JP4448214B2 - Verification device - Google Patents

Verification device Download PDF

Info

Publication number
JP4448214B2
JP4448214B2 JP31180099A JP31180099A JP4448214B2 JP 4448214 B2 JP4448214 B2 JP 4448214B2 JP 31180099 A JP31180099 A JP 31180099A JP 31180099 A JP31180099 A JP 31180099A JP 4448214 B2 JP4448214 B2 JP 4448214B2
Authority
JP
Japan
Prior art keywords
response signal
vibration energy
double layer
layer capacitor
electric double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31180099A
Other languages
Japanese (ja)
Other versions
JP2001136684A (en
Inventor
重雄 山本
国孝 有村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMART CO., LTD.
Original Assignee
SMART CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMART CO., LTD. filed Critical SMART CO., LTD.
Priority to JP31180099A priority Critical patent/JP4448214B2/en
Priority to EP00971728A priority patent/EP1231699A4/en
Priority to CN00817913A priority patent/CN1415133A/en
Priority to PCT/JP2000/007705 priority patent/WO2001033694A1/en
Priority to KR1020027005695A priority patent/KR20020065505A/en
Publication of JP2001136684A publication Critical patent/JP2001136684A/en
Priority to JP2009276702A priority patent/JP2010115109A/en
Application granted granted Critical
Publication of JP4448214B2 publication Critical patent/JP4448214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/75Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors
    • G01S13/751Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors wherein the responder or reflector radiates a coded signal
    • G01S13/758Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors wherein the responder or reflector radiates a coded signal using a signal generator powered by the interrogation signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/15Circuit arrangements or systems for wireless supply or distribution of electric power using ultrasonic waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/32Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from a charging set comprising a non-electric prime mover rotating at constant speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Near-Field Transmission Systems (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、負荷に電力を供給する電源装置、及びその電源装置を用いた照合装置に関し、特に空間に伝わる振動エネルギーをエネルギー源として利用するものである。
【0002】
【従来の技術】
入室管理システムのドアロック解除等に利用される照合装置としては、所定の管理空間に電磁波、音波等の振動エネルギーを放射する放射装置と、この振動エネルギーを受信して応答信号を発信する応答装置と、応答信号を受信してこれを照合する応答信号受信装置とを備えたものが知られており、このような照合装置の構成は、例えば、特開昭58−151572号に記載された非接触的照合方式や、特公昭58−57796号に記載されたアクティブ素子による判別装置等にも採用されている。
【0003】
ところで、このような照合装置における応答装置については、応答信号の発信に要する電力の確保が重要な問題となる。
【0004】
特に、前記特開昭58−151572号の照合方式によれば、内蔵した電池によって比較的安定した電力を得ることができるものの、その電池の寿命により、使用期間が限られるという不都合がある。
【0005】
この点、前記特公昭58−57769号の判別装置は、振動エネルギーを電力としてコンデンサに得て、これをエネルギー源として利用することにより、無電源とされている。
【0006】
【発明が解決しようとする課題】
しかしながら、前述した特公昭58−57769号のような構成によれば、コンデンサに得られた電力をその都度瞬時に使い切ってしまうことから、回路内における電力の不要なロス等が生じると、電力不足を生じて応答信号の発信がおぼつかなくなる場合が顕著であった。
【0007】
そこで本発明は、このような問題に鑑み、空間に伝わる振動エネルギーをエネルギー源として利用するものであって、長期に亘って使用することができるとともに、より安定した電力を得ることができる電源装置、及びその電源装置を用いた照合装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
本願第1請求項に記載した発明は、実施例で用いた符号を付して記すと、空間に振動エネルギーを放射する振動エネルギー放射装置(2)と、前記振動エネルギーを受信して応答信号を発信する応答装置(3)と、前記応答信号を受信してこれを照合する応答信号受信装置(4)とを備えた照合装置(1)において、
前記応答装置(3)は、前記振動エネルギー放射装置(2)で放射された振動エネルギーを受信する振動エネルギー受信コイル(310)と、前記応答信号を発生する応答信号発生回路(320)と、前記応答信号を発信する応答信号発信コイル(330)と、前記応答信号発生回路に電力を供給する電源装置とを備え、
前記電源装置は、樹脂製の基板に設けられた前記応答信号発生回路(320)に電力を供給するものであって、前記振動エネルギー受信コイル(310)で受信した振動エネルギーを電力として蓄える電気二重層コンデンサ(341)と、前記電気二重層コンデンサ(341)の出力電圧を調整する電圧調整器(342)と、前記電圧調整器(342)を介して前記電気二重層コンデンサ(341)に接続された二次電池(343)とを備え、
前記振動エネルギー受信コイル(310)と、前記電気二重層コンデンサ(341)と、前記電圧調整器(342)を介して前記電気二重層コンデンサ(341)に接続された前記二次電池(343)とは、前記応答信号発生回路(320)に対して並列に接続するとともに、前記振動エネルギー受信コイル(310)と前記電気二重層コンデンサ(341)との間、前記電気二重層コンデンサ(341)と前記電圧調整器(342)との間、及び前記電圧調整器(342)と前記応答信号発生回路(320)との間は、それぞれダイオード(360)を設けて電流の逆流を防止するものとし、
前記電気二重層コンデンサ(341)は、前記樹脂製の基板に配置されてラミネート状に形成されるとともに、前記振動エネルギー受信コイル(310)は、前記応答信号発生回路(320)及び前記電気二重層コンデンサ(341)を囲むように前記樹脂製の基板に成形され、前記電源装置がカード状に形成されている照合装置(1)である。

【0009】
ここで、電気二重層コンデンサとは、電力を瞬時に放電する一般的なコンデンサと比較して、静電容量が極めて大きいものであり、充放電が繰り返し可能な二次電池の一種である。具体的には、電解液自身が電気分解しやすい性質を有し、且つイオン化傾向とは関連しない電極を備えたものであって、その電解液を、両電極間にあって小イオンのみを通過するスペーサで区画したものである。
【0010】
その代表的な例としては、電解液を硫酸とするとともに、電極を活性炭にて構成し、ポリプロピレン製のスペーサを用いたものが知られている。
【0011】
とりわけ近年では、このような電気二重層コンデンサの研究開発も盛んに行われており、低ESRを実現し且つ厚さ数mm程度に成形したラミネートタイプのもの等が実用化されている。
【0012】
このように、本請求項の電源装置によると、空間に伝わる振動エネルギーを受信するコイルと、コイルで受信した振動エネルギーを電力として蓄える電気二重層コンデンサとを備えたので、空間に伝わる振動エネルギーをエネルギー源として利用し、長期に亘って使用することが可能であるとともに、より安定した電力を得ることが可能である。
【0013】
すなわち、電気二重層コンデンサは、比較的急速なチャージにも対応できるとともに、放電を瞬時に行う一般的なコンデンサよりも遥かに大きな電力を蓄えることができるという利点を有し、コイルで受信した振動エネルギーを電力として効率よく蓄えることが可能であり、負荷には安定した電力が供給される。
【0014】
また、本請求項の電源装置は、前記電気二重層コンデンサの出力電圧を調整する電圧調整器と、前記電圧調整器を介して前記電気二重層コンデンサに接続された二次電池とを備え、前記二次電池を前記負荷に接続した構成となっている
【0015】
このように、本請求項の電源装置によると、電気二重層コンデンサの出力電圧を調整する電圧調整器と、電圧調整器を介して電気二重層コンデンサに接続された二次電池とを備え、二次電池を負荷に接続したので、電気二重層コンデンサに蓄えられた電力をもって二次電池がチャージされ、負荷には二次電池から電力が供給される。従って、電力の安定性が一層向上される。
【0016】
また、電気二重層コンデンサは、放電するにつれて顕著に電圧が低下するので、二次電池のチャージに対し、蓄えた電気を有効に使うには、電圧を適宜調整する必要がある。この電圧調整を行うのが電圧調整器である。
【0017】
特に、電気二重層コンデンサで二次電池をチャージするには、電気二重層コンデンサの電圧を二次電池の電圧よりも高く設定する必要があるが、双方の電圧差が極端に大きいと、オーバーカレントが大量に流れるので、電気二重層コンデンサの電圧は、二次電池の電圧よりも若干高い程度に設定するとよい。
【0018】
本請求項の発明は、空間に振動エネルギーを放射する振動エネルギー放射装置と、前記振動エネルギーを受信して応答信号を発信する応答装置と、前記応答信号を受信してこれを照合する応答信号受信装置とを備えた照合装置において、前記応答装置は、前記振動エネルギー放射装置で放射された振動エネルギーを受信するコイルと、前記応答信号を発生する応答信号発生回路と、前記応答信号を発信するコイルと、前述した電源装置とを備え、前記電源装置から前記応答信号発生回路に電力を供給する構成の照合装置である。
【0019】
このように、本請求項の照合装置によると、応答装置は、ネルギー放射装置で放射された振動エネルギーを受信するコイルと、応答信号を発生する応答信号発生回路と、応答信号を発信するコイルと、請求項1又は2記載の電源装置とを備え、電源装置から応答信号発生回路に電力を供給するので、応答装置にあっては、振動エネルギーをエネルギー源として利用し、長期に亘ってより安定した電力を得ることが可能である。
【0020】
すなわち、応答装置に放電専用の電池を内蔵すると、その電池の寿命により、応答装置の使用期間が限られるという不都合があるが、本発明では、そのような不都合が確実に回避される。
【0021】
特に、振動エネルギーをエネルギー源として利用する場合、従来では、コンデンサに得られた電力をその都度瞬時に使い切ってしまうことから、回路内における電力の不要なロス等が生じると、電力不足を生じて応答信号の発信がおぼつかなくなる場合が顕著であったが、本発明では、かかる電源装置によって、そのような不都合が確実に回避される。
【0022】
【発明の実施の形態】
以下に、本発明の具体例を図面に基づいて詳細に説明する。
【0023】
図1に示すように、本例の照合装置1は、空間に振動エネルギーを放射する振動エネルギー放射装置2と、振動エネルギーを受信して応答信号を発信する応答装置3と、応答信号を受信してこれを照合する応答信号受信装置4とからなり、入室管理システムのドアロック解除に利用されている。
【0024】
すなわち、振動エネルギー放射装置2は、ドアの周囲の空間に振動エネルギーを常時放射しており、応答装置3は、特定の人物が携帯している。そして、この人物がドアに接近すると、応答装置3が振動エネルギーを受信して応答信号を発信し、更に応答信号を受信した応答信号受信装置4がこれを照合する。ドアロックは、照合した応答信号が適格であるときに解除される。
【0025】
前記振動エネルギー放射装置2は、振動エネルギーを発生させる振動エネルギー発生回路210と、振動エネルギーを放射する振動エネルギー放射コイル220とを備えている。
【0026】
前記応答装置3は、振動エネルギーを受信する振動エネルギー受信コイル310と、応答信号を発生する応答信号発生回路320と、応答信号を発信する応答信号発信コイル330と、応答信号発生回路320に電力を供給する電源装置と、断電装置350とを備えている。尚、図中の351は断電装置350の接点、360は電流の逆流を防止するダイオードである。
【0027】
すなわち、応答装置3は、振動エネルギー受信コイル310が振動エネルギーを受信すると、電源装置が電力を蓄えるとともに、電源装置に蓄えられた電力をもって応答信号発生回路320が応答信号を発生し、この応答信号を応答信号発信コイル330から発信するように構成している。
【0028】
電源装置は、振動エネルギー受信コイル310で受信した振動エネルギーを電力として蓄える電気二重層コンデンサ341と、電気二重層コンデンサ341の出力電圧を調整する電圧調整器342とを備え、電気二重層コンデンサ341に蓄えられた電力を、電圧調整器342で電圧調整しつつ応答信号発信回路320に供給するように構成されている。
【0029】
電気二重層コンデンサ341には、振動エネルギー受信コイル310が振動エネルギーを受信することによって静電荷がもたらされる。また、電気二重層コンデンサ341は、電力を瞬時に放電する一般的なコンデンサと比較すると、極めて大きな静電容量を有する。しかるに、電気二重層コンデンサ341には、振動エネルギーが電力として効率よく蓄えられる。
【0030】
特に、本例の電気二重層コンデンサ341は、静電容量0.1[F]、使用電圧5[V]の薄型に形成したラミネートタイプのものであり、静電荷が0の状態から振動エネルギーを約1秒間受信することによって、フルチャージされるように設定されている。また、電気二重層コンデンサ341がフルチャージされると、応答信号発信回路320には、少なくとも4秒間、一定の電圧で電力が供給される。
【0031】
尚、前記断電装置350は、電気二重層コンデンサ341がフルチャージされた際に、振動エネルギー受信コイル310と電気二重層コンデンサ341とを断電するものであり、振動エネルギーが逆流して振動エネルギー受信コイル310から再び発信されるのを防止するものである。
【0032】
更に、前記応答信号受信装置4は、応答装置3から発信された応答信号を受信する応答信号受信コイル420と、受信した応答信号を照合する応答信号照合回路410とを備えている。
【0033】
尚、振動エネルギー放射装置2の振動エネルギー放射コイル220及び応答信号受信装置4の応答信号受信コイル420については、同一のコイルを共用するように構成してもよい。すなわち、振動エネルギー発生回路210及び応答信号照合回路410を同一のコイルに接続し、そのコイルを振動エネルギー放射時及び応答信号受信時に使い分けるように構成してもよい。
【0034】
このような本例の構成によると、応答装置3は、応答信号を確実に発信することができるとともに、電源を交換せずとも半永久的に使用することができ、延いては、入室管理システムの信頼性を一層向上することができる。
【0035】
また、図2は、応答装置3の配置構成の一例を示す説明図である。
【0036】
同図に示す応答装置3は、薄型のカード状に形成したものであり、ICチップからなる応答信号発生回路320や、幅数cm四方且つ厚さ1mm程度の電気二重層コンデンサ341等を樹脂製の基板370に配置し、更に、その周囲にプリント成形又は蒸着成形した枠状の振動エネルギー受信コイル310を配置して構成している。
【0037】
応答信号発信コイル330は、振動エネルギー受信コイル310とは別途に配置する。或いは、振動エネルギー受信コイル310と同一のコイルを共用するように構成してもよい。
【0038】
以上説明したように、本例の電源装置によると、空間に伝わる振動エネルギーを受信するコイルと、コイルで受信した振動エネルギーを電力として蓄える電気二重層コンデンサとを備えたので、空間に伝わる振動エネルギーをエネルギー源として利用し、長期に亘って使用することができるとともに、より安定した電力を得ることができる。
【0039】
すなわち、電気二重層コンデンサは、比較的急速なチャージにも対応できるとともに、放電を瞬時に行う一般的なコンデンサよりも遥かに大きな電力を蓄えることができるという利点を有し、コイルで受信した振動エネルギーを電力として効率よく蓄えることができ、負荷には安定した電力を供給することができる。
【0040】
また、本例の照合装置によると、応答装置は、エネルギー放射装置で放射された振動エネルギーを受信するコイルと、応答信号を発生する応答信号発生回路と、応答信号を発信するコイルと、応答信号発信回路に電力を供給する電源装置とを備え、電源装置は、振動エネルギーを受信するコイルで受信した振動エネルギーを電力として蓄える電気二重層コンデンサを備えたので、応答装置にあっては、振動エネルギーをエネルギー源として利用し、長期に亘ってより安定した電力を得ることができる。
【0041】
すなわち、応答装置に放電専用の電池を内蔵すると、その電池の寿命により、応答装置の使用期間が限られるという不都合があるが、本発明では、そのような不都合が確実に回避される。
【0042】
特に、振動エネルギーをエネルギー源として利用する場合、従来では、コンデンサに得られた電力をその都度瞬時に使い切ってしまうことから、回路内における電力の不要なロス等が生じると、電力不足を生じて応答信号の発信がおぼつかなくなる場合が顕著であったが、本発明では、かかる電源装置によって、そのような不都合を確実に回避することができる。
【0043】
次に、本発明の他の具体例を図4乃至図5に基づいて説明する。
【0044】
これらの図に示すように、本例の電源装置は、電圧調整器342を介して電気二重層コンデンサ341に接続された二次電池343を備え、当該二次電池343を応答信号発生回路320に接続したものである。尚、その他の基本的な構成については、前述した具体例と同様であるので、共通する部材には同一の符号を付すとともに、その説明を省略する。
【0045】
すなわち、電源装置は、振動エネルギーコイル310で受信した振動エネルギーを電力として蓄える電気二重層コンデンサ341と、電気二重層コンデンサ341の出力電圧を調整する電圧調整器342と、電圧調整器342を介して電気二重層コンデンサ341に接続された二次電池343とを備え、二次電池343を応答信号発信回320に接続するように構成されている。
【0046】
二次電池320は、充放電が繰り返し可能な電池であり、電気二重層コンデンサ341に蓄えられた電力によってチャージされる。
【0047】
本例の場合、この二次電池320としては、鉛電池、ニッカド電池、ニッケル水素電池、リチウム電池のいずれかを用いている。
【0048】
また、電気二重層コンデンサ341の出力電圧は、電圧調整器342により、二次電池343の電圧よりも高く設定される。
【0049】
本例の電圧調整器342は、コンパレータを用いて構成したものであり、電気二重層コンデンサ341の出力を交流から一旦パルス状に変換した後これを平滑し、その電圧を常に二次電池343の電圧よりも若干高く設定するものである。
【0050】
従って、二次電池343は、電気二重層コンデンサ341に蓄えられた電力によって効率よくチャージされ、応答信号を発信する際、応答信号発生回路320には、二次電池343から一層安定した電力が供給される。
【0051】
以上説明したように、本例の電源装置によると、空間に伝わる振動エネルギーを受信するコイルと、コイルで受信した振動エネルギーを電力として蓄える電気二重層コンデンサと、電気二重層コンデンサの出力電圧を調整する電圧調整器と、電圧調整器を介して電気二重層コンデンサに接続された二次電池とを備え、二次電池を負荷に接続したので、電気二重層コンデンサに蓄えられた電力をもって二次電池をチャージすることができ、負荷には二次電池から電力を供給することができる。従って、電力の安定性を一層向上することができる。
【0052】
また、本例の照合装置によると、応答装置は、ネルギー放射装置で放射された振動エネルギーを受信するコイルと、応答信号を発生する応答信号発生回路と、応答信号を発信するコイルと、応答信号発信回路に電力を供給する電源装置とを備え、電源装置は、振動エネルギーを受信するコイルで受信した振動エネルギーを電力として蓄える電気二重層コンデンサと、電気二重層コンデンサの出力を調整する電圧調整器と、電圧調整器を介して電気二重層コンデンサに接続された二次電池とを備えたので、応答装置にあっては、振動エネルギーをエネルギー源として利用し、長期に亘ってより安定した電力を得ることができる。
【0053】
本願第1請求項に記載した発明は、空間に振動エネルギーを放射する振動エネルギー放射装置と、前記振動エネルギーを受信して応答信号を発信する応答装置と、前記応答信号を受信してこれを照合する応答信号受信装置とを備えた照合装置において、
前記応答装置は、前記振動エネルギー放射装置で放射された振動エネルギーを受信する振動エネルギー受信コイルと、前記応答信号を発生する応答信号発生回路と、前記応答信号を発信する応答信号発信コイルと、前記応答信号発生回路に電力を供給する電源装置とを備え、前記電源装置は、樹脂製の基板に設けられた前記応答信号発生回路に電力を供給するものであって、前記振動エネルギー受信コイルで受信した振動エネルギーを電力として蓄える電気二重層コンデンサと、前記電気二重層コンデンサの出力電圧を調整する電圧調整器と、前記電圧調整器を介して前記電気二重層コンデンサに接続された二次電池とを備え、前記振動エネルギー受信コイル、前記電気二重層コンデンサ、前記電圧調整器を介して前記電気二重層コンデンサに接続された前記二次電池は、前記応答信号発生回路に対して並列に接続するとともに、前記振動エネルギー受信コイルと前記電気二重層コンデンサとの間、前記電気二重層コンデンサと前記電圧調整器との間、及び前記電圧調整器と前記応答信号発生回路との間は、それぞれダイオードを設けて電流の逆流を防止するものとし、前記電気二重層コンデンサは、前記樹脂製の基板に配置されてラミネート状に形成されるとともに、前記振動エネルギー受信コイルは、前記応答信号発生回路及び前記電気二重層コンデンサを囲むように前記樹脂製の基板に成形され、前記電源装置がカード状に形成されている照合装置であり、このような構成によると、応答装置にあっては、空間に伝わる振動エネルギーをエネルギー源として利用し、長期に亘って使用することができるとともに、より安定した電力を得ることができる。
【図面の簡単な説明】
【図1】 本発明の具体例に係り、照合装置を示す説明図である。
【図2】 本発明の具体例に係り、照合装置を示す回路図である。
【図3】 本発明の具体例に係り、応答装置の配置構成を示す説明図である。
【図4】 本発明の具体例に係り、照合装置を示す回路図である。
【図5】 本発明の具体例に係り、応答装置の配置構成を示す説明図である。
【符号の説明】
1 照合装置
2 振動エネルギー放射装置
3 応答装置
4 応答信号受信装置
210 振動エネルギー発生回路
220 振動エネルギー発生コイル
310 振動エネルギー受信コイル
320 応答信号発生回路
330 応答信号発信コイル
341 電気二重層コンデンサ
342 電圧調整器
343 二次電池
350 断電装置
351 接点
360 ダイオード
370 基板
410 応答信号照合回路
420 応答信号受信コイル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power supply device that supplies power to a load and a collation device that uses the power supply device, and particularly uses vibration energy transmitted to space as an energy source.
[0002]
[Prior art]
As a collation device used for door lock release of an entrance management system, etc., a radiation device that radiates vibration energy such as electromagnetic waves and sound waves to a predetermined management space, and a response device that receives this vibration energy and transmits a response signal And a response signal receiving device that receives a response signal and collates the response signal. A configuration of such a collation device is disclosed in, for example, the non-patent document disclosed in Japanese Patent Laid-Open No. 58-151572. It is also used in a contact verification method, a discrimination device using an active element described in Japanese Patent Publication No. 58-57796, and the like.
[0003]
By the way, with respect to the response device in such a collation device, securing the power required for transmitting the response signal is an important issue.
[0004]
In particular, according to the collation method disclosed in Japanese Patent Laid-Open No. 58-151572, a relatively stable power can be obtained by a built-in battery, but there is a disadvantage that the period of use is limited due to the life of the battery.
[0005]
In this regard, the discriminating apparatus disclosed in Japanese Patent Publication No. 58-57769 is made to have no power source by obtaining vibration energy as electric power in a capacitor and using it as an energy source.
[0006]
[Problems to be solved by the invention]
However, according to the configuration such as the above-mentioned Japanese Patent Publication No. 58-57769, the electric power obtained in the capacitor is instantly used up every time. It is remarkable that the response signal is not transmitted due to the occurrence of the error.
[0007]
Therefore, in view of such a problem, the present invention uses vibration energy transmitted to a space as an energy source, and can be used for a long period of time and can obtain more stable power. And a collation device using the power supply device.
[0008]
[Means for Solving the Problems]
The invention described in claim 1 of the present application is described with the reference numerals used in the embodiments, and a vibration energy radiating device (2) that radiates vibration energy into space, and a response signal that receives the vibration energy. In a verification device (1) comprising a response device (3) for sending, and a response signal reception device (4) for receiving and verifying the response signal,
The response device (3) includes a vibration energy receiving coil (310) that receives the vibration energy radiated by the vibration energy emitting device (2) , a response signal generation circuit (320) that generates the response signal, A response signal transmission coil (330) for transmitting a response signal, and a power supply device for supplying power to the response signal generation circuit,
The power supply device supplies power to the response signal generation circuit (320) provided on a resin substrate, and stores the vibration energy received by the vibration energy receiving coil (310) as electric power. and layer capacitor (341), a voltage regulator for regulating the output voltage of the electric double layer capacitor (341) and (342), coupled to the voltage regulator via said (342) an electric double layer capacitor (341) Secondary battery (343) ,
The vibration energy receiving coil (310), the electric double layer capacitor (341), and the secondary battery (343) connected to the electric double layer capacitor (341) via the voltage regulator (342 ); Is connected in parallel to the response signal generating circuit (320) , and between the vibration energy receiving coil (310) and the electric double layer capacitor (341) , the electric double layer capacitor (341) and the A diode (360) is provided between the voltage regulator (342) and between the voltage regulator (342) and the response signal generation circuit (320) to prevent a reverse current flow.
The electric double layer capacitor (341) is disposed on the resin substrate and formed into a laminate, and the vibration energy receiving coil (310) includes the response signal generation circuit (320) and the electric double layer. The verification device (1) is formed on the resin substrate so as to surround the capacitor (341), and the power supply device is formed in a card shape.

[0009]
Here, the electric double layer capacitor is a kind of secondary battery that has extremely large capacitance and can be repeatedly charged and discharged as compared with a general capacitor that instantaneously discharges electric power. Specifically, the electrolytic solution itself has a property of being easily electrolyzed and includes an electrode that is not related to an ionization tendency, and the electrolytic solution is interposed between both electrodes and passes only small ions. It is divided by.
[0010]
A typical example is known in which an electrolytic solution is sulfuric acid, an electrode is made of activated carbon, and a polypropylene spacer is used.
[0011]
In particular, in recent years, research and development of such electric double layer capacitors have been actively conducted, and a laminate type molded into a thickness of about several millimeters and so on has achieved low ESR.
[0012]
Thus, according to the power supply device of this claim, since the coil that receives the vibration energy transmitted to the space and the electric double layer capacitor that stores the vibration energy received by the coil as electric power, the vibration energy transmitted to the space is provided. It can be used as an energy source and used over a long period of time, and more stable power can be obtained.
[0013]
In other words, the electric double layer capacitor has the advantage that it can cope with relatively quick charge and can store much larger electric power than a general capacitor that discharges instantaneously. Energy can be efficiently stored as electric power, and stable electric power is supplied to the load.
[0014]
The power supply device according to the present invention includes a voltage regulator that adjusts an output voltage of the electric double layer capacitor, and a secondary battery that is connected to the electric double layer capacitor via the voltage regulator, the secondary battery has a configuration which is connected to the load.
[0015]
Thus, according to the power supply device of this claim, the voltage regulator for adjusting the output voltage of the electric double layer capacitor and the secondary battery connected to the electric double layer capacitor via the voltage regulator are provided. Since the secondary battery is connected to the load, the secondary battery is charged with the electric power stored in the electric double layer capacitor, and the electric power is supplied to the load from the secondary battery. Therefore, the power stability is further improved.
[0016]
In addition, since the voltage of the electric double layer capacitor is remarkably lowered as it is discharged, it is necessary to appropriately adjust the voltage in order to effectively use the stored electricity for charging the secondary battery. This voltage adjustment is performed by a voltage regulator.
[0017]
In particular, in order to charge a secondary battery with an electric double layer capacitor, it is necessary to set the voltage of the electric double layer capacitor to be higher than the voltage of the secondary battery. Therefore, the voltage of the electric double layer capacitor is preferably set to a level slightly higher than the voltage of the secondary battery.
[0018]
The invention of this claim includes a vibration energy radiation device that radiates vibration energy into space, a response device that receives the vibration energy and transmits a response signal, and a response signal reception that receives the response signal and collates it The response device includes a coil that receives vibration energy radiated by the vibration energy radiating device, a response signal generation circuit that generates the response signal, and a coil that transmits the response signal. And a power supply apparatus described above, and a power supply apparatus configured to supply power to the response signal generation circuit.
[0019]
Thus, according to the verification device of this claim, the response device includes a coil that receives the vibration energy radiated from the energy radiation device, a response signal generation circuit that generates a response signal, and a coil that transmits the response signal. The power supply device according to claim 1 or 2 supplies power to the response signal generation circuit from the power supply device, so that the response device uses vibration energy as an energy source and is more stable over a long period of time. Power can be obtained.
[0020]
That is, when a battery dedicated for discharging is built in the response device, there is an inconvenience that the period of use of the response device is limited due to the life of the battery, but in the present invention, such an inconvenience is reliably avoided.
[0021]
In particular, when vibration energy is used as an energy source, conventionally, the electric power obtained in the capacitor is used up instantaneously every time, so if an unnecessary loss of power in the circuit occurs, power shortage occurs. In the present invention, such inconveniences are surely avoided by the power supply apparatus, although it is remarkable that the response signal is not transmitted.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific examples of the present invention will be described in detail with reference to the drawings.
[0023]
As shown in FIG. 1, the collation device 1 of this example receives a vibration energy radiation device 2 that radiates vibration energy into space, a response device 3 that receives vibration energy and transmits a response signal, and a response signal. And a response signal receiving device 4 for verifying this, and is used for releasing the door lock of the room entrance management system.
[0024]
That is, the vibration energy radiation device 2 constantly radiates vibration energy to the space around the door, and the response device 3 is carried by a specific person. When this person approaches the door, the response device 3 receives the vibration energy and transmits a response signal, and the response signal reception device 4 that has received the response signal collates it. The door lock is released when the matched response signal is qualified.
[0025]
The vibration energy radiation device 2 includes a vibration energy generation circuit 210 that generates vibration energy and a vibration energy radiation coil 220 that radiates vibration energy.
[0026]
The response device 3 supplies power to a vibration energy receiving coil 310 that receives vibration energy, a response signal generation circuit 320 that generates a response signal, a response signal transmission coil 330 that transmits a response signal, and a response signal generation circuit 320. A power supply device to be supplied and a power disconnection device 350 are provided. In the figure, reference numeral 351 denotes a contact of the power disconnecting device 350, and 360 denotes a diode for preventing a reverse current flow.
[0027]
That is, in response device 3, when vibration energy receiving coil 310 receives vibration energy, power supply device stores electric power, and response signal generation circuit 320 generates a response signal with the electric power stored in power supply device, and this response signal Is transmitted from the response signal transmission coil 330.
[0028]
The power supply device includes an electric double layer capacitor 341 that stores vibration energy received by the vibration energy receiving coil 310 as power, and a voltage regulator 342 that adjusts the output voltage of the electric double layer capacitor 341. The stored power is configured to be supplied to the response signal transmission circuit 320 while the voltage is adjusted by the voltage regulator 342.
[0029]
The electric double layer capacitor 341 receives an electrostatic charge when the vibration energy receiving coil 310 receives the vibration energy. In addition, the electric double layer capacitor 341 has an extremely large capacitance as compared with a general capacitor that instantaneously discharges electric power. However, vibration energy is efficiently stored as electric power in the electric double layer capacitor 341.
[0030]
In particular, the electric double layer capacitor 341 of this example is a thin laminate type having a capacitance of 0.1 [F] and a working voltage of 5 [V]. It is set to be fully charged by receiving for about 1 second. When electric double layer capacitor 341 is fully charged, power is supplied to response signal transmission circuit 320 at a constant voltage for at least 4 seconds.
[0031]
The power disconnecting device 350 disconnects the vibration energy receiving coil 310 and the electric double layer capacitor 341 when the electric double layer capacitor 341 is fully charged. This prevents transmission from the receiving coil 310 again.
[0032]
Further, the response signal receiving device 4 includes a response signal receiving coil 420 that receives the response signal transmitted from the response device 3, and a response signal checking circuit 410 that checks the received response signal.
[0033]
Note that the vibration energy radiating coil 220 of the vibration energy radiating device 2 and the response signal receiving coil 420 of the response signal receiving device 4 may be configured to share the same coil. That is, the vibration energy generation circuit 210 and the response signal collation circuit 410 may be connected to the same coil, and the coils may be used separately when vibration energy is emitted and when a response signal is received.
[0034]
According to the configuration of this example, the response device 3 can reliably transmit a response signal and can be used semi-permanently without replacing the power source. Reliability can be further improved.
[0035]
FIG. 2 is an explanatory diagram showing an example of an arrangement configuration of the response device 3.
[0036]
The response device 3 shown in the figure is formed in a thin card shape, and includes a response signal generating circuit 320 formed of an IC chip, an electric double layer capacitor 341 having a width of several cm square and a thickness of about 1 mm, and the like. Further, a frame-shaped vibration energy receiving coil 310 that is printed or vapor-deposited is disposed around the substrate 370.
[0037]
The response signal transmission coil 330 is arranged separately from the vibration energy reception coil 310. Or you may comprise so that the same coil as the vibration energy receiving coil 310 may be shared.
[0038]
As described above, according to the power supply device of this example, the coil that receives vibration energy transmitted to the space and the electric double layer capacitor that stores the vibration energy received by the coil as electric power are provided. Therefore, the vibration energy transmitted to the space. Can be used over a long period of time, and more stable power can be obtained.
[0039]
In other words, the electric double layer capacitor has the advantage that it can cope with relatively quick charge and can store much larger electric power than a general capacitor that discharges instantaneously. Energy can be efficiently stored as electric power, and stable electric power can be supplied to the load.
[0040]
Further, according to the collating device of this example, the response device includes a coil that receives the vibration energy radiated by the energy emitting device, a response signal generation circuit that generates a response signal, a coil that transmits the response signal, and a response signal. A power supply device that supplies power to the transmission circuit, and the power supply device includes an electric double layer capacitor that stores vibration energy received by a coil that receives vibration energy as power. Can be used as an energy source, and more stable power can be obtained over a long period of time.
[0041]
That is, when a battery dedicated for discharging is built in the response device, there is an inconvenience that the period of use of the response device is limited due to the life of the battery, but in the present invention, such an inconvenience is reliably avoided.
[0042]
In particular, when vibration energy is used as an energy source, conventionally, the electric power obtained in the capacitor is used up instantaneously every time, so if an unnecessary loss of power in the circuit occurs, power shortage occurs. In the present invention, such a problem can be reliably avoided by such a power supply device, although the case where the transmission of the response signal does not become noticeable is remarkable.
[0043]
Next, another specific example of the present invention will be described with reference to FIGS.
[0044]
As shown in these drawings, the power supply device of this example includes a secondary battery 343 connected to an electric double layer capacitor 341 via a voltage regulator 342, and the secondary battery 343 is connected to the response signal generation circuit 320. Connected. Since the other basic configuration is the same as that of the above-described specific example, common members are denoted by the same reference numerals and description thereof is omitted.
[0045]
That is, the power supply device includes an electric double layer capacitor 341 that stores vibration energy received by the vibration energy coil 310 as electric power, a voltage regulator 342 that adjusts an output voltage of the electric double layer capacitor 341, and a voltage regulator 342. A secondary battery 343 connected to the electric double layer capacitor 341, and the secondary battery 343 is connected to the response signal transmission circuit 320.
[0046]
The secondary battery 320 is a battery that can be repeatedly charged and discharged, and is charged by the electric power stored in the electric double layer capacitor 341.
[0047]
In this example, as the secondary battery 320, any of a lead battery, a nickel cadmium battery, a nickel metal hydride battery, and a lithium battery is used.
[0048]
The output voltage of the electric double layer capacitor 341 is set higher than the voltage of the secondary battery 343 by the voltage regulator 342.
[0049]
The voltage regulator 342 of this example is configured by using a comparator, and after converting the output of the electric double layer capacitor 341 from alternating current into a pulse shape, smoothing it, the voltage is always applied to the secondary battery 343. It is set slightly higher than the voltage.
[0050]
Therefore, the secondary battery 343 is efficiently charged by the electric power stored in the electric double layer capacitor 341, and when the response signal is transmitted, the response signal generation circuit 320 is supplied with more stable power from the secondary battery 343. Is done.
[0051]
As described above, according to the power supply device of this example, the coil that receives vibration energy transmitted to the space, the electric double layer capacitor that stores the vibration energy received by the coil as power, and the output voltage of the electric double layer capacitor are adjusted. Voltage regulator and a secondary battery connected to the electric double layer capacitor via the voltage regulator, and the secondary battery is connected to the load, so the secondary battery with the electric power stored in the electric double layer capacitor Can be charged, and power can be supplied to the load from the secondary battery. Therefore, the power stability can be further improved.
[0052]
Further, according to the verification device of this example, the response device includes a coil that receives the vibration energy radiated by the energy radiation device, a response signal generation circuit that generates a response signal, a coil that transmits the response signal, and a response signal. An electric double layer capacitor that stores vibration energy received by a coil that receives vibration energy as electric power, and a voltage regulator that adjusts the output of the electric double layer capacitor. And a secondary battery connected to the electric double layer capacitor via a voltage regulator, the response device uses vibration energy as an energy source and provides more stable power over a long period of time. Obtainable.
[0053]
The invention described in claim 1 of the present application is a vibration energy radiation device that radiates vibration energy into space, a response device that receives the vibration energy and transmits a response signal, and receives the response signal and collates it In the verification device provided with the response signal receiving device to
The response device includes a vibration energy receiving coil that receives vibration energy radiated by the vibration energy emitting device, a response signal generation circuit that generates the response signal, a response signal transmission coil that transmits the response signal, A power supply device for supplying power to the response signal generating circuit, wherein the power supply device supplies power to the response signal generating circuit provided on a resin substrate and is received by the vibration energy receiving coil. An electric double layer capacitor for storing the vibration energy as electric power, a voltage regulator for adjusting an output voltage of the electric double layer capacitor, and a secondary battery connected to the electric double layer capacitor via the voltage regulator. wherein the vibration energy receiving coil, and the electric double layer capacitor, the electric double layer capacitor through said voltage regulator The connected secondary batteries in service, as well as connected in parallel to the response signal generating circuit, between the electric double layer capacitor and the vibrational energy receiving coil, said voltage regulator and said electric double layer capacitor And between the voltage regulator and the response signal generating circuit, diodes are respectively provided to prevent reverse current flow, and the electric double layer capacitor is disposed on the resin substrate. The vibration energy receiving coil is formed on the resin substrate so as to surround the response signal generating circuit and the electric double layer capacitor, and the power supply device is formed in a card shape. According to such a configuration, the response device uses vibration energy transmitted to space as an energy source, It is possible to use over, it is possible to obtain a more stable power.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a collation device according to a specific example of the present invention.
FIG. 2 is a circuit diagram showing a verification device according to a specific example of the present invention.
FIG. 3 is an explanatory diagram showing an arrangement configuration of response devices according to a specific example of the present invention.
FIG. 4 is a circuit diagram showing a verification device according to a specific example of the present invention.
FIG. 5 is an explanatory diagram showing an arrangement configuration of response devices according to a specific example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Verification apparatus 2 Vibration energy radiation apparatus 3 Response apparatus 4 Response signal receiver 210 Vibration energy generation circuit 220 Vibration energy generation coil 310 Vibration energy reception coil 320 Response signal generation circuit 330 Response signal transmission coil 341 Electric double layer capacitor 342 Voltage regulator 343 Secondary battery 350 Power disconnection device 351 Contact 360 Diode 370 Substrate 410 Response signal verification circuit 420 Response signal receiving coil

Claims (1)

空間に振動エネルギーを放射する振動エネルギー放射装置と、前記振動エネルギーを受信して応答信号を発信する応答装置と、前記応答信号を受信してこれを照合する応答信号受信装置とを備えた照合装置において、
前記応答装置は、前記振動エネルギー放射装置で放射された振動エネルギーを受信する振動エネルギー受信コイルと、前記応答信号を発生する応答信号発生回路と、前記応答信号を発信する応答信号発信コイルと、前記応答信号発生回路に電力を供給する電源装置とを備え、
前記電源装置は、樹脂製の基板に設けられた前記応答信号発生回路に電力を供給するものであって、前記振動エネルギー受信コイルで受信した振動エネルギーを電力として蓄える電気二重層コンデンサと、前記電気二重層コンデンサの出力電圧を調整する電圧調整器と、前記電圧調整器を介して前記電気二重層コンデンサに接続された二次電池とを備え、
前記振動エネルギー受信コイル、前記電気二重層コンデンサ、前記電圧調整器を介して前記電気二重層コンデンサに接続された前記二次電池は、前記応答信号発生回路に対して並列に接続するとともに、前記振動エネルギー受信コイルと前記電気二重層コンデンサとの間、前記電気二重層コンデンサと前記電圧調整器との間、及び前記電圧調整器と前記応答信号発生回路との間は、それぞれダイオードを設けて電流の逆流を防止するものとし、
前記電気二重層コンデンサは、前記樹脂製の基板に配置されてラミネート状に形成されるとともに、前記振動エネルギー受信コイルは、前記応答信号発生回路及び前記電気二重層コンデンサを囲むように前記樹脂製の基板に成形され、前記電源装置がカード状に形成されていることを特徴とする照合装置。
A collation apparatus comprising: a vibration energy radiation device that radiates vibration energy into space; a response device that receives the vibration energy and transmits a response signal; and a response signal reception device that receives the response signal and collates the response signal In
The response device includes a vibration energy receiving coil that receives vibration energy radiated by the vibration energy emitting device, a response signal generation circuit that generates the response signal, a response signal transmission coil that transmits the response signal, A power supply device for supplying power to the response signal generation circuit,
The power supply device supplies power to the response signal generation circuit provided on a resin substrate, and stores an electric double layer capacitor that stores vibration energy received by the vibration energy receiving coil as electric power; A voltage regulator for adjusting the output voltage of the double layer capacitor, and a secondary battery connected to the electric double layer capacitor via the voltage regulator,
And the vibration energy receiving coil, and the electric double layer capacitor, wherein the voltage regulator the secondary battery connected to said electric double layer capacitor through the, as well as connected in parallel to the response signal generation circuit A diode is provided between the vibration energy receiving coil and the electric double layer capacitor, between the electric double layer capacitor and the voltage regulator, and between the voltage regulator and the response signal generation circuit. shall prevent the backflow of current Te,
The electric double layer capacitor is disposed on the resin substrate and formed in a laminate shape, and the vibration energy receiving coil is made of the resin so as to surround the response signal generation circuit and the electric double layer capacitor. A collating apparatus, wherein the collating apparatus is formed on a substrate and the power supply device is formed in a card shape.
JP31180099A 1999-11-02 1999-11-02 Verification device Expired - Fee Related JP4448214B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP31180099A JP4448214B2 (en) 1999-11-02 1999-11-02 Verification device
EP00971728A EP1231699A4 (en) 1999-11-02 2000-11-01 Power source and sensor device comprising the same
CN00817913A CN1415133A (en) 1999-11-02 2000-11-01 Power source device and sensor device comprising the same
PCT/JP2000/007705 WO2001033694A1 (en) 1999-11-02 2000-11-01 Power source and sensor device comprising the same
KR1020027005695A KR20020065505A (en) 1999-11-02 2000-11-01 Sensor device provided with a power device
JP2009276702A JP2010115109A (en) 1999-11-02 2009-12-04 Collating unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31180099A JP4448214B2 (en) 1999-11-02 1999-11-02 Verification device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009276702A Division JP2010115109A (en) 1999-11-02 2009-12-04 Collating unit

Publications (2)

Publication Number Publication Date
JP2001136684A JP2001136684A (en) 2001-05-18
JP4448214B2 true JP4448214B2 (en) 2010-04-07

Family

ID=18021595

Family Applications (2)

Application Number Title Priority Date Filing Date
JP31180099A Expired - Fee Related JP4448214B2 (en) 1999-11-02 1999-11-02 Verification device
JP2009276702A Ceased JP2010115109A (en) 1999-11-02 2009-12-04 Collating unit

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009276702A Ceased JP2010115109A (en) 1999-11-02 2009-12-04 Collating unit

Country Status (5)

Country Link
EP (1) EP1231699A4 (en)
JP (2) JP4448214B2 (en)
KR (1) KR20020065505A (en)
CN (1) CN1415133A (en)
WO (1) WO2001033694A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60335796D1 (en) 2002-04-26 2011-03-03 Millipore Corp DISPOSABLE, STERILE LIQUID TRANSFER DEVICE
DE10253920A1 (en) 2002-11-19 2004-06-09 Infineon Technologies Ag Device for supplying a data transmission unit with energy
US7293477B2 (en) 2003-12-23 2007-11-13 Millipore Corporation Disposable, pre-sterilized fluid receptacle sampling device
CN102736532B (en) * 2004-10-22 2015-06-10 地下***公司 Power supply and communications controller
JP2006127363A (en) * 2004-11-01 2006-05-18 Advance Design Corp Non-contact ic medium
DE102007009545A1 (en) * 2007-02-27 2008-08-28 Siemens Ag Electrical potential difference's measured value recording and wireless retrieval device, has reflection modulation device modulating reflection characteristics of antenna such that value of difference is interrogated by interrogator
DE102007019339B4 (en) * 2007-04-24 2009-12-17 Siemens Ag Arrangement for monitoring a switching state of a switch
JP2010537496A (en) * 2007-08-13 2010-12-02 クゥアルコム・インコーポレイテッド Long range low frequency resonators and materials
SG153002A1 (en) 2007-11-16 2009-06-29 Millipore Corp Fluid transfer device
RU2011104370A (en) * 2008-07-09 2012-08-20 Эксесс Бизнесс Груп Интернешнл, Ллс (Us) WIRELESS CHARGING SYSTEM
FR2940439B1 (en) 2008-12-18 2011-02-11 Millipore Corp DEVICE FOR TRANSFERRING A MEDIUM
FR2940440B1 (en) 2008-12-18 2010-12-24 Millipore Corp DEVICE FOR TRANSFERRING A MEDIUM
US8544497B2 (en) 2009-10-30 2013-10-01 Emd Millipore Corporation Fluid transfer device and system
US8547057B2 (en) 2009-11-17 2013-10-01 Qualcomm Incorporated Systems and methods for selective wireless power transfer

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857796B2 (en) * 1974-07-22 1983-12-21 アリムラ クニタカ Active Sosignor Hanbetsu Sochi
JPS58154080A (en) * 1982-03-05 1983-09-13 Arimura Giken Kk Generator for identification signal
JPS58151572A (en) * 1982-03-05 1983-09-08 Arimura Giken Kk Noncontact collating system
JPS61283981A (en) * 1985-06-11 1986-12-13 Nippon Denzai Kogyo Kenkyusho:Kk Integrated circuit card
US4685047A (en) * 1986-07-16 1987-08-04 Phillips Raymond P Sr Apparatus for converting radio frequency energy to direct current
US5287113A (en) * 1990-02-12 1994-02-15 Texas Instruments Deutschland Gmbh Voltage limiting batteryless transponder circuit
JPH0888942A (en) * 1994-09-14 1996-04-02 Matsushita Electric Works Ltd Noncontact type charging equipment
JP3129961B2 (en) * 1995-02-21 2001-01-31 昭和電工株式会社 Polymer solid electrolyte, battery and solid electric double layer capacitor using the same, and methods for producing them
TW318288B (en) * 1995-02-21 1997-10-21 Showa Denko Kk
WO1997013288A1 (en) * 1995-10-06 1997-04-10 Hitachi, Ltd. System using secondary cells
JP3019248B2 (en) * 1995-11-17 2000-03-13 重雄 山本 Portable power supply with battery charger
JPH09215224A (en) * 1996-01-31 1997-08-15 Shigeo Yamamoto Portable power supply unit with battery charger
AUPO055296A0 (en) * 1996-06-19 1996-07-11 Integrated Silicon Design Pty Ltd Enhanced range transponder system
JP3392016B2 (en) * 1996-09-13 2003-03-31 株式会社日立製作所 Power transmission system and power transmission and information communication system
SG54559A1 (en) * 1996-09-13 1998-11-16 Hitachi Ltd Power transmission system ic card and information communication system using ic card
JP3247328B2 (en) * 1997-12-09 2002-01-15 浩 坂本 Non-contact power transmission device

Also Published As

Publication number Publication date
EP1231699A4 (en) 2006-04-19
JP2010115109A (en) 2010-05-20
WO2001033694A1 (en) 2001-05-10
CN1415133A (en) 2003-04-30
EP1231699A1 (en) 2002-08-14
JP2001136684A (en) 2001-05-18
KR20020065505A (en) 2002-08-13

Similar Documents

Publication Publication Date Title
JP2010115109A (en) Collating unit
US6104759A (en) Power supply system for a packet-switched radio transmitter
US20140167676A1 (en) Battery pack having a separate power supply device for a wireless communication device of the battery pack
KR100566220B1 (en) Contactless battery charger
CN102138270B (en) Device and method for the generation, storage, and transmission of electric energy
US20210281099A1 (en) Transmitting Apparatus and Wireless Charging Method
US9041359B2 (en) Battery pack with integral non-contact discharging means and electronic device including the same
US20100117602A1 (en) Secondary battery protection circuit
KR20130039031A (en) Wireless power transfer device, wireless power recieve device and wireless power transfer and recieve device
KR20070015264A (en) Rechargeable power supply, battery device, contact-less charger systems and method for charging rechargeable battery cell
KR20110133813A (en) Power receving device for wireless charging and portable electronic device having the same
WO2005043710A1 (en) Electrostatic charge storage assembly
US6856654B1 (en) Power supply system for a packet-switched radio transmitter
KR102379225B1 (en) Apparatus and method for managing battery
US20070268001A1 (en) Power Management System
US20120019210A1 (en) Dc power supply system and output control method
WO2006036750A2 (en) Systems and methods for signal generation using limited power
US11144738B2 (en) Energy storage module and method
US6320278B1 (en) Power supply circuit
US10205341B2 (en) Direct current backup system
RU151736U1 (en) ELECTRONIC DEVICE ELECTRICAL POWER SYSTEM USING EXTERNAL ELECTRIC POWER
KR20100019208A (en) Charge apparatus for using radio frequency
US20220006293A1 (en) Management apparatus, electrical power system, and method of supplying electrical power
KR20070074719A (en) Contact-less charger having separated charging circuit part and coil part
CN101409370A (en) Induction charging charger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080508

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081003

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees