JP4444243B2 - Induction heating device - Google Patents

Induction heating device Download PDF

Info

Publication number
JP4444243B2
JP4444243B2 JP2006176201A JP2006176201A JP4444243B2 JP 4444243 B2 JP4444243 B2 JP 4444243B2 JP 2006176201 A JP2006176201 A JP 2006176201A JP 2006176201 A JP2006176201 A JP 2006176201A JP 4444243 B2 JP4444243 B2 JP 4444243B2
Authority
JP
Japan
Prior art keywords
load
capacitor
output
resonance
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006176201A
Other languages
Japanese (ja)
Other versions
JP2008010165A (en
Inventor
貴宏 宮内
泉生 弘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006176201A priority Critical patent/JP4444243B2/en
Publication of JP2008010165A publication Critical patent/JP2008010165A/en
Application granted granted Critical
Publication of JP4444243B2 publication Critical patent/JP4444243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Induction Heating Cooking Devices (AREA)
  • General Induction Heating (AREA)

Description

本発明は、アルミ鍋のような高導電率かつ低透磁率の被加熱物を効率良く誘導加熱できるようにした誘導加熱調理器や、誘導加熱式の湯沸かし器、加湿器あるいはアイロンなどの誘導加熱装置に関するものである。   The present invention relates to an induction heating cooker capable of efficiently performing induction heating on an object to be heated having high conductivity and low magnetic permeability such as an aluminum pan, and an induction heating apparatus such as an induction heating type water heater, a humidifier or an iron. It is about.

以下、従来の誘導加熱装置の例として、加熱コイルから高周波磁界を発生し、電磁誘導による渦電流によって鍋等の負荷を加熱する誘導加熱調理器について図5に基づいて説明する。   Hereinafter, as an example of a conventional induction heating apparatus, an induction heating cooker that generates a high-frequency magnetic field from a heating coil and heats a load such as a pan by eddy current due to electromagnetic induction will be described with reference to FIG.

図5は従来の誘導加熱調理器の回路構成を示す図である。電源51は低周波交流電源である200V商用電源であり、ブリッジダイオードである整流回路52の入力端に接続される。整流回路52の出力端間に第1の平滑コンデンサ53が接続される。整流回路52の出力端間には、さらに、チョークコイル54と第2のスイッチング素子57の直列接続体が接続される。加熱コイル59は被加熱物であるアルミニウム製の鍋61と対向して配置されている。50はインバータであり、第2の平滑コンデンサ62の低電位側端子(エミッタ)は整流回路52の負極端子に接続され、第2の平滑コンデンサ62の高電位側端子は第1のスイッチング素子(IGBT)55の高電位側端子(コレクタ)に接続され、第1のスイッチング素子(IGBT)55の低電位側端子はチョークコイル54と第2のスイッチング素子(IGBT)57の高電位側端子(コレクタ)との接続点に接続される。加熱コイル59と共振コンデンサ60の直列接続体が第2のスイッチング素子57に並列に接続される。第1のダイオード56(第1の逆導通素子)は第1のスイッチング素子57に逆並列に接続(第1のダイオード56のカソードと第1のスイッチング素子57のコレクタとを接続)され、第2のダイオード58(第2の逆導通素子)は第2のスイッチング素子57に逆並列に接続される。スナバコンデンサ64は、第2のスイッチング素子57に並列に接続される。補正用共振コンデンサ65とリレー66の直列接続体は共振コンデンサ60に並列に接続されている。制御回路63は、電源51からの入力電流を検知するカレントトランス67と、加熱コイル59の電流を検知するカレントトランス68の検知信号を入力するとともに、第1のスイッチング素子55と第2のスイッチング素子57のゲートとリレー66の駆動コイル(図示せず)に信号を出力する。   FIG. 5 is a diagram showing a circuit configuration of a conventional induction heating cooker. The power source 51 is a 200 V commercial power source that is a low-frequency AC power source, and is connected to an input terminal of a rectifier circuit 52 that is a bridge diode. A first smoothing capacitor 53 is connected between the output terminals of the rectifier circuit 52. A series connection body of the choke coil 54 and the second switching element 57 is further connected between the output terminals of the rectifier circuit 52. The heating coil 59 is arranged to face the aluminum pan 61 that is the object to be heated. 50 is an inverter, the low potential side terminal (emitter) of the second smoothing capacitor 62 is connected to the negative terminal of the rectifier circuit 52, and the high potential side terminal of the second smoothing capacitor 62 is the first switching element (IGBT). ) 55 is connected to the high potential side terminal (collector) of the first switching element (IGBT) 55 and the low potential side terminal of the first switching element (IGBT) 55 is the high potential side terminal (collector) of the choke coil 54 and the second switching element (IGBT) 57. Connected to the connection point. A series connection body of the heating coil 59 and the resonance capacitor 60 is connected to the second switching element 57 in parallel. The first diode 56 (first reverse conducting element) is connected in antiparallel to the first switching element 57 (the cathode of the first diode 56 and the collector of the first switching element 57 are connected), and the second The diode 58 (second reverse conducting element) is connected to the second switching element 57 in antiparallel. The snubber capacitor 64 is connected in parallel to the second switching element 57. A series connection body of the correcting resonance capacitor 65 and the relay 66 is connected to the resonance capacitor 60 in parallel. The control circuit 63 inputs detection signals of a current transformer 67 that detects an input current from the power source 51 and a current transformer 68 that detects a current of the heating coil 59, and the first switching element 55 and the second switching element. A signal is output to a gate 57 and a drive coil (not shown) of the relay 66.

以上のように構成された誘導加熱調理器において、以下動作を説明する。電源1は整流回路52により全波整流され、整流回路52の出力端に接続された第1の平滑コンデンサ53に供給される。この第1の平滑コンデンサ53はインバータに高周波電流を供給する供給源として働く。図6は上記回路における各部波形を示す図であり、図6(A)は出力が大出力である2kWの時のものである。同図(a)は第1のスイッチング素子55及び第1のダイオード56に流れる電流波形Ic1を、同図(b)は第2のスイッチング素子57及び第2のダイオード58に流れる電流波形Ic2を、同図(c)は第2のスイッチング素子57のコレクタ−エミッタ間に生じる電圧Vce2を、同図(d)は第1のスイッチング素子55のゲートに加わる駆動電圧Vg1を、同図(e)は第2のスイッチング素子57のゲートに加わる駆動電圧Vg2を、同図(f)は加熱コイル59に流れる電流ILをそれぞれ示している。出力が2kWのとき(図6(A))、制御回路63は時点t0から時点t1まで(e)に示すように第2のスイッチング素子57のゲートに駆動期間がT2(約24μ秒)であるオン信号を出力する。この駆動期間T2の間では第2のスイッチング素子57及び第2のダイオード58と、加熱コイル59と、共振コンデンサ60で形成される閉回路で共振し、鍋61がアルミニウム製の鍋であるときの共振周期(1/f)が駆動期間T2の約2/3倍(約16μ秒)となるように加熱コイル59の巻き数(40T)と共振コンデンサ60の容量(0.04μF)と、駆動期間T2が設定されている。チョークコイル54はこの第2のスイッチング素子57の駆動期間T2において、平滑コンデンサ53の静電エネルギーを磁気エネルギーとして蓄える。次に、第2のスイッチング素子57に流れる共振電流の第2番目のピークと共振電流が次に零となる間のタイミングである時点t1、すなわち第2のスイッチング素子57の順方向にコレクタ電流が流れている時点で第2のスイッチング素子57の駆動が停止される。すると、第2のスイッチング素子57がオフするので、第2のスイッチング素子57のコレクタと接続されたチョークコイル54の端子の電位が立ち上がり、この電位が第2の平滑コンデンサ62の電位を越えると、第1のダイオード56を通して第2の平滑コンデンサ62に充電して、チョークコイル54に蓄えた磁気エネルギーを放出する。第2の平滑コンデンサ62の電圧は整流器52の直流出力電圧Vdcのピーク値(283V)よりも高くなるように昇圧される(本従来例では500V)。昇圧されるレベルは第2のスイッチング素子58の導通時間に依存し、導通時間が長くなると第2の平滑コンデンサ62に発生する電圧が高くなる傾向にある。このように、第2の平滑コンデンサ62−第1のスイッチング素子55あるいは第1のダイオード56−加熱コイル59−共振コンデンサ60で形成される閉回路で共振する際に直流電源として働く第2の平滑コンデンサ62の電圧レベルが昇圧されることにより、図6(A)の(a)に示す第1のスイッチング素子55に流れる共振電流の尖頭値(ピーク値)、および共振経路を変えて、継続して共振する同図(b)の第2のスイッチング素子57に流れる共振電流の尖頭値が零とならないように、あるいは小さくならないようにして、アルミニウム製の鍋を高出力で誘導加熱し、かつ、出力を連続的に増減して制御するようにできる。そして、図6(A)の(d)及び(e)で示すように、制御回路63は、時点t1から両スイッチング素子が同時に導通するのを防止するために設けた休止期間後の時点t2において、第1のスイッチング素子55のゲートに駆動信号を出力する。この結果、同図(a)示すように加熱コイル59−共振コンデンサ60−第1のスイッチング素子55または第1のダイオード56−第2の平滑コンデンサ62とからなる閉回路に経路を変えて共振電流が流れることになる。この駆動信号の駆動期間T2は、この場合にはT1とほぼ同じ期間に設定されているので、第2のスイッチング素子58が導通していた場合と同様に、駆動期間T1の約2/3の周期の共振電流が流れる。従って、加熱コイル59に流れる電流ILは、図6(A)の(f)に示すような波形となり、第1及び第2のスイッチング素子の駆動周期(T1とT2と休止期間の和)は共振電流の周期の約3倍となり、第1及び第2の駆動周波数が約20kHzであれば、加熱コイル59に流れる共振電流の周波数は約60kHzとなる。次に起動時においては、制御回路63はリレー66はオフ状態にし、一定の周波数(約21kHz)で第1のスイッチング素子55と第2のスイッチング素子57を交互に駆動する。第1のスイッチング素子55の駆動期間は共振電流の共振周期よりも短いモードで駆動し、駆動時間比を最小にして、最小の出力にしてから徐々に駆動時間比を増加し、その間に制御回路63はカレントトランス67の検知出力とカレントトランス68の検知出力から、負荷鍋61の材料を検知する。制御回路63は負荷鍋61の材料が鉄系のものであると判断すると、加熱を停止してからリレー66を投入して、再度低出力で加熱を開始する。このとき、制御回路63は第1のスイッチング素子55と第2のスイッチング素子57を一定の周波数(約21kHz)で再度最小駆動時間比で最小出力からスタートして所定の出力まで徐々に増加させる。一方、鉄系の負荷であると検知しない場合には、所定の駆動時間比に到達すると、図6(B)に示すような、第1のスイッチング素子57の駆動期間より共振電流の周期の短いモードに移行する。このとき、出力は低出力状態になるように駆動期間が設定される。以上のように、加熱コイル59の発生する磁界によりアルミニウムや銅など高導電率、低透磁率の負荷を加熱すると、第1のスイッチング素子55、第1ダイオード56を流れる加熱コイル59と共振コンデンサ60による共振電流は、両スイッチング素子それぞれの駆動期間(T1)より短い周期で共振してなるので、第1のスイッチング素子55の駆動周波数より高い周波数(この実施の形態では1.5倍)の電流を加熱コイル59に供給して加熱することができ、さらに、昇圧手段であるチョークコイル54と平滑手段である第2の平滑コンデンサ62を設けて、高周波電源である平滑コンデンサ62の電圧を昇圧して平滑し、各駆動期間(T及びT’)において共振電流の振幅を大きくしているため、駆動開始後、共振電流が流れ始めてから1周期目が終了し、2周期目に到達して以降においても十分大きな振幅の共振電流を継続させることができるものである。また、制御回路63は、最大出力設定時に、第1のスイッチング素子55の駆動開始後、共振電流が2周期目以降であって第1のスイッチング素子55に流れている期間内に第1のスイッチング素子55の導通を遮断する信号を出力してなる、または、第2のスイッチング素子57の駆動開始後共振電流が2周期目以降であって第2のスイッチング素子57に流れている期間内に第2のスイッチング素子の導通を遮断する信号を出力してなるので、最大出力時の第2のスイッチング素子57または第1のスイッチング素子55のターンオン損失の増大を抑制することができる。また、起動時、第1のスイッチング素子55と第2のスイッチング素子57の駆動時間比を変え加熱出力を増加させ、途中から駆動周波数を変え加熱出力を増加させてなることにより、負荷の検知を行いやすくすることができる。すなわち、駆動時間比を変えることにより高導電率かつ低透磁率のアルミニウム等の材質の負荷でも鉄系の負荷でも低出力状態で単調に出力を変化させることができ、制御回路63は負荷検知が正確にかつ低出力状態でできる。また、加熱コイル59の発生する磁界により、鉄系の負荷または非磁性ステンレスの負荷61を加熱すると共振電流は第1のスイッチング素子55及び第2のスイッチング素子57の導通期間より長い周期で共振してなり、鉄系の負荷または非磁性ステンレス製の負荷61を最大出力で加熱する場合に第1のスイッチング素子55及び第2のスイッチング素子57に順方向に電流が流れているタイミングで前記スイッチング素子を遮断可能とするように補正用共振コンデンサ65を共振コンデンサ60に並列に接続して、高導電率かつ低透磁率の負荷を加熱する場合よりも大きい容量に切り替えてなるので、共振コンデンサ60と補正用コンデンサ64は加熱コイル59と直列に接続されると共に容量を切り替え可能とし、鉄系の負荷または非磁性ステンレス製の負荷を加熱する場合に共振コンデンサ60を、高導電率かつ低透磁率の負荷を加熱する場合よりも大きい容量に切り替えてなることにより、共振周波数が長くなるとともに電流が増え、さらにチョークコイル54により直流電圧Vdcを昇圧しているので、共振電流の振幅が大きくなることから、スイッチング素子に順方向に電流が流れているタイミングでスイッチング素子を遮断可能な範囲で最大出力を設定してスイッチング素子のターンオン時のスイッチング損失の増大を抑制しようとする場合に、最大出力を従来の構成のものより大きくすることができる。また、アルミニウム系の鍋と、鉄系の鍋を同一のインバータで加熱しようとするときに、従来は加熱コイル59の巻き数と共振コンデンサを同時に切り替えて共振周波数と被加熱物61に放射する磁界の強さ(アンペアターン)を切り替えていたが、チョークコイル54と第1のスイッチング手段57の昇圧作用により前記のコイル巻き数切り替えの作用を置き換えることができ、同一の加熱コイル59で共振コンデンサ60の切り替えをすることで、広い範囲の材質の被加熱物を加熱できるという効果がある。また、補正用共振コンデンサ65を共振コンデンサ60に接続せずに起動し、すなわち、容量の小なる共振コンデンサ60ので起動し、徐々に出力を増加させ、その途中で負荷61が鉄系か、高導電率かつ低透磁率のものかを判定し、鉄系の負荷であると判定した場合には駆動停止後、リレー60をオンして補正用共振コンデンサ65を並列に接続して、すなわち、共振コンデンサ60を容量が大となるよう切り変え、駆動周波数を低周波数で再駆動するので、共振周波数が長くなるとともに電流が増え、さらに昇圧手段であるチョークコイル54と第2の平滑コンデンサ62により直流電源電圧を昇圧しているので、共振電流値が増えることから、第1のスイッチング素子55及びに順方向に電流が流れているタイミングでスイッチング素子を遮断可能な範囲で最大出力を設定してスイッチング素子57のターンオン時のスイッチング損失の増大を抑制しようとする場合に、最大出力を従来の構成のものより大きくすることができる。また、高導電率、低透磁率の負荷であると判定した場合には継続して所定の駆動時間比または所定の出力まで出力を増加した後駆動時間比を固定して導通時間を変更して出力を所定の出力に到達させてなるので、いずれの負荷においても低出力で起動して負荷の判定をして、安定的に所定の出力値あるいはリミット値へと到達させるいわゆるソフトスタート動作が可能となる。   The operation of the induction cooking device configured as described above will be described below. The power source 1 is full-wave rectified by a rectifier circuit 52 and supplied to a first smoothing capacitor 53 connected to the output terminal of the rectifier circuit 52. The first smoothing capacitor 53 serves as a supply source for supplying a high-frequency current to the inverter. FIG. 6 is a diagram showing the waveform of each part in the above circuit, and FIG. 6 (A) is the one when the output is 2 kW, which is a large output. FIG. 4A shows the current waveform Ic1 flowing through the first switching element 55 and the first diode 56, and FIG. 4B shows the current waveform Ic2 flowing through the second switching element 57 and the second diode 58. FIG. 4C shows the voltage Vce2 generated between the collector and the emitter of the second switching element 57, FIG. 4D shows the drive voltage Vg1 applied to the gate of the first switching element 55, and FIG. The driving voltage Vg <b> 2 applied to the gate of the second switching element 57 and the current IL flowing through the heating coil 59 are shown in FIG. When the output is 2 kW (FIG. 6 (A)), the control circuit 63 has a driving period T2 (about 24 μsec) at the gate of the second switching element 57 as shown in (e) from time t0 to time t1. Outputs an on signal. During this driving period T2, the second switching element 57 and the second diode 58, the heating coil 59, and the resonant capacitor 60 resonate in a closed circuit, and the pot 61 is an aluminum pot. The number of turns of the heating coil 59 (40T), the capacity of the resonant capacitor 60 (0.04 μF), and the driving period so that the resonance period (1 / f) is about 2/3 times (about 16 μs) the driving period T2. T2 is set. The choke coil 54 stores the electrostatic energy of the smoothing capacitor 53 as magnetic energy during the driving period T2 of the second switching element 57. Next, the collector current is applied at the time t1, which is the timing between the second peak of the resonance current flowing in the second switching element 57 and the resonance current next becoming zero, that is, in the forward direction of the second switching element 57. At the time of flowing, the driving of the second switching element 57 is stopped. Then, since the second switching element 57 is turned off, the potential of the terminal of the choke coil 54 connected to the collector of the second switching element 57 rises, and when this potential exceeds the potential of the second smoothing capacitor 62, The second smoothing capacitor 62 is charged through the first diode 56 to release the magnetic energy stored in the choke coil 54. The voltage of the second smoothing capacitor 62 is boosted so as to be higher than the peak value (283 V) of the DC output voltage Vdc of the rectifier 52 (500 V in this conventional example). The level to be boosted depends on the conduction time of the second switching element 58, and the voltage generated in the second smoothing capacitor 62 tends to increase as the conduction time increases. As described above, the second smoothing capacitor 62, the first switching element 55, the first diode 56, the heating coil 59, and the second smoothing functioning as a DC power source when resonating in a closed circuit formed by the resonance capacitor 60. As the voltage level of the capacitor 62 is boosted, the peak value (peak value) of the resonance current flowing through the first switching element 55 shown in FIG. In such a manner that the peak value of the resonance current flowing through the second switching element 57 of FIG. 5B that resonates does not become zero or does not become small, the aluminum pan is induction-heated with high output, In addition, the output can be controlled by increasing or decreasing continuously. Then, as shown in (d) and (e) of FIG. 6 (A), the control circuit 63 starts at time t2 after an idle period provided to prevent both switching elements from conducting simultaneously from time t1. A drive signal is output to the gate of the first switching element 55. As a result, as shown in FIG. 5A, the path is changed to a closed circuit composed of the heating coil 59, the resonance capacitor 60, the first switching element 55 or the first diode 56, and the second smoothing capacitor 62, and the resonance current is changed. Will flow. In this case, the drive period T2 of the drive signal is set to substantially the same period as T1, so that the drive period T2 is about 2/3 of the drive period T1, as in the case where the second switching element 58 is conductive. Periodic resonance current flows. Therefore, the current IL flowing through the heating coil 59 has a waveform as shown in (f) of FIG. 6A, and the drive periods (the sum of T1, T2, and the idle period) of the first and second switching elements are resonant. If the current period is about three times and the first and second drive frequencies are about 20 kHz, the frequency of the resonant current flowing through the heating coil 59 is about 60 kHz. Next, at the time of start-up, the control circuit 63 turns off the relay 66 and drives the first switching element 55 and the second switching element 57 alternately at a constant frequency (about 21 kHz). The drive period of the first switching element 55 is driven in a mode shorter than the resonance period of the resonance current, the drive time ratio is minimized, and the drive time ratio is gradually increased after the minimum output is achieved. 63 detects the material of the load pan 61 from the detection output of the current transformer 67 and the detection output of the current transformer 68. When the control circuit 63 determines that the material of the load pan 61 is iron-based, the heating is stopped, the relay 66 is turned on, and heating is started again at a low output. At this time, the control circuit 63 gradually increases the first switching element 55 and the second switching element 57 from a minimum output at a constant frequency (about 21 kHz) with a minimum drive time ratio to a predetermined output. On the other hand, when it is not detected that the load is iron-based, when the predetermined drive time ratio is reached, the period of the resonance current is shorter than the drive period of the first switching element 57 as shown in FIG. Enter mode. At this time, the drive period is set so that the output is in a low output state. As described above, when a high-conductivity and low-permeability load such as aluminum or copper is heated by the magnetic field generated by the heating coil 59, the heating coil 59 and the resonant capacitor 60 that flow through the first switching element 55 and the first diode 56 are used. Since the resonance current due to the resonance current resonates at a cycle shorter than the drive period (T1) of each of the switching elements, a current having a frequency higher than the drive frequency of the first switching element 55 (1.5 times in this embodiment) Is further supplied to the heating coil 59, and further, a choke coil 54 as a boosting means and a second smoothing capacitor 62 as a smoothing means are provided to boost the voltage of the smoothing capacitor 62 as a high-frequency power source. Since the amplitude of the resonance current is increased in each drive period (T and T ′), the resonance current starts flowing after the drive is started. First cycle is completed from that in the following reached the second cycle also is capable to continue the resonance current of sufficiently large amplitude. In addition, when the maximum output is set, the control circuit 63 performs the first switching within a period in which the resonance current is flowing in the first switching element 55 after the start of driving of the first switching element 55. A signal that cuts off the conduction of the element 55 is output, or after the second switching element 57 starts to be driven, the resonance current is flowing in the second switching element 57 after the second period and flowing through the second switching element 57. Since the signal for shutting off the conduction of the second switching element is output, an increase in turn-on loss of the second switching element 57 or the first switching element 55 at the maximum output can be suppressed. In addition, at the time of start-up, load ratio is detected by changing the driving time ratio of the first switching element 55 and the second switching element 57 to increase the heating output and changing the driving frequency from the middle to increase the heating output. It can be made easier. That is, by changing the drive time ratio, the output can be monotonously changed in a low output state, whether it is a load of a material such as aluminum having a high conductivity and a low magnetic permeability or an iron load, and the control circuit 63 can detect the load. Accurate and low power state. Further, when an iron-based load or a nonmagnetic stainless steel load 61 is heated by the magnetic field generated by the heating coil 59, the resonance current resonates at a period longer than the conduction period of the first switching element 55 and the second switching element 57. When the iron-based load or the non-magnetic stainless steel load 61 is heated at the maximum output, the switching element is activated at the timing when the current flows in the first switching element 55 and the second switching element 57 in the forward direction. The correction resonance capacitor 65 is connected in parallel to the resonance capacitor 60 so as to be able to cut off, and the capacitance is switched to a larger capacity than when heating a load with high conductivity and low magnetic permeability. The correction capacitor 64 is connected in series with the heating coil 59 and has a switchable capacity. By switching the resonant capacitor 60 to a larger capacity than when heating a load with high conductivity and low permeability when heating a magnetic stainless steel load, the resonance frequency becomes longer and the current increases. Since the DC voltage Vdc is boosted by the choke coil 54, the amplitude of the resonance current increases, so the maximum output is set within a range in which the switching element can be cut off at the timing when the current flows through the switching element in the forward direction. Therefore, when it is intended to suppress an increase in switching loss when the switching element is turned on, the maximum output can be made larger than that of the conventional configuration. Further, when an aluminum pan and an iron pan are to be heated by the same inverter, conventionally, the number of turns of the heating coil 59 and the resonance capacitor are switched simultaneously to radiate the resonance frequency and the magnetic field to the object 61 to be heated. However, the coil winding number switching action can be replaced by the boosting action of the choke coil 54 and the first switching means 57, and the resonance capacitor 60 can be replaced by the same heating coil 59. By switching, there is an effect that an object to be heated of a wide range of materials can be heated. Further, the correction resonance capacitor 65 is started without being connected to the resonance capacitor 60, that is, is started with the resonance capacitor 60 having a small capacity, and the output is gradually increased. It is determined whether it has conductivity and low magnetic permeability. If it is determined that the load is an iron-based load, after the drive is stopped, the relay 60 is turned on and the correcting resonance capacitor 65 is connected in parallel. Since the capacitor 60 is switched to have a large capacity and the drive frequency is re-driven at a low frequency, the resonance frequency is increased and the current is increased. Further, the choke coil 54 as the boosting means and the second smoothing capacitor 62 are used for direct current. Since the power supply voltage is boosted, the resonance current value increases, so that the switching element is switched at the timing when the current flows in the forward direction to the first switching element 55. The when the extent possible blocking by setting the maximum output attempts to suppress the increase in switching loss at turn-on of the switching element 57 can be made larger than that of the conventional configuration the maximum output. If it is determined that the load has high conductivity and low permeability, the drive time ratio is continuously fixed and the conduction time is changed by increasing the output to a predetermined drive time ratio or a predetermined output. Since the output reaches a predetermined output, so-called soft start operation is possible to start at a low output at any load, determine the load, and stably reach the predetermined output value or limit value. It becomes.

以上のように構成された誘導加熱調理器において、高導電率かつ低透磁率のアルミニウム等の材質の負荷でも鉄系の負荷でも負荷検知が正確にかつ低出力状態でできることからリレーのオンオフを切り替えることにより、共振コンデンサの切り替えを行い負荷の材質に応じた誘導加熱を可能としていた。
特許第3460997号公報
In the induction heating cooker configured as described above, since the load detection can be performed accurately and in a low output state regardless of a load of a material such as aluminum having a high conductivity and a low permeability or an iron load, the relay is turned on and off. Thus, the resonant capacitor is switched to enable induction heating according to the material of the load.
Japanese Patent No. 3460997

しかしながら、特許文献1に見られるような従来の構成では、高導電率かつ低透磁率のアルミニウム等の材質の負荷と鉄系の負荷との加熱を行うには高耐圧のリレーが必要であり、高出力化が困難であった。また高導電率かつ低透磁率のアルミニウム等の材質の負荷と鉄系の負荷との中間材質すなわち比較的厚い非磁性ステンレスや薄いステンレスの上にアルミニウムを組み合わせた複合材などにおいて充分な出力を得るにはスイッチング素子の駆動周波数を共振回路の共振周波数の略1/2倍とすれば共振コンデンサを切り替えせずにスイッチング損失を略共振周波数で駆動するよりは低減できるが略1/3倍で駆動するよりは大きくなり充分な出力を得ることが困難であるという課題を有していた。   However, in the conventional configuration as seen in Patent Document 1, a high-voltage relay is required to heat a load of a material such as aluminum having a high conductivity and a low permeability and an iron load, High output was difficult. Also, sufficient output can be obtained in intermediate materials between high-conductivity and low-permeability aluminum materials such as aluminum and iron-based loads, that is, composite materials in which aluminum is combined with a relatively thick nonmagnetic stainless steel or thin stainless steel. If the drive frequency of the switching element is approximately ½ times the resonance frequency of the resonance circuit, the switching loss can be reduced without switching the resonance capacitor rather than driving at the approximately resonance frequency, but the drive is performed at approximately 3 times. The problem is that it is difficult to obtain sufficient output.

本発明は、前記従来の課題を解決するもので、容易な構成でアルミニウムや銅など高導電率から磁性を有する材質など低導電率まで負荷の材質によらずより大きな加熱出力を得ることができる誘導加熱装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and can obtain a larger heating output with a simple configuration from high conductivity such as aluminum and copper to low conductivity such as magnetic material regardless of the material of the load. An object is to provide an induction heating apparatus.

前記従来の課題を解決するために、本発明の誘導加熱装置は、負荷を磁気結合させる加熱コイルと共振コンデンサを有する共振回路と、スイッチング素子を有し前記共振回路に電力を供給するインバータと、前記加熱コイルの加熱出力を制御する加熱出力制御手段と、商用交流を整流する整流手段と、前記負荷の材質を検知する負荷材質検知手段とを備え、前記共振コンデンサは第1のコンデンサと第2のコンデンサの直列回路、前記第1のコンデンサに並列に接続される第1の切替手段と、前記第2のコンデンサに並列に接続される第3のコンデンサと第2の切替手段の直列回路とを備え、前記第3のコンデンサは前記第2のコンデンサより静電容量を大きくし、前記負荷材質検知手段が前記負荷をアルミニウムのような高導電率かつ低透磁率の材質と検知した場合は前記第1の切替手段および前記第2の切替手段を開放して前記スイッチング素子の駆動周波数を前記共振回路の共振周波数の略1/3倍に切り替え、前記負荷材質検知手段が前記負荷を非磁性ステンレスの厚板または薄非磁性ステンレス板材の上にアルミニウムまたは銅などの高導電率材を設けた複合材のような中間材質と検知した場合は前記第1の切替手段を短絡し前記第2の切替手段を開放して、前記駆動周波数を前記共振周波数の略1/3倍に切り替え、前記負荷材質検知手段が前記負荷を鉄のような低電導率の材質と検知した場合は前記第1の切替手段および前記第2の切替手段を短絡し、前記駆動周波数を前記共振周波数と略同じとするように切り替える構成とした。この構成により、高耐圧リレーを用いない容易な構成でアルミニウムや銅など高導電率から磁性を有する材質など低導電率まで負荷の材質によらずより大きな加熱出力を得ることができる誘導加熱装置とすることができる。 In order to solve the conventional problem, an induction heating device of the present invention includes a heating coil for magnetically coupling a load and a resonance circuit having a resonance capacitor, an inverter having a switching element and supplying power to the resonance circuit, Heating output control means for controlling the heating output of the heating coil, rectification means for rectifying commercial alternating current, and load material detection means for detecting the material of the load, wherein the resonant capacitor includes a first capacitor and a second capacitor. a series circuit of a capacitor, a first switching means connected in parallel with the first capacitor, a series circuit of a third capacitor and a second switching means connected in parallel with said second capacitor wherein the third capacitor is to increase the electrostatic capacitance than the second capacitor, the load material detection means said load and high conductivity such as aluminum low When the magnetic material is detected, the first switching means and the second switching means are opened to switch the driving frequency of the switching element to approximately 1/3 times the resonance frequency of the resonance circuit, and the load material When the detecting means detects the load as an intermediate material such as a composite material in which a high-conductivity material such as aluminum or copper is provided on a thick non-magnetic stainless steel plate or a thin non-magnetic stainless steel plate, the first switching is performed. Short-circuiting means and opening the second switching means to switch the drive frequency to approximately 1/3 times the resonance frequency, and the load material detecting means is made of a material having a low conductivity such as iron. When detected, the first switching unit and the second switching unit are short-circuited, and the drive frequency is switched to be substantially the same as the resonance frequency . With this configuration, an induction heating apparatus that can obtain a larger heating output regardless of the material of the load from a high conductivity such as aluminum or copper to a low conductivity such as a magnetic material with an easy configuration that does not use a high-voltage relay, can do.

本発明の誘導加熱装置は、容易な構成でアルミニウムや銅など高導電率から磁性を有する材質など低導電率まで負荷の材質によらずより大きな加熱出力を得ることができる。   The induction heating apparatus of the present invention can obtain a larger heating output with a simple configuration from a high conductivity such as aluminum or copper to a low conductivity such as a magnetic material regardless of the material of the load.

第1の発明は、負荷を磁気結合させる加熱コイルと共振コンデンサを有する共振回路と、スイッチング素子を有し前記共振回路に電力を供給するインバータと、前記加熱コイルの加熱出力を制御する加熱出力制御手段と、商用交流を整流する整流手段と、前記負荷の材質を検知する負荷材質検知手段とを備え、前記共振コンデンサは第1のコンデンサと第2のコンデンサの直列回路、前記第1のコンデンサに並列に接続される第1の切替手段と、前記第2のコンデンサに並列に接続される第3のコンデンサと第2の切替手段の直列回路とを備え、前記第3のコンデンサは前記第2のコンデンサより静電容量を大きくし、前記負荷材質検知手段が前記負荷をアルミニウムのような高導電率かつ低透磁率の材質と検知した場合は前記第1の切替手段および前記第2の切替手段を開放して前記スイッチング素子の駆動周波数を前記共振回路の共振周波数の略1/3倍に切り替え、前記負荷材質検知手段が前記負荷を非磁性ステンレスの厚板または薄非磁性ステンレス板材の上にアルミニウムまたは銅などの高導電率材を設けた複合材のような中間材質と検知した場合は前記第1の切替手段を短絡し前記第2の切替手段を開放して、前記駆動周波数を前記共振周
波数の略1/3倍に切り替え、前記負荷材質検知手段が前記負荷を鉄のような低電導率の材質と検知した場合は前記第1の切替手段および前記第2の切替手段を短絡し、前記駆動周波数を前記共振周波数と略同じとするように切り替える構成とすることにより、高耐圧リレーを用いない容易な構成でアルミニウムや銅など高導電率から磁性を有する材質など低導電率まで負荷の材質によらずより大きな加熱出力を得ることができる。
A first invention is a heating circuit for magnetically coupling a load and a resonance circuit having a resonance capacitor, an inverter having a switching element and supplying power to the resonance circuit, and a heating output control for controlling the heating output of the heating coil. Means, rectifying means for rectifying commercial alternating current, and load material detecting means for detecting the material of the load, wherein the resonant capacitor is a series circuit of a first capacitor and a second capacitor, and the first capacitor. comprising a first switching means connected in parallel, and a series circuit of a third capacitor and a second switching means connected in parallel with the second capacitor, the third capacitor and the second to increase the capacitance from capacitor, when the load material detection unit has the load detecting a material of high conductivity and low permeability like aluminum the first switch The stage and the second switching means are opened to switch the drive frequency of the switching element to approximately 1/3 times the resonance frequency of the resonance circuit, and the load material detection means switches the load to a non-magnetic stainless steel plate or When an intermediate material such as a composite material in which a high conductivity material such as aluminum or copper is provided on a thin nonmagnetic stainless steel plate is detected, the first switching means is short-circuited and the second switching means is opened. The drive frequency is
When the load material detecting means detects the load as a material having a low conductivity such as iron, the first switching means and the second switching means are short-circuited. By switching the drive frequency so as to be substantially the same as the resonance frequency, the load can be reduced from a high conductivity such as aluminum or copper to a low conductivity such as a magnetic material with an easy configuration without using a high-voltage relay. A larger heating output can be obtained regardless of the material.

第2の発明は、特に、第1の発明において、共振コンデンサは2つのコンデンサの直列回路とし、それぞれのコンデンサの静電容量は略同じとすることにより、容易な構成でアルミニウムや銅など高導電率から磁性を有する材質など低導電率まで負荷の材質によらずより大きな加熱出力を得ることができる。   In the second invention, in particular, in the first invention, the resonance capacitor is a series circuit of two capacitors, and the capacitance of each capacitor is substantially the same. A higher heating output can be obtained regardless of the material of the load, from the rate to the low conductivity such as a magnetic material.

第3の発明は、特に、第1または第2の発明において、インバータはフルブリッジ回路を有することにより、容易な構成で負荷材質の適応範囲をより大きくすることができる。   According to a third aspect of the invention, in particular, in the first or second aspect of the invention, the inverter has a full bridge circuit, so that the load material can be applied more easily with an easy configuration.

第4の発明は、特に、第1〜第3のいずれかの発明において、商用交流の力率を改善する力率改善手段を備え、前記力率改善手段は負荷材質検知手段が負荷を高導電率かつ低透磁率の材質、中間材質または低電導率の材質と検知した場合に、整流手段からの整流出力を昇圧してインバータに供給する構成とすることにより、容易な構成でより熱効率をよくすることができる。 A fourth invention is, in particular, in the first to third any one of the, with a power factor improving means for improving the power factor of the commercial alternating current, the power factor correction means high load the load material detection means the conductivity and the material of low permeability, if it is detected that the material of the intermediate material or low conductivity, with the configuration you supplied to the inverter boosts the rectified output from the rectifying means, more thermally efficient with a simple structure Can be better.

の発明は、特に、第の発明において、力率改善手段は負荷材質検知手段が低電導率の材質と検知した場合に、前記負荷材質検知手段が高導電率かつ低透磁率の材質と検知した場合及び前記負荷材質検知手段が中間材質と検知した場合よりも出力電圧を大きくする構成とすることにより、容易な構成でより熱効率をよくすることができる。 According to a fifth aspect of the invention, in particular, in the fourth aspect of the invention, when the load material detecting means detects that the load material detecting means is a low conductivity material, the load material detecting means is a material having a high conductivity and a low magnetic permeability. when is detected that and the load material detection means with the configuration you increase the output voltage than if it detects an intermediate material, you are possible to improve more the thermal efficiency with a simple configuration.

の発明は、特に、第1〜第5のいずれかの発明において、負荷材質検知手段は少なくとも、加熱出力に応じた出力をする加熱出力検知手段の出力と、共振コンデンサまたは加熱コイルの電圧または電流を検知する共振電圧検知手段の出力を入力とする構成とすることにより、容易な構成でアルミニウムや銅など高導電率から磁性を有する材質など低導電率まで負荷の材質によらずより大きな加熱出力を得ることができる。 In a sixth aspect of the invention, in particular, in any one of the first to fifth aspects of the invention, the load material detection means includes at least the output of the heating output detection means for outputting according to the heating output, and the voltage of the resonance capacitor or the heating coil. Or, by adopting a configuration that uses the output of the resonant voltage detection means that detects current as an input, it can be easily configured to have a higher conductivity from high conductivity such as aluminum and copper to low conductivity such as magnetic material, regardless of the material of the load. A heating output can be obtained.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の第1の実施の形態における誘導加熱装置である誘導加熱調理器の回路構成図である。
(Embodiment 1)
FIG. 1 is a circuit configuration diagram of an induction heating cooker which is an induction heating apparatus according to a first embodiment of the present invention.

図1において、電源51は200V商用電源であり、ダイオードブリッジからなる整流手段52と第1の平滑コンデンサ78とチョークコイル79とダイオード80とMOSFET81と力率改善制御手段82からなる力率改善回路(力率改善手段)71によって商用電源を昇圧した直流に変換し第2の平滑コンデンサ73に蓄電しつつ商用電源の力率を1近くになるように制御を行う。インバータ70により高周波に変換され、高周波磁界を加熱コイル59に発生させる。加熱コイル59と対向して負荷である図示してない鍋を設置する。共振コンデンサ60は、加熱コイル59とともに直列の共振回路を構成している。共振コンデンサ60は第1のコンデンサ85と第2のコンデンサ86と第3のコンデンサ87からなり第1の切替手段83と第2の切替手段84で本発明ではリレーとして開閉することにより共振コンデンサ60の静電容量を変化させる。インバータ70は前記共振回路を出力としたフルブリッジ回路となるよう第1のスイッチング素子74および第2のスイッチング素子75および第3のスイッチング素子76および第4のスイッチング素子77を接続している。スイッチング素子74、75、76、77はIGBTとIGBTに逆並列に接続したダイオードからなっている。加熱出力制御回路(加熱出力制御手段)63により第1のスイッチング素子74と第4のスイッチング素子77または第2のスイッチング素子75と第3のスイッチング素子76を交互に駆動し、出力を増加させる場合にはスイッチング素子の駆動周波数が共振周波数に近づくように加熱出力制御回路63によりスイッチング素子を駆動し、カレントトランスからなる加熱出力検知手段67により加熱出力を検知して所定の加熱出力が得られるようにする周波数制御のインバータとしている。起動時においては、第1の切替手段83および第2の切替手段84はそれぞれ開放している。このときの共振回路の共振周波数は約90kHzとしている。加熱出力制御回路63は一定の周波数(約60kHz)で第1のスイッチング素子74と第4のスイッチング素子77または第2のスイッチング素子75と第3のスイッチング素子76を交互に駆動する。   In FIG. 1, a power source 51 is a 200 V commercial power source, and a power factor improvement circuit (a power factor improvement circuit ( The power source is converted into a boosted direct current by the power factor improving means 71 and stored in the second smoothing capacitor 73 so that the power factor of the commercial power source becomes close to 1. It is converted into a high frequency by the inverter 70, and a high frequency magnetic field is generated in the heating coil 59. A pan (not shown), which is a load, is installed facing the heating coil 59. The resonance capacitor 60 forms a series resonance circuit together with the heating coil 59. The resonant capacitor 60 includes a first capacitor 85, a second capacitor 86, and a third capacitor 87. In the present invention, the resonant capacitor 60 is opened and closed as a relay by opening and closing as a relay. Change the capacitance. The inverter 70 is connected to the first switching element 74, the second switching element 75, the third switching element 76, and the fourth switching element 77 so as to form a full bridge circuit having the resonance circuit as an output. The switching elements 74, 75, 76, and 77 are formed of IGBTs and diodes connected in antiparallel to the IGBTs. When the output is increased by alternately driving the first switching element 74 and the fourth switching element 77 or the second switching element 75 and the third switching element 76 by the heating output control circuit (heating output control means) 63. In this case, the switching element is driven by the heating output control circuit 63 so that the driving frequency of the switching element approaches the resonance frequency, and the heating output is detected by the heating output detecting means 67 comprising a current transformer so that a predetermined heating output can be obtained. It is a frequency controlled inverter. At the time of startup, the first switching unit 83 and the second switching unit 84 are open. The resonance frequency of the resonance circuit at this time is about 90 kHz. The heating output control circuit 63 alternately drives the first switching element 74 and the fourth switching element 77 or the second switching element 75 and the third switching element 76 at a constant frequency (about 60 kHz).

以上のように構成された誘導加熱調理器において、以下その動作、作用を説明する。   The operation and action of the induction heating cooker configured as described above will be described below.

図2は負荷材質検知手段72の検知入力の特性図である。第1のスイッチング素子74と第4スイッチング素子77の駆動期間は共振電流の共振周期よりも短いモードで駆動し、駆動時間比を最小にして、最小の出力にしてから徐々に駆動時間比を増加し、その間に負荷材質検知手段72はカレントトランス67の検知出力と第2のカレントトランスからなる共振電圧検知手段68の検知出力から、負荷の材質を検知する。   FIG. 2 is a characteristic diagram of the detection input of the load material detection means 72. The drive period of the first switching element 74 and the fourth switching element 77 is driven in a mode shorter than the resonance period of the resonance current, the drive time ratio is minimized, and the drive time ratio is gradually increased after the minimum output is achieved. In the meantime, the load material detection means 72 detects the load material from the detection output of the current transformer 67 and the detection output of the resonance voltage detection means 68 comprising the second current transformer.

アルミニウム系の負荷であると検知した場合には、所定の駆動時間比に到達すると、第1のスイッチング素子74と第4のスイッチング素子77の駆動期間より共振電流の周期の短いモードに移行する。このとき、出力は低出力状態になるように駆動期間が設定される。スイッチング素子74、75、76、77の駆動周波数は共振回路の共振周波数の1/3である約30kHzとなるようにしている。この時図4のような各部波形で動作する。また、力率改善回路71は400Vに昇圧しつつ商用電源の力率改善を行うよう動作している。このようにスイッチング素子74、75、76、77の損失を低減しつつ昇圧することでアルミニウムのような低透磁率かつ高導電率である金属も加熱できる高導電率材質モードで動作するようにしているものである。   When it is detected that the load is an aluminum load, when a predetermined drive time ratio is reached, the mode shifts to a mode in which the period of the resonance current is shorter than the drive period of the first switching element 74 and the fourth switching element 77. At this time, the drive period is set so that the output is in a low output state. The drive frequency of the switching elements 74, 75, 76, 77 is set to about 30 kHz which is 1/3 of the resonance frequency of the resonance circuit. At this time, each part operates as shown in FIG. The power factor correction circuit 71 operates to improve the power factor of the commercial power supply while boosting the voltage to 400V. In this way, by increasing the pressure while reducing the loss of the switching elements 74, 75, 76, 77, the metal is operated in a high conductivity material mode that can heat a metal having low magnetic permeability and high conductivity such as aluminum. It is what.

さらにアルミニウム系と鉄系の中間材質すなわち非磁性ステンレスの厚板や薄非磁性ステンレス板材の上にアルミニウムや銅などの高導電率材を載置した複合材と検知した場合にはスイッチング素子74、75、76、77は図4のように駆動する。ただし第1の切替手段は短絡し、第2の切替手段は開放することで共振回路の共振周波数を約66kHzとしている。駆動周波数は共振回路の共振周波数の1/3である約22kHzとなるようにして第1のスイッチング素子74と第4のスイッチング素子77を駆動した後半周期の共振電流を流して第1のスイッチング素子74と第4のスイッチング素子77の駆動を停止し、第2のスイッチング素子75と第3のスイッチング素子76の駆動を開始した後、1周期半の共振電流を流して第2のスイッチング素子75と第3のスイッチング素子76の駆動を停止することを繰り返す中電導率材質モードで動作させる。この時、力率改善回路71は400Vに昇圧平滑するよう動作している。駆動周波数を高導電率材質モードより低下させることによりスイッチング損失を低減しつつ、共振回路に流れる電流の周波数は約66kHzと高導電率材質モードより低いため、共振回路の等価直列抵抗は小さくなりインバータ電圧は同じであればより大きな加熱出力が得られるものである。   Furthermore, when it is detected as a composite material in which a high conductivity material such as aluminum or copper is placed on an aluminum-based and iron-based intermediate material, that is, a non-magnetic stainless steel plate or a thin non-magnetic stainless steel plate, the switching element 74, 75, 76 and 77 are driven as shown in FIG. However, the first switching means is short-circuited and the second switching means is opened, so that the resonance frequency of the resonance circuit is about 66 kHz. The first switching element is driven by flowing a resonance current in the latter half period of driving the first switching element 74 and the fourth switching element 77 so that the driving frequency is about 22 kHz which is 1/3 of the resonance frequency of the resonance circuit. 74 and the fourth switching element 77 are stopped, and the second switching element 75 and the third switching element 76 are started to be driven. The third switching element 76 is operated in a medium conductivity material mode that repeatedly stops driving. At this time, the power factor correction circuit 71 operates to boost and smooth to 400V. The switching frequency is reduced by lowering the driving frequency than that of the high conductivity material mode, and the frequency of the current flowing in the resonance circuit is about 66 kHz, which is lower than that of the high conductivity material mode. If the voltage is the same, a larger heating output can be obtained.

負荷材質検知手段72は負荷の材料が鉄系など低電導率のものであると判断すると、第1の切替手段および第2の切替手段は短絡することで共振回路の共振周波数を約20kHzとしている。駆動周波数は共振回路の略共振周波数となるようにして駆動周波数を下げ、再度低出力で加熱を開始する。スイッチング素子74、75、76、77の駆動周波数は共振回路の共振周波数である約20kHzとなるようにして、最小出力からスタートして所定の出力まで徐々に増加させる低導電率材質モードで動作させる。この時図3のような各部波形で動作する。このとき力率改善回路71は450Vに昇圧して十分な加熱出力を得ることができるものである。   When the load material detecting means 72 determines that the material of the load is of low conductivity such as iron, the first switching means and the second switching means are short-circuited to set the resonance frequency of the resonance circuit to about 20 kHz. . The drive frequency is lowered so as to be approximately the resonance frequency of the resonance circuit, and heating is started again at a low output. The drive frequency of the switching elements 74, 75, 76, 77 is set to about 20 kHz which is the resonance frequency of the resonance circuit, and the switching element 74, 75, 76, 77 is operated in the low conductivity material mode starting from the minimum output and gradually increasing to a predetermined output. . At this time, each part operates as shown in FIG. At this time, the power factor correction circuit 71 can boost the voltage to 450 V and obtain a sufficient heating output.

以上述べたように、本実施の形態では共振コンデンサは少なくとも2つのコンデンサの直列回路からなり、第1のコンデンサに並列に第1の切替手段を接続し第2のコンデンサに並列に第3のコンデンサと第2の切替手段の直列回路を接続し、第3のコンデンサは第2のコンデンサより静電容量を大きくし、負荷材質検知結果に応じて第1の切替手段または第2の切替手段を切り替えて共振回路の共振周波数を切り替えるとともにスイッチング素子の駆動周波数を共振回路の略共振周波数と共振回路の共振周波数の略1/n倍(nは2以上の整数)とに切り替える構成としているので、高耐圧リレーを用いることなく高導電率から低導電率まで負荷の材質に応じて加熱モードを切り替えることができることからスイッチング素子損失をより小さくでき、よってより加熱出力を大きくすることができる。   As described above, in this embodiment, the resonant capacitor is formed of a series circuit of at least two capacitors, and the first switching means is connected in parallel to the first capacitor, and the third capacitor is connected in parallel to the second capacitor. And the second switching means are connected in series, the third capacitor has a larger capacitance than the second capacitor, and the first switching means or the second switching means is switched according to the load material detection result. The resonance frequency of the resonance circuit is switched, and the drive frequency of the switching element is switched between approximately the resonance frequency of the resonance circuit and approximately 1 / n times the resonance frequency of the resonance circuit (n is an integer of 2 or more). Since the heating mode can be switched according to the material of the load from high conductivity to low conductivity without using a withstand voltage relay, switching element loss is further reduced. Kudeki, thus can be increased more heating power.

さらに、負荷材質検知手段72を共振コンデンサ60の電圧検知によるものとしてもスイッチング素子74、75、76、77の電流増大の検知は可能でありより容易な構成で負荷材質検知を行い加熱モードを切り替えることができる。   Furthermore, even if the load material detection means 72 is based on the voltage detection of the resonant capacitor 60, it is possible to detect an increase in the current of the switching elements 74, 75, 76, 77, and the load material detection is performed with a simpler configuration to switch the heating mode. be able to.

以上のように、本発明にかかる誘導加熱装置は、負荷の材質によらずより加熱出力を大きくすることが可能となるので、工業用誘導加熱等の用途にも適用できる。   As described above, since the induction heating device according to the present invention can increase the heating output regardless of the material of the load, it can also be applied to uses such as industrial induction heating.

本発明の実施の形態1における誘導加熱装置の回路構成図The circuit block diagram of the induction heating apparatus in Embodiment 1 of this invention 同誘導加熱装置の負荷材質検知手段の検知入力の特性図Characteristic diagram of detection input of load material detection means of the same induction heating device 同誘導加熱装置の回路の各部波形を示す図The figure which shows each part waveform of the circuit of the same induction heating apparatus 同誘導加熱装置の回路の各部波形を示す図The figure which shows each part waveform of the circuit of the same induction heating apparatus 従来の誘導加熱装置の回路構成図Circuit diagram of a conventional induction heating device 同誘導加熱装置の回路の各部波形を示す図The figure which shows each part waveform of the circuit of the same induction heating apparatus

符号の説明Explanation of symbols

59 加熱コイル
60 共振コンデンサ
63 加熱出力制御回路(加熱出力制御手段)
70 インバータ
71 力率改善回路(力率改善手段)
72 負荷材質検知手段
74 第1のスイッチング素子
75 第2のスイッチング素子
76 第3のスイッチング素子
77 第4のスイッチング素子
83 第1の切替手段
84 第2の切替手段
85 第1のコンデンサ
86 第2のコンデンサ
87 第3のコンデンサ
59 Heating coil 60 Resonant capacitor 63 Heating output control circuit (heating output control means)
70 Inverter 71 Power factor improvement circuit (Power factor improvement means)
72 Load material detection means 74 1st switching element 75 2nd switching element 76 3rd switching element 77 4th switching element 83 1st switching means 84 2nd switching means 85 1st capacitor | condenser 86 2nd Capacitor 87 Third capacitor

Claims (6)

負荷を磁気結合させる加熱コイルと共振コンデンサを有する共振回路と、スイッチング素子を有し前記共振回路に電力を供給するインバータと、前記加熱コイルの加熱出力を制御する加熱出力制御手段と、商用交流を整流する整流手段と、前記負荷の材質を検知する負荷材質検知手段とを備え、前記共振コンデンサは第1のコンデンサと第2のコンデンサの直列回路、前記第1のコンデンサに並列に接続される第1の切替手段と、前記第2のコンデンサに並列に接続される第3のコンデンサと第2の切替手段の直列回路とを備え、前記第3のコンデンサは前記第2のコンデンサより静電容量を大きくし、前記負荷材質検知手段が前記負荷をアルミニウムのような高導電率かつ低透磁率の材質と検知した場合は前記第1の切替手段および前記第2の切替手段を開放して前記スイッチング素子の駆動周波数を前記共振回路の共振周波数の略1/3倍に切り替え、前記負荷材質検知手段が前記負荷を非磁性ステンレスの厚板または薄非磁性ステンレス板材の上にアルミニウムまたは銅などの高導電率材を設けた複合材のような中間材質と検知した場合は前記第1の切替手段を短絡し前記第2の切替手段を開放して、前記駆動周波数を前記共振周波数の略1/3倍に切り替え、前記負荷材質検知手段が前記負荷を鉄のような低電導率の材質と検知した場合は前記第1の切替手段および前記第2の切替手段を短絡し、前記駆動周波数を前記共振周波数と略同じとするように切り替えることを特徴とした誘導加熱装置。 A heating circuit for magnetically coupling a load, a resonance circuit having a resonance capacitor, an inverter having a switching element and supplying power to the resonance circuit, a heating output control means for controlling the heating output of the heating coil, and commercial AC Rectifying means for rectifying and load material detecting means for detecting the material of the load are provided, and the resonant capacitor is connected in parallel with the first capacitor and the series circuit of the second capacitor and the first capacitor. a first switching means, said a series circuit of a third capacitor and a second switching means connected in parallel with the second capacitor, the third capacitor capacitance than the second capacitor It was increased, the load when the material detecting means has the load detecting a material of high conductivity and low permeability, such as aluminum the first switching means and said 2 switching means is opened to switch the drive frequency of the switching element to approximately 1/3 times the resonance frequency of the resonance circuit, and the load material detection means switches the load to a non-magnetic stainless steel plate or thin non-magnetic stainless steel. When detecting an intermediate material such as a composite material provided with a high conductivity material such as aluminum or copper on a plate material, the first switching means is short-circuited and the second switching means is opened to drive the drive When the frequency is switched to approximately 3 times the resonance frequency, and the load material detecting means detects the load as a material having a low conductivity such as iron, the first switching means and the second switching means. Is switched so that the drive frequency is substantially the same as the resonance frequency . 共振コンデンサは2つのコンデンサの直列回路とし、それぞれのコンデンサの静電容量は略同じとしたことを特徴とした請求項1に記載の誘導加熱装置。 The induction heating apparatus according to claim 1, wherein the resonance capacitor is a series circuit of two capacitors, and the capacitance of each capacitor is substantially the same. インバータはフルブリッジ回路を有することを特徴とした請求項1または2に記載の誘導加熱装置。 Inverter induction heating apparatus according to claim 1 or 2 characterized by having a full bridge circuit. 用交流の力率を改善する力率改善手段を備え、前記力率改善手段は負荷材質検知手段が負荷を高導電率かつ低透磁率の材質、中間材質または低電導率の材質と検知した場合に、整流手段からの整流出力を昇圧してインバータに供給する請求項1〜3のいずれかに記載の誘導加熱装置。 Includes a power factor improvement means for improving the power factor of the commercial alternating current, the power factor correction unit load material detection means material of high conductivity and low permeability load was detected with the material of the intermediate material or low conductivity In this case, the induction heating apparatus according to any one of claims 1 to 3 , wherein the rectified output from the rectifying means is boosted and supplied to the inverter . 力率改善手段は負荷材質検知手段が低電導率の材質と検知した場合に、前記負荷材質検知
手段が高導電率かつ低透磁率の材質と検知した場合及び前記負荷材質検知手段が中間材質と検知した場合よりも出力電圧を大きくする請求項に記載の誘導加熱装置。
The power factor improving means detects the load material when the load material detecting means detects that the material has a low conductivity.
Induction heating apparatus according to claim 4 you increase the output voltage than if the means when it detects the material and the load material detection means of the high conductivity and low permeability is detected as an intermediate material.
負荷材質検知手段は少なくとも、加熱出力に応じた出力をする加熱出力検知手段の出力と、共振コンデンサまたは加熱コイルの電圧または電流を検知する共振電圧検知手段の出力を入力とする請求項1〜5のいずれかに記載の誘導加熱装置。 Load material sensing means at least claim 1-5 for the output of the heating output detector for the corresponding to the heating output output, the output of the resonant voltage detecting means for detecting the voltage or current of resonant capacitor or heating coil and input The induction heating device according to any one of the above.
JP2006176201A 2006-06-27 2006-06-27 Induction heating device Active JP4444243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006176201A JP4444243B2 (en) 2006-06-27 2006-06-27 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006176201A JP4444243B2 (en) 2006-06-27 2006-06-27 Induction heating device

Publications (2)

Publication Number Publication Date
JP2008010165A JP2008010165A (en) 2008-01-17
JP4444243B2 true JP4444243B2 (en) 2010-03-31

Family

ID=39068195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006176201A Active JP4444243B2 (en) 2006-06-27 2006-06-27 Induction heating device

Country Status (1)

Country Link
JP (1) JP4444243B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4992818B2 (en) * 2008-05-12 2012-08-08 パナソニック株式会社 Induction heating device
WO2010041354A1 (en) * 2008-10-08 2010-04-15 パナソニック株式会社 Inductive heating device
JP2010113886A (en) * 2008-11-05 2010-05-20 Mitsubishi Electric Corp Induction heating cooking appliance
JP5625496B2 (en) * 2010-05-28 2014-11-19 パナソニック株式会社 Induction heating device
EP3675599B1 (en) 2017-08-24 2021-09-01 Panasonic Intellectual Property Management Co., Ltd. Induction-heating cooker
KR102201189B1 (en) * 2019-09-05 2021-01-08 엘지전자 주식회사 Induction heating device

Also Published As

Publication number Publication date
JP2008010165A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
JP4900248B2 (en) Induction heating device
KR100517447B1 (en) Induction heating apparatus
JP4444243B2 (en) Induction heating device
JP5872235B2 (en) Electromagnetic induction heating device
JP2007335274A (en) Induction heating cooker
JP4706307B2 (en) Induction heating device
JP4363355B2 (en) Induction heating device
JP2010267636A (en) Induction heating cooker
JP3460997B2 (en) Induction heating device
JP3907550B2 (en) Induction heating cooker
JP4289002B2 (en) Induction heating device
JP4887681B2 (en) Induction heating device
JP2005116385A (en) Induction heating device
JP2008027922A (en) Induction heating cooking device
JP4613687B2 (en) Induction heating device
JP4158753B2 (en) Induction heating device
JP4492559B2 (en) Induction heating cooker
JP5035099B2 (en) Induction heating cooker
JP3833159B2 (en) Induction heating device
JP4048928B2 (en) Induction heating device
JP2005149736A (en) Induction heating device
JP2010055760A (en) Induction heating device
JP4049206B2 (en) Induction heating device
JP2011135668A (en) Inverter device
JP2007188904A (en) Induction heating cooker

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100113

R151 Written notification of patent or utility model registration

Ref document number: 4444243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3