角形の頂点に設置点Eを配設し、前記線分ABと前記線分ACをそれぞれ既知の長さK,Kに設定し、これら各設置点A,B,C,D,Eにそれぞれ較正用ポールP,P,P,P,P,を位置させて前記基準面上に5本の較正用ポールP,P,P,P,P直立させ、前記較正用ポールP,Pのそれぞれに1個の較正用光体d,eを設置し、前記較正用ポールP,P,Pのそれぞれに前記基準面からの高さを違えて対をなす2個の較正用光体a,a;b,b;c,cをそれぞれ設置し、それらの対をなす2個の較正用光体a,a;b,b;c,cの間の中点の前記基準面からの高さhを前記較正用ポールP,Pのそれぞれの較正用光体d,eの前記基準面からの高さhと等しく設定し、焦点距離Fが既知で前記一つの線分AB上の2本の各較正用ポールPおよびPから等距離に置かれるPSDカメラと、焦点距離Fが既知で前記他の線分AC上の2本の各較正用ポールPおよびPから等距離に置かれるPSDカメラの、2基のPSDカメラを設置し、前記較正用ポールP,P,P,P,P上の較正用光体a,a;b,b;c,c;d,eを前記2基のPSDカメラのPSD受光面に撮像することにより、前記三次元空間内の三次元座標軸X,Y,Zに対応する二次元座標軸を前記各PSDカメラのPSD受光面上に較正設定し、前記各PSDカメラの光軸を前記三次元座標軸X,Y,Zの原点に合わせ且つ各PSDカメラを前記原点からそれぞれ距離L,Lを隔てて設定し、前記対象物には位置検出用光体を設置し、前記2基のPSDカメラで同時且つ時系列的に前記対象物の位置検出用光体を撮像して得た前記対象物の時系列位置データを前記三次元座標軸X,Y,Zに対する時系列座標データに変換して前記対象物の動きを検知することを特徴とする物体の三次元運動測定方法。 Three-dimensional coordinate axes X representing the position of an object in a moving region including miso object moving three-dimensional, Y, and sets a reference plane in the three-dimensional space Z is set, five on the reference plane The calibration pole installation points A, B, C, D, and E are provided, and regarding the positional relationship between the installation points A, B, C, D, and E, the line segment AB parallel to the three-dimensional coordinate axis X and the tertiary original coordinate axis Y and parallel installation point as the line segment AC is orthogonal at the installation point a a, B, and disposed C, provided the installation point D at the vertex of an isosceles triangle to the base of the segment AB and, disposed installation point E on the apex of the isosceles triangle to base line segment AC, and set the line segment AC and the line segment AB respective known length K x, the K y, installation respective Calibration poles P a , P b , P c , P d , and P e are positioned at points A, B, C, D, and E, respectively, on the reference plane. Five calibration pole P a, P b, P c , P d, is P e upright, the calibration pole P d, installed one of the calibration light body d 0, e 0 in each of P e , Two calibration light bodies a 1 , a 2 ; b 1 , b 2 ; c 1 that are paired with the calibration poles P a , P b , and P c at different heights from the reference plane. , C 2, and the height from the reference plane at the midpoint between the two calibration light bodies a 1 , a 2 ; b 1 , b 2 ; c 1 , c 2 that make a pair of them h 0 is set equal to the height h 0 from the reference plane of the calibration light bodies d 0 and e 0 of the calibration poles P d and P e , the focal length F y is known, and the one line and PSD camera from minute two poles for each calibration on AB P a and P b are placed equidistant, the other line segment AC focal length F x is known Of two each calibration pole P a and P c of the PSD camera placed equidistant, the PSD camera 2 group is installed, the calibration pole P a, P b, P c , P d, P e The three-dimensional space is obtained by imaging the calibration light bodies a 1 , a 2 ; b 1 , b 2 ; c 1 , c 2 ; d 0 , e 0 on the PSD light receiving surfaces of the two PSD cameras. The two-dimensional coordinate axes corresponding to the three-dimensional coordinate axes X, Y, and Z are calibrated on the PSD light-receiving surface of each PSD camera, and the optical axis of each PSD camera is the origin of the three-dimensional coordinate axes X, Y, and Z. And each PSD camera is set at a distance L y and L x from the origin, and a position detecting light body is installed on the object, and the two PSD cameras are simultaneously and in time series. When the object is obtained by imaging the object position detection light A method for measuring a three-dimensional motion of an object, wherein the movement of the object is detected by converting the series position data into time-series coordinate data for the three-dimensional coordinate axes X, Y, and Z. 設置点Dを頂点とし線分ABを底辺とする二等辺三角形の高さと、設置点Eを頂点とし線分ACを底辺とする二等辺三角形の高さと、設置点A,B間の長さKと、設置点A,C間の長さKとを等しく設定し、三次元座標軸X,Y,Zの原点と2基の各PSDカメラの間のそれぞれの距離L,Lを等しく設定し、前記2基のPSDカメラの各焦点距離 ,F を等しく設定したことを特徴とする請求項4に記載した物体の三次元運動測定方法。The height of an isosceles triangle with the installation point D as the vertex and the line segment AB as the base, the height of the isosceles triangle with the installation point E as the vertex and the line segment AC as the base, and the length K between the installation points A and B x and the length K y between the installation points A and C are set to be equal, and the distances L y and L x between the origins of the three-dimensional coordinate axes X, Y and Z and the two PSD cameras are set to be equal. set, the focal length F y of the PSD camera in the 2 groups, the three-dimensional movement measuring method of an object according to claim 4, characterized in that set equal F x. 予め設定された運動領域で三次元運動する対象物に設置した位置検出用光体を映す鏡を配設し、その鏡に映った対象物の位置検出光体を2基のPSDカメラで撮像して得た前記対象物の時系列位置データを三次元座標軸X,Y,Zに対する時系列座標データに変換して前記対象物の動きを検知することを特徴とする請求項1ないし請求項5のいずれかの項に記載した物体の三次元運動測定方法。  A mirror for reflecting the position detection light body installed on the object that moves three-dimensionally in a predetermined motion area is arranged, and the position detection light body of the object reflected in the mirror is imaged by two PSD cameras. 6. The time-series position data of the object obtained in this way is converted into time-series coordinate data for three-dimensional coordinate axes X, Y, and Z to detect the movement of the object. A method for measuring a three-dimensional motion of an object according to any one of the items. 位置検出用光体が設置されて三次元運動する対象物の運動領域を含みその対象物の位置を表す三次元座標軸X,Y,Zが形成される三次元空間内に設定される基準面に配設された少なくとも3個の設置点A,B,Cにそれぞれ直立させる少なくとも3本の較正用ポールP,P,Pと、これらの各較正用ポールP,P,Pのそれぞれに前記基準面からの高さを違えて設置される2個の対をなす較正用光体a,a;b,b;c,cと、既知の焦点距離Fを備え前記較正用ポールPおよび較正用ポールPから等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Lを隔てて設置されるPSDカメラと、既知の焦点距離Fを備え前記較正用ポールPおよび較正用ポールPから等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Lxを隔てて設置されるPSDカメラの、2基のPSDカメラと、前記2基のPSDカメラで同時且つ時系列的に前記対象物の位置検出用光体を撮像して得た前記対象物の時系列位置データを前記三次元座標軸X,Y,Zに対する時系列座標データに変換演算するコンピュータを備え、前記設置点A,B,Cに関し、前記三次元座標軸Xと平行する線分ABと、前記三次元座標軸Yと平行する線分ACがそれぞれ既知の長さK,Kで且つ設置点Aで直交するように設定し、前記対をなす2個の較正用光体a,a;b,b;c,cの各中点の前記基準面からの高さhを等しく設定したことを特徴とする物体の三次元運動測定装置。A reference plane set in a three-dimensional space in which a three-dimensional coordinate axis X, Y, Z representing the position of the target object including the motion region of the target object that moves three-dimensionally by installing the position detection light body is formed At least three calibration poles P a , P b , and P c that stand upright on at least three installed points A, B, and C, respectively, and these calibration poles P a , P b , and P c. , Two pairs of calibration light bodies a 1 , a 2 ; b 1 , b 2 ; c 1 , c 2 and a known focal length F that are installed at different heights from the reference plane. the calibration pole P comprises a y a and calibration and the pole P b equidistant the three-dimensional coordinate axes X, Y, and PSD camera installed at a distance L y from the origin of the Z, known focal length F equidistant from the calibration pole P a and calibration pole P c comprises a x The position of the object is simultaneously and time-sequentially by two PSD cameras of the PSD camera installed at a distance Lx from the origin of the three-dimensional coordinate axes X, Y, Z and the two PSD cameras. A computer for converting the time-series position data of the object obtained by imaging the detection light body into the time-series coordinate data for the three-dimensional coordinate axes X, Y, and Z, and the installation points A, B, and C The line segment AB parallel to the three-dimensional coordinate axis X and the line segment AC parallel to the three-dimensional coordinate axis Y are set to have known lengths K x , K y and orthogonal at the installation point A, respectively, The height h 0 from the reference plane of each of the midpoints of the two calibration light bodies a 1 , a 2 ; b 1 , b 2 ; c 1 , c 2 that make a pair is set equal A device for measuring the three-dimensional motion of an object. 位置検出用光体が設置されて三次元運動する対象物の運動領域を含みその対象物の位置を表す三次元座標軸X,Y,Zが形成される三次元空間内に設定される直角三角形を含む基準面と、この直角三角形の直角頂点Aと他の2頂点B,Cにそれぞれ位置する設置点A,B,Cにそれぞれ直立させる3本の較正用ポールP,P,Pと、これらの各較正用ポールP,P,Pのそれぞれに前記基準面からの高さを違えて設置される2個の対をなす較正用光体a,a;b,b;c,cと、既知の焦点距離Fを備え前記較正用ポールPおよび較正用ポールPから等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Lを隔てて設置されるPSDカメラと、既知の焦点距離Fを備え前記較正用ポールPおよび較正用ポールPから等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Lxを隔てて設置されるPSDカメラの、2基のPSDカメラを一体的にセットアップし、前記2基のPSDカメラで同時且つ時系列的に前記対象物の位置検出用光体を撮像して得た前記対象物の時系列位置データを前記三次元座標軸X,Y,Zに対する時系列座標データに変換演算するコンピュータを備え、前記直角三角形において前記三次元座標軸Xに平行する線分ABと、前記直角三角形において前記三次元座標軸Yに平行する線分ACをそれぞれ既知の長さK,Kに設定し、前記対をなす2個の較正用光体a,a;b,b;c,cの各中点の前記基準面からの高さhを等しく設定したことを特徴とする物体の三次元運動測定装置。A right-angled triangle set in a three-dimensional space in which a three-dimensional coordinate axis X, Y, Z representing the position of the target object including the motion region of the target object that moves three-dimensionally by installing the position detection light body is formed. Including a reference plane, and three calibration poles P a , P b , and P c that stand upright at the installation points A, B, and C respectively located at the right vertex A and the other two vertices B and C of the right triangle. Each of these calibration poles P a , P b , and P c has two pairs of calibration light bodies a 1 , a 2 ; b 1 , installed at different heights from the reference plane. b 2; c 1, and c 2, and from said known focal length F pole for the calibration comprises a y P a and calibration pole P b equidistant three-dimensional coordinate axes X, Y, the distance from the origin of Z L y and PSD camera installed at a, for the calibration with known focal length F x Lumpur P a and calibration and the pole P c equidistant the three-dimensional coordinate axes X, Y, the PSD camera installed at a distance Lx from the origin of Z, integrally set up the PSD camera 2 group The time-series position data of the object obtained by imaging the object position detection light body simultaneously and time-series with the two PSD cameras are time-series with respect to the three-dimensional coordinate axes X, Y, and Z. A computer for converting to coordinate data, and a line segment AB parallel to the three-dimensional coordinate axis X in the right triangle and a line segment AC parallel to the three-dimensional coordinate axis Y in the right triangle are respectively known lengths K x. , K y , and the height h 0 from the reference surface of each of the midpoints of the two calibration light bodies a 1 , a 2 ; b 1 , b 2 ; c 1 , c 2 that make the pair Features characterized by equality Three-dimensional movement measuring device. 設置点A,B間の長さKと設置点A,C間の長さKを等しく設定し、三次元座標軸X,Y,Zの原点と2基の各PSDカメラとの間のそれぞれの距離L,Lを等しく設定し、前記2基のPSDカメラの各焦点距離F,Fを等しく設定したことを特徴とする請求項8に記載した物体の三次元運動測定装置。The length K x between the installation points A and B and the length K y between the installation points A and C are set to be equal to each other between the origin of the three-dimensional coordinate axes X, Y and Z and the two PSD cameras. The distances L y and L x of the two PSD cameras are set to be equal, and the focal lengths F y and F x of the two PSD cameras are set to be equal to each other. 位置検出用光体が設置されて三次元運動する対象物の運動領域を含みその対象物の位置を表す三次元座標軸X,Y,Zが形成される三次元空間内に設定される基準面に配設された5個の設置点A,B,C,D,Eにそれぞれ直立させる5本の較正用ポールP,P,P,P,Pと、前記較正用ポールP,Pのそれぞれに1個設置される較正用光体d,eと、前記較正用ポールP,P,Pのそれぞれに前記基準面からの高さを違えて設置される2個の対をなす較正用光体a,a;b,b;c,cと、既知の焦点距離Fを備え前記較正用ポールPおよび較正ポールPから等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Lを隔てて設置されるPSDカメラと、既知の焦点距離Fを備え前記較正用ポールPおよび較正用ポールPから等距離で且つ前記三次元座標軸X,Y,Zの原点から距離Lを隔てて設置されるPSDカメラの、2基のPSDカメラと、前記2基のPSDカメラで同時且つ時系列的に前記対象物の位置検出用光体を撮像して得た前記対象物の時系列位置データを前記三次元座標軸X,Y,Zに対する時系列座標データに変換演算するコンピュータを備え、前記設置点A,B,C,D,Eの位置関係に関して、線分ABと線分ACがそれぞれ既知の長さK,Kで設置点Aで直交するように設定し、線分ABを底辺とする二等辺三角形の頂点に設置点Dを配設し、線分ACを底辺とする二等辺三角形の頂点に設置点Eを配設し、前記対をなす2個の較正用光体a,a;b,b;c,cの各中点の前記基準面からの高さhを前記較正用ポールP,Pのそれぞれの較正用光体d,eの前記基準面からの高さhと等しく設定したことを特徴とする物体の三次元運動測定装置。A reference plane set in a three-dimensional space in which a three-dimensional coordinate axis X, Y, Z representing the position of the target object including the motion region of the target object that moves three-dimensionally by installing the position detection light body is formed disposed the five installation points a, B, C, D, calibration pole P a of five to erect each E, P b, P c, P d, and P e, the calibration pole P d , P e , one for each of the calibration light bodies d 0 , e 0 and the calibration poles P a , P b , P c are installed with different heights from the reference plane. calibration optical body a 1 forming two pairs, a 2; b 1, b 2; a c 1, c 2, equal from pole for the calibration with known focal length F y P a and calibration pole P b distance and in the three-dimensional coordinate axes X, Y, and PSD camera installed at a distance L y from the origin of the Z, known Focal length F pole for the calibration comprises a x P a and calibration and the pole P c equidistant the three-dimensional coordinate axes X, Y, the PSD camera installed at a distance L x from the origin of the Z, 2 group Time series position data of the object obtained by imaging the object position detecting light body simultaneously and time series by the PSD camera and the two PSD cameras, the three-dimensional coordinate axes X, Y, A computer for converting to time-series coordinate data for Z, and regarding the positional relationship between the installation points A, B, C, D, and E, the line segment AB and the line segment AC have known lengths K x and K y , respectively. It is set to be orthogonal at the installation point A, the installation point D is arranged at the vertex of the isosceles triangle whose base is the line segment AB, and the installation point E is arranged at the vertex of the isosceles triangle whose base is the line segment AC. was set, two calibration optical body a 1 forming the pair, a 2; 1, b 2; the reference plane of c 1, the height h 0 of the calibration pole P d from the reference plane of the midpoint of c 2, each of the calibration light body d 0 of P e, e 0 An apparatus for measuring a three-dimensional motion of an object, characterized in that it is set equal to a height h 0 from the object. 設置点Dを頂点とし線分ABを底辺とする二等辺三角形の高さと、設置点Eを頂点とし線分ACを底辺とする二等辺三角形の高さと、設置点A,B間の長さKと、設置点A,C間の長さKとを等しく設定し、三次元座標軸X,Y,Zの原点と2基の各PSDカメラの間のそれぞれの距離L,Lを等しく設定し、前記2基のPSDカメラの各焦点距離 ,F を等しく設定したことを特徴とする請求項10に記載した物体の三次元運動測定装置。The height of an isosceles triangle with the installation point D as the vertex and the line segment AB as the base, the height of the isosceles triangle with the installation point E as the vertex and the line segment AC as the base, and the length K between the installation points A and B x and the length K y between the installation points A and C are set to be equal, and the distances L y and L x between the origins of the three-dimensional coordinate axes X, Y and Z and the two PSD cameras are set to be equal. The apparatus for measuring a three-dimensional motion of an object according to claim 10, wherein the focal lengths F y and F x of the two PSD cameras are set equal to each other. 予め設定された運動領域で三次元運動する対象物に設置した位置検出用光体を映す鏡と、その鏡に映った対象物の位置検出光体を撮像する2基のPSDカメラと、その2基のPSDカメラで撮像して得た前記対象物の時系列位置データを三次元座標軸X,Y,Zに対する時系列座標データに変換演算するコンピュータを備えたことを特徴とする請求項7ないし請求項11のいずれかの項に記載した物体の三次元運動測定装置。  A mirror that reflects a position detection light body installed on an object that moves three-dimensionally in a predetermined motion region, two PSD cameras that image the position detection light body of the object reflected in the mirror, and 2 8. A computer for converting time-series position data of the object obtained by imaging with a basic PSD camera into time-series coordinate data for three-dimensional coordinate axes X, Y, and Z. Item 12. A three-dimensional motion measuring apparatus for an object according to any one of Items 11 to 10.
JP2001000996A 2001-01-09 2001-01-09 3D motion measurement method and 3D motion measurement apparatus for an object Expired - Fee Related JP4449051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001000996A JP4449051B2 (en) 2001-01-09 2001-01-09 3D motion measurement method and 3D motion measurement apparatus for an object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001000996A JP4449051B2 (en) 2001-01-09 2001-01-09 3D motion measurement method and 3D motion measurement apparatus for an object

Publications (2)

Publication Number Publication Date
JP2002206917A JP2002206917A (en) 2002-07-26
JP4449051B2 true JP4449051B2 (en) 2010-04-14

Family

ID=18869683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001000996A Expired - Fee Related JP4449051B2 (en) 2001-01-09 2001-01-09 3D motion measurement method and 3D motion measurement apparatus for an object

Country Status (1)

Country Link
JP (1) JP4449051B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333368A (en) * 2003-05-09 2004-11-25 Photron Ltd Calibration tool for acquiring three dimensional constants for moving body photographing system
CN106032232B (en) * 2015-03-11 2018-10-19 上海三菱电梯有限公司 The identification device of lift car place holder and recognition methods

Also Published As

Publication number Publication date
JP2002206917A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
US10883819B2 (en) Registration of three-dimensional coordinates measured on interior and exterior portions of an object
US11022692B2 (en) Triangulation scanner having flat geometry and projecting uncoded spots
US9602811B2 (en) Method for optically measuring three-dimensional coordinates and controlling a three-dimensional measuring device
CN106595519B (en) A kind of flexible 3 D contour measuring method and device based on laser MEMS projection
EP2904349B1 (en) A method of calibrating a camera
GB2544181A (en) Three-dimensional imager that includes a dichroic camera
JP2016516196A (en) Structured optical scanner correction tracked in 6 degrees of freedom
Lourenço et al. Intel RealSense SR305, D415 and L515: Experimental Evaluation and Comparison of Depth Estimation.
WO2004044522A1 (en) Three-dimensional shape measuring method and its device
CA2253085A1 (en) Methods and system for measuring three dimensional spatial coordinates and for external camera calibration necessary for that measurement
JP6937482B2 (en) Surface shape measuring device and its stitching measuring method
EP3839418A1 (en) Optical sensor with overview camera
WO2016040271A1 (en) Method for optically measuring three-dimensional coordinates and controlling a three-dimensional measuring device
JP2017098859A (en) Calibration device of image and calibration method
Yamauchi et al. Calibration of a structured light system by observing planar object from unknown viewpoints
JP4449051B2 (en) 3D motion measurement method and 3D motion measurement apparatus for an object
Clark et al. Measuring range using a triangulation sensor with variable geometry
Xu et al. Calibration method of laser plane equation for vision measurement adopting objective function of uniform horizontal height of feature points
US20190113336A1 (en) Multi-Directional Triangulation Measuring System with Method
JPH0843044A (en) Measuring apparatus for three dimensional coordinate
KR100395773B1 (en) Apparatus for measuring coordinate based on optical triangulation using the images
US11644303B2 (en) Three-dimensional coordinate measuring instrument coupled to a camera having a diffractive optical element
JPH0769144B2 (en) Three-dimensional position measurement method
Kim et al. Shape Acquisition System Using an Handheld Line Laser Pointer Without Markers
JP2774624B2 (en) Distance / posture measuring device for moving objects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees