JP4448592B2 - Reinforcement pile fixture - Google Patents

Reinforcement pile fixture Download PDF

Info

Publication number
JP4448592B2
JP4448592B2 JP2000069897A JP2000069897A JP4448592B2 JP 4448592 B2 JP4448592 B2 JP 4448592B2 JP 2000069897 A JP2000069897 A JP 2000069897A JP 2000069897 A JP2000069897 A JP 2000069897A JP 4448592 B2 JP4448592 B2 JP 4448592B2
Authority
JP
Japan
Prior art keywords
pile
reinforcing
coupling
steel pipe
footing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000069897A
Other languages
Japanese (ja)
Other versions
JP2001254368A (en
Inventor
孝 江口
俊久 畑野
正博 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2000069897A priority Critical patent/JP4448592B2/en
Publication of JP2001254368A publication Critical patent/JP2001254368A/en
Application granted granted Critical
Publication of JP4448592B2 publication Critical patent/JP4448592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electric Cable Installation (AREA)
  • Foundations (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高圧の送電線を高架支持する電力用鉄塔等建築構造物における基礎を、補強するための施工技術に関する。
【0002】
【従来の技術】
図7に示されるように、電力用鉄塔100等の構造物の基礎100Bは、地盤Gに打設された場所打ちコンクリート杭等からなる基礎杭101と、その杭頭101aと接合一体化されたコンクリートからなるフーチング102(図示のものは連続フーチング)で構成され、鉄塔100の柱脚103が前記フーチング102の上に構築されている。前記基礎杭101は通常、一つのフーチング102あたり、それぞれ1本乃至複数本、鉛直に打設される。
【0003】
ところで近年、電力用鉄塔100の場合、近年の電力需要の増大に伴い、図示されていない送電線の重量が増大し、このため送電線の弛み量が増大(垂れ下がり)することになる。そして、このような垂れ下がりを補償するには、送電線の架設高さを高くする必要があり、このため鉄塔100の高さが高くなる傾向にある。その結果、鉄塔100の重量が増大し、これを支持する基礎杭101の耐力を向上させることが要求されている。
【0004】
一方、大地震時において発生する鉄塔100の傾斜や倒壊といった被害は、基礎杭101の破損に起因するものであり、したがって耐震性を向上させる観点からも、基礎杭101の耐力を向上させることが要求されている。
【0005】
従来、既設の基礎杭(以下、既設杭という)101を補強するための工法としては、図8に示されるようなものが知られている。すなわち、従来工法においては、まずフーチング102に、既設杭101の鉛直方向投影位置に隣接して、所要数の鉛直貫通孔102aを削孔し、この鉛直貫通孔102aを通じて、前記既設杭101の隣接地盤を鉛直方向にボーリングして、補強用の杭104を打ち込む。そして、各補強杭104の杭頭に支圧部材105を取り付け、これらの支圧部材105を埋めるように、前記フーチング102の上面に、所要の厚さで鉄筋コンクリート106を打ち継ぐ。
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来の既設基礎の補強技術によれば、鉄筋コンクリートからなるフーチング102に、いくつもの鉛直貫通孔102aを削孔したり、補強杭104の打設後に、支圧部材105を固定するために、前記フーチング102上に型枠を組み立てて配筋し、コンクリート106を増設するといった工程が必要であるため、施工が煩雑でコストが高くなるばかりか、工期も長くなるといった問題があった。
【0007】
本発明は、上述のような問題に鑑みてなされたもので、その主な技術的課題とするところは、鉄塔等の地上構造物からの支持荷重増大や地震等に対する基礎の耐力の向上を図るため、既設の基礎を容易かつ低コストで補強可能な工法を提供することにある。
【0008】
【課題を解決するための手段】
上述の技術的課題は、本発明によって有効に解決することができる。
【0009】
本発明に係る補強杭の固定具は、縁部に沿って複数の結合孔が開設された基板と、この基板に突設され、鋼管とその内周に挿通された金属芯材と前記鋼管及び金属芯材の間に充填された固結材とからなる補強杭の前記鋼管を、遊びをもって挿通可能な杭頭挿入孔が開設された結合板と、前記杭頭挿入孔に挿入した補強杭の杭頭を前記結合板に結合する結合部材群と、前記結合孔に挿通されてフーチングの側面に打ち込み又はねじ込まれることにより前記基板を定着する複数のアンカーとを備え、前記結合部材群が、前記杭頭挿入孔に挿通した前記鋼管を結合板に接合する部材と、前記金属芯材の頭部に螺合されると共にこの金属芯材を前記結合板に接合する部材とからなる。
【0010】
【発明の実施の形態】
以下、本発明に係る補強杭の固定具を用いた基礎の補強工法を、図1乃至図6を参照しながら説明する。
【0011】
まず図1は、電力用鉄塔の基礎1Bを、本発明の工法により補強した状態を概略的に示すものである。すなわち、この図において、参照符号1は、鉄骨等により構築された電力用の鉄塔であり、その基礎1Bは、前記鉄塔1の柱脚11の下端に接合され地盤Gの表層部に鉄筋コンクリートにより構築されたフーチング2と、杭頭3aが前記フーチング2に接合され地盤Gへ鉛直に打設された場所打ちコンクリート杭等からなる既設の基礎杭(以下、既設杭という)3からなる。
【0012】
基礎1Bにおけるフーチング2の側面2aには、複数の固定具4が図示の断面と直交する方向へ適当な間隔で配置されており、フーチング2の周囲から既設杭3と平行(鉛直)に打設された複数の補強杭5の各杭頭5aが、前記固定具4を介して前記フーチング2の側面2aに固定されている。
【0013】
固定具4は、図2の斜視図及び図3の断面図に示されるように、外周部に複数の結合孔41aが開設された所要の肉厚の鋼板等からなる基板41と、この基板41の中央部にその面に対して垂直に突設された鋼板等からなる結合板42と、この結合板42の幅方向両側に位置して、前記基板41及び結合板42の双方に対して垂直に設けられた鋼板等からなる一対の補強板43と、前記結合板42と補強杭5とを接合する結合部材群44と、前記基板41の結合孔41aに挿通されてフーチング2の側面2aに打ち込み又はねじ込まれることにより、この固定具4を強固に定着する複数のアンカー45とを備える。また、前記基板41、結合板42及び補強板43は、溶接等により互いに一体化され、めっきあるいは施工後の塗装や吹き付け等によって防錆される。
【0014】
補強杭5としては、公知の構造を有する比較的小径(例えばφ300mm以下)の、かつ高耐力を有するものが好適に採用される。すなわち、この補強杭5は、図3に示されるように、地盤Gにおける軟弱層G1の下端又はそれより深くまで挿入されると共に、頭部を固定具4の結合板42にそれぞれ結合部材群44を介して接合された鋼管51と、この鋼管51の内周に挿通され、この鋼管51の下部開口から更に下側へ延びる下端52aが、前記軟弱層G1より下層にある堅固な支持層G2内へ達すると共に、頭部が前記結合板42にそれぞれ前記結合部材群44を介して接合された金属芯材としての異形鉄筋52と、前記鋼管51及び地盤Gと異形鉄筋52との間に充填された固結材としてのグラウト53とからなるものである。グラウト53は、鋼管51の下側(支持層G2内)では拡径されたペデスタル状に形成されており、また、このグラウト53の一部は鋼管51の外周側に回り込んで、地盤Gの削孔面に定着されている。
【0015】
図4乃至図6に、固定具4と補強杭5との種々の接合構造が例示されるように、固定具4の結合板42には、それぞれ補強杭5の鋼管51を、適当な遊びをもって挿通可能な杭頭挿入孔42aが開設されている。
【0016】
図4に示される例においては、結合部材群44は、結合板42の下側に位置するように、補強杭5における鋼管51の頭部近傍の外周に溶接等により固定される鋼製の下部フランジ441と、前記結合板42の杭頭挿入孔42aから上側へ突出した前記鋼管51の頭部外周に、溶接等により固定される鋼製の上部フランジ442と、この上部フランジ442の上に配置され、複数の螺子部材443の緊結によって、前記結合板42との間に上部フランジ442を挟着した状態で補強杭5の杭頭を押さえる鋼製の支圧板444とで構成される。支圧板444の中央には螺子孔444aが開設されており、補強杭5における異形鉄筋52の頭部が、この螺子孔444aに螺合されることによって、前記支圧板444に固定されるようになっている。
【0017】
また、図5に示される例においては、結合部材群44は、結合板42の下側に位置するように、補強杭5における鋼管51の頭部近傍の外周に溶接等により固定される鋼製の下部フランジ441と、前記結合板42の杭頭挿入孔42aから上側へ突出した前記鋼管51の頭部を覆うと共に、外周下面が前記結合板42に当接するように配置され、溶接又は螺合等により前記鋼管51に固定される鋼製の支圧キャップ445と、前記支圧キャップ445の上部中央に開設した鉄筋挿通孔445aに、補強杭5における異形鉄筋52の頭部を挿通状態に固定する一対のナット446,446とで構成される。
【0018】
また、図6に示される例においては、結合部材群44は、結合板42の下側に位置するように、補強杭5における鋼管51の頭部近傍の外周に溶接等により固定される鋼製の下部フランジ441と、前記結合板42の杭頭挿入孔42aから上側へ突出した前記鋼管51の頭部外周に、溶接等により固定される鋼製の上部フランジ442と、この上部フランジ442の上に配置され、複数のボルト447によって、前記結合板42との間に上部フランジ442を挟着した状態で補強杭5の杭頭を押さえる鋼製の支圧板444と、この支圧板444の中央に開設された鉄筋挿通孔444bに、補強杭5における異形鉄筋52の頭部を挿通状態に固定する一対のナット446,446とで構成される。
【0019】
上述の補強工法によれば、鉄塔1及びこれに架設された送電線(図示省略)の重量による荷重は、柱脚11からフーチング2を介して既成杭3に伝達されると共に、前記フーチング2から、固定具4を介して各補強杭5にも伝達される。このため前記荷重に対する基礎1Bの支持耐力が増大するので、例えば電力需要の増大に対処して、図1に実線で示される既設の鉄塔1を、一点鎖線で示されるような、サイズの大きな鉄塔1’に建て替えることによる荷重の増大に対応することができる。
【0020】
また、補強杭5によって、地震による水平加速度が鉄塔1に加えられた場合の水平慣性力に対する耐力や、鉄塔1の揺れによるモーメント及び引き抜き力に対する耐力が向上する。このため、杭全体としての剪断強度が増強され、大地震発生時の既設杭3の破壊や、あるいはフーチング2と既設杭3との接合部等の破壊に起因する鉄塔1の傾斜や倒壊を防止するための、耐震補強工法としても有用である。
【0021】
以下、この補強工法による施工手順を説明すると、図2に示されるように、まず、フーチング2の周囲の地盤Gを所要の深さに掘削して、前記フーチング2の側面2aを露出させる。
【0022】
次に、フーチング2の側面2aと近接した位置から、補強杭5を鉛直に打設する。補強杭5の打設位置は、前記側面2aに固定具4を固定した場合の結合板42における杭頭挿入孔42aの位置を考慮して決定し、また、補強杭5の打設本数や打設間隔は、目的とする強度を考慮して適切に決定する。
【0023】
各補強杭5の打設作業は、よく知られているように、まず、この補強杭5の鋼管51よりも適宜大径の管状ケーシング(図示省略)を用いてボーリング(ケーシング掘り)を行い、地盤Gにおける支持層G2内に達する削孔を形成する。そのとき、前記鋼管51はボーリングに合わせてケーシングと共に地盤Gの支持層G2まで一緒に挿入される。削孔が形成されたら、前記鋼管51を地盤G内に残し、ケーシングだけを引き抜く。次に、異形鉄筋52を鋼管51内に挿入するが、この異形鉄筋52にはグラウト53を圧入する装置が取り付けられていて、一緒に挿入される。挿入が完了したら、前記圧入装置を用い、前記削孔内にグラウト53を圧入し、これに合わせて、鋼管51を所定の高さまで引き上げる。グラウト53が十分に充填されたら、再度前記鋼管51を挿入し、同時にグラウト53も再度圧入する。そしてこの時の加圧力によって、前記鋼管51の下側でグラウト53がペデスタル状に拡散される。
【0024】
補強杭5としては、先に説明したようにφ300mm以下の小径で高耐力を有するものが好適に採用されるため、フーチング2の側面2aに近接した位置からでも容易に打設することができ、しかも比較的小型の重機による打設が可能である。また、補強杭5の打設のためにフーチング2に図8のような鉛直貫通孔102aを削孔する必要がないため、補強杭5の打設における施工コストが低減される。
【0025】
打設された各補強杭5の鋼管51の頭部近傍には、先に説明した図4乃至図6に示されるように、結合部材群44の一部である下部フランジ441が予め溶接等により接合される。そして、フーチング2の周囲の掘削空間Sに突出した各補強杭5の杭頭に、それぞれ固定具4を配置して、その結合板42の杭頭挿入孔42aに前記杭頭(鋼管51の頭部)を通すと共に、この固定具4の基板41を、複数のアンカー45によってフーチング2の側面2aに固定する。このとき、フーチング2には特にコンクリートを増設する必要はなく、しかも固定具4は鋼板等によって安価に製作可能であるため、ここでも施工コストが低減される。
【0026】
次に、前記結合板42と補強杭5の杭頭とを、結合部材群44によって、図4乃至図6に示されるような方法で結合する。その後は、必要に応じて、塗装や吹き付け等によって、防錆加工を施してから、フーチング2の周囲の掘削空間Sを掘削土により埋め戻し、施工を完了する。
【0027】
なお、上記実施形態においては、補強杭5に、いわゆるマイクロパイルを用いるものとして説明したが、本発明は、これには限定されず、固定具4により固定可能で、所要の耐力を発揮するものであれば良い。
【0028】
【発明の効果】
以上詳述したように、本発明に係る補強杭の固定具によれば次のような効果が実現される。まず施工上においては、フーチングへの孔開けやコンクリートの増設等が不要であるため、大掛かりな工事にならず、フーチングの周囲の狭い空間でも施工可能であるため、容易にかつ低コストで実施可能である。
【0029】
また、この補強杭の固定具を用いた基礎の補強工法による既設杭の補強を行うことによって、鉛直荷重に対する基礎の支持耐力や、地震時における水平耐力が向上するので、鉄塔等の地上構造物の建て替えによる支持荷重の増大に対処することができ、また、大地震時の基礎杭の破壊に起因して発生する前記構造物の傾斜や倒壊といった被害を防止するための有効な対策となる。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係る補強杭の固定具を用いた基礎の補強工法により補強された、鉄塔の基礎を概略的に示す説明図である。
【図2】 上記実施形態の固定具によりフーチングと補強杭を接合した状態を示す斜視図である。
【図3】 実施形態の固定具及び補強杭の構造をフーチング及び既設杭の一部と共に示す断面図である。
【図4】 実施形態の固定具と補強杭との結合構造の一例を示す要部断面図である。
【図5】 実施形態の固定具と補強杭との結合構造の他の例を示す要部断面図である。
【図6】 実施形態の固定具と補強杭との結合構造の他の例を示す要部断面図である。
【図7】 電力用鉄塔の基礎の構造を示すもので、(A)は縦断面図、(B)は部分的な平面図である。
【図8】 電力用鉄塔の基礎を、従来の補強工法により補強した状態を概略的に示す説明図である。
【符号の説明】
1 鉄塔(構造物)
1B 基礎
2 フーチング
3 既設杭
4 固定具
41 基板
41a 結合孔
42 結合板
42a 杭頭挿入孔
44 結合部材群
5 補強杭
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a construction technique for reinforcing a foundation in a building structure such as a power tower that supports an elevated voltage transmission line.
[0002]
[Prior art]
As shown in FIG. 7, the foundation 100B of the structure such as the power tower 100 is joined and integrated with a foundation pile 101 made of cast-in-place concrete piles and the like placed on the ground G, and the pile head 101a. The footing 102 is made of concrete (the illustrated one is a continuous footing), and the column base 103 of the steel tower 100 is constructed on the footing 102. The foundation piles 101 are usually driven vertically by one or more pieces per footing 102.
[0003]
By the way, in the case of the power tower 100 in recent years, with the recent increase in power demand, the weight of the transmission line (not shown) increases, and the amount of slackness of the transmission line increases (sags). And in order to compensate for such drooping, it is necessary to increase the installation height of the transmission line. For this reason, the height of the steel tower 100 tends to increase. As a result, the weight of the steel tower 100 increases, and it is required to improve the proof stress of the foundation pile 101 that supports the tower 100.
[0004]
On the other hand, the damage such as the inclination and collapse of the tower 100 caused by a large earthquake is caused by the breakage of the foundation pile 101. Therefore, the strength of the foundation pile 101 can be improved from the viewpoint of improving the earthquake resistance. It is requested.
[0005]
Conventionally, as a construction method for reinforcing an existing foundation pile (hereinafter referred to as an existing pile) 101, one shown in FIG. 8 is known. That is, in the conventional method, first, a necessary number of vertical through holes 102a are drilled in the footing 102 adjacent to the vertical projection position of the existing pile 101, and the existing pile 101 is adjacent through the vertical through hole 102a. Boring the ground in the vertical direction, a reinforcing pile 104 is driven. And the supporting member 105 is attached to the pile head of each reinforcement pile 104, and the reinforced concrete 106 is handed over by the required thickness on the upper surface of the said footing 102 so that these supporting members 105 may be embedded.
[0006]
[Problems to be solved by the invention]
However, according to the conventional reinforcement technique for existing foundations, in order to fix the supporting member 105 after drilling a number of vertical through holes 102a in the reinforced concrete footing 102 or placing the reinforcing pile 104, Since a process of assembling and arranging the formwork on the footing 102 and adding concrete 106 is necessary, there is a problem that not only the construction is complicated and the cost is increased, but also the construction period is lengthened.
[0007]
The present invention has been made in view of the above-described problems, and the main technical problem is to increase the support load from ground structures such as steel towers and to improve the basic strength against earthquakes. Therefore, an object of the present invention is to provide a construction method that can reinforce an existing foundation easily and at low cost.
[0008]
[Means for Solving the Problems]
The above technical problem can be effectively solved by the present invention .
[0009]
A reinforcing pile fixing tool according to the present invention includes a substrate having a plurality of coupling holes formed along an edge , a steel pipe, a metal core member inserted through an inner periphery thereof, the steel tube, A steel plate of a reinforcing pile composed of a consolidated material filled between metal cores, a coupling plate in which a pile head insertion hole that can be inserted with play is opened, and a reinforcing pile inserted into the pile head insertion hole A coupling member group that couples a pile head to the coupling plate, and a plurality of anchors that are inserted through the coupling hole and are driven or screwed into a side surface of a footing to fix the substrate, and the coupling member group includes It consists of a member that joins the steel pipe inserted through the pile head insertion hole to the coupling plate, and a member that is screwed to the head of the metal core and joins the metal core to the coupling plate .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reinforcement method of the foundation using the fixture of the reinforcement pile which concerns on this invention is demonstrated, referring FIG. 1 thru | or FIG.
[0011]
First, FIG. 1 schematically shows a state where a foundation 1B of a power tower is reinforced by the method of the present invention. That is, in this figure, reference numeral 1 is a power tower constructed of steel frames or the like, and its foundation 1B is joined to the lower end of the column base 11 of the tower 1 and constructed of reinforced concrete on the surface layer of the ground G. The footing 2 thus made and an existing foundation pile (hereinafter referred to as an existing pile) 3 composed of a cast-in-place concrete pile or the like, which is joined to the footing 2 and vertically driven to the ground G.
[0012]
On the side surface 2a of the footing 2 in the foundation 1B, a plurality of fixtures 4 are arranged at appropriate intervals in a direction orthogonal to the cross section shown in the figure, and are driven in parallel (vertically) from the periphery of the footing 2 to the existing pile 3. Each pile head 5 a of the plurality of reinforced piles 5 is fixed to the side surface 2 a of the footing 2 via the fixture 4.
[0013]
As shown in the perspective view of FIG. 2 and the cross-sectional view of FIG. 3, the fixture 4 includes a substrate 41 made of a steel plate or the like having a required thickness with a plurality of coupling holes 41 a formed in the outer peripheral portion, and the substrate 41. A coupling plate 42 made of a steel plate or the like projecting perpendicularly to the surface of the coupling plate 42 at the center of the coupling plate 42 and positioned on both sides in the width direction of the coupling plate 42 and perpendicular to both the substrate 41 and the coupling plate 42 A pair of reinforcing plates 43 made of a steel plate or the like, a connecting member group 44 that joins the connecting plate 42 and the reinforcing pile 5, and a connecting hole 41 a of the substrate 41 to be inserted into the side surface 2 a of the footing 2. A plurality of anchors 45 that firmly fix the fixture 4 by being driven or screwed are provided. The substrate 41, the coupling plate 42, and the reinforcing plate 43 are integrated with each other by welding or the like, and are rust-prevented by plating or painting or spraying after construction.
[0014]
As the reinforcing pile 5, one having a known structure and a relatively small diameter (for example, φ300 mm or less) and high proof strength is suitably employed. That is, as shown in FIG. 3, the reinforcing pile 5 is inserted to the lower end of the soft layer G <b> 1 in the ground G or deeper than that, and the head is joined to the coupling plate 42 of the fixture 4. And a lower end 52a that is inserted into the inner periphery of the steel pipe 51 and extends further downward from the lower opening of the steel pipe 51, and inside the rigid support layer G2 below the soft layer G1. And the head is filled between the deformed reinforcing bar 52 as a metal core member joined to the connecting plate 42 via the connecting member group 44, and between the steel pipe 51 and the ground G and the deformed reinforcing bar 52, respectively. And grout 53 as a caking material. The grout 53 is formed in a pedestal shape having an enlarged diameter on the lower side of the steel pipe 51 (in the support layer G2), and a part of the grout 53 wraps around the outer peripheral side of the steel pipe 51 and the ground G It is fixed on the drilling surface.
[0015]
4 to 6 exemplify various joining structures between the fixture 4 and the reinforcing pile 5, the steel plate 51 of the reinforcing pile 5 is respectively attached to the coupling plate 42 of the fixture 4 with appropriate play. A pile head insertion hole 42a that can be inserted is opened.
[0016]
In the example shown in FIG. 4, the coupling member group 44 is a steel lower part fixed by welding or the like to the outer periphery in the vicinity of the head of the steel pipe 51 in the reinforcing pile 5 so as to be positioned below the coupling plate 42. A flange 441, a steel upper flange 442 fixed to the outer periphery of the head of the steel pipe 51 protruding upward from the pile head insertion hole 42 a of the coupling plate 42, and the upper flange 442 are disposed on the upper flange 442. The steel bearing pressure plate 444 holds the pile head of the reinforcing pile 5 in a state where the upper flange 442 is sandwiched between the plurality of screw members 443 and the coupling plate 42. A screw hole 444a is formed at the center of the support plate 444, and the head of the deformed reinforcing bar 52 in the reinforcing pile 5 is fixed to the support plate 444 by being screwed into the screw hole 444a. It has become.
[0017]
Further, in the example shown in FIG. 5, the coupling member group 44 is made of steel that is fixed to the outer periphery in the vicinity of the head portion of the steel pipe 51 in the reinforcing pile 5 by welding or the like so as to be positioned below the coupling plate 42. The lower flange 441 of the steel plate 51 and the head of the steel pipe 51 protruding upward from the pile head insertion hole 42a of the coupling plate 42 are covered, and the outer peripheral lower surface is disposed so as to contact the coupling plate 42, and is welded or screwed. The head of the deformed reinforcing bar 52 in the reinforcing pile 5 is fixed in the inserted state in the steel supporting cap 445 fixed to the steel pipe 51 by means of the above and the reinforcing bar insertion hole 445a opened in the upper center of the supporting cap 445. And a pair of nuts 446, 446.
[0018]
Further, in the example shown in FIG. 6, the coupling member group 44 is made of steel that is fixed to the outer periphery in the vicinity of the head portion of the steel pipe 51 in the reinforcing pile 5 by welding or the like so as to be positioned below the coupling plate 42. A lower flange 441, a steel upper flange 442 fixed to the outer periphery of the head of the steel pipe 51 protruding upward from the pile head insertion hole 42a of the coupling plate 42, and an upper portion of the upper flange 442. A steel bearing plate 444 that holds the pile head of the reinforcing pile 5 with the upper flange 442 sandwiched between the coupling plate 42 by a plurality of bolts 447 and a center of the bearing plate 444. The opened reinforcing bar insertion hole 444b includes a pair of nuts 446 and 446 that fix the head of the deformed reinforcing bar 52 in the reinforcing pile 5 in the inserted state.
[0019]
According to the above-described reinforcing method, the load due to the weight of the steel tower 1 and the transmission line (not shown) installed on the tower 1 is transmitted from the column base 11 to the existing pile 3 via the footing 2 and from the footing 2. It is also transmitted to each reinforcing pile 5 through the fixture 4. For this reason, since the bearing strength of the foundation 1B with respect to the said load increases, for example, the existing steel tower 1 indicated by a solid line in FIG. It is possible to cope with an increase in load by rebuilding to 1 ′.
[0020]
Further, the reinforcement pile 5 improves the proof strength against the horizontal inertia force when the horizontal acceleration due to the earthquake is applied to the pylon 1, and the proof strength against the moment and pulling force caused by the swaying of the pylon 1. For this reason, the shear strength of the whole pile is enhanced, and the inclination of the steel tower 1 and the collapse due to the destruction of the existing pile 3 or the destruction of the joint between the footing 2 and the existing pile 3 when a large earthquake occurs are prevented. It is also useful as a seismic reinforcement method.
[0021]
Hereinafter, the construction procedure by this reinforcing method will be described. As shown in FIG. 2, first, the ground G around the footing 2 is excavated to a required depth to expose the side surface 2a of the footing 2.
[0022]
Next, the reinforcing pile 5 is driven vertically from a position close to the side surface 2 a of the footing 2. The placement position of the reinforcing pile 5 is determined in consideration of the position of the pile head insertion hole 42a in the coupling plate 42 when the fixture 4 is fixed to the side surface 2a. The installation interval is appropriately determined in consideration of the intended strength.
[0023]
As is well known, the placing work of each reinforcing pile 5 is first performed by boring (casing digging) using a tubular casing (not shown) having a diameter larger than that of the steel pipe 51 of the reinforcing pile 5, A drilling hole reaching the inside of the support layer G2 in the ground G is formed. At that time, the steel pipe 51 is inserted together with the casing to the support layer G2 of the ground G in accordance with the boring. When the hole is formed, the steel pipe 51 is left in the ground G and only the casing is pulled out. Next, the deformed rebar 52 is inserted into the steel pipe 51, and a device for press-fitting the grout 53 is attached to the deformed rebar 52 and inserted together. When the insertion is completed, the grout 53 is press-fitted into the drilling hole using the press-fitting device, and the steel pipe 51 is pulled up to a predetermined height accordingly. When the grout 53 is sufficiently filled, the steel pipe 51 is inserted again, and at the same time, the grout 53 is press-fitted again. The grout 53 is diffused in a pedestal shape below the steel pipe 51 by the applied pressure at this time.
[0024]
As described above, the reinforcing pile 5 is preferably adopted as having a small diameter of φ300 mm or less and high proof strength, so that it can be easily placed even from a position close to the side surface 2 a of the footing 2. Moreover, it can be driven by a relatively small heavy machine. Moreover, since it is not necessary to drill the vertical through-hole 102a as shown in FIG. 8 in the footing 2 for placing the reinforcing pile 5, the construction cost for placing the reinforcing pile 5 is reduced.
[0025]
In the vicinity of the head of the steel pipe 51 of each reinforced pile 5 placed, as shown in FIGS. 4 to 6 described above, a lower flange 441 that is a part of the coupling member group 44 is previously welded or the like. Be joined. And the fixing tool 4 is each arrange | positioned in the pile head of each reinforcement pile 5 protruded in the excavation space S around the footing 2, and the said pile head (head of the steel pipe 51 is inserted in the pile head insertion hole 42a of the coupling plate 42. Part) and the substrate 41 of the fixture 4 is fixed to the side surface 2a of the footing 2 by a plurality of anchors 45. At this time, it is not particularly necessary to add concrete to the footing 2, and the fixture 4 can be manufactured at low cost using a steel plate or the like, so that the construction cost is also reduced here.
[0026]
Next, the coupling plate 42 and the pile head of the reinforcing pile 5 are coupled by the coupling member group 44 by a method as shown in FIGS. Thereafter, if necessary, rust prevention is performed by painting, spraying, or the like, and then the excavation space S around the footing 2 is backfilled with excavation soil to complete the construction.
[0027]
In addition, in the said embodiment, although demonstrated as what uses what is called a micropile for the reinforcement pile 5, this invention is not limited to this, It can fix with the fixing tool 4 and exhibits required proof stress. If it is good.
[0028]
【The invention's effect】
As described in detail above, according to the reinforcing pile fixing tool of the present invention, the following effects are realized. First of all, since construction does not require drilling holes or adding concrete to the footing, it is not a large-scale construction and can be performed in a narrow space around the footing, so it can be carried out easily and at low cost. It is.
[0029]
In addition, by reinforcing the existing piles by the foundation reinforcement method using the fixtures for reinforcing piles, the support strength of the foundation against vertical loads and the horizontal strength during earthquakes are improved. It is possible to cope with an increase in the supporting load due to the rebuilding of the building, and it is an effective measure for preventing damage such as inclination or collapse of the structure caused by the destruction of the foundation pile at the time of a large earthquake.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram schematically showing a foundation of a steel tower reinforced by a foundation reinforcing method using a reinforcing pile fixing tool according to an embodiment of the present invention.
FIG. 2 is a perspective view showing a state in which a footing and a reinforcing pile are joined by the fixture of the embodiment .
FIG. 3 is a sectional view showing the structure of the fixture and the reinforcing pile according to the embodiment together with the footing and a part of the existing pile.
FIG. 4 is a cross-sectional view of a main part showing an example of a coupling structure between the fixture and the reinforcing pile according to the embodiment .
FIG. 5 is a cross-sectional view of an essential part showing another example of a coupling structure between a fixture and a reinforcing pile according to the embodiment .
FIG. 6 is a cross-sectional view of a main part showing another example of a coupling structure between a fixture and a reinforcing pile according to the embodiment .
7A and 7B show a basic structure of a power tower, where FIG. 7A is a longitudinal sectional view and FIG. 7B is a partial plan view.
FIG. 8 is an explanatory view schematically showing a state in which the foundation of a power tower is reinforced by a conventional reinforcing method.
[Explanation of symbols]
1 Steel tower (structure)
1B foundation 2 footing 3 existing pile 4 fixture 41 board 41a joint hole 42 joint plate 42a pile head insertion hole 44 joint member group 5 reinforcing pile

Claims (1)

縁部に沿って複数の結合孔が開設された基板と、
この基板に突設され、鋼管とその内周に挿通された金属芯材と前記鋼管及び金属芯材の間に充填された固結材とからなる補強杭の前記鋼管を、遊びをもって挿通可能な杭頭挿入孔が開設された結合板と、
前記杭頭挿入孔に挿入した補強杭の杭頭を前記結合板に結合する結合部材群と、
前記結合孔に挿通されてフーチングの側面に打ち込み又はねじ込まれることにより前記基板を定着する複数のアンカーと、
を備え、
前記結合部材群が、前記杭頭挿入孔に挿通した前記鋼管の頭部を前記結合板に接合する部材と、前記金属芯材の頭部に螺合されると共にこの金属芯材を前記結合板に接合する部材とからなることを特徴とする補強杭の固定具。
A substrate having a plurality of coupling holes along the edge; and
The steel pipe of the reinforcing pile made of a steel pipe and a metal core material inserted into the inner periphery of the steel pipe and a solidified material filled between the steel pipe and the metal core material can be inserted with play. A coupling plate with a pile head insertion hole;
A coupling member group for coupling the pile head of the reinforcing pile inserted into the pile head insertion hole to the coupling plate;
A plurality of anchors for fixing the substrate by being inserted into the coupling hole and driven or screwed into a side surface of the footing;
With
The coupling member group is screwed to the coupling plate and a member that joins the head of the steel pipe inserted through the pile head insertion hole to the coupling plate, and the metal core is connected to the coupling plate. A fixture for reinforcing piles, characterized by comprising a member to be joined to the joint .
JP2000069897A 2000-03-14 2000-03-14 Reinforcement pile fixture Expired - Fee Related JP4448592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000069897A JP4448592B2 (en) 2000-03-14 2000-03-14 Reinforcement pile fixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000069897A JP4448592B2 (en) 2000-03-14 2000-03-14 Reinforcement pile fixture

Publications (2)

Publication Number Publication Date
JP2001254368A JP2001254368A (en) 2001-09-21
JP4448592B2 true JP4448592B2 (en) 2010-04-14

Family

ID=18588697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000069897A Expired - Fee Related JP4448592B2 (en) 2000-03-14 2000-03-14 Reinforcement pile fixture

Country Status (1)

Country Link
JP (1) JP4448592B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101402042B1 (en) 2011-07-15 2014-06-02 (주)엑스휘나스기술연구소 Joining structure of offshore structure and construction method using the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4707177B2 (en) * 2005-05-26 2011-06-22 康夫 福田 Seismic structure of wooden house
JP5217216B2 (en) * 2007-04-03 2013-06-19 株式会社大林組 Anchor head fixing structure, anchor head fixing method, and grout injection method
KR100976620B1 (en) 2008-06-03 2010-08-17 주식회사 가인이앤피 Construction method for basement extention
JP5679305B2 (en) * 2011-02-17 2015-03-04 東京電力株式会社 Reinforcement method for power transmission towers
JP5509374B1 (en) * 2013-07-16 2014-06-04 黒沢建設株式会社 Seismic strengthening structure and seismic strengthening method for existing buildings
JP6611615B2 (en) * 2016-01-07 2019-11-27 隆幸 瓜生 Precast foundation structure and precast foundation method
CN108677988A (en) * 2018-06-20 2018-10-19 西南交通大学 A kind of upper stake being suitable for large-scale cyclic load is casted anchor novel foundation
IT202000016588A1 (en) * 2020-07-09 2022-01-09 Smart G S R L SYSTEM AND METHOD OF FOUNDATION WITH SEISMIC ISOLATION OF BUILDINGS
JP7457670B2 (en) 2021-05-06 2024-03-28 大成建設株式会社 Pile foundation structure, building
KR102331399B1 (en) * 2021-06-01 2021-12-01 이삼종 Pipeline system in underground distribution line
KR102331398B1 (en) * 2021-06-01 2021-12-01 이삼종 Pipeline system in underground distribution line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101402042B1 (en) 2011-07-15 2014-06-02 (주)엑스휘나스기술연구소 Joining structure of offshore structure and construction method using the same

Also Published As

Publication number Publication date
JP2001254368A (en) 2001-09-21

Similar Documents

Publication Publication Date Title
JP5955108B2 (en) Pile reinforcement structure of existing building and its construction method
JP4448592B2 (en) Reinforcement pile fixture
KR20060092552A (en) The non-strut down framework construction method of having used cast in place concrete pile
JP5456626B2 (en) Connection structure and method of connection between pile and steel column
JP4069509B2 (en) Construction method of reverse struts in the outer periphery of underground excavation space
JP3689840B2 (en) Seismic reinforcement method for existing structure foundation
JP3799036B2 (en) Building basic structure and construction method
JP2831909B2 (en) Connection structure of steel columns, piles and foundation beams
JP3690437B2 (en) Seismic reinforcement structure for existing buildings
JP4456257B2 (en) Semi-fixed direct foundation and pile foundation structure of steel column
KR102595835B1 (en) Seismic retrofit system using foundation integrated PC panel
JP5785476B2 (en) Reinforcing method and structure of existing foundation
JP3671344B2 (en) Joint structure between foundation pile and column base and its construction method
JP4111262B2 (en) Connection structure between foundation pile and superstructure, pile head joint, connection method between foundation pile and superstructure
JP2019218795A (en) Joint structure of foundation pile and foundation slab
JP2002129583A (en) Building construction method and stress transmission device
JP4612422B2 (en) Construction method of structure and foundation structure used for it
JP2004027727A (en) Foundation pile and construction method for foundation pile
JP4473400B2 (en) Foundation of construction and construction method
JPH1077644A (en) Earthquake resisting pile foundation construction method
JP2002194748A (en) Foundation constructing method and building foundation structure
JP2000017644A (en) Installation method of underwater structure
JPH1082057A (en) Method of earthquake-resisting pile foundation construction
JPH1082056A (en) Method of earthquake-resisting pile foundation construction
JPH04285211A (en) Foundation structure of building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees