JP4448916B2 - Molded stranded conductor and coil using the same - Google Patents

Molded stranded conductor and coil using the same Download PDF

Info

Publication number
JP4448916B2
JP4448916B2 JP2001288614A JP2001288614A JP4448916B2 JP 4448916 B2 JP4448916 B2 JP 4448916B2 JP 2001288614 A JP2001288614 A JP 2001288614A JP 2001288614 A JP2001288614 A JP 2001288614A JP 4448916 B2 JP4448916 B2 JP 4448916B2
Authority
JP
Japan
Prior art keywords
conductor
stranded
cooling pipe
coil
wire conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001288614A
Other languages
Japanese (ja)
Other versions
JP2003100150A (en
Inventor
健治 香月
芳治 金井
潔和 佐藤
教夫 谷
利一 安達
洋年 蛯子
佐藤  淳
壮一 赤坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
SWCC Showa Cable Systems Co Ltd
Original Assignee
Toshiba Corp
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, SWCC Showa Cable Systems Co Ltd filed Critical Toshiba Corp
Priority to JP2001288614A priority Critical patent/JP4448916B2/en
Publication of JP2003100150A publication Critical patent/JP2003100150A/en
Application granted granted Critical
Publication of JP4448916B2 publication Critical patent/JP4448916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、成形撚線導体およびこれを用いたコイルに係わり、特に、交流環境下での交流損失の低減を図ることができる成形撚線導体およびこれを用いたコイルに関する。
【0002】
【従来の技術】
一般に、交流電磁石のコイル用導体としては、うず電流による交流損失を低減するため撚線導体が必要とされている。また、かかる撚線導体への通電による温度上昇を抑制するためコイル用導体の内部に、冷却媒体が流通する冷却管を配置する必要がある。さらに、撚線導体としては、コイル巻する場合の占積率を向上させるため、圧縮成形後の仕上り断面を略矩形状に成形することが望まれている。
【0003】
従来、この種のコイル用導体としては、図7に示すようなものが知られている。同図において、従来のコイル用導体は、冷却媒体が流通する丸型冷却管20と、この丸型冷却管20の外周に複数の層を構成するように横巻きされた多数本の導線(以下、「撚線導体」という。)21とを備えている。
【0004】
しかして、撚線導体21は、その仕上り断面が略矩形状を呈するようにローラーダイス(不図示)によって圧縮成形され、成形後の撚線導体の外周には絶縁層22が設けられている。
【0005】
一方、このような構成のコイル用導体を断面略矩形状に圧縮成形する方法としては、丸型冷却管20の外方に配設される複数層の撚線導体21を、一括して断面略矩形状に圧縮成形する方法と、丸型冷却管20の外方に配設される複数層の撚線導体21を、各層毎に断面略矩形状に圧縮成形する方法とが知られている。
【0006】
しかしながら、前者の圧縮成形方法においては、最外層側に配設される撚線導体の圧縮加工度が最外層より内側に配設される撚線導体の圧縮加工度よりも大きくなることから、内側に配設される撚線導体の圧縮成形後の外径が必要以上に細くなり、この結果、最外層に配設される撚線導体の導線の一部が余分になり、この余分な導線が最外層の外側にはみ出る虞があった。また、圧縮成形時における撚線導体の径方向の応力によって中心に配置される丸型冷却管が著しく変形する虞もあった。
【0007】
また、後者の圧縮成形方法においては、撚線導体21の各層の圧縮加工度は略均一になるものの、中心に配置される冷却管20が丸型であるため、最内層に配設される撚線導体を断面略矩形状に圧縮成形することが困難となり、ひいては最内層の外側に配設される第2、第3の層を構成する撚線導体を断面略矩形状に圧縮成形することが困難になるという難点があった。
【0008】
このため、丸型冷却管20の外周部対角四隅に、撚線導体21と同種構成の金属線例えばアルミ線を縦添えした後に、最内層の撚線導体を配設し、これを断面略矩形状に圧縮成形する方法が案出されている。
【0009】
このような圧縮成形方法によれば、金属線の縦添えによって丸型冷却管20の見掛け上の外形が略四角形状を呈することから、最内層を構成する撚線導体も略四角形状に配列でき、この結果、丸型冷却管20に変形を与えることなく撚線導体を断面略矩形状に圧縮成形することができる。
【0010】
【発明が解決しようとする課題】
しかしながら、このような金属線を縦添えした成形撚線導体においては、丸型冷却管の外周部対角四隅に配置される金属線が撚られていないため、撚線導体に交流電流を通電した場合、若しくは撚線導体が交番磁界下に置かれた場合においては、撚線導体に発生する交流損失が大きくなり、ひいてはコイル用導体に撚線導体を採用した意義が失われるという難点があった。
【0011】
本発明は、上述の難点を解決するためになされたもので、丸型冷却管を変形させずに仕上り断面を略矩形状に圧縮成形することができ、また、交流環境下における交流損失の発生を低減できる成形撚線導体およびこれを用いたコイルを提供することを目的としている。
【0012】
【課題を解決するための手段】
このような目的を達成するため、本発明の成形撚線導体は、冷却媒体が流通する丸型冷却管と、この丸型冷却管の外方に配設される撚線導体とを備え、丸型冷却管の外周部対角四隅に、線状の絶縁材を縦添えすることにより、丸型冷却管に接する側の撚線導体が断面略矩形状に配列されることを特徴としている。
【0013】
本発明の成形撚線導体によれば、線状の絶縁材の縦添えによって丸型冷却管の見掛け上の外形が略四角形状を呈することになり、この結果、丸型冷却管に接する側、すなわち最内層に配設される撚線導体を略四角形状に配列することができ、ひいては、丸型冷却管に変形を与えずに撚線導体を断面略矩形状に圧縮成形することができる。また、丸型冷却管の外周部対角四隅に線状の絶縁材が縦添えされていることから、交流環境下における交流損失の発生を低減できる。
【0014】
また、本発明のコイルは、前記成形撚線導体の外周に絶縁被膜を設け、これを巻回したことを特徴としている。
【0015】
本発明のコイルによれば、仕上り断面が略矩形状とされた成形撚線導体を巻回していることから、コイルの占積率を向上させることができる。
【0016】
【発明の実施の形態】
以下、本発明に係る成形撚線導体およびこれを用いたコイルの好ましい実施形態について、図面を参照して説明する。
【0017】
図1は、本発明の実施形態による1層構成の成形撚線導体を示す横断面図であり、図2は、図1に示した成形撚線導体における半製品を示す横断面図である。図3は同じく2層構成の成形撚線導体を示す横断面図であり、図4は、3層構成の成形撚線導体を示す横断面図である。図5は、絶縁被膜を設けた成形撚線導体(コイル用導体)を示す横断面図であり、図6は、図5に示した導体により構成されるコイルを示す横断面図である。
【0018】
図1および図2において、本発明における成形撚線導体は、中心に非磁性材料から成る丸型冷却管1を備えており、この丸型冷却管1の内部には水等の冷却媒体が流通される。ここで、丸型冷却管1としては、外径が14mmで内径が12mmのステンレススチール管が使用されている。
【0019】
次に、丸型冷却管1の外周部対角四隅に、外径が3.5mm程度の線状の絶縁材2が丸型冷却管1の長手方向に沿って平行に縦添えされ、これにより、丸型冷却管1の見掛け上の外形、すなわち4本の絶縁材2の外周間に跨って外接する外形が、図2の2点鎖線で示すように、略四角形状を呈することになる。
【0020】
ここで、絶縁材2としては、適度の硬度を有する絶縁性の線状体、例えばエポキシ樹脂やポリイミド樹脂を含浸させたガラス繊維が使用される。絶縁材2として、適度の硬度を有する線状体を使用するのは、絶縁材の過変形を防止し、また後述する撚線導体の歪を防止するためである。すなわち、絶縁材2として、過度に軟質の絶縁材を使用すると、導線の横巻時における応力によって絶縁材が著しく変形し、この絶縁材の変形によって上記の丸型冷却管1の見掛け上の外形(略四角形状)が崩れ、ひいては丸型冷却管1に接する側の撚線導体を略矩形状に配列することが困難になるからである。なお、導線の横巻時の応力や後述する圧縮時の応力によって絶縁材2が若干変形してもよく、要は、丸型冷却管1に接する側の撚線導体が略矩形状に配列されれば良い。逆に、その硬度を導線の硬度よりも大きくすると、後述のコイル製作時における曲げ加工によって撚線導体に歪を生じさせる虞があるからである。
【0021】
しかして、見掛け上の外形が略四角形状とされた丸型冷却管1の外周には、外径が3.1mmの導線3(19本)が、層心径の11.2倍程度のピッチで右方向に同心状に撚り合せられて、最内層の撚線導体4が形成される。ここで、導線3としては、圧縮成形を容易にするため、硬アルミ線を160℃程度の温度で4時間程度焼鈍処理したいわゆる軟アルミ線が使用される。なお、軟アルミ線を使用する点は、図3および図4に示す成形撚線導体を製造する場合も同様である。
【0022】
このようにして得られた撚線導体4は、ローラーダイス等により、その縦横の幅がそれぞれ19mm程度になるように圧縮成形される。これにより、圧縮成形後の仕上り断面が略矩形状とされた成形撚線導体が得られる。
【0023】
次に、図3に示すように、2層構成の成形撚線導体を製造する場合は、図1に示した撚線導体4の外周に、外径が2.8mmの導線5(28本)を、層心径の11.5倍程度のピッチで左方向に同心状に撚り合せて、第2の層としての撚線導体6を形成し、前述と同様に、ローラーダイス等によって、その縦横の幅がそれぞれ23.7mm程度になるように圧縮成形する。これにより、圧縮成形後の断面が略矩形状とされた2層構成の成形撚線導体が得られる。なお、2層構成の成形撚線導体を製造する場合においては、最内層の撚線導体が断面略矩形状とされているため、前述の絶縁材2の縦添えは不要となる。この点は、図4に示す成形撚線導体を製造する場合も同様である。
【0024】
続いて、図4に示すように、3層構成の成形撚線導体を製造する場合は、図3に示す第2の層としての撚線導体6の外周に、外径が2.8mmの導線7(34本)を、層心径の10.7倍程度のピッチで右方向に同心状に撚り合せて、第3の層としての撚線導体8を形成し、前述と同様に、ローラーダイス等によって、その縦横の幅がそれぞれ28.5mm程度になるように圧縮成形する。これにより、圧縮成形後の断面が略矩形状とされた3層構成の成形撚線導体が得られる。
【0025】
このような構成の成形撚線導体においては、丸型冷却管1の外周部対角四隅に線状の絶縁材2が配置されていることから、成形撚線導体の角型成形を容易に行なうことができ、また、縦添えされる線状材が絶縁材料で形成されていることから、交流環境下における交流損失の低減を図ることができる。
【0026】
次に、以上のようにして得られた成形撚線導体を利用したコイルおよびその製法について述べる。
【0027】
図5は、図4に示した成形撚線導体を用いて構成されるコイル用導体を示している。なお、図4と共通する部分には同一の符号を付して詳細な説明を省略する。図5において、先ず、前述のようにして得られた例えば3層構成の成形撚線導体の外周に、ガラステープないしエポキシやポリイミドなどの樹脂を含浸して半焼成したガラステープなどを巻いて絶縁被膜9を形成する。そして、この絶縁被膜9を有する成形撚線導体10を、図6に示すように、例えば8列3段に積層してコイル状に巻回し、全体をエポキシ樹脂ないしポリイミド樹脂などで真空含浸して導線間の隙間を樹脂で埋め尽くすことにより拠線導体の中心に配置された冷却パイプへの熱伝導が向上し冷却特性に優れたコイルが得られる。その後その外周に対地絶縁としてエポキシやポリイミドなどの樹脂を含浸して半焼成したガラステープやガラスとマイカの複合体のテープを巻きつけて焼成し、強固な絶縁体11を設ける。
【0028】
このようにして得られたコイル12は、例えば、交流電磁石を構成する鉄心13に装着される。
【0029】
このような構成のコイル12においては、仕上り断面が略矩形状に成形された成形撚線導体を用いていることから、コイルの占積率を向上させることができる。
【0030】
なお、以上の実施形態においては、撚線導体を構成する導線として軟アルミ線を使用しているが、本発明はこれに限定されず、例えば硬アルミ線や軟銅線等を使用しても同様の効果を得ることができる。軟銅線を用いる場合には表面の電気伝導度を小さくするためにあらかじめ線の表面をホルマール処理などで絶縁しておくことが望ましい。
【0031】
また、丸型冷却管や導線の寸法、絶縁線の寸法や本数、成形撚り線導体の仕上がり寸法等は前述の実施形態に限られるものではなく、用途に応じて適した構成とすることになる。
【0032】
【発明の効果】
以上の説明から明らかなように、本発明の成形撚線導体によれば、丸型冷却管に接する側の撚線導体を略矩形状に配列することができ、ひいては、丸型冷却管に変形を与えずに撚線導体を断面略矩形状に圧縮成形することができる。また、丸型冷却管の外周部対角四隅に線状の絶縁材が縦添えされていることから、交流環境下における交流損失の発生を低減できる。
【0033】
また、本発明のコイルによれば、仕上り断面が略矩形状とされた成形撚線導体を巻回していることから、コイルの占積率を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施形態による1層構成の成形撚線導体を示す横断面図。
【図2】図1に示した成形撚線導体における半製品の横断面図。
【図3】本発明の実施形態による2層構成の成形撚線導体を示す横断面図。
【図4】本発明の実施形態による3層構成の成形撚線導体を示す横断面図。
【図5】本発明の実施形態によるコイル用導体を示す横断面図。
【図6】本発明の実施形態によるコイルを示す一部断面図。
【図7】従来の成形撚線導体の横断面図。
【符号の説明】
1 丸型冷却管
2 線状の絶縁材
3、5、7 導線
4、6、8 撚線導体
9 絶縁被膜
10 絶縁被膜を有する成形撚線導体(コイル用導体)
12 コイル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molded stranded conductor and a coil using the same, and more particularly to a molded stranded conductor capable of reducing AC loss in an AC environment and a coil using the same.
[0002]
[Prior art]
In general, a stranded wire conductor is required as a coil conductor of an AC electromagnet in order to reduce AC loss due to eddy current. Moreover, in order to suppress the temperature rise by the electricity supply to this twisted wire conductor, it is necessary to arrange | position the cooling pipe | tube with which a cooling medium distribute | circulates inside the conductor for coils. Furthermore, as a stranded wire conductor, in order to improve the space factor when coiled, it is desired that the finished cross section after compression molding is formed into a substantially rectangular shape.
[0003]
Conventionally, such a coil conductor as shown in FIG. 7 is known. In the figure, a conventional coil conductor is composed of a round cooling pipe 20 through which a cooling medium flows, and a large number of conductor wires (hereinafter referred to as a plurality of wires) that are horizontally wound so as to form a plurality of layers on the outer periphery of the circular cooling pipe 20. , “Twisted wire conductor”) 21.
[0004]
Thus, the stranded conductor 21 is compression-molded by a roller die (not shown) so that the finished cross section has a substantially rectangular shape, and an insulating layer 22 is provided on the outer periphery of the stranded conductor after the molding.
[0005]
On the other hand, as a method of compression-molding the coil conductor having such a configuration into a substantially rectangular cross section, a plurality of stranded wire conductors 21 disposed outside the round cooling pipe 20 are collectively cut in cross section. A method of compression-molding into a rectangular shape and a method of compressing and molding a plurality of layers of stranded wire conductors 21 disposed outside the round cooling pipe 20 into a substantially rectangular cross section for each layer are known.
[0006]
However, in the former compression molding method, the compression processing degree of the stranded wire conductor disposed on the outermost layer side is larger than the compression processing degree of the stranded wire conductor disposed on the inner side of the outermost layer. The outer diameter after compression molding of the stranded conductor disposed in the outermost layer becomes thinner than necessary. As a result, a part of the conductor of the stranded conductor disposed in the outermost layer becomes extra, and this extra conductor is There was a risk of protruding outside the outermost layer. In addition, there is a possibility that the round cooling pipe disposed at the center is significantly deformed by the stress in the radial direction of the stranded wire conductor during compression molding.
[0007]
Further, in the latter compression molding method, although the degree of compression processing of each layer of the stranded wire conductor 21 is substantially uniform, the cooling pipe 20 disposed in the center is round, so that the twist disposed in the innermost layer. It becomes difficult to compression-mold the wire conductor into a substantially rectangular cross section, and as a result, the stranded wire conductors constituting the second and third layers disposed outside the innermost layer can be compression-molded into a substantially rectangular cross section. There was the difficulty of becoming difficult.
[0008]
For this reason, a metal wire having the same type of configuration as the stranded wire conductor 21, for example, an aluminum wire, is vertically attached to the four corners of the outer periphery of the round cooling pipe 20, and then the innermost stranded wire conductor is disposed. A method of compression molding into a rectangular shape has been devised.
[0009]
According to such a compression molding method, the apparent outer shape of the round cooling pipe 20 has a substantially square shape due to the vertical attachment of the metal wire, so that the stranded wire conductors constituting the innermost layer can also be arranged in a substantially rectangular shape. As a result, the stranded wire conductor can be compression-molded into a substantially rectangular cross section without deforming the round cooling tube 20.
[0010]
[Problems to be solved by the invention]
However, in such a molded stranded wire conductor vertically attached with a metal wire, the metal wire arranged at the diagonal corners of the outer periphery of the round cooling pipe is not twisted, so an alternating current was passed through the stranded wire conductor. In this case, or when the stranded wire conductor is placed under an alternating magnetic field, the AC loss generated in the stranded wire conductor increases, and the significance of adopting the stranded wire conductor as the coil conductor is lost. .
[0011]
The present invention has been made to solve the above-mentioned problems, and the finished cross section can be compression-molded into a substantially rectangular shape without deforming the round cooling pipe, and the occurrence of AC loss in an AC environment. An object of the present invention is to provide a molded stranded wire conductor capable of reducing the resistance and a coil using the same.
[0012]
[Means for Solving the Problems]
In order to achieve such an object, the molded stranded conductor of the present invention includes a round cooling pipe through which a cooling medium flows, and a stranded conductor disposed outside the round cooling pipe. The stranded wire conductor on the side in contact with the round cooling pipe is arranged in a substantially rectangular cross section by vertically attaching a linear insulating material to the diagonal corners of the outer periphery of the mold cooling pipe.
[0013]
According to the formed twisted wire conductor of the present invention, the apparent outer shape of the round cooling pipe will exhibit a substantially rectangular shape due to the vertical attachment of the linear insulating material, as a result, the side in contact with the round cooling pipe, That is, the stranded wire conductors arranged in the innermost layer can be arranged in a substantially rectangular shape, and as a result, the stranded wire conductor can be compression-molded into a substantially rectangular cross section without deforming the round cooling pipe. Moreover, since the linear insulating material is vertically attached to the four corners of the outer peripheral portion of the round cooling pipe, the generation of AC loss in an AC environment can be reduced.
[0014]
The coil of the present invention is characterized in that an insulating coating is provided on the outer periphery of the molded stranded wire conductor, and this is wound.
[0015]
According to the coil of the present invention, the space factor of the coil can be improved because the formed stranded wire conductor having a substantially rectangular cross section is wound.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a molded stranded conductor and a coil using the same according to the present invention will be described with reference to the drawings.
[0017]
FIG. 1 is a cross-sectional view showing a one-layer formed twisted wire conductor according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a semi-finished product in the formed twisted wire conductor shown in FIG. FIG. 3 is a cross-sectional view showing a formed twisted wire conductor having a two-layer structure, and FIG. 4 is a cross-sectional view showing a formed twisted wire conductor having a three-layer structure. FIG. 5 is a cross-sectional view showing a molded stranded conductor (coil conductor) provided with an insulating coating, and FIG. 6 is a cross-sectional view showing a coil constituted by the conductor shown in FIG.
[0018]
1 and 2, the molded stranded conductor in the present invention includes a round cooling pipe 1 made of a nonmagnetic material at the center, and a cooling medium such as water circulates inside the round cooling pipe 1. Is done. Here, as the round cooling pipe 1, a stainless steel pipe having an outer diameter of 14 mm and an inner diameter of 12 mm is used.
[0019]
Next, linear insulating materials 2 having an outer diameter of about 3.5 mm are vertically attached to the four corners of the outer periphery of the round cooling pipe 1 in parallel along the longitudinal direction of the round cooling pipe 1. The apparent outer shape of the round cooling pipe 1, that is, the outer shape that circumscribes the outer periphery of the four insulating materials 2, exhibits a substantially rectangular shape as indicated by the two-dot chain line in FIG.
[0020]
Here, as the insulating material 2, an insulating linear body having an appropriate hardness, for example, a glass fiber impregnated with an epoxy resin or a polyimide resin is used. The reason why the linear body having an appropriate hardness is used as the insulating material 2 is to prevent over-deformation of the insulating material and to prevent distortion of the stranded wire conductor described later. That is, when an excessively soft insulating material is used as the insulating material 2, the insulating material is significantly deformed due to the stress during the horizontal winding of the conducting wire, and the apparent outer shape of the round cooling pipe 1 is deformed by the deformation of the insulating material. This is because (substantially square shape) collapses, and as a result, it becomes difficult to arrange the stranded conductors on the side in contact with the round cooling pipe 1 in a substantially rectangular shape. Note that the insulating material 2 may be slightly deformed by the stress at the time of horizontal winding of the conducting wire and the stress at the time of compression described later. In short, the stranded conductors on the side in contact with the round cooling tube 1 are arranged in a substantially rectangular shape. Just do it. On the contrary, if the hardness is larger than the hardness of the conducting wire, there is a risk that the twisted wire conductor may be distorted by bending during coil manufacturing described later.
[0021]
Thus, on the outer periphery of the round cooling pipe 1 whose apparent outer shape is substantially rectangular, a conductor 3 (19 wires) having an outer diameter of 3.1 mm has a pitch of about 11.2 times the layer core diameter. Thus, the innermost stranded wire conductor 4 is formed by concentrically twisting in the right direction. Here, in order to facilitate compression molding, a so-called soft aluminum wire obtained by annealing a hard aluminum wire at a temperature of about 160 ° C. for about 4 hours is used as the conductive wire 3. In addition, the point which uses a soft aluminum wire is the same also when manufacturing the shaping | molding twisted-wire conductor shown in FIG.3 and FIG.4.
[0022]
The stranded conductor 4 obtained in this way is compression-molded by a roller die or the like so that the vertical and horizontal widths are each about 19 mm. As a result, a molded stranded wire conductor whose finished cross section after compression molding has a substantially rectangular shape is obtained.
[0023]
Next, as shown in FIG. 3, in the case of manufacturing a two-layer formed twisted conductor, the conductor 5 (28 wires) having an outer diameter of 2.8 mm is provided on the outer periphery of the twisted conductor 4 shown in FIG. Are twisted concentrically in the leftward direction at a pitch of about 11.5 times the layer core diameter to form a stranded wire conductor 6 as the second layer. The compression molding is performed so that the width of each becomes about 23.7 mm. Thereby, the shaping | molding strand wire conductor of the 2 layer structure by which the cross section after compression molding was made into the substantially rectangular shape is obtained. In the case of manufacturing a two-layer formed stranded conductor, the innermost stranded conductor has a substantially rectangular cross section, so that the vertical attachment of the insulating material 2 is not necessary. This also applies to the case where the molded stranded wire conductor shown in FIG. 4 is manufactured.
[0024]
Subsequently, as shown in FIG. 4, in the case of manufacturing a three-layer formed twisted conductor, a conductor having an outer diameter of 2.8 mm is provided on the outer periphery of the twisted conductor 6 as the second layer shown in FIG. 3. 7 (34 wires) are twisted concentrically in the right direction at a pitch of about 10.7 times the layer core diameter to form a stranded wire conductor 8 as the third layer. For example, compression molding is performed so that the vertical and horizontal widths are about 28.5 mm. Thereby, a molded stranded wire conductor having a three-layer structure in which the cross section after compression molding is substantially rectangular is obtained.
[0025]
In the formed stranded wire conductor having such a configuration, the linear insulation material 2 is disposed at the four corners of the outer peripheral portion of the round cooling pipe 1, and therefore, the formed stranded wire conductor can be easily formed into a square shape. In addition, since the linearly attached linear material is formed of an insulating material, it is possible to reduce AC loss in an AC environment.
[0026]
Next, a coil using the molded stranded wire conductor obtained as described above and a manufacturing method thereof will be described.
[0027]
FIG. 5 shows a coil conductor formed using the molded stranded wire conductor shown in FIG. In addition, the same code | symbol is attached | subjected to the part which is common in FIG. 4, and detailed description is abbreviate | omitted. In FIG. 5, first, for example, a glass tape or a semi-baked glass tape impregnated with a resin such as epoxy or polyimide is wound around the outer periphery of a three-layer formed stranded conductor obtained as described above to insulate. A film 9 is formed. Then, as shown in FIG. 6, the formed twisted wire conductor 10 having the insulating coating 9 is laminated in, for example, 8 rows and 3 stages and wound in a coil shape, and the whole is vacuum-impregnated with an epoxy resin or a polyimide resin. By filling the gaps between the conductive wires with resin, the heat conduction to the cooling pipe arranged at the center of the base conductor is improved, and a coil having excellent cooling characteristics can be obtained. Thereafter, a glass tape that has been impregnated with a resin such as epoxy or polyimide as a ground insulation and semi-baked glass tape or a composite tape of glass and mica is wound around the outer periphery and fired to provide a strong insulator 11.
[0028]
The coil 12 obtained in this way is mounted on, for example, an iron core 13 constituting an AC electromagnet.
[0029]
Since the coil 12 having such a configuration uses a molded stranded wire conductor whose finished cross section is formed in a substantially rectangular shape, the space factor of the coil can be improved.
[0030]
In the above embodiment, a soft aluminum wire is used as the conductive wire constituting the stranded conductor. However, the present invention is not limited to this. For example, a hard aluminum wire or a soft copper wire may be used. The effect of can be obtained. When using an annealed copper wire, it is desirable to insulate the surface of the wire in advance by a formal treatment or the like in order to reduce the electrical conductivity of the surface.
[0031]
Further, the dimensions of the round cooling pipe and the conductive wire, the dimensions and number of the insulated wires, the finished dimensions of the formed stranded conductor, etc. are not limited to the above-described embodiment, and the configuration is suitable according to the application. .
[0032]
【The invention's effect】
As is apparent from the above description, according to the molded stranded conductor of the present invention, the stranded conductors on the side in contact with the round cooling pipe can be arranged in a substantially rectangular shape, and as a result, transformed into a round cooling pipe. The twisted wire conductor can be compression-molded into a substantially rectangular cross section without giving any. Moreover, since the linear insulating material is vertically attached to the four corners of the outer peripheral portion of the round cooling pipe, the generation of AC loss in an AC environment can be reduced.
[0033]
Moreover, according to the coil of this invention, since the shaping | molding twisted-wire conductor by which the finishing cross section was made into the substantially rectangular shape is wound, the space factor of a coil can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a single-layer formed twisted wire conductor according to an embodiment of the present invention.
2 is a cross-sectional view of a semi-finished product of the molded stranded conductor shown in FIG.
FIG. 3 is a cross-sectional view showing a two-layer molded stranded conductor according to an embodiment of the present invention.
FIG. 4 is a cross-sectional view showing a three-layer molded stranded wire conductor according to an embodiment of the present invention.
FIG. 5 is a cross-sectional view showing a coil conductor according to an embodiment of the present invention.
FIG. 6 is a partial cross-sectional view showing a coil according to an embodiment of the present invention.
FIG. 7 is a cross-sectional view of a conventional molded stranded conductor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Round cooling tube 2 Linear insulation material 3, 5, 7 Conductor 4, 6, 8 Twisted wire conductor 9 Insulation film 10 Molded stranded wire conductor (insulation film conductor) which has an insulation film
12 coils

Claims (2)

冷却媒体が流通する丸型冷却管と、この丸型冷却管の外方に配設される撚線導体とを備え、前記丸型冷却管の外周部対角四隅に、線状の絶縁材を縦添えすることにより、前記丸型冷却管に接する側の前記撚線導体が断面略矩形状に配列されることを特徴とする成形撚線導体。  A round cooling pipe through which the cooling medium flows, and a stranded conductor disposed outside the round cooling pipe, and a linear insulating material is provided at the four corners of the outer periphery of the round cooling pipe. The formed stranded wire conductor, wherein the stranded wire conductor on the side in contact with the round cooling pipe is arranged in a substantially rectangular cross section by being vertically attached. 請求項1に記載の成形撚線導体の外周に絶縁被膜を設け、これを巻回したことを特徴とするコイル。 An insulating film is provided on the outer periphery of the molded stranded wire conductor according to claim 1, and the coil is wound.
JP2001288614A 2001-09-21 2001-09-21 Molded stranded conductor and coil using the same Expired - Fee Related JP4448916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001288614A JP4448916B2 (en) 2001-09-21 2001-09-21 Molded stranded conductor and coil using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001288614A JP4448916B2 (en) 2001-09-21 2001-09-21 Molded stranded conductor and coil using the same

Publications (2)

Publication Number Publication Date
JP2003100150A JP2003100150A (en) 2003-04-04
JP4448916B2 true JP4448916B2 (en) 2010-04-14

Family

ID=19111233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001288614A Expired - Fee Related JP4448916B2 (en) 2001-09-21 2001-09-21 Molded stranded conductor and coil using the same

Country Status (1)

Country Link
JP (1) JP4448916B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839675B2 (en) * 2005-05-19 2011-12-21 トヨタ自動車株式会社 Motor winding structure
CN114883034B (en) * 2016-11-08 2024-03-15 株式会社自动网络技术研究所 Wire conductor, covered wire, and wire harness
CN106910561B (en) * 2017-03-29 2022-11-08 深圳市沃尔核材股份有限公司 Lead, cable and production method of lead
CA3082476A1 (en) * 2017-11-13 2019-05-16 Essex Group, Inc. Winding wire articles having internal cavities
DE102018209157A1 (en) * 2018-06-08 2019-12-12 Siemens Aktiengesellschaft Stranded conductor, coil device and manufacturing process

Also Published As

Publication number Publication date
JP2003100150A (en) 2003-04-04

Similar Documents

Publication Publication Date Title
JP5309595B2 (en) Motor, reactor using conductive wire as coil, and method for manufacturing said conductive wire
CA1134422A (en) Dynamoelectric machine stator having articulated amorphous metal components
JP2007181303A (en) Motor
US20190296596A1 (en) Winding electric wire, rotary machine coil using same, and method for manufacturing winding electric wire
US20130192057A1 (en) Manufacturing method for coil unit
JP4448916B2 (en) Molded stranded conductor and coil using the same
EP2984660B1 (en) Element wire assembly and method for manufacturing the same
US20120019090A1 (en) Superconducting coil and superconducting rotating machine using the same
JP2006100077A (en) Wire rod for winding
JP4482295B2 (en) Manufacturing method of coil for electric equipment
JP4187440B2 (en) Method for manufacturing an armature segment of an electric machine
CN110580975A (en) water-resistant winding wire and manufacturing method thereof
CN100561607C (en) Cable core of a kind of long stator winding cable and preparation method thereof
JP2930273B2 (en) Manufacturing method for windings of electromagnetic induction equipment
CN116387017B (en) Flat coil forming method and inductor
CN211858368U (en) High-power transformer
JPH02156605A (en) Insulating coil for electric apparatus
JP2024042587A (en) Superconducting rotating electric machine coil and its manufacturing method
CN106374697B (en) Magnet and method for manufacturing same
JP6090045B2 (en) Manufacturing method of collective conducting wire
JPH03248506A (en) Insulated conductor bundle
JP2013069562A (en) Collective conductor and coil using the same
JPH054265Y2 (en)
JP3457060B2 (en) Oxide superconducting conductor
KR200341949Y1 (en) Non-magnetic field heating wire in bedding

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060612

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees